1
|
Outla Z, Prechova M, Korelova K, Gemperle J, Gregor M. Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks. Open Biol 2025; 15:240208. [PMID: 39875099 PMCID: PMC11774597 DOI: 10.1098/rsob.240208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks. Such hardwiring is facilitated by plakins, a family of giant modular proteins which serve as 'molecular bridges' between different cytoskeletal filaments and multiprotein adhesion complexes. Dysfunction of cytoskeletal crosslinking compromises epithelial biomechanics and structural integrity. Subsequent loss of barrier function leads to disturbed tissue homeostasis and pathological consequences such as skin blistering or intestinal inflammation. In this article, we highlight the importance of the cytolinker protein plectin for the functional organization of epithelial cytoskeletal networks. In particular, we focus on the ability of plectin to act as an integrator of the epithelial cytoarchitecture that defines the biomechanics of the whole tissue. Finally, we also discuss the role of cytoskeletal crosslinking in emerging aspects of epithelial mechanobiology that are critical for the maintenance of epithelial homeostasis.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Gemperle
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Petitjean II, Tran QD, Goutou A, Kabir Z, Wiche G, Leduc C, Koenderink GH. Reconstitution of cytolinker-mediated crosstalk between actin and vimentin. Eur J Cell Biol 2024; 103:151403. [PMID: 38503131 DOI: 10.1016/j.ejcb.2024.151403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Cell shape and motility are determined by the cytoskeleton, an interpenetrating network of actin filaments, microtubules, and intermediate filaments. The biophysical properties of each filament type individually have been studied extensively by cell-free reconstitution. By contrast, the interactions between the three cytoskeletal networks are relatively unexplored. They are coupled via crosslinkers of the plakin family such as plectin. These are challenging proteins for reconstitution because of their giant size and multidomain structure. Here we engineer a recombinant actin-vimentin crosslinker protein called 'ACTIF' that provides a minimal model system for plectin, recapitulating its modular design with actin-binding and intermediate filament-binding domains separated by a coiled-coil linker for dimerisation. We show by fluorescence and electron microscopy that ACTIF has a high binding affinity for vimentin and actin and creates mixed actin-vimentin bundles. Rheology measurements show that ACTIF-mediated crosslinking strongly stiffens actin-vimentin composites. Finally, we demonstrate the modularity of this approach by creating an ACTIF variant with the intermediate filament binding domain of Adenomatous Polyposis Coli. Our protein engineering approach provides a new cell-free system for the biophysical characterization of intermediate filament-binding crosslinkers and for understanding the mechanical synergy between actin and vimentin in mesenchymal cells.
Collapse
Affiliation(s)
- Irene Istúriz Petitjean
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Quang D Tran
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris F-75013, France
| | - Angeliki Goutou
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Zima Kabir
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Cécile Leduc
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris F-75013, France.
| | - Gijsje H Koenderink
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
3
|
Battaglia RA, Faridounnia M, Beltran A, Robinson J, Kinghorn K, Ezzell JA, Bharucha-Goebel D, Bönnemann CG, Hooper JE, Opal P, Bouldin TW, Armao D, Snider NT. Intermediate filament dysregulation in astrocytes in the human disease model of KLHL16 mutation in giant axonal neuropathy (GAN). Mol Biol Cell 2023; 34:mbcE23030094. [PMID: 37672338 PMCID: PMC10846626 DOI: 10.1091/mbc.e23-03-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, which regulates intermediate filament (IF) turnover. Previous neuropathological studies and examination of postmortem brain tissue in the current study revealed involvement of astrocytes in GAN. To develop a clinically-relevant model, we reprogrammed skin fibroblasts from seven GAN patients to pluripotent stem cells (iPSCs), which were used to generate neural progenitor cells (NPCs), astrocytes, and brain organoids. Multiple isogenic control clones were derived via CRISPR/Cas9 gene editing of one patient line carrying the G332R gigaxonin mutation. All GAN iPSCs were deficient for gigaxonin and displayed patient-specific increased vimentin expression. GAN NPCs had lower nestin expression and fewer nestin-positive cells compared to isogenic controls, but nestin morphology was unaffected. GAN brain organoids were marked by the presence of neurofilament and GFAP aggregates. GAN iPSC-astrocytes displayed striking dense perinuclear vimentin and GFAP accumulations and abnormal nuclear morphology. In over-expression systems, GFAP oligomerization and perinuclear aggregation were augmented in the presence of vimentin. GAN patient cells with large perinuclear vimentin aggregates accumulated significantly more nuclear KLHL16 mRNA compared to cells without vimentin aggregates. As an early effector of KLHL16 mutations, vimentin may be a potential target in GAN.
