1
|
Famurewa AC, Akhigbe RE, George MY, Adekunle YA, Oyedokun PA, Akhigbe TM, Fatokun AA. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4747-4778. [PMID: 39636404 PMCID: PMC11985630 DOI: 10.1007/s00210-024-03623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy (CT) is one of the flagship options for the treatment of cancers worldwide. It involves the use of cytotoxic anticancer agents to kill or inhibit the proliferation of cancer cells. However, despite its clinical efficacy, CT triggers side effect toxicities in several organs, which may impact cancer patient's quality of life and treatment outcomes. While the side effect toxicity is consistent with non-ferroptotic mechanisms involving oxidative stress, inflammation, mitochondrial impairment and other aberrant signalling leading to apoptosis and necroptosis, recent studies show that ferroptosis, a non-apoptotic, iron-dependent cell death pathway, is also involved in the pathophysiology of CT organ toxicity. CT provokes organ ferroptosis via system Xc-/GPX-4/GSH/SLC7A11 axis depletion, ferritinophagy, iron overload, lipid peroxidation and upregulation of ferritin-related proteins. Cisplatin (CP) and doxorubicin (DOX) are common CT drugs indicated to induce ferroptosis in vitro and in vivo. Studies have explored natural preventive and therapeutic strategies using ginger rhizome and its major bioactive compounds, 6-gingerol (6G) and zingerone (ZG), to combat mechanisms of CT side effect toxicity. Ginger extract, 6G and ZG mitigate non-ferroptotic oxidative inflammation, apoptosis and mitochondrial dysfunction mechanisms of CT side effect toxicity, but their effects on CT-induced ferroptosis remain unclear. Systematic investigations are, therefore, needed to unfold the roles of ginger, 6G and ZG on ferroptosis involved in CT side effect toxicity, as they are potential natural agents for the prevention of CT toxicity. This review reveals the ferroptotic and non-ferroptotic toxicity mechanisms of CT and the protective mechanisms of ginger, 6G and ZG against CT-induced, ferroptotic and non-ferroptotic organ toxicities.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria.
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Yemi A Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
2
|
Ildarabadi A, Hosseini-Esfahani F, Daei S, Mirmiran P, Azizi F. Associations between spice or pepper (Capsicum annuum) consumption and diabetes or metabolic syndrome incidence. PLoS One 2025; 20:e0314448. [PMID: 39932911 PMCID: PMC11813124 DOI: 10.1371/journal.pone.0314448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/12/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Spice and pepper are recognized as sources of antioxidants and anti-inflammatory compounds. This study investigated the association between spice or pepper intake and metabolic syndrome (MetS), related risk factors, or type 2 diabetes (T2D) incidences. METHODS The qualified Tehran Lipid and Glucose Study (TLGS) participants were included. In all examinations, dietary, anthropometrical, and biochemical variables were measured. Multivariable Cox proportional hazards regression models were exploited to determine the relationship between spice or pepper consumption and the hazard ratios for Type 2 Diabetes (T2D), Metabolic Syndrome (MetS), or its components. RESULTS The analysis was performed on 5340 individuals, with a mean age of 39.9±13.4 and 406 incident cases of T2D. Also, 4353 participants were included for MetS analysis with 1211 incident cases and a median follow-up of 5.8 years. After adjusting for confounding factors, spice and pepper intakes were not associated with T2D or MetS incidence. Further, in the upper quartile of spice intake, the HRs of high triglyceride (TG) [HR Q4: 1.19 (CI: 1.05-1.35)] and high blood pressure (BP) [HR Q4: 1.16 (CI: 1.04-1.30), P-trend = 0.007] increased. The risk of HDL-C appeared to decrease in the third quartile of pepper consumption (HR: 1, 0.97, 0.87, 1.03, P-trend = 0.008). CONCLUSION The findings showed that spice and pepper consumption had no association with the incidence of T2D and MetS. The risk of high TG and high BP incidence was elevated in the upper quartiles of spice intake. Also, greater consumption of pepper decreased the incidence of low HDL-C.
Collapse
Affiliation(s)
- Azam Ildarabadi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Daei
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chaudhary S, Sharma S, Fuloria S. A Panoramic Review on the Management of Rheumatoid Arthritis through Herbalism. Curr Rheumatol Rev 2025; 21:4-24. [PMID: 38591212 DOI: 10.2174/0115733971279100240328063232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 04/10/2024]
Abstract
Arthritis is a chronic inflammatory condition that affects millions of individuals worldwide. The conventional treatment options for arthritis often come with limitations and potential side effects, leading to increased interest in herbal plants as alternative therapies. This article provides a comprehensive overview of the use of herbal plants in arthritis treatment, focusing on their traditional remedies, active components, mechanisms of action, and pharmaceutical approaches for enhancing their delivery. Various herbal plants, including turmeric, ginger, Boswellia, and willow bark, have shown anti-inflammatory and analgesic properties, making them valuable options for managing arthritis symptoms. The active components of these herbal plants, such as curcumin, gingerols, and boswellic acids, contribute to their therapeutic effects. To enhance the delivery of herbal medicines, pharmaceutical approaches like nanoparticle-based drug delivery systems, liposomes, polymeric nanoparticles, nanoemulsions, microneedles, and inhalation systems have been explored. These approaches aim to improve bioavailability, targeted delivery, and controlled release of herbal compounds. Safety considerations, including potential interactions with medications and the risk of allergic reactions, are also discussed. Future perspectives for this field involve conducting well-designed clinical studies, enhancing standardization and quality control measures, exploring novel drug delivery systems, and fostering collaborations between traditional medicine practitioners and healthcare professionals. Continued research and development in these areas will help unlock the full potential of herbal plants in arthritis treatment, offering personalized and effective care for affected individuals.
Collapse
Affiliation(s)
- Shikha Chaudhary
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling Campus, Bedong, Kedah Aman, Malaysia
| |
Collapse
|
4
|
Jasim SA, Al-Dhalimy AMB, Zokaei M, Salimi S, Alnajar MJ, Kumar A, Alwaily ER, Zwamel AH, Hussein SA, Gholami-Ahangaran M. The Beneficial Application of Turmeric (Curcuma longa L.) on Health and Egg Production, in Layers: A Review. Vet Med Sci 2024; 10:e70115. [PMID: 39520104 PMCID: PMC11549377 DOI: 10.1002/vms3.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Turmeric (Curcuma longa L.) is a widely recognized spice and medicinal plant that has gained significant attention for its potential health benefits. This review aims to provide a comprehensive overview of the beneficial applications of turmeric in improving health and egg production in layers. OBJECTIVE The objective of this review is to assess the current scientific literature on the effects of turmeric supplementation in layer diets and evaluate its impact on layer health and egg production. METHODS A systematic search was conducted in Google Scholar database to identify relevant studies published in peer-reviewed journals. Studies investigating the effects of turmeric or its bioactive compound curcumin on layer health and egg production were included. Data on various parameters, including immune function, reproductive performance, egg quality and production parameters, were extracted and analysed. RESULTS Turmeric contains a bioactive compound called curcumin, which possesses antioxidant, anti-inflammatory, antimicrobial and immunomodulatory effects. These properties have been extensively studied and have shown promising results in enhancing layer health and performance. Turmeric supplementation has been reported to improve the overall immune response in layers, reducing the incidence and severity of infectious diseases. It has also been shown to have positive effects on gut health by modulating the gut microbiota composition, improving nutrient absorption and reducing digestive disorders. Furthermore, studies have demonstrated that turmeric supplementation in layer diets can improve egg weight, shell quality, yolk colour and egg production rates. The mechanisms underlying these effects involve the antioxidant properties of turmeric, which protect the reproductive organs, enhance ovarian function and improve reproductive performance. CONCLUSION The findings underscore the potential of turmeric as a natural, cost-effective and sustainable intervention for improving layer well-being, egg quality and productivity. However, further research is needed to fully understand the mechanisms of action, optimize dosage regimens and evaluate the long-term effects of turmeric supplementation in layer diets.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq
| | | | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Shadi Salimi
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Hussein Zwamel
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Soura Alaa Hussein
- Department of Medical Laboratory Technologies, Al Rafidain University College, Baghdad, Iraq
| | - Majid Gholami-Ahangaran
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
5
|
Xiao Z, Yu S, Zhang D, Li C. UHPLC-qTOF-MS-Based Nontargeted Metabolomics to Characterize the Effects of Capsaicin on Plasma and Skin Metabolic Profiles of C57BL/6 Mice-An In vivo Experimental Study. Drug Des Devel Ther 2024; 18:719-729. [PMID: 38476205 PMCID: PMC10929253 DOI: 10.2147/dddt.s423974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Capsaicin is the main compound found in chili pepper and has complex pharmacologic effects. This study aimed to elucidate the mechanism of the effect of capsaicin on physiological processes by analyzing changes in metabolites and metabolic pathways. METHODS Female C57BL/6 mice were divided into two groups(n = 10/group) and fed with capsaicin-soybean oil solution(group T) or soybean oil(group C) for 6 weeks. Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) based metabolomics was undertaken to assess plasma and skin metabolic profile changes and identify differential metabolites through multivariate analysis. RESULTS According to the OPLS-DA score plots, the plasma and skin metabolic profiles in the group T and group C were significantly separated. In plasma, 38 significant differential metabolites were identified. KEGG pathway enrichment analysis revealed that the most significant plasma metabolic pathways included pyruvate metabolism and ABC transporters. In skin, seven significant differential metabolites were found. Four metabolic pathways with p values < 0.05 were detected, including sphingolipid metabolism, sphingolipid signaling pathway, apoptosis, and necroptosis. CONCLUSION These findings will provide metabolomic insights to assess the physiological functions of capsaicin and contribute to a better understanding of the potential effects of a capsaicin-rich diet on health.
