1
|
Lin X, Chen M, Rodriguez Gonzalez P, Danino D, Corke H. Advancing coenzyme Q10 delivery with plant protein-based nanoparticle-mediated nanosuspensions. Food Res Int 2024; 197:115120. [PMID: 39593351 DOI: 10.1016/j.foodres.2024.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Coenzyme Q10 (CoQ10) possesses significant health-promoting potential, yet its oral delivery encounters obstacles stemming from its distinctive physicochemical characteristics, such as poor solubility, sensitivity to environmental factors and low bioaccessibility. To overcome these challenges, we developed high-payload CoQ10 nanosuspensions (CQ@SPNP, CQ@RPNP, and CQ@WPNP) using plant-based protein nanoparticles (NPs) derived from soybean (SPNP), rice (RPNP), and walnut (WPNP). The nanosuspensions include spherical particles, characterized by small particle size (<230 nm), low polydispersity (PDI < 0.15), and a high zeta potential (<-44 mV). CoQ10 loading capacity exceeded 70.3 %, with an encapsulation efficiency of over 77.4 %. CoQ10 interacted with plant protein-based NPs via hydrophobic effect without losing its crystal structure. Moreover, SPNP, RPNP, and WPNP significantly increased the stability of CoQ10 nanosuspensions against light, heat, long-term storage, and in vitro digestion. In particular, CQ@WPNP exhibited the highest stability and CoQ10 bioaccessibility post-digestion. The observed increases in stability and bioaccessibility were closely related to the specific NPs utilized. This study highlights the potential of plant protein-based NPs in addressing challenges of CoQ10 delivery, offering a promising approach to improve its efficacy.
Collapse
Affiliation(s)
- Xiaoling Lin
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Meier Chen
- Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Pedro Rodriguez Gonzalez
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Dganit Danino
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| | - Harold Corke
- Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
2
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
3
|
Villalaín J. Location and interaction of idebenone and mitoquinone in a membrane similar to the inner mitochondrial membrane. Comparison with ubiquinone 10. Free Radic Biol Med 2024; 222:211-222. [PMID: 38908803 DOI: 10.1016/j.freeradbiomed.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Oxygen is essential for aerobic life on earth but it is also the origin of harmful reactive oxygen species (ROS). Ubiquinone is par excellence the endogenous cellular antioxidant, but a very hydrophobic one. Because of that, other molecules have been envisaged, such as idebenone (IDE) and mitoquinone (MTQ), molecules having the same redox active benzoquinone moiety but higher solubility. We have used molecular dynamics to determine the location and interaction of these molecules, both in their oxidized and reduced forms, with membrane lipids in a membrane similar to that of the mitochondria. Both IDE and reduced IDE (IDOL) are situated near the membrane interface, whereas both MTQ and reduced MTQ (MTQOL) locate in a position adjacent to the phospholipid hydrocarbon chains. The quinone moieties of both ubiquinone 10 (UQ10) and reduced UQ10 (UQOL10) in contraposition to the same moieties of IDE, IDOL, MTQ and MTQOL, located near the membrane interphase, whereas the isoprenoid chains remained at the middle of the hydrocarbon chains. These molecules do not aggregate and their functional quinone moieties are located in the membrane at different depths but near the hydrophobic phospholipid chains whereby protecting them from ROS harmful effects.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202, Elche, Alicante, Spain.
| |
Collapse
|
4
|
Azzolin VF, Azzolin VF, da Silva Maia R, Mastella MH, Sasso JS, Barbisan F, Bitencourt GR, de Azevedo Mello P, Ribeiro EMA, Ribeiro EE, Nunomura RDCS, Manica da Cruz IB. Safety and efficacy indicators of guarana and Brazil nut extract carried in nanoparticles of coenzyme Q10: Evidence from human blood cells and red earthworm experimental model. Food Chem Toxicol 2024; 191:114828. [PMID: 38914193 DOI: 10.1016/j.fct.2024.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
This study characterized a nanosupplement based on coenzyme Q10 containing guarana (Paullinia cupana) and Brazil nuts oil (Bertholetia excelsa) (G-Nut). Determined cytotoxic and oxi-immunomodulatory effects on human peripheral blood mononuclear cells (PBMCs) and its effect on mortality of red Californian earthworms (Eisenia fetida) and on the immune efficiency of its coelomocytes immune by in vitro exposure to yeast dead microorganism. The cytotoxic and immunomodulatory effects of G-Nut and the GN-Free extract (0.25-3 mg/mL) were determined in PBMC cultures. Apoptotic, oxidative, and inflammatory markers were determined using biochemical, immunological, and molecular protocols. The effects of G-Nut and GN-Free extracts on mortality and immune efficiency were investigated in earthworms. G-Nut and GN-Free did not induce cytotoxic events in PBMCs, triggering the decrease in apoptotic (caspases 3 and 8) gene expression, lipid and protein oxidation levels, or pro-inflammatory cytokine levels. G-Nut and GN-Free did not trigger earthworm mortality and improved coelomocyte immune efficiency by increasing Eisenia neutrophil extracellular DNA traps and brown body formation when exposed to dead yeasts. The G-Nut nanoformulation is safe and can be used as a new form of food supplement by oral or transdermal delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Barbisan
- Biogenomics Laboratory - Federal University of Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
5
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
6
|
Atapour-Mashhad H, Tayarani-Najaran Z, Golmohammadzadeh S. Preparation and characterization of novel nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN) containing coenzyme Q10 as potent antioxidants and antityrosinase agents. Heliyon 2024; 10:e31429. [PMID: 38882272 PMCID: PMC11180323 DOI: 10.1016/j.heliyon.2024.e31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
We developed novel and optimal Q10-NLC/SLN formulations as antioxidant and anti-tyrosinase agents. The formulations were analyzed for particle size, morphology, entrapment efficiency (EE %), and long-term stability. The in vitro drug release and in vivo skin penetration were evaluated using dialysis bag diffusion and Sprague Dawley (SD) rats, respectively. Cytotoxicity and protecting effects were assessed by AlamarBlue® assay, ROS level by DCFH-DA, and tyrosinase activity by l-DOPA assay, measuring the absorbance at 470 nm. The selected formulations had optimal surface characterizations, including Z-average size, PDI, and Zeta potential ranging from 125 to 207 nm, 0.09-0.22, and -7 to -24, respectively. They also exhibited physiochemical stability for up to 6 months and EE% above 80 %. The lipids ratio and co-Q10 amount as variable factors significantly affected particle size and zeta potential but were insignificant on PDI. The in vitro release diagram showed that Q10-NLC/SLN revealed a fast release during the first 8 h and prolonged release afterward. The in vivo skin permeation revealed a higher accumulative uptake of co-Q10 in the skin for Q10-NLC/SLN compared to Q10 emulsions. Both selected Q10-NLC and Q10-SLN could reduce intracellular ROS after exposure to H2O2. The Q10-NLC was found to be more potent for inhibiting the tyrosinase activity compared to O10-SLN. The results suggest that the new formulations are promising carriers for topical delivery of co-Q10 as an anti-aging and skin-whitening agent.
Collapse
Affiliation(s)
- Hoda Atapour-Mashhad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Bjørklund G, Semenova Y, Gasmi A, Indika NLR, Hrynovets I, Lysiuk R, Lenchyk L, Uryr T, Yeromina H, Peana M. Coenzyme Q 10 for Enhancing Physical Activity and Extending the Human Life Cycle. Curr Med Chem 2024; 31:1804-1817. [PMID: 36852817 DOI: 10.2174/0929867330666230228103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Coenzyme Q (CoQ) is an enzyme family that plays a crucial role in maintaining the electron transport chain and antioxidant defense. CoQ10 is the most common form of CoQ in humans. A deficiency of CoQ10 occurs naturally with aging and may contribute to the development or progression of many diseases. Besides, certain drugs, in particular, statins and bisphosphonates, interfere with the enzymes responsible for CoQ10 biosynthesis and, thus, lead to CoQ10 deficiency. OBJECTIVES This article aims to evaluate the cumulative studies and insights on the topic of CoQ10 functions in human health, focusing on a potential role in maintaining physical activity and extending the life cycle. RESULTS Although supplementation with CoQ10 offers many benefits to patients with cardiovascular disease, it appears to add little value to patients suffering from statin-associated muscular symptoms. This may be attributed to substantial heterogeneity in doses and treatment regimens used. CONCLUSION Therefore, there is a need for further studies involving a greater number of patients to clarify the benefits of adjuvant therapy with CoQ10 in a range of health conditions and diseases.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Yuliya Semenova
- Department of Surgery, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Ihor Hrynovets
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Larysa Lenchyk
- Department of Pharmaceutical Technologies and Quality of Medicines, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Uryr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Hanna Yeromina
- Department of Pharmaceutical Technologies and Quality of Medicines, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
8
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
9
|
Cogorno L, Formisano E, Vignati A, Prigione A, Tramacere A, Borgarelli C, Sukkar SG, Pisciotta L. Non-alcoholic fatty liver disease: Dietary and nutraceutical approaches. LIVER RESEARCH 2023; 7:216-227. [PMID: 39958388 PMCID: PMC11791914 DOI: 10.1016/j.livres.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 02/18/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD), defined as the presence of fat accumulation in imaging or histology in more than 5% of hepatocytes and exclusion of other causes for secondary hepatic fat accumulation, is one of the major causes of chronic liver disease worldwide. Metabolic syndrome is associated with an increased risk of progression from NAFLD to non-alcoholic steatohepatitis (NASH), fibrosis, and forthcoming liver failure. Also, genetic predisposition contributes to the risk of NAFLD development. This review explores the role of diets and nutraceuticals in delaying the development and the evolution of NAFLD to chronic liver disease. The Mediterranean diet, high-protein diet, low-carbohydrate/high-fat diet, high-carbohydrate/low-fat diet, and intermittent fasting are the dietary approaches investigated given the presence of relevant literature data. Moreover, this review focused on nutraceuticals with proven efficacy in ameliorating NAFLD and grouped them into four different categories: plant-based nutraceuticals (Ascophyllum nodosum and Fucus vesiculosus, Silymarin, Berberine, Curcumin, Resveratrol, Nigella sativa, Quercetin), vitamin-like substances (vitamin E, vitamin D, vitamin C, coenzyme Q10, inositol), fatty acids (omega-3), and microbiota-management tools (probiotics).
