1
|
Beltrán-Hernández NE, Cardenas L, Jimenez-Jacinto V, Vega-Alvarado L, Rivera HM. Biological Activity of Biomarkers Associated With Metastasis in Osteosarcoma Cell Lines. Cancer Med 2025; 14:e70391. [PMID: 40079158 PMCID: PMC11904427 DOI: 10.1002/cam4.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood. Clarifying the molecular pathways involved in metastasis is essential for enhancing patient prognoses and facilitating the development of targeted therapeutic strategies. METHODS RNA sequencing (RNA-Seq) analysis was employed to compare three conditions, hFOB1.19 versus Saos-2, hFOB1.19 versus SJSA-1, and Saos-2 versus SJSA-1, involving non-cancer osteoblasts (hFOB1.19) and highly metastatic osteosarcoma cell lines (Saos-2 and SJSA-1). Additionally, ENA datasets of RNA-Seq from osteosarcoma biopsies were included. Differentially expressed genes (DEGs) were identified and analyzed through enrichment pathway analysis and protein-protein interaction (PPI) networks. Additionally, for gene candidates, a biochemical evaluation was performed. RESULTS DEGs associated with biological functions pertinent to migration, invasion, and metastasis in osteosarcoma were identified. Notably, matrix metalloproteinase-2 (MMP-2) emerged as a promising candidate. Both canonical or full-length (FL-mmp-2) and N-terminal truncated (NTT-mmp-2) isoforms were discerned in biopsies. Moreover, MMP-2's activity was characterized in cell lines. Additionally, mRNA expression of voltage-gated sodium channels (NaVs) and voltage-gated potassium channels (KVs) was detected, and their functional expression was validated using patch clamp techniques. Evaluation of cell line migration and invasion capacities revealed their reduction in the presence of ion channel blockers (TTX and TEA) and MMP inhibitor (GM6001). CONCLUSIONS The gene functional enrichment analysis of DEGs enabled the identification of interaction networks in osteosarcoma, thereby revealing potential biomarkers. Moreover, the elucidated co-participation of TTX-sensitive NaVs and MMP-2 in facilitating migration and invasion suggests their suitability as novel prognostic biomarkers for osteosarcoma. Additionally, this study introduces a model delineating the potential interaction mechanism among ion channels, MMP-2, and other crucial factors in the metastatic cascade of osteosarcoma.
Collapse
Affiliation(s)
| | - Luis Cardenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Jimenez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Coyoacán Ciudad de México, Mexico
| | - Heriberto Manuel Rivera
- Universidad Autónoma del Estado de Morelos, Facultad de Medicina, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Luo X, Li J, Cen Z, Feng G, Hong M, Huang L, Long Q. Exploring the therapeutic potential of lupeol: A review of its mechanisms, clinical applications, and advances in bioavailability enhancement. Food Chem Toxicol 2025; 196:115193. [PMID: 39662867 DOI: 10.1016/j.fct.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Lupeol, a naturally occurring triterpenoid, has garnered significant attention for its diverse range of biological activities and potential therapeutic applications. This comprehensive review delves into the various aspects of lupeol, including its sources, extraction methods, chemical characteristics, pharmacokinetics, safety evaluation, mechanisms of action, and applications in disease treatment. We highlight the compound's unique carbon skeleton and its role in inflammation regulation, antioxidant activity, and broad-spectrum antimicrobial effects. The review also underscores lupeol's potential in cancer therapy, cardiovascular protection, metabolic disease management, and wound healing. Furthermore, we discuss the challenges and future perspectives of lupeol's clinical application, emphasizing the need for further research to improve its bioavailability and explore its full therapeutic potential. The review concludes by recognizing the significance of lupeol in drug development and healthcare, with expectations for future breakthroughs in medical applications.
Collapse
Affiliation(s)
- Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ji Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhifeng Cen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiqi Hong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Yang Q, Chen X, Liu J, He Y. Gelatin-based biomaterials as a delivery strategy for osteosarcoma treatment. Front Pharmacol 2025; 16:1537695. [PMID: 39936088 PMCID: PMC11811086 DOI: 10.3389/fphar.2025.1537695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor. Although surgery and chemoradiotherapy have made some progress in the treatment of osteosarcoma. However, the high recurrence and metastasis rate of osteosarcoma and bone defects caused by surgery are still the main problems faced by osteosarcoma. Gelatin has excellent biocompatibility and biodegradability, and has made phased progress in tumor treatment. In the treatment of osteosarcoma, gelatin-based biomaterials can be used in delivery strategies to enhance the anti-tumor activity of osteosarcoma and can improve the appropriate compressive strength to improve the bone defects faced after surgery. At present, gelatin-based hydrogels, gelatin scaffolds, and gelatin-based nanoparticles have been reported in preclinical studies. In this article, we introduce the application of gelatin-based biomaterials in the treatment of osteosarcoma, and summarize and look forward to them.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xingpeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yeteng He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
4
|
Gao C, Wang X, Yan H, Zeng G, Chen Y, Gao J. Exosome-Delivered Hsa_Circ_0000116 Facilitates Osteosarcoma Cell Malignancy via PI3K/Akt/mTOR and p38/MAPK Pathways. DNA Cell Biol 2025; 44:153-160. [PMID: 39778893 DOI: 10.1089/dna.2024.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Exosome-delivered circular RNAs (circRNAs) are recognized as a key mechanism that regulates osteosarcoma (OS) progression. The purpose of this study is to discover the role of a novel circRNA hsa_circ_0000116 from exosomes in OS progression. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify the exosomes isolated from two OS cell lines (HOS and MG-63). After coculturing exosomes with OS cells and transfecting hsa_circ_0000116 knockdown vector into OS cells, cell function experiments, including cell counting kit-8, wound healing, and Transwell experiments, were performed to assess the change of OS cell malignant phenotype. In addition, the levels of PI3K/Akt/mTOR and p38/MAPK pathways-associated proteins were measured using western blotting. Exosomes with around 100 nm in diameter were successfully isolated from HOS and MG-63 cells, and promote OS cells to proliferate, migrate, and invade. hsa_circ_0000116 was upregulated in OS-derived exosomes, and silencing hsa_circ_0000116 declined the exosome-induced OS cell malignancy. In addition, inhibiting hsa_circ_0000116 effectively inhibited exosome-mediated activation of PI3K/Akt/mTOR and p38/MAPK pathways. In conclusion, exosomal hsa_circ_0000116 can facilitate OS cell malignancy by inducing the activation of PI3K/Akt/mTOR and p38/MAPK pathways. The findings of this study may identify novel molecular mechanisms driving OS progression and provide novel therapeutic targets for OS.