Collapse
Affiliation(s)
- Zhen Xiao
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Department of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Simin Yu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Deng Zhang
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Chunming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
6
|
Hamzian N, Nickfarjam A, Shams A, Haghiralsadat F, Najmi-Nezhad M. Radioprotective effect of nanoniosome loaded by Mentha Pulegium essential oil on human peripheral blood mononuclear cells exposed to ionizing radiation. Drug Dev Ind Pharm 2024; 50:262-273. [PMID: 38334353 DOI: 10.1080/03639045.2024.2317297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE The present study aimed to assess the radioprotective effect of nanoniosomes loaded by Mentha Pulegium essential oil (MPEO-N nanoparticles) as a natural antioxidant on human peripheral blood mononuclear cells (PBMCs). SIGNIFICANCE Despite the applications and advantages of ionizing radiation, there are many radiation risks to biological systems that are necessary to be reduced as much as possible. METHODS MPEO-N nanoparticles were prepared by the lipid thin film hydration method, and its physicochemical characteristics were analyzed. PBMCs were then irradiated with X-ray using a 6 MV linear accelerator at two radiation doses in the presence of nontoxic concentrations of MPEO-N nanoparticles (IC10). After 48 and 72 h of incubation, the radioprotective effect was investigated by measuring survival, apoptosis, and necrosis of PBMCs, using MTT assay and flow cytometry analysis. KEY FINDINGS The hydrodynamic diameter and zeta potential of nanoniosomes were 106.0 ± 4.69 nm and -15.2 ± 0.9 mV, respectively. The mean survival percentage of PBMCs showed a significant increase only at a radiation dose of 200 cGy compared with the control group. The percentages of apoptosis and necrosis of cells in the presence of MPEO-N nanoparticles at both radiation doses and incubation periods (48 and 72 h) demonstrated a significant reduction compared with the control. CONCLUSION MPEO-N nanoparticles as a natural antioxidant, exhibited a favorable radioprotective effect by a significant reduction in the percentage of apoptosis and necrosis of irradiated PBMCs.
Collapse
Affiliation(s)
- Nima Hamzian
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Nickfarjam
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Shams
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Haghiralsadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Moslem Najmi-Nezhad
- Department of Radiology, School of Paramedical, Iranshahr University of Medical Sciences, Iranshahr, Iran
| |
Collapse
|
7
|
Wang X, Liu Y, Dong X, Duan T, Wang C, Wang L, Yang X, Tian H, Li T. peu-MIR2916-p3-enriched garlic exosomes ameliorate murine colitis by reshaping gut microbiota, especially by boosting the anti-colitic Bacteroides thetaiotaomicron. Pharmacol Res 2024; 200:107071. [PMID: 38218354 DOI: 10.1016/j.phrs.2024.107071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Plant-derived exosome-like nanoparticles (ELNs) have drawn considerable attention for oral treatment of colonic diseases. However, the roles of ELNs derived from garlic on colitis remain unclear. Here, we demonstrate that garlic ELNs (GELNs), with desirable particle sizes (79.60 nm) and trafficking large amounts of functional proteins and microRNAs, stably roam in the gut and confer protection against ulcerative colitis (UC). In mice with DSS-induced colitis, orally administered GELNs effectively ameliorated bloody diarrhea, normalized the production of proinflammatory cytokines, and prevented colonic barrier impairment. Mechanistically, GELNs were taken up by gut microbes and reshaped DSS-induced gut microbiota dysbiosis, in which Bacteroides was the dominant respondent genus upon GELNs treatment. Notably, GELNs-enriched peu-MIR2916-p3 specifically promoted the growth of Bacteroides thetaiotaomicron, an intestinal symbiotic bacterium with palliative effects on colitis. Our findings provide new insights into the medicinal application of GELNs and highlight their potential as natural nanotherapeutic agents for preventing and treating UC.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyue Dong
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tianchi Duan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chennan Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Honglei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
8
|
Nagaraju PG, S A, Rao PJ, Priyadarshini P. Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats. Nanotoxicology 2024; 18:87-105. [PMID: 38349196 DOI: 10.1080/17435390.2024.2314483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/01/2024] [Indexed: 03/27/2024]
Abstract
The present study aimed to assess the safety, toxicity, biodistribution, and pharmacokinetics of eugenol nanoparticles (EONs) following oral administration in Wistar rat models. In the acute toxicity study, the rats were given a fixed dose of 50, 300, and 2000 mg/kg body weight per group orally and screened for 2 weeks after administration. In the subacute study, three different doses (500, 1000, and 2000 mg/kg BW) of EON were administered for 28 days. The results indicated no significant differences in food and water consumption, bodyweight change, hematological and biochemical parameters, relative organ weights, gross findings, or histopathology compared to the control. Additionally, no significant changes were observed in the expression profiles of inflammatory cytokines such as IL-1, IL-6, and TNFα in the plasma, confirming the absence of systemic inflammation. Biodistribution analysis revealed rapid absorption of eugenol and improved bioavailability due to gradual and sustained release, leading to a maximum eugenol concentration of 15.05 μg/mL (Cmax) at approximately 8 h (Tmax) in the blood plasma. Thus, the study provides valuable insights into the utilization of EON for enhancing the stability, solubility, and sustained release of eugenol and highlights its promising safety profile in vivo.
Collapse
Affiliation(s)
- Pramod G Nagaraju
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini S
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja J Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plantation Products, Spices and Flavour Technology, CSIR Central Food Technological Research Institute, Mysuru, India
| | - Poornima Priyadarshini
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Oh J, Ahn S, Zhou X, Lim YJ, Hong S, Kim HS. Effects of Cinnamon ( Cinnamomum zeylanicum) Extract on Adipocyte Differentiation in 3T3-L1 Cells and Lipid Accumulation in Mice Fed a High-Fat Diet. Nutrients 2023; 15:5110. [PMID: 38140369 PMCID: PMC10745629 DOI: 10.3390/nu15245110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Flavonoids and phenolic acid are two of the rich polyphenols found in cinnamon (Cinnamomum zeylanicum). The effects of cinnamon extract on the inhibition of adipocyte differentiation in 3T3-L1 fibroblast cells and prohibitory lipid accumulation in male mice fed a high-fat diet were examined. Upon treating 3T3-L1 cells with cinnamon for 3 days, the cinnamon inhibited lipid accumulation and increased gene expression levels, such as those of adiponectin and leptin. In in vivo experiments, mice were randomized into four groups after a one-week acclimation period, as follows: normal diet, normal diet + 1% cinnamon extract, high-fat diet, and high-fat diet + 1% cinnamon extract. After 14 weeks of supplementation, we found that cinnamon extract increased the expression of lipolysis-related proteins, such as AMPK, p-ACC, and CPT-1, and reduced the expression of lipid-synthesis-related proteins, such as SREBP-1c and FAS, in liver tissue. Our results show that cinnamon extract may exhibit anti-obesity effects via the inhibition of lipid synthesis and adipogenesis and the induction of lipolysis in both 3T3-L1 fibroblast cells and mice fed a high-fat diet. Accordingly, cinnamon extract may have potential anti-obesity effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun-Sook Kim
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.O.)
| |
Collapse
|
10
|
El-Gindy YM, Sabir SA, Zahran SM, Ahmed MH, Reuben RC, Salem AZM. Effect of dietary onion (Allium cepa L.) powder as an antioxidant on semen quality, blood biochemicals, and reproductive parameters, as well as immunological variables of rabbit bucks under severe heat stress. Trop Anim Health Prod 2023; 55:380. [PMID: 37882945 DOI: 10.1007/s11250-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to evaluate the antioxidant effects of onion (Allium cepa L.) powder on the immunological variables, redox state, and semen quality of rabbit bucks exposed to severe heat stress. Thirty-six mature bucks (7 months old) were divided into three groups consisting of 12 bucks each, namely group I, control; group II, 400 mg onion powder/kg diet; and group III, 800 mg onion powder/kg diet. The quality of semen was evaluated for volume, pH, motility, concentration, total sperm output, viability, and packed sperm volume. Blood samples were collected in the 12th week for estimation of red blood cells (RBC), white blood cells (WBC), and erythrocytic indices. Serum proteins, glutamate oxaloacetate (GOT), glutamate pyruvate transaminase (GPT), urea, creatinine, testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), immunoglobulins, malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione, superoxide dismutase (SOD), and catalase (CAT) were measured. The temperature-humidity index (THI) obtained was within the range of 28.85-33.08 indicating severe heat stress. The results show that mass and individual motility, concentration, total sperm output, sperm viability, and packed sperm volume were higher (P < 0.05) in groups II and group III, with group III having the highest (P < 0.05) levels compared to group I. Compared to group I, groups II and III had higher (P < 0.05) concentrations of RBC, MCV, MCH, FSH, LH, SOD, and catalase. The highest concentration (P < 0.05) of GPT was obtained in group III compared to other groups. The highest concentration of IgG (P < 0.05) was obtained in group II while the lowest was in group I. In conclusion, dietary supplementation with onion powder at 400 or 800 mg/kg diet improves semen quality, RBC, FSH, LH, SOD, catalase, and IgG while ameliorating the adverse effects of heat stress and improve the health and reproduction of rabbits.