Collapse
Affiliation(s)
- Ludovica Cogorno
- Department of Experimental Medicine-Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Elena Formisano
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Andrea Vignati
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Amalia Prigione
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | | | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| |
Collapse
|
10
|
Guile MD, Jain A, Anderson KA, Clarke CF. New Insights on the Uptake and Trafficking of Coenzyme Q. Antioxidants (Basel) 2023; 12:1391. [PMID: 37507930 PMCID: PMC10376127 DOI: 10.3390/antiox12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.
Collapse
Affiliation(s)
- Michael D Guile
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Akash Jain
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Kyle A Anderson
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| |
Collapse
|
11
|
Cao S, Yan H, Tang W, Zhang H, Liu J. Effects of dietary coenzyme Q10 supplementation during gestation on the embryonic survival and reproductive performance of high-parity sows. J Anim Sci Biotechnol 2023; 14:75. [PMID: 37264441 DOI: 10.1186/s40104-023-00879-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Fertility declines in high-parity sows. This study investigated whether parity-dependent declines in embryonic survival and reproductive performance could be restored by dietary coenzyme Q10 (CoQ10) supplementation. METHODS Two experiments were performed. In Exp. 1, 30 young sows that had completed their 2nd parity and 30 high-parity sows that had completed their 10th parity, were fed either a control diet (CON) or a CON diet supplemented with 1 g/kg CoQ10 (+ CoQ10) from mating until slaughter at day 28 of gestation. In Exp. 2, a total of 314 post-weaning sows with two to nine parities were fed the CON or + CoQ10 diets from mating throughout gestation. RESULTS In Exp. 1, both young and high-parity sows had a similar number of corpora lutea, but high-parity sows had lower plasma CoQ10 concentrations, down-regulated genes involved with de novo CoQ10 synthesis in the endometrium tissues, and greater levels of oxidative stress markers in plasma and endometrium tissues. High-parity sows had fewer total embryos and alive embryos, lower embryonic survival, and greater embryo mortality than young sows. Dietary CoQ10 supplementation increased the number of live embryos and the embryonic survival rate to levels similar to those of young sows, as well as lowering the levels of oxidative stress markers. In Exp. 2, sows showed a parity-dependent decline in plasma CoQ10 levels, and sows with more than four parities showed a progressive decline in the number of total births, live births, and piglets born effective. Dietary supplementation with CoQ10 increased the number of total births, live births, and born effective, and decreased the intra-litter covariation coefficients and the percentage of sows requiring farrowing assistance during parturition. CONCLUSIONS Dietary CoQ10 supplementation can improve the embryonic survival and reproductive performance of gestating sows with high parity, probably by improving the development of uterine function.
Collapse
Affiliation(s)
- Shanchuan Cao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Department of Animal Resource and Science, Dankook University, Cheonan, 31116, Korea
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenjie Tang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu, 610066, China
| | - Hongfu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
12
|
Opstad TB, Alexander J, Aaseth J, Larsson A, Seljeflot I, Alehagen U. Increased SIRT1 Concentration Following Four Years of Selenium and Q 10 Intervention Associated with Reduced Cardiovascular Mortality at 10-Year Follow-Up-Sub-Study of a Previous Prospective Double-Blind Placebo-Controlled Randomized Clinical Trial. Antioxidants (Basel) 2023; 12:antiox12030759. [PMID: 36979007 PMCID: PMC10045001 DOI: 10.3390/antiox12030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Selenium and coenzyme Q10 (SeQ10) possess antioxidant and anti-inflammatory properties, potentially mediated via Sirtuin1 (SIRT1). We aimed to investigate the influence of a SeQ10 intervention on SIRT1 concentration, with potential interactions with microRNAs. Methods: In this sub-study of a prospective double-blind placebo-controlled clinical trial, healthy subjects (mean age 76 years) were randomized to receive an active treatment (n = 165, combined 200 µg/day of Se and 200 mg/day of Q10) or a placebo (n = 161). SIRT1 concentration and microRNAs were measured with ELISA and PCR, respectively. Results: After four years, SIRT1 concentration was increased in the active treatment group, with mean (SD) ng/mL of 469 (436) vs. 252 (162), p < 0.001, and decreased in the placebo group, 190 (186) vs. 269 (172), p = 0.002, and the differences between the groups were significant (p = 0.006, adjusted). Those who suffered CV death during a 10-year follow-up (n = 25 and n = 52 in the active treatment and placebo groups, respectively) had significantly lower baseline SIRT1 concentrations compared to the survivors (p < 0.001). MiR-130a-3p was significantly downregulated during the intervention and correlated inversely with SIRT1 at baseline (r = -0.466, p = 0.007). Conclusion: The increased SIRT1 concentration after the SeQ10 intervention associated with reduced CV mortality, partly mediated via miR-1303a-3p, suggests that SIRT1 is an additional mediator of the intervention, preventing vascular ageing.
Collapse
Affiliation(s)
- Trine Baur Opstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway
- Faculty of Medicine, University of Oslo, N-0370 Oslo, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Jan Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2624 Lillehammer, Norway
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway
- Faculty of Medicine, University of Oslo, N-0370 Oslo, Norway
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
13
|
Jiang X, Wu K, Ye XY, Xie T, Zhang P, Blass BE, Bai R. Novel druggable mechanism of Parkinson's disease: Potential therapeutics and underlying pathogenesis based on ferroptosis. Med Res Rev 2023. [PMID: 36924451 DOI: 10.1002/med.21939] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/07/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Genetics, age, environmental factors, and oxidative stress have all been implicated in the development of Parkinson's disease (PD); however, a complete understanding of its pathology remains elusive. At present, there is no cure for PD, and currently available therapeutics are insufficient to meet patient needs. Ferroptosis, a distinctive iron-dependent cell death mode characterized by lipid peroxidation and oxidative stress, has pathophysiological features similar to those of PD, including iron accumulation, reactive oxygen species-induced oxidative damage, and mitochondrial dysfunction. Ferroptosis has been identified as a specific pathway of neuronal death and is closely related to the pathogenesis of PD. Despite the similarities in the biological targets involved in PD pathogenesis and ferroptosis, the relationship between novel targets in PD and ferroptosis has been neglected in the literature. In this review, the mechanism of ferroptosis is discussed, and the potential therapeutic targets implicated in both PD and ferroptosis are compared. Furthermore, the anti-PD effects of several ferroptosis inhibitors, as well as clinical studies thereof, and the identification of novel lead compounds for the treatment of PD and the inhibition of ferroptosis are reviewed. It is hoped that this review can promote research to further elucidate the relationship between ferroptosis and PD and provide new strategies for the development of novel ferroptosis-targeting PD therapy.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China.,Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Kaiyu Wu
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Xiang-Yang Ye
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Tian Xie
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Pengfei Zhang
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| |
Collapse
|
14
|
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023; 15:nu15020445. [PMID: 36678315 PMCID: PMC9861325 DOI: 10.3390/nu15020445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Collapse
Affiliation(s)
- Arastu Sharma
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- AVEA Life AG, Bahnhofplatz, 6300 Zug, Switzerland
| | | | - Rebecca A. Lapides
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Robert Larner, MD College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Elisabeth Roider
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Maximon AG, Bahnhofplatz, 6300 Zug, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- Correspondence:
| |
Collapse
|
15
|
Tsui KH, Li CJ. Mitoquinone shifts energy metabolism to reduce ROS-induced oxeiptosis in female granulosa cells and mouse oocytes. Aging (Albany NY) 2023; 15:246-260. [PMID: 36626243 PMCID: PMC9876626 DOI: 10.18632/aging.204475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
The female reproductive system is quite sensitive to regulation, and external environmental stimuli may cause oxidative stress which in turn may lead to accelerated aging and programmed cell death in female reproductive cells. The aim of this study was to investigate whether or not mitoquinone (MitoQ) could resist ROS-induced apoptosis in human granulosa cells and mouse oocytes. We found that the MitoQ treatment significantly reduced production of reactive oxygen species (ROS) and imbalance in mitochondrial membrane potential. The MitoQ treatment prevented an excessive mitochondrial fragmentation by upregulating Drp1 S637 and decreasing Drp1 S637 phosphorylation. More importantly, MitoQ maintained aerobic respiration and reduced anaerobic respiration by regulating reprogramming of intracellular energy metabolism, which enhanced cellular ATP production. MitoQ effectively reduced the expressions of AIFM1 and PGAM5, key molecules whose expressions were reversed not only in granulosa cells but also in mouse oocytes. Our findings suggest that MitoQ can ameliorate the mitochondrial deterioration caused by ROS and reprogram cellular energy metabolism, providing protection to cells against apoptosis. The presence of MitoQ may help in protecting human germ cells under in vitro culture conditions.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- College of Health and Nursing, Meiho University, Pingtung County 912, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
16
|
Modulatory effect of exogenous Coenzyme Q 10 on redox and inflammatory biomarkers during aging in rats. Biol Futur 2022; 73:473-481. [PMID: 36443592 DOI: 10.1007/s42977-022-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
An impaired redox homeostasis is an important hallmark of biological aging. Coenzyme Q10 is an endogenous lipophilic antioxidant that decreases with age and has been linked to oxidative stress. The purpose of this study was to evaluate the effect of CoQ10 supplementation on redox homeostasis and levels of inflammatory cytokines in young and old rats. Male Wistar rats (young and old) were randomly divided into four groups (n = 6). Group I: young control, Group II: young rats treated with CoQ10, Group III: old control, Group IV: old rats treated with CoQ10. CoQ10 (20 mg/kg) was administered daily to Group II and IV via oral gavage. After 28 days of treatment, rats were sacrificed and biomarkers of oxidative stress and inflammatory cytokines were evaluated. Results demonstrated a significant (p ≤ 0.05) increase in malondialdehyde, protein carbonyl oxidation, advanced oxidation protein products, inflammatory cytokines: CRP, IL-6, TNF-α, and a decline in levels of superoxide dismutase, catalase, reduced glutathione, ferric reducing antioxidant potential in plasma and plasma membrane redox system in old rats when compared to young rats. After treatment with CoQ10 significant decrease in the level of MDA, PCO, AOPP, CRP, IL-6, and TNF-α was observed. Also, significant up-regulation of SOD, CAT, GSH, FRAP, and PMRS was observed. The results show that supplementing rats with CoQ10 aids in the maintenance of redox equilibrium with replenishment of antioxidant reserves and down-regulation of inflammatory biomarkers. Thus CoQ10 supplementation could be a potential anti-aging therapy.