Collapse
Affiliation(s)
- Rachel A. Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Adriana Beltran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jasmine Robinson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Karina Kinghorn
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J. Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | - Jody E. Hooper
- Department of Pathology, Stanford University, Palo Alto, CA 94305
| | - Puneet Opal
- Departments of Neurology and Cell and Developmental Biology, Northwestern University, Chicago, IL 60611
| | - Thomas W. Bouldin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
4
|
Battaglia R, Faridounnia M, Beltran A, Robinson J, Kinghorn K, Ezzell JA, Bharucha-Goebel D, Bonnemann C, Hooper JE, Opal P, Bouldin TW, Armao D, Snider N. Intermediate filament dysregulation and astrocytopathy in the human disease model of KLHL16 mutation in giant axonal neuropathy (GAN). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532440. [PMID: 36993491 PMCID: PMC10054982 DOI: 10.1101/2023.03.13.532440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, a regulator of intermediate filament (IF) protein turnover. Previous neuropathological studies and our own examination of postmortem GAN brain tissue in the current study revealed astrocyte involvement in GAN. To study the underlying mechanisms, we reprogrammed skin fibroblasts from seven GAN patients carrying different KLHL16 mutations to iPSCs. Isogenic controls with restored IF phenotypes were derived via CRISPR/Cas9 editing of one patient carrying a homozygous missense mutation (G332R). Neural progenitor cells (NPCs), astrocytes, and brain organoids were generated through directed differentiation. All GAN iPSC lines were deficient for gigaxonin, which was restored in the isogenic control. GAN iPSCs displayed patient-specific increased vimentin expression, while GAN NPCs had decreased nestin expression compared to isogenic control. The most striking phenotypes were observed in GAN iPSC-astrocytes and brain organoids, which exhibited dense perinuclear IF accumulations and abnormal nuclear morphology. GAN patient cells with large perinuclear vimentin aggregates accumulated nuclear KLHL16 mRNA. In over-expression studies, GFAP oligomerization and perinuclear aggregation were potentiated in the presence of vimentin. As an early effector of KLHL16 mutations, vimentin may serve as a potential therapeutic target in GAN.
Collapse
Affiliation(s)
- Rachel Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Adriana Beltran
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Jasmine Robinson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Karina Kinghorn
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - J. Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | | | - Carsten Bonnemann
- National Institute of Neurological Diseases and Stroke, Bethesda, MD
| | - Jody E. Hooper
- Department of Pathology, Stanford University, Palo Alto, CA
| | - Puneet Opal
- Departments of Neurology and Cell and Developmental Biology, Northwestern University, Chicago, IL
| | - Thomas W. Bouldin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
- Department of Radiology, University of North Carolina at Chapel Hill
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| |
Collapse
|
5
|
Plectin in the Central Nervous System and a Putative Role in Brain Astrocytes. Cells 2021; 10:cells10092353. [PMID: 34572001 PMCID: PMC8464768 DOI: 10.3390/cells10092353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Plectin, a high-molecular-mass cytolinker, is abundantly expressed in the central nervous system (CNS). Currently, a limited amount of data about plectin in the CNS prevents us from seeing the complete picture of how plectin affects the functioning of the CNS as a whole. Yet, by analogy to its role in other tissues, it is anticipated that, in the CNS, plectin also functions as the key cytoskeleton interlinking molecule. Thus, it is likely involved in signalling processes, thereby affecting numerous fundamental functions in the brain and spinal cord. Versatile direct and indirect interactions of plectin with cytoskeletal filaments and enzymes in the cells of the CNS in normal physiological and in pathologic conditions remain to be fully addressed. Several pathologies of the CNS related to plectin have been discovered in patients with plectinopathies. However, in view of plectin as an integrator of a cohesive mesh of cellular proteins, it is important that the role of plectin is also considered in other CNS pathologies. This review summarizes the current knowledge of plectin in the CNS, focusing on plectin isoforms that have been detected in the CNS, along with its expression profile and distribution alongside diverse cytoskeleton filaments in CNS cell types. Considering that the bidirectional communication between neurons and glial cells, especially astrocytes, is crucial for proper functioning of the CNS, we place particular emphasis on the known roles of plectin in neurons, and we propose possible roles of plectin in astrocytes.