Collapse
Affiliation(s)
- Chunsheng Gao
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Xiaowei Wang
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Huichao Yan
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Ge Zeng
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Yan Chen
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Jun Gao
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
5
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
6
|
Valencia-Cordova MG, Jaguey-Hernández Y, Castañeda-Ovando A, González-Olivares LG, Castañeda-Ovando EP, Añorve-Morga J, de la O-Arciniega M. Lesser-Explored Edible Flowers as a Choice of Phytochemical Sources for Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9265929. [PMID: 39564080 PMCID: PMC11576087 DOI: 10.1155/2024/9265929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
Flowers have been commonly used in cooking to add color and flavor to dishes. In addition to enhancing the visual appeal of food, many edible flowers also contain bioactive compounds that promote good health. These compounds include antimicrobial, antihypertensive, nephroprotective, antiulcer, and anticancer agents. In the last 5 years, there have been 95 published reviews about edible flowers. Among these, 43% have concentrated on Food Science and Technology, while 32% have analyzed their effects on human health. Most of these edible flowers are commonly consumed, but some are less known due to limited distribution or seasonality. These lesser-explored flowers often contain compounds that offer significant health advantages. Therefore, this review focuses on exploring the characteristics, phytochemical composition, and bioactive compounds found in less commonly examined edible flowers. The flowers included in this review are peonies, forget-me-nots, frangipani, alpine roses, wild roses, hibiscus species, common lilacs, woodland geraniums, camellias, Aztec marigolds, kiri flowers, sunflowers, yucca flower, hollyhocks, and cornflowers. Due to their diverse biological activities, these flowers provide various health benefits and can be used to be incorporated into food and supplements or develop mainly cancer-fighting medications.
Collapse
Affiliation(s)
| | - Yari Jaguey-Hernández
- Agroindustry Engineering Department, Polytechnque University of Francisco I. Madero, Francisco I. Madero, Hidalgo 42660, Mexico
- Autonomous University of Hidalgo State, Institute of Health Sciences, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| | - Araceli Castañeda-Ovando
- Chemistry Department, Autonomous University of Hidalgo State, Mineral de la Reforma, Hidalgo 42184, Mexico
| | | | - E Pedro Castañeda-Ovando
- Autonomous University of Hidalgo State, Institute of Basic Sciences and Engineering, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Javier Añorve-Morga
- Chemistry Department, Autonomous University of Hidalgo State, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Minarda de la O-Arciniega
- Autonomous University of Hidalgo State, Institute of Health Sciences, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| |
Collapse
|
7
|
Tanuja, Parani M. Identification of full-length genes involved in the biosynthesis of β-caryophyllene and lupeol from the leaf transcriptome of Ayapana triplinervis. Genome 2024; 67:440-444. [PMID: 38996388 DOI: 10.1139/gen-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
β-Caryophyllene possesses potential anticancer properties against various cancers, including breast, colon, and lung cancer. Therefore, the essential oil of Ayapana triplinervis, which is rich in β-caryophyllene, can be a potential herbal remedy for treating cancer. However, molecular and genomic studies on A. triplinervis are still sparse. In this study, we obtained 14.7 Gb of RNA-Seq data from A. triplinervis leaf RNA and assembled 137 554 transcripts with an N50 value of 1437 bp. We annotated 72 436 (52.7%) transcripts and mapped 10 640 transcripts to 156 biochemical pathways. Among them, 218 were related to terpenoid backbone biosynthesis, while 27 were linked to sesquiterpenoid and triterpenoid pathways. Ninety-four transcripts were annotated in the β-caryophyllene and lupeol pathways. From these transcripts, for the first time, we identified 25 full-length genes encoding all the 17 enzymes involved in β-caryophyllene biosynthesis and an additional five genes involved in lupeol biosynthesis. These genes will be useful for the metabolic engineering of β-caryophyllene and lupeol biosynthesis, not just in A. triplinervis but also in other species.
Collapse
Affiliation(s)
- Tanuja
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Madasamy Parani
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| |
Collapse
|
8
|
Sen K, Kumar Das S, Ghosh N, Sinha K, Sil PC. Lupeol: A dietary and medicinal triterpene with therapeutic potential. Biochem Pharmacol 2024; 229:116545. [PMID: 39293501 DOI: 10.1016/j.bcp.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Lupeol, a triterpene derived from various plants, has emerged as a potent dietary supplement with extensive therapeutic potential. This review offers a comprehensive examination of lupeol's applications across diverse health conditions. By meticulously analyzing current scientific literature, we have synthesized findings that underscore lupeol's impact on cancer, diabetes, gastrointestinal disorders, neurological diseases, dermatological conditions, nephrological issues, and cardiovascular health. The review delves into molecular studies that reveal lupeol's ability to modulate disease pathways and alleviate symptoms, positioning it as a promising therapeutic agent. Moreover, we discuss the potential role of lupeol in clinical practice and public health strategies, emphasizing its substantial benefits as a natural compound. This thorough analysis serves as a critical resource for researchers, providing insights into the multifaceted therapeutic properties of lupeol and its potential to significantly enhance health outcomes.
Collapse
Affiliation(s)
- Koushik Sen
- Jhargram Raj College, Jhargram 721507, India
| | | | | | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
9
|
Tian S, Zhao Y, Deng S, Hou L, Song J, Wang M, Bu M. Lupeol-3-carbamate Derivatives: Synthesis and Biological Evaluation as Potential Antitumor Agents. Molecules 2024; 29:3990. [PMID: 39274838 PMCID: PMC11396318 DOI: 10.3390/molecules29173990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
In the following study, a series of new lupeol-3-carbamate derivatives were synthesized, and the structures of all the newly derived compounds were characterized. The new compounds were screened to determine their anti-proliferative activity against human lung cancer cell line A549, human liver cancer cell line HepG2, and human breast cancer cell line MCF-7. Most of the compounds were found to show better anti-proliferative activity in vitro than lupeol. Among them, obvious anti-proliferation activity (IC50 = 5.39~9.43 μM) was exhibited by compound 3i against all three tumor cell lines. In addition, a salt reaction was performed on compound 3k (IC50 = 13.98 μM) and it was observed that the anti-proliferative activity and water solubility of compound 3k·CH3I (IC50 = 3.13 μM), were significantly enhanced subsequent to the salt formation process. The preliminary mechanistic studies demonstrated that apoptosis in HepG2 cells was induced by compound 3k·CH3I through the inhibition of the PI3K/AKT/mTOR pathway. In conclusion, a series of new lupeol-3-carbamate derivatives were synthesized via the structural modification of the C-3 site of lupeol, thus laying a theoretical foundation for the design of this new anticancer drug.