Collapse
Affiliation(s)
- Yassmine Moemen El-Gindy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Salem Adress Sabir
- Animal Production Department, Faculty of Agriculture, Omer Al-Mukhtar University, Bieda, Libya
| | - Soliman Mohamed Zahran
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed Hassana Ahmed
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, One Health Research Group, University of La Rioja, Logroño, Spain
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México.
| |
Collapse
|
11
|
Valenti S, Arioli M, Jamett A, Tamarit JL, Puiggalí J, Macovez R. Amorphous solid dispersions of curcumin in a poly(ester amide): Antiplasticizing effect on the glass transition and macromolecular relaxation dynamics, and controlled release. Int J Pharm 2023; 644:123333. [PMID: 37597594 DOI: 10.1016/j.ijpharm.2023.123333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
In order to exploit the pharmacological potential of natural bioactive molecules with low water solubility, such as curcumin, it is necessary to develop formulations, such as amorphous polymer dispersions, which allow a constant release rate and at the same time avoid possible toxicity effects of the crystalline form of the molecule under scrutiny. In this study, polymer dispersions of curcumin were obtained in PADAS, a biodegradable semicrystalline copolymer based on 1,12-dodecanediol, sebacic acid and alanine. The dispersions were fully characterized by means of differential scanning calorimetry and broadband dielectric spectroscopy, and the drug release profile was measured in a simulated body fluid. Amorphous homogeneous binary dispersions were obtained for curcumin mass fraction between 30 and 50%. Curcumin has significantly higher glass transition temperature Tg (≈ 347 K) than the polymer matrix (≈274-277 K depending on the molecular weight), and dispersions displayed Tg's intermediate between those of the pure amorphous components, implying that curcumin acts as an effective antiplasticizer for PADAS. Dielectric spectroscopy was employed to assess the relaxation dynamics of the binary dispersion with 30 wt% curcumin, as well as that of each (amorphous) component separately. The binary dispersion was characterized by a single structural relaxation, a single Johari-Goldstein process, and two local intramolecular processes, one for each component. Interestingly, the latter processes scaled with the Tg of the sample, indicating that they are viscosity-sensitive. In addition, both the pristine polymer and the dispersion exhibited an interfacial Maxwell-Wagner relaxation, likely due to spatial heterogeneities associated with phase disproportionation in this polymer. The release of curcumin from the dispersion in a simulated body fluid followed a Fickian diffusion profile, and 51% of the initial curcumin content was released in 48 h.
Collapse
Affiliation(s)
- Sofia Valenti
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Synthetic Polymers: Structure and Properties. Biodegradable Polymers, Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain
| | - Matteo Arioli
- Synthetic Polymers: Structure and Properties. Biodegradable Polymers, Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain
| | - Alex Jamett
- Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain
| | - Josep Lluís Tamarit
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain
| | - Jordi Puiggalí
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Synthetic Polymers: Structure and Properties. Biodegradable Polymers, Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, E-08028 Barcelona, Catalonia, Spain
| | - Roberto Macovez
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Sirotkin AV. Peppers and their constituents against obesity. Biol Futur 2023; 74:247-252. [PMID: 37493973 DOI: 10.1007/s42977-023-00174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Phytotherapy can be an efficient tool for prevention and treatment of disorders including obesity. The purpose of this narrative review is to summarize the available knowledge concerning the positive effects of peppers (Capsicum spp.) and their alkaloid capsaicin on human health, in particular on fat and obesity. Search for literature was performed in Medline/Pubmed, Web of Science and SCOPUS databases between the year 2000 and 2023. Words used to search were pepper, Capsicum, capsaicin, review, obesity, fat, weight loss and mechanisms. The available data demonstrate that both pepper extract and capsaicin can positively influence human health and treat several disorders. Moreover, they can reduce fat storage affecting brain centres responsible for the sensation of hunger, nutrient uptake by gastrointestinal tract, state of adipocytes, increase in carbohydrate and fat oxidation, metabolism and thermogenesis and other mechanisms. Therefore, despite some possible limitations, these substances could be useful for treatment of obesity.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovak Republic.
| |
Collapse
|
13
|
Temesgen S, Sasikumar JM, Egigu MC. Effect of Extraction Solvents on Total Polyphenolic Content and Antioxidant Capacity of Syzygium Aromaticum L. Flower Bud from Ethiopia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4568944. [PMID: 36467886 PMCID: PMC9711980 DOI: 10.1155/2022/4568944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 10/24/2023]
Abstract
In this study, the antioxidative activity and polyphenolic content of Syzygium aromaticum's flower bud were compared under different extraction solvents including chloroform, ethyl acetate, methanol, and aqueous. The antioxidant activity was assessed via established in vitro assay models such as 2, 2-diphenyl-1-Picrylhydrazyl (DPPH) radical scavenging assay, NO- radical scavenging assay, H2O2 scavenging assay and Fe3+ reducing capacity. Total phenolic content was measured according to Folin-Ciocalteu's method, and total flavonoid content was estimated by using the aluminum chloride colorimetric method. The results showed that aqueous extract possessed the highest TPC (19.11 ± 2.76 mg GAE/g DW) and TFC (15.32 ± 1.53 mg CtE/g DW). Among the extracts, methanol extract exerted the strongest radical DPPH quenching activity with an IC50 value of 303.56 ± 13.14 μg/mL. The highest NO- radical scavenging activity was shown by methanol extract (IC50192.94 ± 1.9 μg/mL) which is stronger than BHT (IC50247.64 ± 12.89 μg/mL). Methanol extract showed a strong H2O2 scavenging activity (IC50233.71 ± 3.72 μg/mL). The highest Fe3+ reducing capacity was shown by methanol extract (Absorbance = 0.36 ± 0.05). Strong and positive correlations were observed between total phenolic and flavonoid contents and the antioxidant assays. The results of the present work revealed that the tested spice demonstrated high antioxidant activity, total phenolics, and flavonoids. Thus, this spice is worth considering as important source of natural antioxidant agents.
Collapse
Affiliation(s)
| | - J. M. Sasikumar
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Haramaya, P.O. Box 138, Ethiopia
| | - Meseret C. Egigu
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Haramaya, P.O. Box 138, Ethiopia
| |
Collapse
|
14
|
Carvalho RPR, Lima GDDA, Ribeiro FCD, Ervilha LOG, Oliveira EL, Viana AGA, Machado-Neves M. Eugenol reduces serum testosterone levels and sperm viability in adult Wistar rats. Reprod Toxicol 2022; 113:110-119. [PMID: 36007673 DOI: 10.1016/j.reprotox.2022.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Eugenol is the main constituent of clove extract. It is a remarkably versatile molecule incorporated as a functional ingredient in several food products and widely applied in the pharmaceutical industry. Men consume natural products enriched with eugenol for treating sexual disorders and using as aphrodisiacs. Nevertheless, there is no information about the impact of eugenol intake on the reproductive parameters of healthy males. Therefore, we provided 10, 20, and 40 mg kg-1 pure eugenol to adult Wistar rats for 60 days. Testis, epididymis, and spermatozoa were analyzed under microscopic, biochemical, and functional approaches. This phenolic compound did not alter testicular and epididymal biometry and microscopy. However, 20 and 40 mg kg-1 eugenol reduced serum testosterone levels. The highest dose altered lactate and glucose concentrations in the epididymis. All the eugenol concentrations diminished CAT activity and MDA levels in the testis and increased FRAP and CAT activity in the epididymis. Epididymal sperm from rats receiving 10, 20, and 40 mg kg-1 eugenol presented high Ca2+ ATPase activity and low motility. In conclusion, eugenol at low and high doses negatively impacted the competence of epididymal sperm and modified oxidative parameters in male organs, with no influence on their microscopy.
Collapse
Affiliation(s)
| | - Graziela Domingues de Almeida Lima
- Instituto de Ciências Biomédicas, Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil.
| | - Fernanda Carolina Dias Ribeiro
- Departamento de Veterinária, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Biologia Estrutural, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Elizabeth Lopes Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; Departmento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
15
|
Yuan X, Wang C, Perera M. Quantitative Determination of the Radical Scavenging Activity of Antioxidants in Black Tea Combined with Common Spices Using Ultraviolet-Visible Spectroscopy. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2098309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Xiaohan Yuan
- Department of Chemistry and Biochemistry, Illinois Wesleyan University, Bloomington, IL, USA
| | - Chaoqiuyu Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Manori Perera
- Department of Chemistry and Biochemistry, Illinois Wesleyan University, Bloomington, IL, USA
| |
Collapse
|
16
|
Chen L, Pu Y, Xu Y, He X, Cao J, Ma Y, Jiang W. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Res Int 2022; 157:111202. [PMID: 35761524 DOI: 10.1016/j.foodres.2022.111202] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
|
17
|
Mapeka TM, Sandasi M, Viljoen AM, van Vuuren SF. Optimization of Antioxidant Synergy in a Polyherbal Combination by Experimental Design. Molecules 2022; 27:molecules27134196. [PMID: 35807440 PMCID: PMC9325320 DOI: 10.3390/molecules27134196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Culinary herbs and spices are known to be good sources of natural antioxidants. Although the antioxidant effects of individual culinary herbs and spices are widely reported, little is known about their effects when used in combination. The current study was therefore undertaken to compare the antioxidant effects of crude extracts and essential oils of some common culinary herbs and spices in various combinations. The antioxidant interactions of 1:1 combinations of the most active individual extracts and essential oils were investigated as well as the optimization of various ratios using the design of experiments (DoE) approach. The 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays were used to determine the antioxidant activity, and MODDE 9.1® software (Umetrics AB, Umea, Sweden) was used to determine the DoE. The results revealed synergism for the following combinations: Mentha piperita with Thymus vulgaris methanol extract (ΣFIC = 0.32 and ΣFIC = 0.15 using the DPPH and FRAP assays, respectively); Rosmarinus officinalis with Syzygium aromaticum methanol extract (ΣFIC = 0.47 using the FRAP assay); T. vulgaris with Zingiber officinalis methanol extracts (ΣFIC = 0.19 using the ABTS assay); and R. officinalis with Z. officinalis dichloromethane extract (ΣFIC = 0.22 using the ABTS assay). The DoE produced a statistically significant (R2 = 0.905 and Q2 = 0.710) model that was able to predict extract combinations with high antioxidant activities, as validated experimentally. The antioxidant activities of the crude extracts from a selection of culinary herbs and spices were improved when in combination, hence creating an innovative opportunity for the future development of supplements for optimum health.