Collapse
|
6
|
Patteson AE, Carroll RJ, Iwamoto DV, Janmey PA. The vimentin cytoskeleton: when polymer physics meets cell biology. Phys Biol 2020; 18:011001. [PMID: 32992303 PMCID: PMC8240483 DOI: 10.1088/1478-3975/abbcc2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proper functions of tissues depend on the ability of cells to withstand stress and maintain shape. Central to this process is the cytoskeleton, comprised of three polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). IF proteins are among the most abundant cytoskeletal proteins in cells; yet they remain some of the least understood. Their structure and function deviate from those of their cytoskeletal partners, F-actin and microtubules. IF networks show a unique combination of extensibility, flexibility and toughness that confers mechanical resilience to the cell. Vimentin is an IF protein expressed in mesenchymal cells. This review highlights exciting new results on the physical biology of vimentin intermediate filaments and their role in allowing whole cells and tissues to cope with stress.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Robert J Carroll
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Daniel V Iwamoto
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
8
|
Colburn ZT, Jones JCR. Complexes of α6β4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. J Cell Sci 2018; 131:jcs214593. [PMID: 29976561 PMCID: PMC6080603 DOI: 10.1242/jcs.214593] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/26/2018] [Indexed: 12/27/2022] Open
Abstract
We find that clusters of β4 integrin, organized into distinct puncta, localize along vimentin filaments within lamellipodia at the cell edge of A549 cells, as assessed by interferometric photoactivated localization microscopy. Moreover, puncta and vimentin filaments exhibit a dynamic interplay in live cells, as viewed by structured-illumination microscopy, with β4 integrin puncta that associate with vimentin persisting for longer than those that do not. Interestingly, in A549 cells β4 integrin regulates vimentin cytoskeleton organization. When β4 integrin is knocked down there is a loss of vimentin filaments from lamellipodia. However, in these conditions, vimentin filaments instead concentrate around the nucleus. Although β4 integrin organization is unaffected in vimentin-deficient A549 cells, such cells move in a less-directed fashion and exhibit reduced Rac1 activity, mimicking the phenotype of β4 integrin-deficient A549 cells. Moreover, in vimentin-deficient cells, Rac1 fails to cluster at sites enriched in α6β4 integrin heterodimers. The aberrant motility of both β4 integrin and vimentin-deficient cells is rescued by expression of active Rac1, leading us to propose that complexes of β4 integrin and vimentin act as signaling hubs, regulating cell motility behavior.
Collapse
Affiliation(s)
- Zachary T Colburn
- School of Molecular Biosciences, Washington State University, BLS 202F, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, BLS 202F, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
9
|
Jones JCR, Kam CY, Harmon RM, Woychek AV, Hopkinson SB, Green KJ. Intermediate Filaments and the Plasma Membrane. Cold Spring Harb Perspect Biol 2017; 9:9/1/a025866. [PMID: 28049646 DOI: 10.1101/cshperspect.a025866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of intermediate filament (IF) types show intricate association with plasma membrane proteins, including receptors and adhesion molecules. The molecular basis of linkage of IFs to desmosomes at sites of cell-cell interaction and hemidesmosomes at sites of cell-matrix adhesion has been elucidated and involves IF-associated proteins. However, IFs also interact with focal adhesions and cell-surface molecules, including dystroglycan. Through such membrane interactions, it is well accepted that IFs play important roles in the establishment and maintenance of tissue integrity. However, by organizing cell-surface complexes, IFs likely regulate, albeit indirectly, signaling pathways that are key to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Jonathan C R Jones
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Chen Yuan Kam
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert M Harmon
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alexandra V Woychek
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Susan B Hopkinson
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Kathleen J Green
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
10
|
Abstract
Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.