Collapse
Affiliation(s)
- Shuang Tian
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yinxu Zhao
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Liman Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Juan Song
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Ming Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
10
|
Sheng F, Yang S, Li M, Wang J, Liu L, Zhang L. Research Progress on the Anti-Cancer Effects of Astragalus membranaceus Saponins and Their Mechanisms of Action. Molecules 2024; 29:3388. [PMID: 39064966 PMCID: PMC11280308 DOI: 10.3390/molecules29143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Astragalus membranaceus saponins are the main components of A. membranaceus, a plant widely used in traditional Chinese medicine. Recently, research on the anti-cancer effects of A. membranaceus saponins has received increasing attention. Numerous in vitro and in vivo experimental data indicate that A. membranaceus saponins exhibit significant anti-cancer effects through multiple mechanisms, especially in inhibiting tumor cell proliferation, migration, invasion, and induction of apoptosis, etc. This review compiles relevant studies on the anti-cancer properties of A. membranaceus saponins from various databases over the past two decades. It introduces the mechanism of action of astragalosides, highlighting their therapeutic benefits in the management of cancer. Finally, the urgent problems in the research process are highlighted to promote A. membranaceus saponins as an effective drug against cancer.
Collapse
Affiliation(s)
- Feiya Sheng
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Siyu Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Jiaojiao Wang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Ye J, Chang T, Zhang X, Wei D, Wang Y. Mefenamic acid exhibits antitumor activity against osteosarcoma by impeding cell growth and prompting apoptosis in human osteosarcoma cells and xenograft mice model. Chem Biol Interact 2024; 393:110931. [PMID: 38423378 DOI: 10.1016/j.cbi.2024.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The study investigates the anticancer activity of mefenamic acid against osteosarcoma, shedding light on its underlying mechanisms and therapeutic potential. Mefenamic acid exhibited robust inhibitory effects on the proliferation of MG-63, HOS, and H2OS osteosarcoma cells in a dose-dependent manner. Moreover, mefenamic acid induced cellular toxicity in MG63 cells, as evidenced by LDH leakage, reflecting its cytotoxic impact. Furthermore, mefenamic acid effectively suppressed the migration and invasion of MG-63 cells. Mechanistically, mefenamic acid induced apoptosis in MG-63 cells through mitochondrial depolarization, activation of caspase-dependent pathways, and modulation of the Bcl-2/Bax axis. Additionally, mefenamic acid promoted autophagy and inhibited the PI3K/Akt/mTOR pathway, further contributing to its antitumor effects. The molecular docking studies provide compelling evidence that mefenamic acid interacts specifically and strongly with key proteins in the PI3K/AKT/mTOR pathway, suggesting a novel mechanism by which mefenamic acid could exert anti-osteosarcoma effects. In vivo studies using a xenograft mouse model demonstrated significant inhibition of MG-63 tumor growth without adverse effects, supporting the translational potential of mefenamic acid as a safe and effective therapeutic agent against osteosarcoma. Immunohistochemistry staining corroborated the in vivo findings, highlighting mefenamic acid's ability to suppress tumor proliferation and inhibit the PI3K/AKT/mTOR pathway within the tumor microenvironment. Collectively, these results underscore the promising therapeutic implications of mefenamic acid in combating osteosarcoma, warranting further investigation for clinical translation and development.
Collapse
Affiliation(s)
- Junwu Ye
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tianmin Chang
- Clinical Skills Training Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xihai Zhang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanhui Wang
- Department of Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
12
|
Lin TS, Huang WN, Yang JL, Peng SF, Liu KC, Chen JC, Hsia TC, Huang AC. Allyl isothiocyanate inhibits cell migration and invasion in human gastric cancer AGS cells via affecting PI3K/AKT and MAPK signaling pathway in vitro. ENVIRONMENTAL TOXICOLOGY 2023; 38:2287-2297. [PMID: 37318315 DOI: 10.1002/tox.23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
Metastasis is commonly occurred in gastric cancer, and it is caused and responsible for one of the major cancer-related mortality in gastric cancer patients. Allyl isothiocyanate (AITC), a natural product, exhibits anticancer activities in human many cancer cells, including gastric cancer. However, no available report shows AITC inhibits gastric cancer cell metastasis. Herein, we evaluated the impact of AITC on cell migration and invasion of human gastric cancer AGS cells in vitro. AITC at 5-20 μM did not induce significant cell morphological damages observed by contrast-phase microscopy but decreased cell viability assayed by flow cytometry. After AGS cells were further examined by atomic force microscopy (AFM), which indicated AITC affected cell membrane and morphology in AGS cells. AITC significantly suppressed cell motility examined by scratch wound healing assay. The results of the gelatin zymography assay revealed that AITC significantly suppressed the MMP-2 and MMP-9 activities. In addition, AITC suppressed cell migration and invasion were performed by transwell chamber assays at 24 h in AGS cells. Furthermore, AITC inhibited cell migration and invasion by affecting PI3K/AKT and MAPK signaling pathways in AGS cells. The decreased expressions of p-AKTThr308 , GRB2, and Vimentin in AGS cells also were confirmed by confocal laser microscopy. Our findings suggest that AITC may be an anti-metastasis candidate for human gastric cancer treatment.
Collapse
Affiliation(s)
- Tzu-Shun Lin
- Department of Pharmacy, Saint Mary's Hospital Luodong, Luodong, Yilan, Taiwan
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Sanxing, Yilan, Taiwan
| | - Wan-Nei Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jiun-Long Yang
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Sanxing, Yilan, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Cheng Huang
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Sanxing, Yilan, Taiwan
| |
Collapse
|
13
|
Globig P, Madurawala R, Willumeit-Römer R, Martini F, Mazzoni E, Luthringer-Feyerabend BJ. Mg-based materials diminish tumor spreading and cancer metastases. Bioact Mater 2023; 19:594-610. [PMID: 35600975 PMCID: PMC9108521 DOI: 10.1016/j.bioactmat.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer metastases are the most common causes of cancer-related deaths. The formation of secondary tumors at different sites in the human body can impair multiple organ function and dramatically decrease the survival of the patients. In this stage, it is difficulty to treat tumor growth and spreading due to arising therapy resistances. Therefore, it is important to prevent cancer metastases and to increase subsequent cancer therapy success. Cancer metastases are conventionally treated with radiation or chemotherapy. However, these treatments elicit lots of side effects, wherefore novel local treatment approaches are currently discussed. Recent studies already showed anticancer activity of specially designed degradable magnesium (Mg) alloys by reducing the cancer cell proliferation. In this work, we investigated the impact of these Mg-based materials on different steps of the metastatic cascade including cancer cell migration, invasion, and cancer-induced angiogenesis. Both, Mg and Mg–6Ag reduced cell migration and invasion of osteosarcoma cells in coculture with fibroblasts. Furthermore, the Mg-based materials used in this study diminished the cancer-induced angiogenesis. Endothelial cells incubated with conditioned media obtained from these Mg and Mg–6Ag showed a reduced cell layer permeability, a reduced proliferation and inhibited cell migration. The tube formation as a last step of angiogenesis was stimulated with the presence of Mg under normoxia and diminished under hypoxia. Magnesium (Mg)-based material degradation decrease cell migration and invasion of an osteosarcoma coculture. Mg-based material degradation products reduce cancer-induced angiogenesis at an early stage. These materials may reduce secondary tumor formation and metastases.