Collapse
Affiliation(s)
- Tsholofelo M. Mapeka
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (T.M.M.); (M.S.); (A.M.V.)
| | - Maxleene Sandasi
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (T.M.M.); (M.S.); (A.M.V.)
- SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (T.M.M.); (M.S.); (A.M.V.)
- SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Sandy F. van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Parktown, Johannesburg 2193, South Africa
- Correspondence: ; Tel.: +27-11-717-2157
| |
Collapse
|
18
|
Protective Effect of Salvianolic Acid A against N-Methyl-N-Nitrosourea-Induced Retinal Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1219789. [PMID: 35668785 PMCID: PMC9166948 DOI: 10.1155/2022/1219789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Objective Retinal degeneration (RD) is a serious, irreversible, and blinding eye disease, which seriously affects the visual function and quality of life of patients. At present, there is no effective method to treat RD. The final outcome of its development is photoreceptor cell oxidation and apoptosis. Therefore, looking for safe, convenient, and effective antioxidant therapy is still the key research field of Rd. In this study, the mice model of RD was induced by N-methyl-N-nitrosourea (MNU) in vivo to explore the therapeutic effect and mechanism of salvianolic acids (Sal A) on RD. In vitro, the protective effect of Sal A on MNU injured 661 W cell line of mouse retina photoreceptor cone cells was investigated preliminarily. Methods Male C57BL/6 mice (7–8 weeks old) received a single intraperitoneal injection (ip) of 60 mg/kg MNU or vehicle control. Treatment groups then received Sal-A 0.5 mg/kg and 1.0 mg/kg via daily intravenous injections. On day 7, functional and morphological examinations were performed, including photopic and scotopic electroretinography (ERG) and hematological analyses to observe functional changes and damage to the outer nuclear layer (ONL). On the 3rd and 7th days, the levels of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were determined. The expression of retinal Bax, Bcl-2, and caspase-3 was quantified by Western blot and RT-PCR assays. 661 W strain of mice retinal photoreceptor cone cells were cultured in vitro and treated with 1 µm MNU. The cells in the treatment group were given 50 μM Sal A as an intervention. The growth of 661 W cells was observed and recorded under an inverted light microscope, and the activity of cells was detected by the MTT method. Results Sal A treatment was effective against MNU-induced RD in mice at both 0.5 mg/kg/d and 1.0 mg/kg/d doses, and the protective effect was dose-dependent. Sal A can alleviate MNU-mediated alterations to retinal ERG activity and can support maintenance of the thickness of the ONL layer. Sal A treatment increases the expression of retinal SOD and reduces the lipid peroxidation product MDA, suggesting that its protective effect is related to the oxidation resistance. It can offset changes to the expression of apoptotic factors in the retina caused by MNU treatment. Sal A mitigates MNU-mediated damage to cultured mice photoreceptor cone cells 661 W in vitro. Conclusion Sal A alleviates the damage caused by MNU to retinal photoreceptor cells in vivo and in vivo, and its protective effect is related to its antioxidant and antiapoptotic activities.
Collapse
|
19
|
Bellioua S, Amari S, Warda K, Aghraz A, Dilagui I, Ouhaddou S, Sissi S, Bekkouche K, Larhsini M, Markouk M. Chemical profile, antioxidant and antimicrobial effects of essential oil from the Moroccan endemic plant cladanthus scariosus (L.). JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2074556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Bellioua
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - S. Amari
- Laboratory of Microbiology and virology, department of medical biology, Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - K. Warda
- Laboratory of Microbiology and virology, department of medical biology, Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - A. Aghraz
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - I. Dilagui
- Laboratory of Microbiology and virology, department of medical biology, Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - S. Ouhaddou
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - S. Sissi
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - K. Bekkouche
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - M. Larhsini
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - M. Markouk
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| |
Collapse
|
20
|
Kim HY, Park ES, Choi YS, Park SJ, Kim JH, Chang HK, Park KY. Kimchi improves irritable bowel syndrome: results of a randomized, double-blind placebo-controlled study. Food Nutr Res 2022; 66:8268. [PMID: 35721806 PMCID: PMC9180131 DOI: 10.29219/fnr.v66.8268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) can be caused by abnormal bowel movements, altered brain-gut axis, gut microbiota change, and low levels of inflammation or immune activation. The intake of food containing much fiber and lactic acid bacteria (LABs) can alleviate IBS. OBJECTIVE This study was undertaken to confirm the alleviative effect of kimchi on symptoms of IBS. DESIGN Three types of kimchi (standard kimchi, SK; dead nano-sized Lactobacillus plantarum nF1 (nLp) added to standard kimchi, nLpSK; or functional kimchi, FK) were given to 30 individuals in each of three groups, that is, the SK group (n = 30), the nLpSK group (n = 30), or the FK group (n = 30) at 210 g a day for 12 weeks. Food intake records, serum levels of inflammatory factors, fecal levels of harmful enzymes, and microbiome changes were investigated over the 12-week study period. RESULTS After intervention, dietary fiber intake was increased in all groups. Typical IBS symptoms (abdominal pain or inconvenience, desperation, incomplete evacuation, and bloating), defecation time, and stool type were also improved. In serum, all groups showed reductions in tumor necrosis factor (TNF)-α (P < 0.001) levels. In addition, serum IL-4 (P < 0.001), IL-10 (P < 0.001), and IL-12 (P < 0.01) were significantly reduced in the nLpSK and FK groups, and serum monocyte chemotactic protein (MCP)-1 (P < 0.05) was significantly reduced in the nLpSK group. Furthermore, activities of fecal β-glucosidase and β-glucuronidase were significantly decreased in all three groups, and these reductions were greatest in the nLpSK group. Gut microbiome analysis showed that kimchi consumption increased Firmicutes populations at the expense of Bacteroidetes and Tenericutes populations. In addition, the Bifidobacterium adolescentis population increased significantly in the FK group (P = 0.026). CONCLUSION Kimchi intake helps alleviate IBS by increasing dietary fiber intake and reducing serum inflammatory cytokine levels and harmful fecal enzyme activities. Notably, nLp improved the immune system, and several functional ingredients in FK promoted the growth of Bifidobacterium adolescentis in gut.
Collapse
Affiliation(s)
- Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Eui-Seong Park
- Yuhan Care R&D Center, Yongin, Gyeonggi-do, Republic of Korea
| | - Young Sik Choi
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jae Hyun Kim
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, Gyeonggi-do, Republic of Korea
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
21
|
Tang R, Yu H, Qi M, Yuan X, Ruan Z, Hu C, Xiao M, Xue Y, Yao Y, Liu Q. Biotransformation of citrus fruits phenolic profiles by mixed probiotics in vitro anaerobic fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
6-Gingerol exerts a protective effect against hypoxic injury through the p38/Nrf2/HO-1 and p38/NF-κB pathway in H9c2 cells. J Nutr Biochem 2022; 104:108975. [PMID: 35245652 DOI: 10.1016/j.jnutbio.2022.108975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/02/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Ginger, one of the most widely consumed condiment for various foods and beverages, has many pharmacological effects. 6-gingerol, a naturally occurring phenol, is one of the major pungent constituents of ginger. The purpose of this study was to characterize the effect of 6-gingerol on the p38/Nrf2/HO-1 and p38/NF-κB signaling pathway, as a possible means of combating hypoxia-related oxidative stress. H9c2 cells were chemically induced with CoCl2 to mimic hypoxia-associated cellular damage. Cardiomyocyte injury was assessed by lactate dehydrogenase and creatine kinase. Reactive oxygen species production was assessed by 2',7'-dichlorodihydrofluorescein diacetate. The antioxidative property of 6-gingerol was measured by estimating the activities of superoxide dismutase, catalase, glutathione and glutathione disulfide. Apoptosis was detected by flow cytometry after Annexin V-FITC-propidium iodide double staining. Western blotting was used to evaluate levels of p-p38, p38, cytoplasm p65, nuclear p65, total p65, nuclear Nrf2, total Nrf2, Keap1, HIF-1α, and HO-1. 6-gingerol was able to counter hypoxia-induced cardiomyocyte injury as evidenced by inhibiting the levels of oxidative stress indexes and increasing the percentage of apoptosis. Furthermore, 6-gingerol was able to down-regulate p-p38/p38, nuclear p65, total p65 and Keap1 expression induced by CoCl2 stimulation and increased cytoplasm p65, nuclear Nrf2, total Nrf2, HO-1, and HIF-1α expression. However, treatment with specific Nrf2 inhibitor blunted the activation of Nrf2 signaling and removed the protective effects of 6-gingerol. These experiments provide evidence that 6-gingerol exerts cytoprotective effects, which may be associated with the regulation of oxidative stress and apoptosis, potentially through activating the Nrf2 pathway and inhibiting the p38/NF-κB pathways.