Collapse
|
17
|
Zhao S, Wu W, Liao J, Zhang X, Shen M, Li X, Lin Q, Cao C. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett 2022; 27:57. [PMID: 35869439 PMCID: PMC9308331 DOI: 10.1186/s11658-022-00361-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractCoenzyme Q10 (CoQ10), an endogenous antioxidant, has been reported frequently to exert an outstanding protective effect on multiple organ injury, including acute kidney injury (AKI). In this study, we aim to summarize all the current evidence of the protective action of CoQ10 against AKI as there are presently no relevant reviews in the literature. After a systematic search, 20 eligible studies, either clinical trials or experimental studies, were included and further reviewed. CoQ10 treatment exhibited a potent renal protective effect on various types of AKI, such as AKI induced by drugs (e.g., ochratoxin A, cisplatin, gentamicin, L-NAME, and nonsteroidal anti-inflammatory drug), extracorporeal shock wave lithotripsy (ESWL), sepsis, contrast media, and ischemia–reperfusion injury. The renal protective role of CoQ10 against AKI might be mediated by the antiperoxidative, anti-apoptotic, and anti-inflammatory potential of CoQ10. The molecular mechanisms for the protective effects of CoQ10 might be attributed to the regulation of multiple essential genes (e.g., caspase-3, p53, and PON1) and signaling cascades (e.g., Nrf2/HO-1 pathway). This review highlights that CoQ10 may be a potential strategy in the treatment of AKI.
Collapse
|
18
|
Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration. Bioact Mater 2022; 23:247-260. [PMID: 36439087 PMCID: PMC9676151 DOI: 10.1016/j.bioactmat.2022.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration (IVDD). However, the elevation of oxidative stress in the degenerated region impairs the efficiency of mesenchymal stem cells (BMSCs) transplantation treatment via exaggeration of mitochondrial ROS and promotion of BMSCs apoptosis. Herein, we applied an emulsion-confined assembly method to encapsulate Coenzyme Q10 (Co-Q10), a promising hydrophobic antioxidant which targets mitochondria ROS, into the lecithin micelles, which renders the insoluble Co-Q10 dispersible in water as stable colloids. These micelles are injectable, which displayed efficient ability to facilitate Co-Q10 to get into BMSCs in vitro, and exhibited prolonged release of Co-Q10 in intervertebral disc tissue of animal models. Compared to mere use of Co-Q10, the Co-Q10 loaded micelle possessed better bioactivities, which elevated the viability, restored mitochondrial structure as well as function, and enhanced production of ECM components in rat BMSCs. Moreover, it is demonstrated that the injection of this micelle with BMSCs retained disc height and alleviated IVDD in a rat needle puncture model. Therefore, these Co-Q10 loaded micelles play a protective role in cell survival and differentiation through antagonizing mitochondrial ROS, and might be a potential therapeutic agent for IVDD.
Collapse
|
19
|
Mourad MM, Shahin SA, El-Ratel IT, El Basuini MF. Effect of Treating Eggs with Coenzyme Q10 (CoQ10) on Growth Variables, Histomorphometry, and Antioxidant Capacity in Red Tilapia ( Oreochromis aureus × Oreochromis mossambicus) Larvae. Animals (Basel) 2022; 12:ani12172219. [PMID: 36077939 PMCID: PMC9454522 DOI: 10.3390/ani12172219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 02/02/2023] Open
Abstract
Red tilapia eggs one day post fertilization (dpf) were exposed to coenzyme Q10 (CoQ10) at rates of 0, 5, and 10 mg/L for control, treatment 2 (C5), and treatment 3 (C10), respectively, without exchanging water and until the larval mouth-opening stage. Fertilized eggs of red tilapia exposed to different concentrations of CoQ10 were hatched at rates (p > 0.05) between 38 to 54.67%. The yolk-sac diameter at the 2nd day post hatching (dph), ranged from 1.85 to 1.87 mm in depth and 1.63 to 1.88 mm in width and was not altered by the CoQ10 treatments. Similarly, red tilapia survival (p > 0.05) ranged from 22.67 to 32%. On 6 dph, a slight percentage (2.08%) of survived fishes exposed to high CoQ10 dose (C10) exhibited larval deformation in the form of an axial curvature of the spine in the abdominal and caudal region. Larvae displayed a normal structure of the esophagus folds in all fish groups, and larvae in the C5 group displayed the longest folds and widest muscularis layer, followed by fishes in the C10 group and the control. Red tilapia fry on 30 dph treated with CoQ10 possessed higher antioxidant potentials in terms of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) compared to the control. In conclusion, treating Red tilapia fertile eggs with 5 mg/L CoQ10 improves the growth, gut structure, and antioxidant efficiency of the produced larvae.
Collapse
Affiliation(s)
- Mona M. Mourad
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Shimaa A. Shahin
- Animal and Fish Production Department, Faculty of Agriculture-Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | - Ibrahim T. El-Ratel
- Department of Poultry Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Mohammed F. El Basuini
- Faculty of Desert Agriculture, King Salman International University, El Tor 46612, Egypt
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Correspondence: or
| |
Collapse
|
20
|
Dai S, Tian Z, Zhao D, Liang Y, Liu M, Liu Z, Hou S, Yang Y. Effects of Coenzyme Q10 Supplementation on Biomarkers of Oxidative Stress in Adults: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel) 2022; 11:antiox11071360. [PMID: 35883851 PMCID: PMC9311997 DOI: 10.3390/antiox11071360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Evidence shows that exogenous CoQ10 supplementation may potentially attenuate oxidative stress status. However, its effective dose and evidence certainty require further evaluation in the general population via more updated randomized controlled trials (RCTs). Databases (PubMed, Embase and Cochrane Library) were searched up to 30 March 2022. Evidence certainty was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Thirty-four RCTs containing 2012 participants were included in this review. Pooled effects of significant increase in total antioxidant capacity (TAC) (standardized mean difference: 1.83, 95%CI: [1.07, 2.59], p < 0.001) and significant reduction in malondialdehyde (MDA) concentrations (−0.77, [−1.06, −0.47], p < 0.001) were shown after CoQ10 supplementation compared to placebo. However, we could not determine that there was a significant increase in circulating superoxide dismutase (SOD) levels yet (0.47, [0.00, 0.94], p = 0.05). Subgroup analyses implied that CoQ10 supplementation was more beneficial to people with coronary artery disease or type 2 diabetes. Additionally, taking 100−150 mg/day CoQ10 supplement had better benefits for the levels of TAC, MDA and SOD (all p < 0.01). These results to a statistically significant extent lent support to the efficacy and optimal dose of CoQ10 supplementation on attenuating oxidative stress status in adults.
Collapse
Affiliation(s)
- Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee on Other Food Substances, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
21
|
Ovchinnikov AN, Paoli A, Seleznev VV, Deryugina AV. Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers: a randomized, double-blind, placebo-controlled pilot trial. J Int Soc Sports Nutr 2022; 19:239-257. [PMID: 35813842 PMCID: PMC9261740 DOI: 10.1080/15502783.2022.2086015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Excessive production of free radicals caused by many types of exercise results in oxidative stress, which leads to muscle damage, fatigue, and impaired performance. Supplementation with royal jelly (RJ) or coenzyme Q10 (CoQ10) has been shown to attenuate exercise-induced oxidant stress in damaged muscle and improve various aspects of exercise performance in many but not all studies. Nevertheless, the effects of treatments based on RJ plus CoQ10 supplementation, which may be potentially beneficial for reducing oxidative stress and enhancing athletic performance, remain unexplored. This study aimed to examine whether oral RJ and CoQ10 co-supplementation could improve high-intensity interval exercise (HIIE) performance in swimmers, inhibiting exercise-induced oxidative stress and muscle damage. Methods Twenty high-level swimmers were randomly allocated to receive either 400 mg of RJ and 60 mg of CoQ10 (RJQ) or matching placebo (PLA) once daily for 10 days. Exercise performance was evaluated at baseline, and then reassessed at day 10 of intervention, using a HIIE protocol. Diene conjugates (DC), Schiff bases (SB), and creatine kinase (CK) were also measured in blood plasma and saliva before and immediately after HIIE in both groups. Results HIIE performance expressed as number of points according to a single assessment system developed and approved by the International Swimming Federation (FINA points) significantly improved in RJQ group (p = 0.013) compared to PLA group. Exercise-induced increase in DC, SB, and CK levels in plasma and saliva significantly diminished only in RJQ group (p < 0.05). Regression analysis showed that oral RJQ administration for 10 days was significantly associated with reductions in HIIE-induced increases in plasmatic and salivary DC, SB, and CK levels compared to PLA. Principal component analysis revealed that swimmers treated with RJQ are grouped by both plasmatic and salivary principal components (PC) into a separate cluster compared to PLA. Strong negative correlation between the number of FINA points and plasmatic and salivary PC1 values was observed in both intervention groups. Conclusion The improvements in swimmers’ HIIE performance were due in significant part to RJQ-induced reducing in lipid peroxidation and muscle damage in response to exercise. These findings suggest that RJQ supplementation for 10 days is potentially effective for enhancing HIIE performance and alleviating oxidant stress. Abbreviations RJ, royal jelly; CoQ10, coenzyme Q10; HIIE, high-intensity interval exercise; DC, diene conjugates; SB, Schiff bases; CK, creatine kinase; RJQ, royal jelly plus coenzyme Q10; PLA, placebo; FINA points, points according to a single assessment system developed and approved by the International Swimming Federation; ROS, reactive oxygen species; 10H2DA, 10-hydroxy-2-decenoic acid; AMPK, 5′-AMP-activated protein kinase; FoxO3, forkhead box O3; MnSOD, manganese-superoxide dismutase; CAT, catalase; E, optical densities; PCA, principal component analysis; PC, principal component; MCFAs, medium-chain fatty acids; CaMKKβ, Ca2+/calmodulin-dependent protein kinase β; TBARS, thiobarbituric acid reactive substances; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Aleksandr N. Ovchinnikov
- Department of Sports Medicine and Psychology, Lobachevsky University, Nizhny Novgorod, Russia
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
| | - Antonio Paoli
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vladislav V. Seleznev
- Department of Theory and Methodology of Sport Training, Lobachevsky University, Nizhny Novgorod, Russia
| | - Anna V. Deryugina
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Physiology and Anatomy, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
22
|
Kozłowska L, Santonen T, Duca RC, Godderis L, Jagiello K, Janasik B, Van Nieuwenhuyse A, Poels K, Puzyn T, Scheepers PTJ, Sijko M, Silva MJ, Sosnowska A, Viegas S, Verdonck J, Wąsowicz W. HBM4EU Chromates Study: Urinary Metabolomics Study of Workers Exposed to Hexavalent Chromium. Metabolites 2022; 12:362. [PMID: 35448548 PMCID: PMC9032989 DOI: 10.3390/metabo12040362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Exposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).