Collapse
|
14
|
Chien HJ, Liu CJ, Ying TH, Wu PJ, Wang JW, Ting YH, Hsieh YH, Wang SC. Timosaponin AIII Inhibits Migration and Invasion Abilities in Human Cervical Cancer Cells through Inactivation of p38 MAPK-Mediated uPA Expression In Vitro and In Vivo. Cancers (Basel) 2022; 15:cancers15010037. [PMID: 36612038 PMCID: PMC9817900 DOI: 10.3390/cancers15010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is one of the most common gynecologic cancers globally that require novel approaches. Timosaponin AIII (TSAIII) is a steroidal saponin that displays beneficial effects in antitumor activities. However, the effect of TSAIII on human cervical cancer remains unknown. In this study, we found that TSAIII showed no influence on cell viability, cytotoxicity, cell cycle distribution and apoptosis induction in human cervical cancer cells. TSAIII was revealed to have a significant inhibitory effect on cell migration and invasion through the downregulation of invasion-related uPA expression and p38 MAPK activation in both human cervical cancer cells and cervical cancer stem cells (CCSCs), indicating that the p38 MAPK-uPA axis mediated the TSAIII-inhibited capacity of cellular migration and invasion. In a synergistic inhibition assay, a TSAIII plus p38 siRNA cotreatment revealed a greater inhibition of uPA expression, migration and invasion in human cervical cancer cells. In an immunodeficient mouse model, TSAIII significantly inhibited lung metastases from human cervical cancer SiHa cells without TSAIII-induced toxicity. These findings first revealed the inhibitory effects of TSAIII on the progression of human cervical cancer through its downregulation of p38 MAPK-uPA axis activation. Therefore, TSAIII might provide a potential strategy for auxiliary therapy in human cervical cancer.
Collapse
Affiliation(s)
- Hung-Ju Chien
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (Y.-H.H.); (S.-C.W.)
| | - Shih-Chiang Wang
- Department of Obstetrics and Gynecology, Chung-Kang Branch, Cheng Ching Hospital, Taichung 40764, Taiwan
- Correspondence: (Y.-H.H.); (S.-C.W.)
| |
Collapse
|
15
|
Jo HW, Kim MM. β-Caryophyllene oxide inhibits metastasis by downregulating MMP-2, p-p38 and p-ERK in human fibrosarcoma cells. J Food Biochem 2022; 46:e14468. [PMID: 36190169 DOI: 10.1111/jfbc.14468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 01/14/2023]
Abstract
When cancer cells transform into malignant tumors, they gain the ability to ignore growth-inhibiting signals, have endless reproduction potential, resist apoptosis, and induce angiogenesis and invade other tissues. Matrix metalloproteinases (MMPs) allow tumor cells to move into surrounding tissues in many malignancies, but metastasis is blocked by MMPs inhibitors. Therefore, the effect of β-caryophyllene oxide (CPO) contained in Piper nigrum on Mitogen-activated protein kinase (MAPKs) related to MMPs signaling pathways in human fibrosarcoma was examined in HT1080 cells. The effect of CPO on cell viability was performed using the MTT assay. Cytotoxicity was observed in the presence of CPO above 16 μM. Next, gelatin zymography was performed in the cells activated with phorbol-12-myristate-13-acetate (PMA). It was found that CPO at 32 μM reduced MMP-9 activity by 28% and MMP-2 activity by 60%. To confirm the effect of CPO on MMPs, Western blot analyses for MMP-2, MAPKs were carried out in this study. The expression level of MMP-2 was reduced by 45% in the presence of CPO at 32 μM, but those of p-p38 and p-ERK were reduced by 50% and 40%, respectively. CPO decreased the expression levels of MMP-2 and MMP-9 in the immunofluorescence staining assay. Finally, an invasion assay was performed in PMA-treated human fibrosarcoma cells. It was demonstrated that CPO reduced cell invasion of HT1080 cells in a dose-dependent manner starting at a concentration of 2 μM. The above results suggest that CPO could be used as a potential candidate for the treatment of metastasis by inhibiting MMP-2, p-p38 and p-ERK. PRACTICAL APPLICATIONS: Cancer makes it easier for cells to spread to other tissue via blood and lymph systems. Tumor cells deplete nutrients and induce angiogenesis, which penetrates and spreads to other parts of the body. As a result, the effect of CPO against cell invasion was evaluated in this study. CPO reduced cancer cell invasion by inactivating p-ERK and p-p38, according to the findings. MMP-2 and MMP-9 activation and protein expression were also decreased by CPO. As a result, CPO might be used as an alternate treatment agent for preventing metastasis.
Collapse
Affiliation(s)
- Hyun Woo Jo
- Department of Applied Chemistry, Dong-Eui University, Busan, Republic of Korea.,Department of Food Science and Technology, Dong-Eui University, Busan, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan, Republic of Korea
| |
Collapse
|
16
|
Comparative study of the biochemical properties of membrane-bound and soluble polyphenol oxidase from Prunus mume. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Tang Y, Sun L, Wei J, Sun C, Gan C, Xie X, Liang C, Peng C, Wu H, Zheng Z, Pan Z, Huang Y. Network pharmacology identification and in Vivo validation of key pharmacological pathways of Phyllanthus reticulatus (Euphorbiaceae) leaf extract in liver cancer treatment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115479. [PMID: 35777610 DOI: 10.1016/j.jep.2022.115479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus reticulatus (Euphorbiaceae) is a medicinal plant that has been used in Zhuang medicine since ancient times. Traditionally, it has the effect of removing toxins and detumescence and can be used to treat hepatitis in China and India. Our previous studies have proved that the ethyl acetate extract of its leaves (PRPE) has an anti-hepatoma effect. AIM OF THE STUDY To predict targets of an ethyl acetate extract of Phyllanthus reticulatus leaves (PRPE) in hepatoma treatment via network pharmacology and verify the predictions in a mouse model of liver cancer. MATERIALS AND METHODS Chemical constituents and therapeutic targets of P. reticulatus (PRP) were searched and predicted via public databases. A protein-protein interaction network comprising common targets was constructed, and the key gene targets were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for biological function and pathway enrichment analyses. The effects of PRP on BEL-7404 and HepG2 cells were determined by MTT assay, apoptosis was measured by flow cytometry and hoechst44432/PI. And a nude mouse xenograft model was established to verify the anti-tumour effect in vivo. The histopathology of tumours was observed by staining with haematoxylin and eosin (H&E). Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry were used to determine the gene and protein expression levels of phosphoinositide 3-kinase (PI3K), Akt1, p53, caspase-3, Bcl-2 and Bax, respectively. RESULTS Twenty-seven chemical components and 567 potential therapeutic targets of PRP were identified. GO analysis indicated that these targets are mainly associated with peptidyl-tyrosine phosphorylation and steroid metabolic process. KEGG analysis showed that the targets are mainly located in the PI3K/Akt, apoptosis, mitogen-activated protein kinase (MAPK), Ras and vascular endothelial growth factor (VEGF) signalling pathways. According to the p-adjust value, the PI3K/Akt pathway is the core pathway. In vitro, PRPE could inhibit proliferation and induce apoptosis in hepatoma cells. IC50 values of PRPE were 2.48 and 6.34 mg/mL for BEL-7404 and hepG2 cells, respectively. PRPE significantly reduced tumour volume and weight. H&E results showed that PRPE repaired necrotic areas in hepatoma cells. PRPE reduced the protein expression of PI3K, Akt1 and Bcl-2 and increased the protein expression of p53 and Bax. Meanwhile, PRPE reduced the mRNA expression of PI3K, AKT1 and BCL2 and increased the mRNA expression of TP53, CASP3 and BAX. CONCLUSION The targets of PRPE are the PI3K/Akt, apoptosis, MAPK, Ras and VEGF signalling pathways. Passing through the PI3K/Akt pathway to induce apoptosis is the main mechanism of PRPE.