Collapse
|
23
|
Arabnezhad L, Mohammadifard M, Rahmani L, Majidi Z, Ferns GA, Bahrami A. Effects of curcumin supplementation on vitamin D levels in women with premenstrual syndrome and dysmenorrhea: a randomized controlled study. BMC Complement Med Ther 2022; 22:19. [PMID: 35065636 PMCID: PMC8784001 DOI: 10.1186/s12906-022-03515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Background Vitamin D has an established role in female reproduction. There is also evidence for an association between vitamin D levels and menstrual problems such as premenstrual syndrome (PMS) and dysmenorrhea. Curcumin, is a bioactive polyphenol constituent of turmeric, that can potentially interact with vitamin D receptors and its molecular targets. This study evaluated the effects of curcumin on vitamin D levels in young women with PMS and dysmenorrhea. Methods In this randomized, triple-blind, placebo-controlled trial, women with PMS and dysmenorrhea were divided randomly into experimental and control groups to receive one capsule (500 mg of curcuminoid+ 5 mg piperine, or placebo) daily, from approximately 7 days before until 3 days after menstruation for three consecutive menstrual cycles. Serum vitamin D levels, renal function, and liver enzymes were also measured before and after intervention. Results A total of 76 subjects (38 in each group) were recruited into the trial. Curcumin significantly increased the median (IQR) serum levels of vitamin D [from 12.8 ng/ml (7.0–24.6) to 16.2 ng/ml (6.4–28.8); P = 0.045], compared with placebo [from 18.6 ng/ml (2.2–26.8) to 21.3 ng/ml (5.2–27.1); P = 0.17]. Serum levels of aspartate aminotransferase and direct bilirubin were reduced by the end of trial in the curcumin group (p < 0.05), but did not change significantly in the control group (p > 0.05). Finally, no significant differences in levels of fasting blood glucose were detected between curcumin and placebo groups. Conclusion Curcumin supplementation in women with PMS and dysmenorrhea led to a significant improvement of vitamin D, liver function enzyme test, but did not affect blood glucose. Trial registration The trial was registered on Iranian Registry of Clinical Trials registry (Trial ID: IRCT20191112045424N1 on 23 January 2020; available at https://www.irct.ir).
Collapse
|
24
|
Effect of oxidized dextran on the stability of gallic acid-modified chitosan-sodium caseinate nanoparticles. Int J Biol Macromol 2021; 192:360-368. [PMID: 34634328 DOI: 10.1016/j.ijbiomac.2021.09.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
We incorporated oxidized dextran (Odex) into nanoparticles composed of gallic acid-modified chitosan (GA-CS) and sodium caseinate (NaCas). The mass ratio of GA-CS to NaCas and the pH of the reaction solution were optimized to obtain nanoparticles with excellent performance and stability. The interactions among various nanomaterials were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and fluorescence spectrometer. The optimized complex nanoparticles had a diameter of approximately 131.2 nm with a polydispersity index (PDI) of 0.14, and a zeta potential of 26.2 mV. Our results showed that Odex enhanced the stability and function of GA-CS/NaCas nanoparticles (NP). At a curcumin loading of 10%, the encapsulation efficiency of Odex-crosslinked GA-CS/NaCas (NP (Odex)) was 96.2%, whereas that for uncrosslinked nanoparticles was 66.9%. Compared to the burst release profile of free curcumin in simulated GI fluids, the sustained release profile of encapsulated curcumin was observed. Radical-scavenging assays confirmed that the nanoparticles had excellent antioxidant activity themselves due to the grafting of phenolic acid on chitosan backbone. Overall, NP (Odex) with good GI stability and antioxidant activity hold promising for the oral delivery of hydrophobic bioactives.
Collapse
|
25
|
Zhang D, Sun X, Battino M, Wei X, Shi J, Zhao L, Liu S, Xiao J, Shi B, Zou X. A comparative overview on chili pepper (capsicum genus) and sichuan pepper (zanthoxylum genus): From pungent spices to pharma-foods. Trends Food Sci Technol 2021; 117:148-162. [DOI: 10.1016/j.tifs.2021.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Banwo K, Olojede AO, Adesulu-Dahunsi AT, Verma DK, Thakur M, Tripathy S, Singh S, Patel AR, Gupta AK, Aguilar CN, Utama GL. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Morales-Cerrada R, Molina-Gutierrez S, Lacroix-Desmazes P, Caillol S. Eugenol, a Promising Building Block for Biobased Polymers with Cutting-Edge Properties. Biomacromolecules 2021; 22:3625-3648. [PMID: 34464094 DOI: 10.1021/acs.biomac.1c00837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biobased materials, derived from biomass building blocks, are essential in the pursuit of sustainable materials. Eugenol, a natural phenol obtained from clove oil, but also from lignin depolymerization, possesses a chemical structure that allows its easy modification to obtain a broad and versatile platform of biobased monomers. In this Perspective, an overview of the variety of reactions that have been executed on the allylic double bond, phenol hydroxyl group, aromatic ring, and methoxy group is given, focusing our attention on those to obtain monomers suitable for different polymerization reactions. Furthermore, possible applications and perspectives on the eugenol-derived materials are provided.
Collapse
Affiliation(s)
| | | | | | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34000, France
| |
Collapse
|
28
|
Determination of the Chemical Composition, Antioxidant, and Enzyme Inhibitory Activity of Onosma mollis DC. J CHEM-NY 2021. [DOI: 10.1155/2021/5405365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Onosma species have long been used traditionally for respiratory tract infections, abdominal pain, wound treatment, burns, and constipation. This study aims to investigate the chemical composition and in vitro antioxidant and enzyme inhibitory activities of ethyl acetate (EtOAc), methanol (MeOH), and water extracts of Onosma mollis DC. MeOH extract was richer in both phenolics and flavonoids than other extracts (44.06 mg GAEs/g and 41.57 mg QEs/g, respectively). The findings obtained from the results of the chromatographic analysis also supported the results of the spectrophotometric analysis. The MeOH extract was the richest in terms of most of the phytochemicals screened. Apigenin 7-glucoside, luteolin 7-glucoside, rosmarinic acid, vanillic acid, and pinoresinol were over 1000.0 μg/g in MeOH extract. The extract in question showed the highest activity in phosphomolybdenum, DPPH, and ABTS radical scavenging and CUPRAC and FRAP reducing power activity assays (2.01, 3.33, 2.30, 1.48, and 0.79 mg/ml, respectively). The water extract presented the highest activity in the ferrous ion chelating assay (1.01 mg/ml). While EtOAc extract showed high activity in acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase inhibitory activity tests (1.11, 1.49, and 1.07 mg/ml, respectively), MeOH extract showed significant efficacy in tyrosinase and α-amylase inhibitory activity assays (2.94 and 2.08 mg/ml, respectively). There was a high correlation between the total phenolics/flavonoids of the extracts and their antioxidant activities (correlation coefficients were over 0.9). In addition, the phytochemicals mentioned above were found to contribute significantly to the antioxidant activity. It was concluded that a more detailed analysis should be done to determine the compounds responsible for the enzyme inhibitory activities of the extracts.
Collapse
|
29
|
Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2497354. [PMID: 34394824 PMCID: PMC8357497 DOI: 10.1155/2021/2497354] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
The biologically active phytochemicals are sourced from edible and medicinally important plants and are important molecules being used for the formulation of thousands of drugs. These phytochemicals have great benefits against many ailments particularly the inflammatory diseases or oxidative stress-mediated chronic diseases. Eugenol (EUG) is a versatile naturally occurring molecule as phenolic monoterpenoid and frequently found in essential oils in a wide range of plant species. EUG bears huge industrial applications particularly in pharmaceutics, dentistry, flavoring of foods, agriculture, and cosmeceutics. It is being focused recently due to its great potential in preventing several chronic conditions. The World Health Organization (WHO) has declared EUG as a nonmutant and generally recognized as safe (GRAS) molecule. The available literature about pharmacological activities of EUG shows remarkable anti-inflammatory, antioxidant, analgesic, and antimicrobial properties and has a significant effect on human health. The current manuscript summarizes the pharmacological characteristics of EUG and its potential health benefits.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mahnoor Khadim
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, China
| | - Yali Yang
- Department of Pathology, Affiliated Hospital of Yunnan University/Second People's Hospital of Yunnan Province, Kunming 650021, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
30
|
El-Saber Batiha G, Hussein DE, Algammal AM, George TT, Jeandet P, Al-Snafi AE, Tiwari A, Pagnossa JP, Lima CM, Thorat ND, Zahoor M, El-Esawi M, Dey A, Alghamdi S, Hetta HF, Cruz-Martins N. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108066] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Tshabalala R, Kabelinde A, KAPTCHOUANG TCHATCHOUANG CDONALD, Ateba CN, Manganyi MC. Effect of Clove ( Syzygium aromaticum) spice as microbial inhibitor of resistant bacteria and Organoleptic Quality of meat. Saudi J Biol Sci 2021; 28:3855-3863. [PMID: 34220240 PMCID: PMC8241631 DOI: 10.1016/j.sjbs.2021.03.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
For centuries, spices have been utilized as flavourants, colourants and as preservatives in food. Moreover, spices possess various antimicrobial properties with massive health benefits for the treatment and management of ailments and diseases. The present study was focused on three (3) aspects; (1) isolation and molecular identification of bacteria from the meat; (2) to determine the antimicrobial activity of the spices against the pathogens; (3) to assess the organoleptic properties of the spiced meat. A total of twelve (n = 12) spices evaluated against forty (n = 40) spoilage food-borne pathogenic bacteria (Escherichia coli and Enterococci spp.). The spice extracts were tested using disk diffusion method to determine the inhibition abilities. The results show that clove and black seed cumin extract exhibited excellent antibacterial activity against most pathogenic bacteria. Clove displayed the highest inhibition zone of 18 mm against E. coli (EcFwS1). Clove extract was the most inhibitor followed by black cumin, whereas extracts of thyme and cinnamon showed weak antibacterial activities against the tested strains. The most sensitive strain to spice extracts was Enterococcus spp. (EnFmL1) and the most resistant strain being E. coli. (EcFmS1 and EcFpL1). Untreated meat showed that E. coli and Enterococcus spp. count was 4.4 * 105 ± 3.4 * 105 and 2.2 * 105 ± 3.6 * 104 cfu/mL respectively after 7 days while the single dose of clove showed 5.4 * 104 ± 4.4 * 102 cfu/mL of E. coli and 1.7 * 105 ± 4.1 * 104 cfu/mL of Enterococcus spp. The organoleptic characteristics such as colour, texture, odour, pH, shape of the single dose of clove on the meat was overall acceptable.