Collapse
Affiliation(s)
- Lucyna Kozłowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland;
| | - Radu Corneliu Duca
- Labotoire National de Santé (LNS), Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, 3555 Dudelange, Luxembourg;
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Karolina Jagiello
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
- Laboratory of Environmental Chemoinfomatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80308 Gdansk, Poland
| | - Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland; (B.J.); (W.W.)
| | - An Van Nieuwenhuyse
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
- Laboratoire National de Santé (LNS), Department of Health Protection, 3555 Dudelange, Luxembourg
| | - Katrien Poels
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Tomasz Puzyn
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
- Laboratory of Environmental Chemoinfomatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80308 Gdansk, Poland
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Monika Sijko
- Laboratory of Human Metabolism Research, Department of Dietetics, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Dr. Ricardo Jorge (INSA), Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Anita Sosnowska
- QSAR Laboratory Ltd., 80172 Gdansk, Poland; (K.J.); (T.P.); (A.S.)
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisbon, 1600-560 Lisbon, Portugal;
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Jelle Verdonck
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), 3000 Leuven, Belgium; (L.G.); (A.V.N.); (K.P.); (J.V.)
| | - Wojciech Wąsowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland; (B.J.); (W.W.)
| | | | | |
Collapse
|
23
|
Alehagen U, Aaseth J, Larsson A, Alexander J. Decreased Concentration of Fibroblast Growth Factor 23 (FGF-23) as a Result of Supplementation with Selenium and Coenzyme Q 10 in an Elderly Swedish Population: A Sub-Analysis. Cells 2022; 11:cells11030509. [PMID: 35159318 PMCID: PMC8834214 DOI: 10.3390/cells11030509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022] Open
Abstract
There is a reduced intake of selenium in many countries due to low levels of selenium in the soil. This results in an increased cardiovascular risk. Fibroblast growth factor 23 (FGF-23) is active mainly in the metabolism of vitamin D and phosphorus. However, there are indications that FGF-23 may also provide information both on cardiovascular function and prognosis. The aim of the study was to evaluate the effect of supplementation with selenium and coenzyme Q10 on the FGF-23 concentration in an elderly population with low concentrations of both selenium and coenzyme Q10 and in which the supplementation improved cardiac function and mortality. In a randomised double-blind placebo-controlled trial, FGF-23 was measured in 219 individuals at the start and after 48 months. Selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) (n = 118) or placebo (n = 101) were given as a dietary supplement. The intervention time was 48 months. t-Tests, repeated measures of variance, and ANCOVA analyses were used to evaluate the differences in FGF-23 concentration. Following supplementation with selenium and coenzyme Q10, a significantly lower level of FGF-23 could be seen (p = 0.01). Applying 10 years of follow-up, those who later died a cardiovascular death had a significantly higher FGF-23 concentration after 48 months compared with those who survived (p = 0.036), and a significantly lower FGF-23 concentration could be seen in those with a normal renal function compared to those with an impaired renal function (p = 0.027). Supplementation with selenium and coenzyme Q10 to an elderly community-living population low in both substances prevented an increase of FGF-23 and also provided a reduced cardiovascular risk.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 81 85 Linköping, Sweden
- Correspondence: ; Tel.: +46-10-103-0000
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, 2381 Brumunddal, Norway;
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden;
| | - Jan Alexander
- Norwegian Institute of Public Health, 0403 Oslo, Norway;
| |
Collapse
|
24
|
Potential Protective Effect of Coenzyme Q10 on Doxorubicin-Induced Neurotoxicity and Behavioral Disturbances in Rats. Neurochem Res 2022; 47:1280-1289. [PMID: 34978671 DOI: 10.1007/s11064-021-03522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the potential neuroprotective efficacy of coenzyme Q10 (CoQ10) against doxorubicin (DOX) -induced behavioral disturbances in rats. Female rats were randomly assigned into 4 groups as control, CoQ10, DOX, and DOX plus CoQ10. The CoQ10 groups received CoQ10 (200 mg kg-1) for 21 days, and the DOX groups received DOX (4 mg kg-1) on days 7 and 14 of the study. The open field (OF) and elevated plus maze (EPM) tests were performed to assess locomotor activity and anxiety levels. Additionally, malondialdehyde (MDA), and protein carbonyl (PC) levels and acetylcholinesterase (AChE), and glutathione peroxidase (GPx) activities and total antioxidant capacity (TAC) were quantified in brain tissue. DOX administration caused alterations in locomotor activity, and anxiety-like behaviors. Moreover, DOX produced significant elevation in AChE activity . PC level and GPx activity tended to alter with DOX administration. Co-treatment with CoQ10 significantly attenuated DOX-induced behavioral alterations via improving AChE activity in the brain tissue of rats. CoQ10 treatment may be potential for the alleviation of DOX-induced behavioral disturbances. This improvement might be due to the inhibition of AChE activity.
Collapse
|
25
|
Moschetti A, Dagda RK, Ryan RO. Coenzyme Q nanodisks counteract the effect of statins on C2C12 myotubes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102439. [PMID: 34256063 DOI: 10.1016/j.nano.2021.102439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Depletion of coenzyme Q (CoQ) is associated with disease, ranging from myopathy to heart failure. To induce a CoQ deficit, C2C12 myotubes were incubated with high dose simvastatin. This resulted in a concentration-dependent inhibition of cell viability. Simvastatin-induced effects were prevented by co-incubation with mevalonic acid. When myotubes were incubated with 60 μM simvastatin, mitochondrial CoQ content decreased while co-incubation with CoQ nanodisks (ND) increased mitochondrial CoQ levels and improved cell viability. Incubation of myotubes with simvastatin also led to a reduction in oxygen consumption rate (OCR). When myotubes were co-incubated with simvastatin and CoQ ND, the decline in OCR was ameliorated. The data indicate that CoQ ND represent a water soluble vehicle capable of delivering CoQ to cultured myotubes. Thus, these biocompatible nanoparticles have the potential to bypass poor CoQ oral bioavailability as a treatment option for individuals with severe CoQ deficiency syndromes and/or aging-related CoQ depletion.
Collapse
Affiliation(s)
- Anthony Moschetti
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno, NV
| | - Robert O Ryan
- Department of Pharmacology, University of Nevada, Reno, NV.
| |
Collapse
|
26
|
Fernández-Del-Río L, Rodríguez-López S, Gutiérrez-Casado E, González-Reyes JA, Clarke CF, Burón MI, Villalba JM. Regulation of hepatic coenzyme Q biosynthesis by dietary omega-3 polyunsaturated fatty acids. Redox Biol 2021; 46:102061. [PMID: 34246922 PMCID: PMC8274332 DOI: 10.1016/j.redox.2021.102061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Dietary fats are important for human health, yet it is not fully understood how different fats affect various health problems. Although polyunsaturated fatty acids (PUFAs) are generally considered as highly oxidizable, those of the n-3 series can ameliorate the risk of many age-related disorders. Coenzyme Q (CoQ) is both an essential component of the mitochondrial electron transport chain and the only lipid-soluble antioxidant that animal cells can synthesize. Previous work has documented the protective antioxidant properties of CoQ against the autoxidation products of PUFAs. Here, we have explored in vitro and in vivo models to better understand the regulation of CoQ biosynthesis by dietary fats. In mouse liver, PUFAs increased CoQ content, and PUFAs of the n-3 series increased preferentially CoQ10. This response was recapitulated in hepatic cells cultured in the presence of lipid emulsions, where we additionally demonstrated a role for n-3 PUFAs as regulators of CoQ biosynthesis via the upregulation of several COQ proteins and farnesyl pyrophosphate levels. In both models, n-3 PUFAs altered the mitochondrial network without changing the overall mitochondrial mass. Furthermore, in cellular systems, n-3 PUFAs favored the synthesis of CoQ10 over CoQ9, thus altering the ratio between CoQ isoforms through a mechanism that involved downregulation of farnesyl diphosphate synthase activity. This effect was recapitulated by both siRNA silencing and by pharmacological inhibition of farnesyl diphosphate synthase with zoledronic acid. We highlight here the ability of n-3 PUFAs to regulate CoQ biosynthesis, CoQ content, and the ratio between its isoforms, which might be relevant to better understand the health benefits associated with this type of fat. Additionally, we identify for the first time zoledronic acid as a drug that inhibits CoQ biosynthesis, which must be also considered with respect to its biological effects on patients.