Collapse
Affiliation(s)
- Yunli Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China; Guangxi University of Chinese Medicine, Nanning, 530020, People's Republic of China.
| | - Luyao Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Jiangcun Wei
- Guangxi University of Chinese Medicine, Nanning, 530020, People's Republic of China.
| | - Chen Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Caiyu Gan
- Guangxi University of Chinese Medicine, Nanning, 530020, People's Republic of China
| | - Xiaofang Xie
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chenyan Liang
- Guangxi University of Chinese Medicine, Nanning, 530020, People's Republic of China.
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Huaien Wu
- Guangxi University of Chinese Medicine, Nanning, 530020, People's Republic of China
| | - Zuowen Zheng
- Guangxi University of Chinese Medicine, Nanning, 530020, People's Republic of China
| | - Zhirui Pan
- Guangxi University of Chinese Medicine, Nanning, 530020, People's Republic of China
| | - Yuhua Huang
- Guangxi University of Chinese Medicine, Nanning, 530020, People's Republic of China
| |
Collapse
|
18
|
Suppression of GOLM1 by EGCG through HGF/HGFR/AKT/GSK-3β/β-catenin/c-Myc signaling pathway inhibits cell migration of MDA-MB-231. Food Chem Toxicol 2021; 157:112574. [PMID: 34536514 DOI: 10.1016/j.fct.2021.112574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
Golgi Membrane Protein 1 (GOLM1) has been identified as a prime target for cancer therapy because it overexpresses in many solid tumors, increases tumor growth and metastasis and leads to unfavorable survival. Though various approaches including siRNA interference and antibody targeting have been attempted, GOLM1 has remained an un-targetable molecule because of its mainly intracellular location and the lack of domains that could possibly be interfered with by small molecules. Numerous natural anti-tumoral plant substances have been identified, while their possible function on GOLM1 has never been revealed. This is the first report to study the relationship between GOLM1 downregulation and natural anti-tumoral plant substances and the possible mechanism. Among three tested possible migration-inhibiting natural substances (Epigallocatechin gallate (EGCG), Betulinic acid (BA) and Lupeol), EGCG showed the most potent inhibition effect on GOLM1 expression and MDA-MB-231 cell migration. Knocking down GOLM1 expression further increased the EGCG treatment effect. Molecular docking prediction and following experiments suggested that EGCG may inhibit GOLM1 expression and MDA-MB-231 cells migration through HGF/HGFR/AKT/GSK-3/β-catenin/c-Myc signaling pathway. In all, EGCG is the first identified GOLM1 downregulation natural product. Silencing GOLM1 may be a novel mechanism of potentiated anti-cancer migration effects and cytotoxic effect of EGCG. In addition, this study shed a new way for cancer therapy by combination of GOLM1 silencing and EGCG treatment in the future.
Collapse
|
19
|
Dai YH, Chen GY, Tang CH, Huang WC, Yang JC, Wu YC. Drug Screening of Potential Multiple Target Inhibitors for Estrogen Receptor-α-positive Breast Cancer. In Vivo 2021; 35:761-777. [PMID: 33622869 DOI: 10.21873/invivo.12317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Estrogen receptor α (ERα) antagonist is the most common treatment for ERα-positive breast cancer. However, compensatory signaling contributes to resistance to ERα antagonists. Thus, to explore the potential agents for targeting compensatory signaling, we screened multiple target inhibitors for breast cancer treatment. MATERIALS AND METHODS We attempted to build a structure-based virtual screening model that can find potential compounds and assay the anticancer ability of these drugs by overall cell survival assay. The downstream compensatory phosphorylated signaling was measured by immunoblotting. RESULTS Hamamelitannin and glucocheirolin were hits for ERα, phosphoinositide 3-kinase (PI3K), and KRAS proto-oncogene, GTPase (KRAS), which were active against estrogen and epidermal growth factor-triggered proliferation. Additionally, we select aminopterin as a hit for ERα, PI3K, KRAS, and SRC proto-oncogene, non-receptor tyrosine kinase (SRC) with inhibitory activities toward AKT serine/threonine kinase 1 (AKT) and mitogen-activated protein kinase kinase (MEK) signaling. CONCLUSION Our structure-based virtual screening model selected hamamelitannin, glucocheirolin, aminopterin, and pemetrexed as compounds that may act as potential inhibitors for improving endocrine therapies for breast cancer.