Collapse
Affiliation(s)
- Rebecca Tshabalala
- Department of Microbiology, North West University – Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adia Kabelinde
- Department of Microbiology, North West University – Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | | | - Collins Njie Ateba
- Department of Microbiology, North West University – Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha 5117, South Africa
| |
Collapse
|
32
|
Himalian R, Singh SK, Singh MP. Ameliorative Role of Nutraceuticals on Neurodegenerative Diseases Using the Drosophila melanogaster as a Discovery Model to Define Bioefficacy. J Am Coll Nutr 2021; 41:511-539. [PMID: 34125661 DOI: 10.1080/07315724.2021.1904305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurodegeneration is the destruction of neurons, and once the neurons degenerate they can't revive. This is one of the most concerned health conditions among aged population, more than ∼70% of the elderly people are suffering from neurodegeneration. Among all of the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and Poly-glutamine disease (Poly-Q) are the major one and affecting most of the people around the world and posing excessive burden on the society. In order to understand this disease in non-human animal models it is pertinent to examine in model organism and various animal model are being used for such diseases like rat, mice and non-vertebrate model like Drosophila. Drosophila melanogaster is one of the best animal proven by several eminent scientist and had received several Nobel prizes for uncovering mechanism of human related genes and highly efficient model for studying neurodegenerative diseases due to its great affinity with human disease-related genes. Another factor is also employed to act as therapeutic or preventive method that is nutraceuticals. Nutraceuticals are functional natural compounds with antioxidant properties and had extensively showed the neuroprotective effect in different organisms. These nutraceuticals having antioxidant properties act through scavenging free radicals or by increasing endogenous cellular antioxidant defense molecules. For the best benefit, we are trying to utilize these nutraceuticals, which will have no or negligible side effects. In this review, we are dealing with various types of such nutraceuticals which have potent value in the prevention and curing of the diseases related to neurodegeneration.HighlightsNeurodegeneration is the silently progressing disease which shows its symptoms when it is well rooted.Many chemical drugs (almost all) have only symptomatic relief with side effects.Potent mechanism of neurodegeneration and improvement effect by nutraceuticals is proposed.Based on the Indian Cuisine scientists are trying to find the medicine from the food or food components having antioxidant properties.The best model to study the neurodegenerative diseases is Drosophila melanogaster.Many nutraceuticals having antioxidant properties have been studied and attenuated various diseases are discussed.
Collapse
Affiliation(s)
- Ranjana Himalian
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow, India
| | - Mahendra Pratap Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
33
|
Antibacterial Activity of Defatted and Nondefatted Methanolic Extracts of Aframomum melegueta K. Schum. against Multidrug-Resistant Bacteria of Clinical Importance. ScientificWorldJournal 2021; 2020:4808432. [PMID: 32831805 PMCID: PMC7428896 DOI: 10.1155/2020/4808432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
The antibacterial activity of the extracts of Aframomum melegueta including n-hexane extract (NHE), nondefatted methanol extract (NDME), and defatted methanol extract (DME) was investigated in this study. The NHE exhibited no antibacterial activity. The DME showed higher antibacterial activity than the NDME against the different isolates. At the highest concentration of 10 mg/mL in agar diffusion, NDME produced inhibition zones ranging from 11 to 29 mm against the microorganisms while DME produced inhibition zones ranging from 20 to 40 mm with the concentration of 10 mg/mL against the microorganisms. 0.1 mg/mL of the DME produced inhibition zones ranging between 12 and 14 mm in Aeromonas hydrophila ATCC 35654 and Pseudomonas aeruginosa ATCC 15442, respectively, while none of the isolates were inhibited by the NDME at a concentration of 1 mg/mL or less. In the agar dilution assay, the MICs of the NDME and DME ranged between 0.31 and 10 mg/mL, but more isolates were inhibited at 0.31 mg/mL of DME than those in NDME. In macrobroth assay, the MICs of the NDME ranged between 0.15 and 5.0 mg/mL and the MBCs ranged between 0.63 and 5.0 mg/mL, and the MICs of the DME ranged between 0.08 and 5.0 mg/mL and the MBCs were between 0.31 and 5.0 mg/mL. This study indicated that DME was more active with higher antibacterial activity than the NDME of this plant, and extracting the fatty portion of plant materials prior susceptibility testing would allow plant extracts to be more effective as well as justifying the use of Aframomum melegueta in traditional medicine for the treatment of bacterial infections.
Collapse
|
34
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Chávez-González ML, Aguilar CN. Encapsulated Food Products as a Strategy to Strengthen Immunity Against COVID-19. Front Nutr 2021; 8:673174. [PMID: 34095193 PMCID: PMC8175800 DOI: 10.3389/fnut.2021.673174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
In December 2019, the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)-a novel coronavirus was identified which was quickly distributed to more than 100 countries around the world. There are currently no approved treatments available but only a few preventive measures are available. Among them, maintaining strong immunity through the intake of functional foods is a sustainable solution to resist the virus attack. For this, bioactive compounds (BACs) are delivered safely inside the body through encapsulated food items. Encapsulated food products have benefits such as high stability and bioavailability, sustained release of functional compounds; inhibit the undesired interaction, and high antimicrobial and antioxidant activity. Several BACs such as ω-3 fatty acid, curcumin, vitamins, essential oils, antimicrobials, and probiotic bacteria can be encapsulated which exhibit immunological activity through different mechanisms. These encapsulated compounds can be recommended for use by various researchers, scientists, and industrial peoples to develop functional foods that can improve immunity to withstand the coronavirus disease 2019 (COVID-19) outbreak in the future. Encapsulated BACs, upon incorporation into food, offer increased functionality and facilitate their potential use as an immunity booster. This review paper aims to target various encapsulated food products and their role in improving the immunity system. The bioactive components like antioxidants, minerals, vitamins, polyphenols, omega (ω)-3 fatty acids, lycopene, probiotics, etc. which boost the immunity and may be a potential measure to prevent COVID-19 outbreak were comprehensively discussed. This article also highlights the potential mechanisms; a BAC undergoes, to improve the immune system.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Ami R. Patel
- Division of Dairy and Food Microbiology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Mexico
| | - Cristobal N. Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Mexico
| |
Collapse
|
35
|
AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A, Lai KS, Lim SHE. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021; 26:molecules26092540. [PMID: 33925346 PMCID: PMC8123587 DOI: 10.3390/molecules26092540] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nutraceuticals are essential food constituents that provide nutritional benefits as well as medicinal effects. The benefits of these foods are due to the presence of active compounds such as carotenoids, collagen hydrolysate, and dietary fibers. Nutraceuticals have been found to positively affect cardiovascular and immune system health and have a role in infection and cancer prevention. Nutraceuticals can be categorized into different classes based on their nature and mode of action. In this review, different classifications of nutraceuticals and their potential therapeutic activity, such as anti-cancer, antioxidant, anti-inflammatory and anti-lipid activity in disease will be reviewed. Moreover, the different mechanisms of action of these products, applications, and safety upon consumers including current trends and future prospect of nutraceuticals will be included.
Collapse
Affiliation(s)
- Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Aisha Abushelaibi
- Dubai Colleges, Higher Colleges of Technology, Dubai 16062, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
- Correspondence: or ; Tel.: +971-56-389-3757
| |
Collapse
|
36
|
Dong P, Shi L, Wang S, Jiang S, Li H, Dong F, Xu J, Dai L, Zhang J. Rapid Profiling and Identification of Vitexin Metabolites in Rat Urine, Plasma and Faeces after Oral Administration Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer Coupled with Multiple Data-mining Methods. Curr Drug Metab 2021; 22:185-197. [PMID: 33397253 DOI: 10.2174/1389200221999210101232841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vitexin is a natural flavonoid compound with multiple pharmacological activities and is extracted from the leaves and seeds of Vitex negundo L. var. cannabifolia (Sieb. et Zucc.) Hand.-Mazz. However, the metabolite characterization of this component remains insufficient. OBJECTIVE To establish a rapid profiling and identification method for vitexin metabolites in rat urine, plasma and faeces after oral administration using a UHPLC-Q-Exactive orbitrap mass spectrometer were coupled with multiple data-mining methods. METHODS In this study a simple and rapid systematic strategy for the detection and identification of constituents was proposed based on UHPLC-Q-Exactive Orbitrap mass spectrometry in parallel reaction monitoring mode combining diagnostic fragment ion filtering techniques. RESULTS A total of 49 metabolites were fully or partially characterized based on their accurate mass, characteristic fragment ions, retention times, corresponding ClogP values, and so on. It is obvious that C-glycosyl flavonoids often display an [M+H-120]+ ion that represents the loss of C4H8O4. As a result, these metabolites were presumed to be generated through glucuronidation, sulfation, deglucosylation, dehydrogenation, methylation, hydrogenation, hydroxylation, ring cleavage and their composite reactions. Moreover, the characteristic fragmentation pathways of flavonoids, chalcones and dihydrochalcones were summarized for the subsequent metabolite identification. CONCLUSION The current study provided an overall metabolic profile of vitexin which will be of great help in predicting the in vivo pharmacokinetic profiles and understanding the action mechanism of this active ingredient.