Collapse
Affiliation(s)
- Lucía Fernández-Del-Río
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain; Department of Chemistry & Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Elena Gutiérrez-Casado
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - María Isabel Burón
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain.
| |
Collapse
|
27
|
Fernández-del-Río L, Clarke CF. Coenzyme Q Biosynthesis: An Update on the Origins of the Benzenoid Ring and Discovery of New Ring Precursors. Metabolites 2021; 11:385. [PMID: 34198496 PMCID: PMC8231959 DOI: 10.3390/metabo11060385] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coenzyme Q (ubiquinone or CoQ) is a conserved polyprenylated lipid essential for mitochondrial respiration. CoQ is composed of a redox-active benzoquinone ring and a long polyisoprenyl tail that serves as a membrane anchor. A classic pathway leading to CoQ biosynthesis employs 4-hydroxybenzoic acid (4HB). Recent studies with stable isotopes in E. coli, yeast, and plant and animal cells have identified CoQ intermediates and new metabolic pathways that produce 4HB. Stable isotope labeling has identified para-aminobenzoic acid as an alternate ring precursor of yeast CoQ biosynthesis, as well as other natural products, such as kaempferol, that provide ring precursors for CoQ biosynthesis in plants and mammals. In this review, we highlight how stable isotopes can be used to delineate the biosynthetic pathways leading to CoQ.
Collapse
Affiliation(s)
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA;
| |
Collapse
|
28
|
Aaseth J, Alexander J, Alehagen U. Coenzyme Q 10 supplementation - In ageing and disease. Mech Ageing Dev 2021; 197:111521. [PMID: 34129891 DOI: 10.1016/j.mad.2021.111521] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q10 (CoQ10) is an essential component of the mitochondrial electron transport chain. It is also an antioxidant in cellular membranes and lipoproteins. All cells produce CoQ10 by a specialized cytoplasmatic-mitochondrial pathway. CoQ10 deficiency can result from genetic failure or ageing. Some drugs including statins, widely used by inter alia elderly, may inhibit endogenous CoQ10 synthesis. There are also chronic diseases with lower levels of CoQ10 in tissues and organs. High doses of CoQ10 may increase both circulating and intracellular levels, but there are conflicting results regarding bioavailability. Here, we review the current knowledge of CoQ10 biosynthesis and primary and acquired CoQ10 deficiency, and results from clinical trials based on CoQ10 supplementation. There are indications that supplementation positively affects mitochondrial deficiency syndrome and some of the symptoms of ageing. Cardiovascular disease and inflammation appear to be alleviated by the antioxidant effect of CoQ10. There is a need for further studies and well-designed clinical trials, with CoQ10 in a formulation of proven bioavailability, involving a greater number of participants undergoing longer treatments in order to assess the benefits of CoQ10 treatment in neurodegenerative disorders, as well as in metabolic syndrome and its complications.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, PO Box 104, N-2381, Brumunddal, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Se-581 85, Linköping, Sweden
| |
Collapse
|
29
|
Rizzardi N, Liparulo I, Antonelli G, Orsini F, Riva A, Bergamini C, Fato R. Coenzyme Q10 Phytosome Formulation Improves CoQ10 Bioavailability and Mitochondrial Functionality in Cultured Cells. Antioxidants (Basel) 2021; 10:antiox10060927. [PMID: 34200321 PMCID: PMC8226950 DOI: 10.3390/antiox10060927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a lipid-soluble molecule with a dual role: it transfers electrons in the mitochondrial transport chain by promoting the transmembrane potential exploited by the ATPase to synthesize ATP and, in its reduced form, is a membrane antioxidant. Since the high CoQ10 hydrophobicity hinders its bioavailability, several formulations have been developed to facilitate its cellular uptake. In this work, we studied the bioenergetic and antioxidant effects in I407 and H9c2 cells of a CoQ10 phytosome formulation (UBIQSOME®, UBQ). We investigated the cellular and mitochondrial content of CoQ10 and its redox state after incubation with UBQ. We studied different bioenergetic parameters, such as oxygen consumption, ATP content and mitochondrial potential. Moreover, we evaluated the effects of CoQ10 incubation on oxidative stress, membrane lipid peroxidation and ferroptosis and highlighted the connection between the intracellular concentration of CoQ10 and its antioxidant potency. Finally, we focused on the cellular mechanism that regulates UBQ internalization. We showed that the cell lines used in this work share the same uptake mechanism for UBQ, although the intestinal cell line was less efficient. Given the limitations of an in vitro model, the latter result supports that intestinal absorption is a critical step for the oral administration of Coenzyme Q10 formulations.
Collapse
Affiliation(s)
- Nicola Rizzardi
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, 6, 40126 Bologna, Italy; (N.R.); (I.L.); (G.A.); (R.F.)
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, 6, 40126 Bologna, Italy; (N.R.); (I.L.); (G.A.); (R.F.)
| | - Giorgia Antonelli
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, 6, 40126 Bologna, Italy; (N.R.); (I.L.); (G.A.); (R.F.)
| | | | - Antonella Riva
- Indena SpA, Viale Ortles, 20139 Milan, Italy; (F.O.); (A.R.)
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, 6, 40126 Bologna, Italy; (N.R.); (I.L.); (G.A.); (R.F.)
- Correspondence: ; Tel.: +39-051-209-1240
| | - Romana Fato
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, 6, 40126 Bologna, Italy; (N.R.); (I.L.); (G.A.); (R.F.)
| |
Collapse
|
30
|
Gutierrez-Mariscal FM, de la Cruz-Ares S, Torres-Peña JD, Alcalá-Diaz JF, Yubero-Serrano EM, López-Miranda J. Coenzyme Q 10 and Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10060906. [PMID: 34205085 PMCID: PMC8229886 DOI: 10.3390/antiox10060906] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/09/2023] Open
Abstract
Coenzyme Q10 (CoQ10), which plays a key role in the electron transport chain by providing an adequate, efficient supply of energy, has another relevant function as an antioxidant, acting in mitochondria, other cell compartments, and plasma lipoproteins. CoQ10 deficiency is present in chronic and age-related diseases. In particular, in cardiovascular diseases (CVDs), there is a reduced bioavailability of CoQ10 since statins, one of the most common lipid-lowering drugs, inhibit the common pathway shared by CoQ10 endogenous biosynthesis and cholesterol biosynthesis. Different clinical trials have analyzed the effect of CoQ10 supplementation as a treatment to ameliorate these deficiencies in the context of CVDs. In this review, we focus on recent advances in CoQ10 supplementation and the clinical implications in the reduction of cardiovascular risk factors (such as lipid and lipoprotein levels, blood pressure, or endothelial function) as well as in a therapeutic approach for the reduction of the clinical complications of CVD.
Collapse
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Silvia de la Cruz-Ares
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Juan F. Alcalá-Diaz
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-957-012-830
| |
Collapse
|
31
|
Testai L, Martelli A, Flori L, Cicero AFG, Colletti A. Coenzyme Q 10: Clinical Applications beyond Cardiovascular Diseases. Nutrients 2021; 13:1697. [PMID: 34067632 PMCID: PMC8156424 DOI: 10.3390/nu13051697] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in oxidative phosphorylation (OXPHOS), present in mitochondria and cell membranes in reduced and oxidized forms. Acting as an energy transfer molecule, it occurs in particularly high levels in the liver, heart, and kidneys. CoQ10 is also an anti-inflammatory and antioxidant agent able to prevent the damage induced by free radicals and the activation of inflammatory signaling pathways. In this context, several studies have shown the possible inverse correlation between the blood levels of CoQ10 and some disease conditions. Interestingly, beyond cardiovascular diseases, CoQ10 is involved also in neuronal and muscular degenerative diseases, in migraine and in cancer; therefore, the supplementation with CoQ10 could represent a viable option to prevent these and in some cases might be used as an adjuvant to conventional treatments. This review is aimed to summarize the clinical applications regarding the use of CoQ10 in migraine, neurodegenerative diseases (including Parkinson and Alzheimer diseases), cancer, or degenerative muscle disorders (such as multiple sclerosis and chronic fatigue syndrome), analyzing its effect on patients' health and quality of life.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
- Interdepartmental Research Centre ‘‘Nutraceuticals and Food for Health (NUTRAFOOD)’’, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
- Interdepartmental Research Centre ‘‘Nutraceuticals and Food for Health (NUTRAFOOD)’’, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
| | - Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40138 Bologna, Italy;
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy;
| | - Alessandro Colletti
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy;
- Department of Science and Drug Technology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
32
|
Dietary Supplementation with Selenium and Coenzyme Q 10 Prevents Increase in Plasma D-Dimer While Lowering Cardiovascular Mortality in an Elderly Swedish Population. Nutrients 2021; 13:nu13041344. [PMID: 33920725 PMCID: PMC8073286 DOI: 10.3390/nu13041344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
A low intake of selenium is associated with increased cardiovascular mortality. This could be reduced by supplementation with selenium and coenzyme Q10. D-dimer, a fragment of fibrin mirroring fibrinolysis, is a biomarker of thromboembolism, increased inflammation, endothelial dysfunction and is associated with cardiovascular mortality in ischemic heart disease. The objective was to examine the impact of selenium and coenzyme Q10 on the level of D-dimer, and its relationship to cardiovascular mortality. D-dimer was measured in 213 individuals at the start and after 48 months of a randomised double-blind placebo-controlled trial with selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) (n = 106) or placebo (n = 107). The follow-up time was 4.9 years. All included individuals were low in selenium (mean 67 μg/L, SD 16.8). The differences in D-dimer concentration were evaluated by the use of T-tests, repeated measures of variance and ANCOVA analyses. At the end, a significantly lower D-dimer concentration was observed in the active treatment group in comparison with those on placebo (p = 0.006). Although D-dimer values at baseline were weakly associated with high-sensitive CRP, while being more strongly associated with soluble tumour necrosis factor receptor 1 and sP-selectin, controlling for these in the analysis there was an independent effect on D-dimer. In participants with a D-dimer level above median at baseline, the supplementation resulted in significantly lower cardiovascular mortality compared to those on placebo (p = 0.014). All results were validated with a persisting significant difference between the two groups. Therefore, supplementation with selenium and coenzyme Q10 in a group of elderly low in selenium and coenzyme Q10 prevented an increase in D-dimer and reduced the risk of cardiovascular mortality in comparison with the placebo group. The obtained results also illustrate important associations between inflammation, endothelial function and cardiovascular risk.