Collapse
Affiliation(s)
- Yun-Hao Dai
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research Center, Drug Development Center, China Medical University, Taichung, Taiwan, R.O.C.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C
| | - Wei-Chien Huang
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research Center, Drug Development Center, China Medical University, Taichung, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.;
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.; .,The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
20
|
Che S, Wu S, Yu P. Lupeol induces autophagy and apoptosis with reduced cancer stem-like properties in retinoblastoma via phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin inhibition. J Pharm Pharmacol 2021; 74:208-215. [PMID: 33836050 DOI: 10.1093/jpp/rgab060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the anticancer effects of lupeol in retinoblastoma cells. METHODS WERI-Rb-1 and Y-79 cell lines were used to evaluate the anticancer effect of lupeol. After lupeol treatment, the viability, proliferation, apoptosis, cancer stem-like properties, autophagy and in vivo tumour xenograft formation were detected. KEY FINDINGS In this study, lupeol decreased cell viability in both WERI-Rb-1 and Y-79 cell lines. Lupeol could also inhibit proliferation and induce apoptosis of RB cells, with increased Bax level and decreased Ki67, survivin and Bcl-2 levels. Furthermore, lupeol could suppress the spheroid formation and stem-like properties of RB cells. Moreover, LC3 II/LC3 I ratio and the levels of Beclin1 and ATG7 were increased after lupeol treatment, indicating that lupeol could induce autophagy in RB cells. Next, the inhibitory effect of lupeol on the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway was observed. In tumour-bearing mice, lupeol suppressed tumour growth, and this might relate to its role in cell apoptosis, autophagy and stem-like properties. CONCLUSIONS Lupeol suppressed proliferation and cancer stem-like properties, and promoted autophagy and apoptosis of RB cells by restraining the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Songtian Che
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Shuai Wu
- Department of Orbital Disease and Ocular Plastic Surgery, the Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Peng Yu
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
21
|
Huang S, Mo C, Zeng T, Lai Y, Zhou C, Xie S, Chen L, Wang Y, Chen Y, Huang S, Gao L, Lv Z. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging (Albany NY) 2021; 13:6592-6605. [PMID: 33707345 PMCID: PMC7993700 DOI: 10.18632/aging.202409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Acute hepatic damage is a severe condition characterized by inflammation and oxidative stress, which is a serious threat to people's life and health. But there are few effective treatments for acute liver injury. Therefore, safe and effective therapeutic approaches for preventing acute liver damage are urgently needed. Lupeol is a natural compound, which has significant antioxidant and anti-inflammatory properties in liver disease. However, the protective mechanism of lupeol against acute liver injury remains unclear. Here, zebrafish and mutant mice were utilized to investigate the protective effects of lupeol against lipopolysaccharide (LPS)/ D-galactosamine(D-GalN) -induced liver injury and the underlying mechanisms. We found that pretreatment with lupeol attenuated the LPS/D-GalN-induced liver injury by decreasing the infiltration of inflammatory cells and reducing pro-inflammatory cytokines. We also demonstrated that lupeol could protect injured liver from oxidative stress by downregulating the expression of TGFβ1 and upregulating Nrf2. Notably, our experimental results provided the support that lupeol effectively protected against LPS/D-GalN-induced acute liver injury via suppression of inflammation response and oxidative stress, which were largely dependent on the upregulation of the Nrf2 pathway via downregulating TGFβ1.
Collapse
Affiliation(s)
- Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shunwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Limei Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
22
|
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 2020; 164:105373. [PMID: 33316380 DOI: 10.1016/j.phrs.2020.105373] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Lupeol is a natural triterpenoid that widely exists in edible fruits and vegetables, and medicinal plants. In the last decade, a plethora of studies on the pharmacological activities of lupeol have been conducted and have demonstrated that lupeol possesses an extensive range of pharmacological activities such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Pharmacokinetic studies have indicated that absorption of lupeol by animals was rapid despite its nonpolar characteristics, and lupeol belongs to class II BCS (biopharmaceutics classification system) compounds. Moreover, the bioactivities of some isolated or synthesized lupeol derivatives have been investigated, and these results showed that, with modification to C-3 or C-19, some derivatives exhibit stronger activities, e.g., antiprotozoal or anticancer activity. This review aims to summarize the advances in pharmacological and pharmacokinetic studies of lupeol in the last decade with an emphasis on its anticancer and anti-inflammatory activities, as well as the research progress of lupeol derivatives thus far, to provide researchers with the latest information, point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
23
|
Wu SH, Chueh FS, Chou YC, Ma YS, Peng SF, Lin CC, Liao CL, Chen PY, Hsia TC, Lien JC. Tetrandrine inhibits cell migration and invasion in human nasopharyngeal carcinoma NPC-TW 039 cells through inhibiting MAPK and RhoA signaling pathways. J Food Biochem 2020; 44:e13387. [PMID: 32720324 DOI: 10.1111/jfbc.13387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 01/11/2023]
Abstract
The objective of this study was to investigate the effects of tetrandrine (TET) on cell migration and invasion of nasopharyngeal carcinoma NPC-TW 039 cells in vitro. TET at 1-10 μM did not change cell morphology and also did not decrease the total cell viability and proliferation in NPC-TW 039 cells. It decreased the cell mobility based on decreased wound closure in NPC-TW 039 cells by wound healing assay. TET suppressed the cell migration and invasion using transwell system. TET reduced MMP-2 activities at 1-10 μM and these effects are in dose-dependently. After exposed to various treatments, TET decreased the levels of p-ERK, p-JNK, p-p38, RhoA, and NF-κB at 48 hr. Based on these findings, we may suggest TET-inhibited cell migration and invasion of NPC-TW 039 cells via the suppression of MAPK and RhoA signaling pathways for inhibiting the MMP-2 and -9 expression in vitro. PRACTICAL APPLICATIONS: Tetrandrine (TET), a bis-benzylisoquinoline alkaloid, is obtained from the dried root of Stephania tetrandra. TET has been shown to induce cancer cell apoptosis on human cancer cells but its anti-metastasis effect on cell migration and invasion of nasopharyngeal carcinoma cells has not been investigated. Our results showed that TET significantly repressed the cell mobility, migration, and invasion of NPC-TW 039 cells in vitro that involved in inhibiting RhoA, Ras accompanying with p38/MAPK signaling pathway. We conclude that TET may be the anticancer agents for nasopharyngeal carcinoma therapy in the future.
Collapse
Affiliation(s)
- Shin-Hwar Wu
- Division of Critical Care Medicine, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chin-Chung Lin
- General Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Chinese Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, Taiwan
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Zhong J, He C, Xu F, Xu X, Liu L, Xu M, Guo Z, Wang Y, Liao J, Li Y. Lupeol inhibits osteosarcoma progression by up-regulation of HMGA2 via regulating miR-212-3p. J Orthop Surg Res 2020; 15:374. [PMID: 32883329 PMCID: PMC7469105 DOI: 10.1186/s13018-020-01879-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Osteosarcoma (OS) is a common severe illness globally. Lupeol has been reported to participate in the pathophysiologic properties of various cancers, including OS. This study aimed to explore the effects of lupeol on proliferation, invasion, and apoptosis on OS cells and the underlying mechanism. Methods The cell viability of OS cells was determined by 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The expression levels of miR-212-3p and high-mobility group AT-hook 2 (HMGA2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in OS cells. The cell apoptosis and invasion were detected by flow cytometry and transwell invasion assays, respectively. The functional target of miR-212-3p was predicted by online software and confirmed by luciferase reporter assay. The protein level of HMGA2 was measured by western blot analysis. Results Lupeol suppressed cell viability and invasion, and promoted apoptosis by upregulating the expression of miR-212-3p in OS cells. Knockdown of miR-212-3p restored the anti-tumor effect of lupeol. Interestingly, miR-212-3p directly targeted HMGA2 and suppressed its expression. Moreover, HMGA2 reversed the inhibited impact on viability and invasion, and the promoted effect on apoptosis induced by upregulation of miR-212-3p. Also, lupeol administration exerts its anti-tumor effect by overexpression of miR-212-3p to suppress the expression of HMGA2 in OS cells. Conclusion Lupeol inhibited OS progression by modulating the miR-212-3p/HMGA2 axis in vitro.