Collapse
Affiliation(s)
- Pingping Dong
- School of Pharmacy, Bin Zhou Medical University, Yantai 260040, China
| | - Lei Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shaoping Wang
- School of Pharmacy, Bin Zhou Medical University, Yantai 260040, China
| | - Shan Jiang
- School of Pharmacy, Bin Zhou Medical University, Yantai 260040, China
| | - Haoran Li
- School of Pharmacy, Bin Zhou Medical University, Yantai 260040, China
| | - Fan Dong
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jing Xu
- School of Pharmacy, Bin Zhou Medical University, Yantai 260040, China
| | - Long Dai
- School of Pharmacy, Bin Zhou Medical University, Yantai 260040, China
| | - Jiayu Zhang
- School of Pharmacy, Bin Zhou Medical University, Yantai 260040, China
| |
Collapse
|
37
|
Shekhawat RS, Mandal CC. Anti-obesity Medications in Cancer Therapy: A Comprehensive Insight. Curr Cancer Drug Targets 2021; 21:476-494. [PMID: 34225630 DOI: 10.2174/1568009621666210322122829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
Collapse
Affiliation(s)
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, India
| |
Collapse
|
38
|
Poljsak B, Kovač V, Milisav I. Antioxidants, Food Processing and Health. Antioxidants (Basel) 2021; 10:antiox10030433. [PMID: 33799844 PMCID: PMC8001021 DOI: 10.3390/antiox10030433] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022] Open
Abstract
The loss and/or modification of natural antioxidants during various food processing techniques and storage methods, like heat/thermal, UV, pulsed electric field treatment, drying, blanching and irradiation is well described. Antioxidants in their reduced form are modified mainly by oxidation, and less by pyrolysis and hydrolysis. Thus, they are chemically converted from the reduced to an oxidized form. Here we describe the neglected role of the oxidized forms of antioxidants produced during food processing and their effect on health. While natural antioxidants in their reduced forms have many well studied health-promoting characteristics, much less is known about the effects of their oxidized forms and other metabolites, which may have some health benefits as well. The oxidized forms of natural antioxidants affect cell signaling, the regulation of transcription factor activities and other determinants of gene expression. Very low doses may trigger hormesis, resulting in specific health benefits by the activation of damage repair processes and antioxidative defense systems. Functional studies determining the antioxidants’ effects on the organisms are important, especially as reduced or oxidized antioxidants and their metabolites may have additional or synergistic effects.
Collapse
Affiliation(s)
- Borut Poljsak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia; (B.P.); (V.K.)
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia; (B.P.); (V.K.)
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia; (B.P.); (V.K.)
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-543-7022; Fax: +386-1-543-7021
| |
Collapse
|
39
|
Ofori-Asenso R, Mohsenpour MA, Nouri M, Faghih S, Liew D, Mazidi M. Association of Spicy Chilli Food Consumption With Cardiovascular and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies. Angiology 2021; 72:625-632. [PMID: 33657876 DOI: 10.1177/0003319721995666] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This systematic review and meta-analysis examined the association between spicy food (chilli pepper, chilli sauce, or chilli oil) consumption with cardiovascular and all-cause mortality. Medline and EMBASE were searched from their inception until February 2020 to identify relevant prospective cohort studies. Hazard ratios (HRs)/relative risk (RRs) were pooled via random-effect meta-analysis. Of the 4387 citations identified, 4 studies (from the United States, China, Italy, and Iran) were included in the meta-analysis. The included studies involved a total of 564 748 adults (aged ≥18 years; 51.2% female) followed over a median duration of 9.7 years. The pooled data suggested that compared with people who did not regularly consume spicy food (none/<1 d/wk), regular consumers of spicy food experienced a 12% (HR/RRpooled 0.88, 95% CI, 0.86-0.90; I 2 = 0%) lower risk of all-cause mortality. Moreover, spicy food consumption was associated with significant reduction in the risk of death from cardiac diseases (HR/RRpooled 0.82, 0.73-0.91; I 2 = 0%), but not from cerebrovascular disorders (HR/RRpooled 0.79, 0.53-1.17; I 2 = 72.2%). In conclusion, available epidemiological studies suggest that the consumption of spicy chilli food is associated with reduced risk of all-cause as well as heart disease-related mortality. Further studies in different populations are needed to confirm this association.
Collapse
Affiliation(s)
- Richard Ofori-Asenso
- Faculty of Health and Medical Sciences, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.,Department of Epidemiology and Preventive Medicine, 22457Monash University, Melbourne, Victoria, Australia
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutrition and Food Sciences, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Department of Community Nutrition, School of Nutrition and Food Sciences, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Danny Liew
- Department of Epidemiology and Preventive Medicine, 22457Monash University, Melbourne, Victoria, Australia
| | - Mohsen Mazidi
- Department of Twin Research and Genetic Epidemiology, 4616Kings College London, London, UK
| |
Collapse
|
40
|
Ma L, Liu J, Lin Q, Gu Y, Yu W. Eugenol protects cells against oxidative stress via Nrf2. Exp Ther Med 2020; 21:107. [PMID: 33335570 PMCID: PMC7739850 DOI: 10.3892/etm.2020.9539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Eugenol is a naturally occurring compound that is present in a variety of plants and has previous been demonstrated to exert a number of bioactivities. However, the potential effects of Eugenol on cellular protection against oxidative stress remain poorly understood. In the present study, HEK-293 cells and the mouse fibroblast cell line NIH-3T3 cells were used as models to explore the effects of eugenol on H2O2-induced damage. Among the three natural compounds tested, namely eugenol, methyleugenol and acetyleugenol, eugenol was found to increase the transcriptional activity and expression level of nuclear factor erythroid 2-related factor 2 (Nrf2), a central regulator of cellular responses to oxidative stress, in a dose-dependent manner. The mRNA levels of Nrf2 target genes glutamate-cysteine ligase modifier regulatory subunit and glutathione S-transferase A1, were also found to be upregulated following eugenol treatment. Further study revealed that eugenol enhanced the stabilization and nuclear translocation of Nrf2. Additionally, treatment with eugenol was found to reduce intracellular ROS levels while increasing cellular resistance to H2O2, in a manner that was dependent on Nrf2. In conclusion, data from the present study suggest that eugenol is a protective agent against oxidative stress that exerts its effects through a Nrf2-dependent pathway, rendering eugenol and its derivatives to be promising candidates for the future development of antioxidants.
Collapse
Affiliation(s)
- Leina Ma
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P.R. China.,Qingdao Cancer Institute, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Jia Liu
- Qingdao Cancer Institute, College of Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Qian Lin
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Wengong Yu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
41
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
42
|
Srinivasan K. Anti-Inflammatory Influences of Culinary Spices and Their Bioactives. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1839761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Krishnapura Srinivasan
- Department of Biochemistry, CSIR – Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
43
|
Sasikumar J, Erba O, Egigu MC. In vitro antioxidant activity and polyphenolic content of commonly used spices from Ethiopia. Heliyon 2020; 6:e05027. [PMID: 32995654 PMCID: PMC7511827 DOI: 10.1016/j.heliyon.2020.e05027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION In this study, the antioxidative effectiveness, and polyphenolic content of methanol and aqueous extracts of spices such as Lippia adoensis (Koseret), Nigella sativa (Thikur azmud), Piper capense (Timiz), Thymus schimperi (Tosign) and Trachyspermum ammi (Netchazmud), consumed among people of Ethiopia were investigated. METHODS The antioxidant activity was assessed via established in vitro assay models such as 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) radical quenching assay, reducing power assay and reactive nitrogen species (RNS) inhibitory potential. Total phenolics content was measured according to Folin-Ciocalteu's method and total flavonoid content was estimated by using Aluminium chloride colorimetric method. RESULTS The results showed that the total phenolic content was highest in both methanol (720 ± 0.04 mg GAE/100 g extract DW) and aqueous (580 ± 0.08 mg GAE/100 g DW) extracts of L. adoensis. Among the five tested spices, the methanol and aqueous extracts of L. adoensis exerted the strongest DPPH radical quenching activity with IC50values of 49.17 ± 1.26 and 20.99 ± 8.6 μg/mL, respectively. Both methanol and aqueous extracts of L. adoensis showed notable reducing capacity. The highest RNS scavenging activity was shown by both methanol (IC50 597.21 ± 6.99 μg/mL) and aqueous (IC50 = 551.5 ± 28.9 μg/mL) extracts of L. adoensis. High to moderate positive correlations were observed between total phenolic contents and in vitro antioxidant assays. This indicates that the antioxidant activities of the tested spices are attributed to the phenolic contents. CONCLUSION The results of the present work revealed that the tested spices demonstrated high phenolic contents and antioxidant properties. Thus, these spices are worth considering as important sources of natural antioxidant agents.