Collapse
|
33
|
Farsi F, Ebrahimi-Daryani N, Golab F, Akbari A, Janani L, Karimi MY, Irandoost P, Alamdari NM, Agah S, Vafa M. A randomized controlled trial on the coloprotective effect of coenzyme Q10 on immune-inflammatory cytokines, oxidative status, antimicrobial peptides, and microRNA-146a expression in patients with mild-to-moderate ulcerative colitis. Eur J Nutr 2021; 60:3397-3410. [PMID: 33620550 DOI: 10.1007/s00394-021-02514-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Coenzyme Q10 (CoQ10), having potent antioxidant and anti-inflammatory pharmacological properties, has recently been shown to be a safe and promising agent in maintaining remission of ulcerative colitis (UC). This trial was, therefore, designed to determine CoQ10 efficacy on inflammation and antioxidant status, antimicrobial peptides, and microRNA-146a expression in UC patients. METHODS In this randomized double-blind controlled trial, 88 mild-to-moderate UC patients were randomly allocated to receive CoQ10 (200 mg/day) or placebo (rice flour) for 2 months. At the baseline and at an 8-week follow-up, serum levels of Nrf2, cathelicidin LL-37, β-defensin 2, IL-10, IL-17, NF-κB p65 activity in peripheral blood mononuclear cells (PBMCs), simple clinical colitis activity index questionnaire (SCCAIQ), and quality of life (IBDQ-32 score), as well as an expression rate of microRNA-146a were measured. RESULTS A significant reduction was detected in the serum IL-17 level, activity of NF-κB p65 in PBMCs, and also SCCAI score in the CoQ10 group compared to the placebo group, whereas IL-10 serum concentrations and IBDQ-32 score of the CoQ10 group considerably increased versus the control group; the changes of these variables were also significantly different within and between groups at the end of the study. Furthermore, CoQ10 remarkably increased serum levels of cathelicidin LL-37. A significant change in serum cathelicidin LL-37 levels was also observed between the two groups. No statistical difference, however, was seen between the two groups in terms of the serum levels of Nrf2 and β-defensin 2 and the relative expression of microRNA-146a. CONCLUSIONS Our results indicate that CoQ10 supplementation, along with drug therapy, appears to be an efficient reducer of inflammation in patients with mild-to-moderate UC at a remission phase. TRIAL REGISTRATION The research has also been registered at the Iranian Registry of Clinical Trials (IRCT): IRCT20090822002365N17.
Collapse
Affiliation(s)
- Farnaz Farsi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Pardis Irandoost
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naimeh Mesri Alamdari
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Al Saadi T, Assaf Y, Farwati M, Turkmani K, Al-Mouakeh A, Shebli B, Khoja M, Essali A, Madmani ME. Coenzyme Q10 for heart failure. Cochrane Database Syst Rev 2021; (2):CD008684. [PMID: 35608922 PMCID: PMC8092430 DOI: 10.1002/14651858.cd008684.pub3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Coenzyme Q10, or ubiquinone, is a non-prescription nutritional supplement. It is a fat-soluble molecule that acts as an electron carrier in mitochondria, and as a coenzyme for mitochondrial enzymes. Coenzyme Q10 deficiency may be associated with a multitude of diseases, including heart failure. The severity of heart failure correlates with the severity of coenzyme Q10 deficiency. Emerging data suggest that the harmful effects of reactive oxygen species are increased in people with heart failure, and coenzyme Q10 may help to reduce these toxic effects because of its antioxidant activity. Coenzyme Q10 may also have a role in stabilising myocardial calcium-dependent ion channels, and in preventing the consumption of metabolites essential for adenosine-5'-triphosphate (ATP) synthesis. Coenzyme Q10, although not a primary recommended treatment, could be beneficial to people with heart failure. Several randomised controlled trials have compared coenzyme Q10 to other therapeutic modalities, but no systematic review of existing randomised trials was conducted prior to the original version of this Cochrane Review, in 2014. OBJECTIVES To review the safety and efficacy of coenzyme Q10 in heart failure. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, Web of Science, CINAHL Plus, and AMED on 16 October 2020; ClinicalTrials.gov on 16 July 2020, and the ISRCTN Registry on 11 November 2019. We applied no language restrictions. SELECTION CRITERIA We included randomised controlled trials of either parallel or cross-over design that assessed the beneficial and harmful effects of coenzyme Q10 in people with heart failure. When we identified cross-over studies, we considered data only from the first phase. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods, assessed study risk of bias using the Cochrane 'Risk of bias' tool, and GRADE methods to assess the quality of the evidence. For dichotomous data, we calculated the risk ratio (RR); for continuous data, the mean difference (MD), both with 95% confidence intervals (CI). Where appropriate data were available, we conducted meta-analysis. When meta-analysis was not possible, we wrote a narrative synthesis. We provided a PRISMA flow chart to show the flow of study selection. MAIN RESULTS We included eleven studies, with 1573 participants, comparing coenzyme Q10 to placebo or conventional therapy (control). In the majority of the studies, sample size was relatively small. There were important differences among studies in daily coenzyme Q10 dose, follow-up period, and the measures of treatment effect. All studies had unclear, or high risk of bias, or both, in one or more bias domains. We were only able to conduct meta-analysis for some of the outcomes. None of the included trials considered quality of life, measured on a validated scale, exercise variables (exercise haemodynamics), or cost-effectiveness. Coenzyme Q10 probably reduces the risk of all-cause mortality more than control (RR 0.58, 95% CI 0.35 to 0.95; 1 study, 420 participants; number needed to treat for an additional beneficial outcome (NNTB) 13.3; moderate-quality evidence). There was low-quality evidence of inconclusive results between the coenzyme Q10 and control groups for the risk of myocardial infarction (RR 1.62, 95% CI 0.27 to 9.59; 1 study, 420 participants), and stroke (RR 0.18, 95% CI 0.02 to 1.48; 1 study, 420 participants). Coenzyme Q10 probably reduces hospitalisation related to heart failure (RR 0.62, 95% CI 0.49 to 0.78; 2 studies, 1061 participants; NNTB 9.7; moderate-quality evidence). Very low-quality evidence suggests that coenzyme Q10 may improve the left ventricular ejection fraction (MD 1.77, 95% CI 0.09 to 3.44; 7 studies, 650 participants), but the results are inconclusive for exercise capacity (MD 48.23, 95% CI -24.75 to 121.20; 3 studies, 91 participants); and the risk of developing adverse events (RR 0.70, 95% CI 0.45 to 1.10; 2 studies, 568 participants). We downgraded the quality of the evidence mainly due to high risk of bias and imprecision. AUTHORS' CONCLUSIONS The included studies provide moderate-quality evidence that coenzyme Q10 probably reduces all-cause mortality and hospitalisation for heart failure. There is low-quality evidence of inconclusive results as to whether coenzyme Q10 has an effect on the risk of myocardial infarction, or stroke. Because of very low-quality evidence, it is very uncertain whether coenzyme Q10 has an effect on either left ventricular ejection fraction or exercise capacity. There is low-quality evidence that coenzyme Q10 may increase the risk of adverse effects, or have little to no difference. There is currently no convincing evidence to support or refute the use of coenzyme Q10 for heart failure. Future trials are needed to confirm our findings.
Collapse
Affiliation(s)
- Tareq Al Saadi
- Department of Internal Medicine, University of Illinois at Chicago/Advocate Christ Medical Center, Oak Lawn, Illinois, USA
| | - Yazan Assaf
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
- Department of Medicine, University of Florida, Gainesville, USA
| | - Medhat Farwati
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, USA
| | - Khaled Turkmani
- Department of Surgery, AlKalamoon General Hospital, AlNabek, Syrian Arab Republic
- Faculty of Medicine, Syrian Private University, Damascus, Syrian Arab Republic
| | - Ahmed Al-Mouakeh
- Faculty of Medicine, University of Aleppo, Aleppo, Syrian Arab Republic
| | - Baraa Shebli
- Faculty of Medicine, University of Aleppo, Aleppo, Syrian Arab Republic
| | - Mohammed Khoja
- ENT Department, Al Razi Public Hospital, Aleppo, Syrian Arab Republic
- Medical Education Program, Syrian Virtual University, Damascus, Syrian Arab Republic
| | - Adib Essali
- Community Mental Health, Counties Manukau Health, Manukau, New Zealand
| | - Mohammed E Madmani
- Department of Medicine, Cardiology Division, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
35
|
Gutierrez-Mariscal FM, Arenas-de Larriva AP, Limia-Perez L, Romero-Cabrera JL, Yubero-Serrano EM, López-Miranda J. Coenzyme Q 10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int J Mol Sci 2020; 21:ijms21217870. [PMID: 33114148 PMCID: PMC7660335 DOI: 10.3390/ijms21217870] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Apart from its main function in the mitochondria as a key element in electron transport, Coenzyme Q10 (CoQ10) has been described as having multiple functions, such as oxidant action in the generation of signals and the control of membrane structure and phospholipid and cellular redox status. Among these, the most relevant and most frequently studied function is the potent antioxidant capability of its coexistent redox forms. Different clinical trials have investigated the effect of CoQ10 supplementation and its ability to reduce oxidative stress. In this review, we focused on recent advances in CoQ10 supplementation, its role as an antioxidant, and the clinical implications that this entails in the treatment of chronic diseases, in particular cardiovascular diseases, kidney disease, chronic obstructive pulmonary disease, non-alcoholic fatty liver disease, and neurodegenerative diseases. As an antioxidant, CoQ10 has proved to be of potential use as a treatment in diseases in which oxidative stress is a hallmark, and beneficial effects of CoQ10 have been reported in the treatment of chronic diseases. However, it is crucial to reach a consensus on the optimal dose and the use of different formulations, which vary from ubiquinol or ubiquinone Ubisol-Q10 or Qter®, to new analogues such as MitoQ, before we can draw a clear conclusion about its clinical use. In addition, a major effort must be made to demonstrate its beneficial effects in clinical trials, with a view to making the implementation of CoQ10 possible in clinical practice.