Collapse
Affiliation(s)
- Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangtian Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xianyun Xu
- Basic Medical School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lulin Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mingjun Xu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zheng Guo
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yili Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiahua Liao
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yonghong Li
- Department of Oncology, The First Hospital of Tianmen City of Hubei Province, No. 1, East Renmin Avenue, Tianmen, 431700, Hubei, China.
| |
Collapse
|
25
|
Liu J, Liao X, Zhu X, Lv P, Li R. Identification of potential prognostic small nucleolar RNA biomarkers for predicting overall survival in patients with sarcoma. Cancer Med 2020; 9:7018-7033. [PMID: 32780509 PMCID: PMC7541128 DOI: 10.1002/cam4.3361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Objective The main purpose of the present study is to screen prognostic small nucleolar RNA (snoRNA) markers using the RNA‐sequencing (RNA‐seq) dataset of The Cancer Genome Atlas (TCGA) sarcoma cohort. Methods The sarcoma RNA‐seq dataset comes from the TCGA cohort. A total of 257 sarcoma patients were included into the prognostic analysis. Multiple bioinformatics analysis methods for functional annotation of snoRNAs and screening of targeted drugs, including biological network gene ontology tool, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and connectivity map (CMap) are used. Results We had identified 15 snoRNAs that were significantly related to the prognosis of sarcoma and constructed a prognostic signature based on four prognostic snoRNA (U3, SNORA73B, SNORD46, and SNORA26) expression values. Functional annotation of these four snoRNAs by their co‐expression genes suggests that some of them were closely related to cell cycle‐related biological processes and tumor‐related signaling pathways, such as Wnt, mitogen‐activated protein kinase, target of rapamycin, and nuclear factor‐kappa B signaling pathway. GSEA of the risk score suggests that high risk score phenotype was significantly enriched in cell cycle‐related biological processes, protein SUMOylation, DNA replication, p53 binding, regulation of DNA repair, and DNA methylation, as well as Myc, Wnt, RB1, E2F, and TEL pathways. Then we also used the CMap online tool to screen five targeted drugs (rilmenidine, pizotifen, amiprilose, quipazine, and cinchonidine) for this risk score model in sarcoma. Conclusion Our study have identified 15 snoRNAs that may be serve as novel prognostic biomarkers for sarcoma, and constructed a prognostic signature based on four prognostic snoRNA expression values.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xianze Zhu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Peizhen Lv
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong Li
- Department of Reproductive Center, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
26
|
Liao CF, Hsu ST, Chen CC, Yao CH, Lin JH, Chen YH, Chen YS. Effects of Electrical Stimulation on Peripheral Nerve Regeneration in a Silicone Rubber Conduit in Taxol-Treated Rats. MATERIALS 2020; 13:ma13051063. [PMID: 32120862 PMCID: PMC7084817 DOI: 10.3390/ma13051063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Taxol, a type of antimitotic agent, could modulate local inflammatory conditions in peripheral nerves, which may impair their regeneration and recovery when injured. This study provided in vivo trials of silicone rubber chambers to bridge a long 10 mm sciatic nerve defect in taxol-treated rats. It was aimed to determine the effects of electrical stimulation at various frequencies on regeneration of the sciatic nerves in the bridging conduits. Taxol-treated rats were divided into four groups (n = 10/group): sham control (no current delivered from the stimulator); and electrical stimulation (3 times/week for 3 weeks at 2, 20, and 200 Hz with 1 mA current intensity). Neuronal electrophysiology, animal behavior, neuronal connectivity, macrophage infiltration, calcitonin gene-related peptide (CGRP) expression levels, and morphological observations were evaluated. At the end of 4 weeks, animals in the low- (2 Hz) and medium-frequency (20 Hz) groups had dramatic higher rates of successful regeneration (90% and 80%) across the wide gap as compared to the groups of sham and high-frequency (200 Hz) (60% and 50%). In addition, the 2 Hz group had significantly larger amplitudes and evoked muscle action potentials compared to the sham and the 200 Hz group, respectively (P < 0.05). Heat, cold plate licking latencies, motor coordination, and neuronal connectivity were unaffected by the electrical stimulation. Macrophage density, CGRP expression level, and axon number were all significantly increased in the 20 Hz group compared to the sham group (P < 0.05). This study suggested that low- (2 Hz) to medium-frequency (20 Hz) electrical stimulation could ameliorate local inflammatory conditions to augment recovery of regenerating nerves by accelerating their regrowth and improving electrophysiological function in taxol-treated peripheral nerve injury repaired with the silicone rubber conduit.
Collapse
Affiliation(s)
- Chien-Fu Liao
- Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-F.L.); (C.-H.Y.)
| | - Shih-Tien Hsu
- Lab of Biomaterials, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chung-Chia Chen
- Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10341, Taiwan;
| | - Chun-Hsu Yao
- Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-F.L.); (C.-H.Y.)
- Lab of Biomaterials, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Jia-Horng Lin
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan;
| | - Yung-Hsiang Chen
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Graduate Institute of Integrated Medicine, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Y.-H.C.); (Y.-S.C.)
| | - Yueh-Sheng Chen
- Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-F.L.); (C.-H.Y.)
- Lab of Biomaterials, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (Y.-H.C.); (Y.-S.C.)
| |
Collapse
|
27
|
Ren C, Pan R, Hou L, Wu H, Sun J, Zhang W, Tian X, Chen H. Suppression of CLEC3A inhibits osteosarcoma cell proliferation and promotes their chemosensitivity through the AKT1/mTOR/HIF1α signaling pathway. Mol Med Rep 2020; 21:1739-1748. [PMID: 32319617 PMCID: PMC7057774 DOI: 10.3892/mmr.2020.10986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor that occurs in bone, and mainly affects children and adolescents. C-type lectin domain family 3 member A (CLEC3A) is a member of the C-type lectin superfamily, which regulates various biological functions of cells. The present study aimed to identify the effects and related mechanisms of CLEC3A in the proliferation and chemosensitivity of OS cells. The expression of CLEC3A in OS was analyzed using the Gene Expression Omnibus data profile GSE99671, and its expression in OS samples was verified using reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemical staining. The relationship between the expression of CLEC3A and clinical traits in patients with OS was also analyzed, including age, tumor size, TNM stage and lymph node metastasis. Cell Counting Kit-8 assays, colony formation assays and cell cycle distribution analysis were used to determine the roles of CLEC3A in the proliferation and chemosensitivity of OS cells. Finally, RT-qPCR and western blotting were used to demonstrate the relationship between CLEC3A and the AKT1/mTOR/hypoxia-inducible factor 1-α (HIF1α) pathway. Both the mRNA and protein expression levels of CLEC3A were increased in OS tissues compared with adjacent non-tumor tissues, and this was positively associated with TNM stage and lymph node metastasis. The genetic knockdown of CLEC3A with small interfering RNA decreased OS cell proliferation and colony formation, and induced G1 phase arrest, whereas the overexpression of CLEC3A increased OS cell proliferation and colony formation, and alleviated G1 phase arrest. The suppression of CLEC3A also promoted enhanced the chemosensitivity of OS cells to doxorubicin (DOX) and cisplatin (CDDP); it also inhibited the expression of AKT1, mTOR and HIF1α, further to the nuclear localization of HIF1α, and HIF1α target gene expression levels, including VEGF, GLUT1 and MCL1 were also decreased. Furthermore, treatment with the AKT activator SC79 blocked the inhibitory effects of CLEC3A silencing in OS cells. In conclusion, these findings suggested that CLEC3A may function as an oncogene in OS, and that the suppression of CLEC3A may inhibit OS cell proliferation and promote chemosensitivity through the AKT1/mTOR/HIF1α signaling pathway.