Collapse
Affiliation(s)
- J.M. Sasikumar
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Haramaya, P.O. Box 138, Ethiopia
| | - Oliyad Erba
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Haramaya, P.O. Box 138, Ethiopia
| | - Meseret C. Egigu
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Haramaya, P.O. Box 138, Ethiopia
| |
Collapse
|
44
|
Bukvicki D, Gottardi D, Prasad S, Novakovic M, Marin PD, Tyagi AK. The Healing Effects of Spices in Chronic Diseases. Curr Med Chem 2020; 27:4401-4420. [DOI: 10.2174/0929867325666180831145800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/14/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Spices are not only just herbs used in culinary for improving the taste of dishes,
they are also sources of a numerous bioactive compounds significantly beneficial for health.
They have been used since ancient times because of their antimicrobial, anti-inflammatory
and carminative properties. Several scientific studies have suggested their protective role
against chronic diseases. In fact, their active compounds may help in arthritis, neurodegenerative
disorders (Alzheimer’s, Parkinson, Huntington’s disease, amyotrophic lateral sclerosis,
etc.), diabetes, sore muscles, gastrointestinal problems and many more. In the present study,
possible roles of spices and their active components, in chronic diseases (cancer, arthritis,
cardiovascular diseases, etc.) along with their mechanism of action have been reviewed.
Collapse
Affiliation(s)
- Danka Bukvicki
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, 11 000 Belgrade, Serbia
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States
| | - Miroslav Novakovic
- University of Belgrade, National Institute, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
| | - Petar D. Marin
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, 11 000 Belgrade, Serbia
| | - Amit Kumar Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States
| |
Collapse
|
45
|
Phenolic profile of bayberry followed by simulated gastrointestinal digestion and gut microbiota fermentation and its antioxidant potential in HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
46
|
Kieliszek M, Edris A, Kot AM, Piwowarek K. Biological Activity of Some Aromatic Plants and Their Metabolites, with an Emphasis on Health-Promoting Properties. Molecules 2020; 25:E2478. [PMID: 32471063 PMCID: PMC7321084 DOI: 10.3390/molecules25112478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
The biological activities of four aromatic plants, namely frankincense, myrrh, ginger, and turmeric, were reviewed in the current study. The volatile fraction (essential oil) as well as the nonvolatile fraction of these four plants showed different promising biological activities that are displayed in detail. These activities can include protection from and/or alleviation of some ailment, which is supported with different proposed mechanisms of action. This review aimed to finally help researchers to get a handle on the importance of considering these selected aromatic plants, which have not been thoroughly reviewed before, as a potential adjuvant to classical synthetic drugs to enhance their efficiency. Moreover, the results elicited in this review encourage the consumption of these medicinal plants as an integrated part of the diet to boost the body's overall health based on scientific evidence.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland;
| | - Amr Edris
- Aroma & Flavor Chemistry Department, Food Industries & Nutrition Division, National Research Center, El Behose Street, Dokki, Cairo 12622, Egypt
| | - Anna Maria Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland;
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland;
| |
Collapse
|
47
|
Kaushik S, Jangra G, Kundu V, Yadav JP, Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease 2020; 31:270-276. [PMID: 32420412 PMCID: PMC7223110 DOI: 10.1007/s13337-020-00584-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Chikungunya is one of the highly infectious viral disease without vaccine and anti-viral. Aim of present study is to check the anti-chikungunya activities of Zingiber officinale (Ginger) in the animal cell culture model. The medicinal plant extract was prepared from Z. officinale rhizome. Median tissue culture infective dose (TCID50) of Chikungunya virus (CHIKV) and Maximum non-toxic dose (MNTD) of Z. officinale extract was determined in Vero cell-line on the basis of cell viability followed by MTT assay. In vitro anti-chikungunya activity was performed in Vero cell-line with MNTD and half of MNTD of Z. officinale medicinal plant extract. The anti-viral effect of Z. officinale was studied by observing the cytopathic effects and cell viability measured by MTT assay. Maximum non-toxic dose of Z. officinale plant extract was found 62.5 μg/ml. During anti-chikungunya experimentation, cell viability increased to 51.05% and 35.10%, when Vero cells were pre-treated with MNTD and half of MNTD of Z. officinale extract respectively. Similarly, in co-treatment, when MNTD, half of MNTD of Z. officinale and Median tissue culture infective dose CHIKV were inoculated simultaneously, then the viability of Vero cell-line was increases by 52.90% and 49.02% respectively. The rhizome extracts of Z. officinale have high potential to treat CHIKV. Medicinal plants and their metabolites are most important sources of antimicrobial and can be utilized for the development of new drugs. In view of the rapid expansion of CHIKV at the global level, there is an urgent need to develop newer anti-chikungunya drugs.
Collapse
Affiliation(s)
- Sulochana Kaushik
- 2Department of Genetics, Maharshi Dayanand University, Rohtak, Hr India
| | - Ginni Jangra
- 1Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Hr India
| | - Vaibhav Kundu
- 3Department of Nanotechnology, Amity University, Noida, U.P India
| | | | - Samander Kaushik
- 1Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Hr India
| |
Collapse
|
48
|
Lee SY, Yim DG, Lee DY, Kim OY, Kang HJ, Kim HS, Jang A, Park TS, Jin SK, Hur SJ. Overview of the effect of natural products on reduction of potential carcinogenic substances in meat products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Singh A, Dutta PK. Green synthesis, characterization and biological evaluation of chitin glucan based zinc oxide nanoparticles and its curcumin conjugation. Int J Biol Macromol 2020; 156:514-521. [PMID: 32305371 DOI: 10.1016/j.ijbiomac.2020.04.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
A well-organized, simplistic, and green route of chitin-glucan based zinc oxide nanoparticles (ChGC@ZnONPs) was synthesized using reducing and capping agent both in one as chitin-glucan complex (ChGC). Herein we report the bio-synthesis of Cur-ChGC@ZnONPs by the conjugation of curcumin (Cur) with ChGC@ZnONPs for the improvement of antioxidant and antibacterial activity. The synthesized nanoparticles were characterized by the UV-Visible (UV-Vis), particle size analyser, scanning electron microscope (SEM) with Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscope (TEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Structure analysis, shape and crystalline size of nanomaterials were confirmed by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM). The particle size analyser showed the particle size of nanomaterials and stability. Crystalline nature of both ChGC@ZnONPs and Cur-ChGC@ZnONPs were confirmed by the XRD spectra and FT-IR spectrum was used to examine the functional groups of nanomaterials. The antioxidant potential of conjugated nanomaterials were estimated using a DPPH free radical scavenging assay and ABTS+⁎ assay. This analysis showed that after loading of Cur, antioxidant activity increases. The antibacterial assessment of conjugated nanomaterials were tested by different microorganisms and showed excellent antibacterial activity.
Collapse
Affiliation(s)
- Anu Singh
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
50
|
Chemopreventive and Therapeutic Efficacy of Cinnamomum zeylanicum L. Bark in Experimental Breast Carcinoma: Mechanistic In Vivo and In Vitro Analyses. Molecules 2020; 25:molecules25061399. [PMID: 32204409 PMCID: PMC7144360 DOI: 10.3390/molecules25061399] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Comprehensive oncology research suggests an important role of phytochemicals or whole plant foods in the modulation of signaling pathways associated with anticancer action. The goal of this study is to assess the anticancer activities of Cinnamomum zeylanicum L. using rat, mouse, and cell line breast carcinoma models. C. zeylanicum (as bark powder) was administered in the diet at two concentrations of 0.1% (w/w) and 1% (w/w) during the whole experiment in chemically induced rat mammary carcinomas and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular evaluations of mammary gland tumors in rodents were carried out. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were performed. The dominant metabolites present in the tested C. zeylanicum essential oil (with relative content over 1%) were cinnamaldehyde, cinnamaldehyde dimethyl acetal, cinnamyl acetate, eugenol, linalool, eucalyptol, limonene, o-cymol, and α-terpineol. The natural mixture of mentioned molecules demonstrated significant anticancer effects in our study. In the mouse model, C. zeylanicum at a higher dose (1%) significantly decreased tumor volume by 44% when compared to controls. In addition, treated tumors showed a significant dose-dependent decrease in mitotic activity index by 29% (0.1%) and 45.5% (1%) in comparison with the control group. In rats, C. zeylanicum in both doses significantly reduced the tumor incidence by 15.5% and non-significantly suppressed tumor frequency by more than 30% when compared to controls. An evaluation of the mechanism of anticancer action using valid oncological markers showed several positive changes after treatment with C. zeylanicum. Histopathological analysis of treated rat tumor specimens showed a significant decrease in the ratio of high-/low-grade carcinomas compared to controls. In treated rat carcinomas, we found caspase-3 and Bax expression increase. On the other hand, we observed a decrease in Bcl-2, Ki67, VEGF, and CD24 expressions and MDA levels. Assessment of epigenetic changes in rat tumor cells in vivo showed a significant decrease in lysine methylation status of H3K4m3 and H3K9m3 in the high-dose treated group, a dose-dependent increase in H4K16ac levels (H4K20m3 was not changed), down-regulations of miR21 and miR155 in low-dose cinnamon groups (miR22 and miR34a were not modulated), and significant reduction of the methylation status of two out of five gene promoters-ATM and TIMP3 (PITX2, RASSF1, PTEN promoters were not changed). In vitro study confirmed results of animal studies, in that the essential oil of C. zeylanicum displayed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using MTS, BrdU, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). As a conclusion, C. zeylanicum L. showed chemopreventive and therapeutic activities in animal breast carcinoma models that were also significantly confirmed by mechanistic evaluations in vitro and in vivo.
Collapse
|