Collapse
Affiliation(s)
- Francisco Miguel Gutierrez-Mariscal
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antonio Pablo Arenas-de Larriva
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Laura Limia-Perez
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Juan Luis Romero-Cabrera
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elena Maria Yubero-Serrano
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (E.M.Y.-S.); (J.L.-M.); Tel.: +34-957213733 (E.M.Y.-S.); +34-957010947 (J.L.-M.); Fax: +34-957218250 (J.L.-M.)
| | - Jose López-Miranda
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (E.M.Y.-S.); (J.L.-M.); Tel.: +34-957213733 (E.M.Y.-S.); +34-957010947 (J.L.-M.); Fax: +34-957218250 (J.L.-M.)
| |
Collapse
|
36
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
37
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Fittipaldi MR, Toscanesi M, Trifuoggi M. Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtures. Int J Mol Sci 2020; 21:ijms21197060. [PMID: 32992778 PMCID: PMC7582285 DOI: 10.3390/ijms21197060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential–and distinct—roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly relied on the use of only one MN to ARD-affected patients as, e.g., in the case of CoQ10 in CVD, or of ALA in T2D, possibly with the addition of other antioxidants. Only a few clinical and pre-clinical studies reported on the administration of two MNs, with beneficial outcomes, while no available studies reported on the combined administration of three MNs. Based on the literature also from pre-clinical studies, the present review is to recommend the design of clinical trials based on combinations of the three MNs.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
- Correspondence:
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010 Valencia, Spain;
| | - Alex Lyakhovich
- Vall d’Hebron Institut de Recerca, E-08035 Barcelona, Catalunya, Spain;
- Institute of Molecular Biology and Biophysics of the “Federal Research Center of Fundamental and Translational Medicine”, Novosibirsk 630117, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, I-60100 Ancona, Italy;
| | - Maria Rosa Fittipaldi
- Internal Medicine Unit, San Francesco d’Assisi Hospital, I-84020 Oliveto Citra (SA), Italy;
| | - Maria Toscanesi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
| |
Collapse
|
38
|
Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int J Mol Sci 2020; 21:ijms21186695. [PMID: 32933108 PMCID: PMC7555759 DOI: 10.3390/ijms21186695] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extramitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant, plays an important role in fatty acid, pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. In view of the central role of CoQ10 in cellular metabolism, it is unsurprising that a CoQ10 deficiency is linked to the pathogenesis of a range of disorders. CoQ10 deficiency is broadly classified into primary or secondary deficiencies. Primary deficiencies result from genetic defects in the multi-step biochemical pathway of CoQ10 synthesis, whereas secondary deficiencies can occur as result of other diseases or certain pharmacotherapies. In this article we have reviewed the clinical consequences of primary and secondary CoQ10 deficiencies, as well as providing some examples of the successful use of CoQ10 supplementation in the treatment of disease.
Collapse
|
39
|
Chiu HF, Venkatakrishnan K, Wang CK. The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. J Tradit Complement Med 2020; 10:434-439. [PMID: 32953558 PMCID: PMC7484964 DOI: 10.1016/j.jtcme.2020.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent times, many scientists have given great attention to nutraceuticals (complementary medicine) as it widely used for promoting health status. In particular for the prevention and treatment of various neurological diseases or disorders without or less adverse effects. The current mini-review was intended to compile all popular (major) nutraceuticals against various neurodegenerative diseases (NDDs) including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) with special reference to clinical trials. Preliminary reviews indicated that nutraceuticals like curcumin, resveratrol, Epigallocatechin-3-gallate (EGCG), Coenzyme Q10, ω-3 FA (DHA/EPA/ALA), showed better neuroprotective activity against various NDDs in human setting (clinical trial). Hence this contribution will focus only on those popular nutraceuticals with proposed brief mechanisms (antioxidant, anti-inflammatory, mitochondrial homeostasis, autophagy regulation, promote neurogenesis) and its recommendation. This mini-review would aid common people to choose better nutraceuticals to combat various NDDs along with standard neuroprotective agents and modified lifestyle pattern.
Collapse
Key Words
- AD, Alzheimer’s disease
- ATP, Adenosine triphosphate
- BBB, Blood-brain barrier
- Clinical trial
- HD, Huntington’s disease
- HO-1, Heme Oxygenase-1
- JNK, c-Jun N-terminal Kinase
- MAPK, Mitogen-activated protein kinase
- NDDs, neurodegenerative diseases
- NF-κB, Nuclear factor Kappa B
- Neurodegenerative diseases
- Neuroprotective agents
- Nrf2, Nuclear factor-E2-related factor
- Nutraceutical
- PD, Parkinson’s disease
- PI3K, Phosphatidylinositol-3-kinase
- SIRT1, Sirtuin 1
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Well-being, Taichung, ROC, Taiwan
| | - Kamesh Venkatakrishnan
- School OfNutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, ROC, Taiwan
| | - Chin-Kun Wang
- School OfNutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, ROC, Taiwan
| |
Collapse
|
40
|
Dendrimer-like glucan nanoparticulate system improves the solubility and cellular antioxidant activity of coenzyme Q10. Food Chem 2020; 333:127510. [PMID: 32673958 DOI: 10.1016/j.foodchem.2020.127510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
Aqueous coenzyme Q10 (CoQ10) dispersions were prepared using sugary maize dendrimer-like glucan (SMDG) with solid-dispersion treatment. After measuring solubility, recovery rate and loading rate, the initial weight ratio of CoQ10:SMDG was optimized to be 1:27, with the solubility markedly increasing up 188.8-folds compared to pure CoQ10 solution. The structural characterizations of CoQ10-SMDG formulation showed crystal CoQ10 was entrapped in SMDG matrix for amorphous state, associated with the strong interactions with glucan chains. The antioxidant activity of CoQ10-SMDG was assessed via DPPH and FRAP assay. DPPH scavenging activity and FRAP value of it were as high as 95.1% and 0.87 mM, respectively. The cellular uptake of CoQ10 in CoQ10-SMDG group was significantly higher than that of natural CoQ10. CoQ10-SMDG also exhibited significant protective effects against cellular damage in H2O2-induced HaCaT cell model. The results indicated that dendrimer-like glucan is an excellent platform to encapsulate and improve biological activity of hydropholic compounds.
Collapse
|
41
|
Fernández-Del-Río L, Kelly ME, Contreras J, Bradley MC, James AM, Murphy MP, Payne GS, Clarke CF. Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae. Free Radic Biol Med 2020; 154:105-118. [PMID: 32387128 PMCID: PMC7611304 DOI: 10.1016/j.freeradbiomed.2020.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) is an essential player in the respiratory electron transport chain and is the only lipid-soluble antioxidant synthesized endogenously in mammalian and yeast cells. In humans, genetic mutations, pathologies, certain medical treatments, and aging, result in CoQ deficiencies, which are linked to mitochondrial, cardiovascular, and neurodegenerative diseases. The only strategy available for these patients is CoQ supplementation. CoQ supplements benefit a small subset of patients, but the poor solubility of CoQ greatly limits treatment efficacy. Consequently, the efficient delivery of CoQ to the mitochondria and restoration of respiratory function remains a major challenge. A better understanding of CoQ uptake and mitochondrial delivery is crucial to make this molecule a more efficient and effective therapeutic tool. In this study, we investigated the mechanism of CoQ uptake and distribution using the yeast Saccharomyces cerevisiae as a model organism. The addition of exogenous CoQ was tested for the ability to restore growth on non-fermentable medium in several strains that lack CoQ synthesis (coq mutants). Surprisingly, we discovered that the presence of CoQ biosynthetic intermediates impairs assimilation of CoQ into a functional respiratory chain in yeast cells. Moreover, a screen of 40 gene deletions considered to be candidates to prevent exogenous CoQ from rescuing growth of the CoQ-less coq2Δ mutant, identified six novel genes (CDC10, RTS1, RVS161, RVS167, VPS1, and NAT3) as necessary for efficient trafficking of CoQ to mitochondria. The proteins encoded by these genes represent essential steps in the pathways responsible for transport of exogenously supplied CoQ to its functional sites in the cell, and definitively associate CoQ distribution with endocytosis and intracellular vesicular trafficking pathways conserved from yeast to human cells.
Collapse
Affiliation(s)
- Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Miranda E Kelly
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Jaime Contreras
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, UK; Department of Medicine, University of Cambridge, UK
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA.
| |
Collapse
|
42
|
Fernández-del-Río L, Soubeyrand E, Basset GJ, Clarke CF. Metabolism of the Flavonol Kaempferol in Kidney Cells Liberates the B-ring to Enter Coenzyme Q Biosynthesis. Molecules 2020; 25:molecules25132955. [PMID: 32605010 PMCID: PMC7412559 DOI: 10.3390/molecules25132955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential component of the mitochondrial electron transport chain and an important antioxidant present in all cellular membranes. CoQ deficiencies are frequent in aging and in age-related diseases, and current treatments are limited to CoQ supplementation. Strategies that rely on CoQ supplementation suffer from poor uptake and trafficking of this very hydrophobic molecule. In a previous study, the dietary flavonol kaempferol was reported to serve as a CoQ ring precursor and to increase the CoQ content in kidney cells, but neither the part of the molecule entering CoQ biosynthesis nor the mechanism were described. In this study, kaempferol labeled specifically in the B-ring was isolated from Arabidopsis plants. Kidney cells treated with this compound incorporated the B-ring of kaempferol into newly synthesized CoQ, suggesting that the B-ring is metabolized via a mechanism described in plant cells. Kaempferol is a natural flavonoid present in fruits and vegetables and possesses antioxidant, anticancer, and anti-inflammatory therapeutic properties. A better understanding of the role of kaempferol as a CoQ ring precursor makes this bioactive compound a potential candidate for the design of interventions aiming to increase endogenous CoQ biosynthesis and may improve CoQ deficient phenotypes in aging and disease.
Collapse
Affiliation(s)
- Lucía Fernández-del-Río
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence: (L.F.-d.-R.); (C.F.C.); Tel.: +1-(310)-825-0771 (C.F.C.)
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA; (E.S.); (G.J.B.)
| | - Gilles J. Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA; (E.S.); (G.J.B.)