Collapse
Affiliation(s)
- Chong Ren
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Runsang Pan
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Lisong Hou
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Huaping Wu
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Junkang Sun
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Wenguang Zhang
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Xiaobin Tian
- Department of Orthopedics, Clinical Medical College of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Houping Chen
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou 550000, P.R. China
| |
Collapse
|
28
|
Jiang Y, Hong D, Lou Z, Tu X, Jin L. Lupeol inhibits migration and invasion of colorectal cancer cells by suppressing RhoA-ROCK1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2185-2196. [PMID: 32025757 DOI: 10.1007/s00210-020-01815-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Metastasis is the main cause of death in colorectal cancer (CRC) patients. However, current treatment options for CRC metastasis are very limited. Lupeol, a triterpene that is widely found in vegetables and fruits, has been reported to possess the cancer-preventive and anti-inflammatory functions. However, the roles of Lupeol in the migration and invasion of colorectal cancer remain unclear. Here, we evaluated the effect of Lupeol treatment on colorectal cancer cell lines, HCT116 and SW620, and delineated its underlying mechanisms. Our results showed that Lupeol induced a dose-dependent inhibition of HCT116 and SW620 cells viability, measured by CCK8 assay. Wound healing and Transwell migration and invasion assays revealed that Lupeol significantly suppressed the migration and invasion of CRC cells. Using laser confocal microscope, we observed that the pseudopods and protrusions of HCT116 and SW620 cells decreased and disrupted after treatment with Lupeol. In addition, the quantitative real-time PCR and Western blotting results showed that Lupeol downregulated the expression of RhoA and RhoC, and their downstream effectors ROCK1, Cofilin, p-MLC, and the associated regulatory protein Cyclin A2. Interestingly, the migration and invasion capacity of CRC cells was reduced after RhoA knockdown. And there were no additional changes in CRC cells with RhoA knockdown to treat with Lupeol. These findings demonstrate that Lupeol can suppress the migration and invasion of colorectal cancer cells by remodeling the actin cytoskeleton via RhoA-ROCK1 pathway inhibition, which may provide an effective anti-metastatic agent for CRC patients.
Collapse
Affiliation(s)
- Yiwen Jiang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan Hong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhefeng Lou
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuezi Tu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Longjin Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
29
|
Song H, Liu J, Wu X, Zhou Y, Chen X, Chen J, Deng K, Mao C, Huang S, Liu Z. LHX2 promotes malignancy and inhibits autophagy via mTOR in osteosarcoma and is negatively regulated by miR-129-5p. Aging (Albany NY) 2019; 11:9794-9810. [PMID: 31724536 PMCID: PMC6874432 DOI: 10.18632/aging.102427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
The transcript factor LHX2 is dysregulated in many cancers but its role in osteosarcoma (OS) remains unclear. In this study, we confirm that LHX2 is up-regulated in osteosarcoma, and that its silencing inhibits OS malignancy and induces autophagy via mTOR signaling. We further demonstrate that miR-129-5p negatively regulates LHX2 and suppresses the malignant phenotypes of OS. LHX2 overexpression could restore the malignant phenotypes. In conclusion, LHX2 regulates tumorigenesis and autophagy via mTOR in OS and is negatively regulated by miR-129-5p. Targeting the miR-129-5p/LHX2/mTOR axis therefore represents a novel therapeutic strategy for OS treatment.
Collapse
Affiliation(s)
- Honghai Song
- Department of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.,Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiaming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xin Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yang Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xuanyin Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiangwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Chunxia Mao
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shanhu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhili Liu
- Department of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.,Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
30
|
Qu Q, He Z, Jiang Y, Lu D, Long X, Ding Y, Xu B, He X. C₁₈H₁₇NO₆ Inhibits Invasion and Migration of Human MNNG Osteosarcoma Cells via the PI3K/AKT Signaling Pathway. Med Sci Monit 2019; 25:7527-7537. [PMID: 31589596 PMCID: PMC6792516 DOI: 10.12659/msm.918431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Osteosarcoma (OS) is a highly aggressive, metastatic bone tumor with a poor prognosis, and occurs more commonly in children and adolescents. Therefore, new drugs and treatments are urgently needed. In this study, we investigated the effect and potential mechanisms of C18H17NO6 on osteosarcoma cells. Material/Methods Human MNNG osteosarcoma cells were treated with different concentrations of C18H17NO6. The proliferation of the MNNG cells was examined via CCK-8 assay. Cell migration and invasion were tested via wound-healing assay and Transwell migration and invasion assays. ELISA was used to detect MMP-2, MMP-9, and VEGF secretion. Finally, Western blotting and qRT-PCR were used to detect protein and mRNA expressions, respectively. Results C18H17NO6 inhibited MNNG proliferation in a dose- and time-dependent manner and inhibited MMP-2, MMP-9, and VEGF secretion. C18H17NO6 treatment significantly downregulated N-cadherin and Vimentin expression levels and upregulated E-cadherin expression levels in vitro and in vivo. C18H17NO6 inhibited tumor growth in a MNNG xenograft. We also found that C18H17NO6 can significantly reduce the phosphorylation of the PI3K/AKT signaling pathway in vivo and in vitro. However, 740Y-P (a PI3K agonist) had the opposite effect on proliferation, migration and invasion of MNNG cells treated with C18H17NO6. LY294002 (a PI3K inhibitor) downregulated p-PI3K and p-AKT could mimic the inhibitory effect of C18H17NO6. Conclusions Our results suggest that C18H17NO6 can inhibit human MNNG osteosarcoma cell invasion and migration via the PI3K/AKT signaling pathway both in vivo and in vitro. C18H17NO6 may be a highly effective and low-toxicity natural drug for the prevention or treatment of OS.
Collapse
Affiliation(s)
- Qianqian Qu
- Stomatology Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Zhongshun He
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yulei Jiang
- Stomatology Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Di Lu
- Biomedical Engineering Center of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Xiaolin Long
- Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yu Ding
- Stomatology Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Biao Xu
- Stomatology Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Xiaoqiong He
- School of Public Health Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|