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence: (L.F.-d.-R.); (C.F.C.); Tel.: +1-(310)-825-0771 (C.F.C.)
| |
Collapse
|
43
|
Petrangolini G, Ronchi M, Frattini E, De Combarieu E, Allegrini P, Riva A. A New Food-grade Coenzyme Q10 Formulation Improves Bioavailability: Single and Repeated Pharmacokinetic Studies in Healthy Volunteers. Curr Drug Deliv 2020; 16:759-767. [PMID: 31475897 DOI: 10.2174/1567201816666190902123147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coenzyme Q10 is a fundamental endogenous factor involved in cell energy production that shows protective properties in oxidative stress, mainly in skeletal and heart muscle. Coenzyme Q10 supplementation appears to benefit athletes in strenuous training and in the elderly, demonstrating ant-inflammatory properties by reducing inflammatory cytokines. Improved absorption of coenzyme Q10 via a new delivery system would represent an important step forward in the use of coenzyme Q10 as a dietary supplement. OBJECTIVE The aim of the study was to evaluate the solubility and oral absorption in human healthy volunteers of a new food grade coenzyme Q10 phytosome formulation. METHODS Solubility studies were performed in vitro in simulated gastrointestinal fluids; human studies were conducted in healthy volunteers to evaluate oral absorption in a Single dose study, in comparison with the coenzyme Q10 capsules, and in a repeated study at two increasing doses. RESULTS The highest solubility shown by coenzyme Q10 phytosome in simulated intestinal fluids results in an improvement in oral absorption of coenzyme Q10 in healthy volunteers, three times more than the coenzyme Q10 according to AUC (area under the time/concentration curve) values. When two increasing doses (one and two capsules) were administered to healthy volunteers within a two-week schedule, the plasmatic levels of coenzyme Q10 resulted in 0.864±0.200 μg/ml (Mean±S.D.+41%) and 1.321±0.400 μg/ml (+116%), respectively versus baseline (0.614±0.120 μg/ml one capsule, 0.614±0.160 μg/ml two capsules). This detected dose-related bioavailability of coenzyme Q10 phytosome was even observed with no alterations in vital signs, neither in the physical examination nor in ECG, and no changes of clinical and biochemical parameters were observed. CONCLUSION These findings, taken together, support the safety profile and significantly improved coenzyme Q10 oral absorption in humans with this new phytosome delivery formulation.
Collapse
Affiliation(s)
| | - Massimo Ronchi
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | | | | | - Pietro Allegrini
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | - Antonella Riva
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| |
Collapse
|
44
|
Bioavailability of Coenzyme Q 10: An Overview of the Absorption Process and Subsequent Metabolism. Antioxidants (Basel) 2020; 9:antiox9050386. [PMID: 32380795 PMCID: PMC7278738 DOI: 10.3390/antiox9050386] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
A lack of understanding of the processes determining the absorption and subsequent metabolism of coenzyme Q10 (CoQ10) has resulted in some manufacturers’ making incorrect claims regarding the bioavailability of their CoQ10 supplements, with potential consequences for the use of such products in clinical trials. The purpose of the present review article is, therefore, to describe the various stages of exogenous CoQ10 metabolism, from its first ingestion, stomach transit, absorption from the small intestine into the lymphatic system, transport in blood, and access into cells. In particular, the importance of CoQ10 crystal dispersion in the initial formulation is emphasised, the absence of which reduces bioavailability by 75%. In addition, evidence comparing the relative bioavailability and efficacy of ubiquinone and ubiquinol forms of CoQ10 has been reviewed.
Collapse
|
45
|
Coenzyme Q 10 Supplementation Improves Adipokine Levels and Alleviates Inflammation and Lipid Peroxidation in Conditions of Metabolic Syndrome: A Meta-Analysis of Randomized Controlled Trials. Int J Mol Sci 2020; 21:ijms21093247. [PMID: 32375340 PMCID: PMC7247332 DOI: 10.3390/ijms21093247] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: -0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: -0.31 [95% CI: -0.54, -0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.
Collapse
|
46
|
Martelli A, Testai L, Colletti A, Cicero AFG. Coenzyme Q 10: Clinical Applications in Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:antiox9040341. [PMID: 32331285 PMCID: PMC7222396 DOI: 10.3390/antiox9040341] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is a ubiquitous factor present in cell membranes and mitochondria, both in its reduced (ubiquinol) and oxidized (ubiquinone) forms. Its levels are high in organs with high metabolism such as the heart, kidneys, and liver because it acts as an energy transfer molecule but could be reduced by aging, genetic factors, drugs (e.g., statins), cardiovascular (CV) diseases, degenerative muscle disorders, and neurodegenerative diseases. As CoQ10 is endowed with significant antioxidant and anti-inflammatory features, useful to prevent free radical-induced damage and inflammatory signaling pathway activation, its depletion results in exacerbation of inflammatory processes. Therefore, exogenous CoQ10 supplementation might be useful as an adjuvant in the treatment of cardiovascular diseases such as heart failure, atrial fibrillation, and myocardial infarction and in associated risk factors such as hypertension, insulin resistance, dyslipidemias, and obesity. This review aims to summarize the current evidences on the use of CoQ10 supplementation as a therapeutic approach in cardiovascular diseases through the analysis of its clinical impact on patients' health and quality of life. A substantial reduction of inflammatory and oxidative stress markers has been observed in several randomized clinical trials (RCTs) focused on several of the abovementioned diseases, even if more RCTs, involving a larger number of patients, will be necessary to strengthen these interesting findings.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.T.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD)”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.T.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD)”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, 10125 Turin, Italy;
- Italian Nutraceutical Society (SINut), Via Guelfa 9, 40138 Bologna, Italy
| | - Arrigo F. G. Cicero
- Italian Nutraceutical Society (SINut), Via Guelfa 9, 40138 Bologna, Italy
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-512142224
| |
Collapse
|
47
|
Yan N, Gai X, Xue L, Du Y, Shi J, Liu Y. Effects of NtSPS1 Overexpression on Solanesol Content, Plant Growth, Photosynthesis, and Metabolome of Nicotiana tabacum. PLANTS 2020; 9:plants9040518. [PMID: 32316447 PMCID: PMC7238068 DOI: 10.3390/plants9040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Nicotiana tabacum solanesyl diphosphate synthase 1 (NtSPS1) is the key enzyme in solanesol biosynthesis. However, changes in the solanesol content, plant growth, photosynthesis, and metabolome of tobacco plants after NtSPS1 overexpression (OE) have not been previously reported. In the present study, these parameters, as well as photosynthetic gas exchange, chlorophyll content, and chlorophyll fluorescence parameters, were compared between NtSPS1 OE and wild type (WT) lines of tobacco. As expected, NtSPS1 OE significantly increased solanesol content in tobacco leaves. Although NtSPS1 OE significantly increased leaf growth, photosynthesis, and chlorophyll content, the chlorophyll fluorescence parameters in the leaves of the NtSPS1 OE lines were only slightly higher than those in the WT leaves. Furthermore, NtSPS1 OE resulted in 64 differential metabolites, including 30 up-regulated and 34 down-regulated metabolites, between the OE and WT leaves. Pathway enrichment analysis of these differential metabolites identified differentially enriched pathways between the OE and WT leaves, e.g., carbon fixation in photosynthetic organisms. The maximum carboxylation rate of RuBisCO and the maximum rate of RuBP regeneration were also elevated in the NtSPS1 OE line. To our knowledge, this is the first study to confirm the role of NtSPS1 in solanesol biosynthesis and its possible functional mechanisms in tobacco.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
- Correspondence: (N.Y.); (Y.L.); Tel.: +86-532-8870-1035 (N.Y. & Y.L.)
| | - Xiaolei Gai
- Yunnan Tobacco Leaf Company, Kunming 650000, China;
| | - Lin Xue
- Anhui Wannan Tobacco Leaf Co., Ltd., Xuancheng 242000, China;
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
- Correspondence: (N.Y.); (Y.L.); Tel.: +86-532-8870-1035 (N.Y. & Y.L.)
| |
Collapse
|
48
|
Suárez-Rivero JM, Pastor-Maldonado CJ, de la Mata M, Villanueva-Paz M, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Suárez-Carrillo A, Talaverón-Rey M, Munuera M, Sánchez-Alcázar JA. Atherosclerosis and Coenzyme Q 10. Int J Mol Sci 2019; 20:ijms20205195. [PMID: 31635164 PMCID: PMC6834161 DOI: 10.3390/ijms20205195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is the most common cause of cardiac deaths worldwide. Classically, atherosclerosis has been explained as a simple arterial lipid deposition with concomitant loss of vascular elasticity. Eventually, this condition can lead to consequent blood flow reduction through the affected vessel. However, numerous studies have demonstrated that more factors than lipid accumulation are involved in arterial damage at the cellular level, such as inflammation, autophagy impairment, mitochondrial dysfunction, and/or free-radical overproduction. In order to consider the correction of all of these pathological changes, new approaches in atherosclerosis treatment are necessary. Ubiquinone or coenzyme Q10 is a multifunctional molecule that could theoretically revert most of the cellular alterations found in atherosclerosis, such as cholesterol biosynthesis dysregulation, impaired autophagy flux and mitochondrial dysfunction thanks to its redox and signaling properties. In this review, we will show the latest advances in the knowledge of the relationships between coenzyme Q10 and atherosclerosis. In addition, as atherosclerosis phenotype is closely related to aging, it is reasonable to believe that coenzyme Q10 supplementation could be beneficial for both conditions.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Carmen J Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Manuel Munuera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
49
|
Wei Y, Zhang L, Yu Z, Lin K, Yang S, Dai L, Liu J, Mao L, Yuan F, Gao Y. Enhanced stability, structural characterization and simulated gastrointestinal digestion of coenzyme Q10 loaded ternary nanoparticles. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Abstract
The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS) production. Oxidative damage to macromolecules including DNA and electron transport proteins likely increases ROS production resulting in further damage. This oxidative theory of cell aging is supported by the fact that diseases associated with the aging process are marked by increased oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and disease or whether it is an inconsequential cellular response to aging. Despite the current lay public interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10 supplementation as an anti-aging anti-oxidant therapy.
Collapse
|