Collapse
Affiliation(s)
- Harald Herrmann
- Functional Architecture of the Cell (B065), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany, and Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
11
|
Martin I, Moch M, Neckernuss T, Paschke S, Herrmann H, Marti O. Both monovalent cations and plectin are potent modulators of mechanical properties of keratin K8/K18 networks. SOFT MATTER 2016; 12:6964-6974. [PMID: 27489177 DOI: 10.1039/c6sm00977h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Intermediate filament (IF) networks are a major contributor to cell rigidity and thus serve as vital elements to preserve the integrity of entire cell layers. Keratin K8 and K18 IFs are the basic constituents of the cytoskeleton of epithelial cells. The mechanical properties of K8/K18 networks depend on the structural arrangements of individual filaments within the network. This paper investigates the architecture of these networks in vitro under the influence of the monovalent cation potassium and that of the cytolinker protein plectin. Whereas increasing amounts of potassium ions lead to filament bundling, plectin interlinks filaments at filament intersection points but does not lead to bundle formation. The mechanics of the resulting networks are investigated by microrheology with assembled K8/K18 networks. It is shown that bundling induced by potassium ions significantly stiffens the network. Furthermore, our measurements reveal an increase in plectin-mediated keratin network rigidity as soon as an amount corresponding to more than 20% of the plectin present in cells is added to the keratin IF networks. In parallel, we investigated the influence of plectin on cell rigidity in detergent-extracted epithelial vulva carcinoma derived A431 cells in situ. These cytoskeletons, containing mostly IFs, actin filaments and associated proteins, exhibit a significantly decreased stiffness, when plectin is downregulated to ≈10% of the normal value. Therefore, we assume that plectin, via the formation of IF-IF connections and crosslinking of IFs to actin filaments, is an important contributor to cell stiffness.
Collapse
Affiliation(s)
- I Martin
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| | - M Moch
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany and Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | - T Neckernuss
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| | - S Paschke
- Department of General and Visceral Surgery, Ulm University, 89081 Ulm, Germany
| | - H Herrmann
- Division Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany and Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - O Marti
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
12
|
Moch M, Windoffer R, Schwarz N, Pohl R, Omenzetter A, Schnakenberg U, Herb F, Chaisaowong K, Merhof D, Ramms L, Fabris G, Hoffmann B, Merkel R, Leube RE. Effects of Plectin Depletion on Keratin Network Dynamics and Organization. PLoS One 2016; 11:e0149106. [PMID: 27007410 PMCID: PMC4805305 DOI: 10.1371/journal.pone.0149106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
The keratin intermediate filament cytoskeleton protects epithelial cells against various types of stress and is involved in fundamental cellular processes such as signaling, differentiation and organelle trafficking. These functions rely on the cell type-specific arrangement and plasticity of the keratin system. It has been suggested that these properties are regulated by a complex cycle of assembly and disassembly. The exact mechanisms responsible for the underlying molecular processes, however, have not been clarified. Accumulating evidence implicates the cytolinker plectin in various aspects of the keratin cycle, i.e., by acting as a stabilizing anchor at hemidesmosomal adhesion sites and the nucleus, by affecting keratin bundling and branching and by linkage of keratins to actin filament and microtubule dynamics. In the present study we tested these hypotheses. To this end, plectin was downregulated by shRNA in vulvar carcinoma-derived A431 cells. As expected, integrin β4- and BPAG-1-positive hemidesmosomal structures were strongly reduced and cytosolic actin stress fibers were increased. In addition, integrins α3 and β1 were reduced. The experiments furthermore showed that loss of plectin led to a reduction in keratin filament branch length but did not alter overall mechanical properties as assessed by indentation analyses using atomic force microscopy and by displacement analyses of cytoplasmic superparamagnetic beads using magnetic tweezers. An increase in keratin movement was observed in plectin-depleted cells as was the case in control cells lacking hemidesmosome-like structures. Yet, keratin turnover was not significantly affected. We conclude that plectin alone is not needed for keratin assembly and disassembly and that other mechanisms exist to guarantee proper keratin cycling under steady state conditions in cultured single cells.
Collapse
Affiliation(s)
- Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Raphaela Pohl
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Andreas Omenzetter
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - Fabian Herb
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | | | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Lena Ramms
- Institute of Complex Systems, Forschungszentrum Jülich, Jülich, Germany
| | - Gloria Fabris
- Institute of Complex Systems, Forschungszentrum Jülich, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, Forschungszentrum Jülich, Jülich, Germany
| | - Rudolf Merkel
- Institute of Complex Systems, Forschungszentrum Jülich, Jülich, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
13
|
Künzli K, Favre B, Chofflon M, Borradori L. One gene but different proteins and diseases: the complexity of dystonin and bullous pemphigoid antigen 1. Exp Dermatol 2015; 25:10-6. [DOI: 10.1111/exd.12877] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Kseniia Künzli
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Bertrand Favre
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Michel Chofflon
- Department of Clinical Neurosciences; Geneva University Hospitals; Geneva Switzerland
| | - Luca Borradori
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| |
Collapse
|
14
|
Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins. Methods Enzymol 2015; 569:117-37. [PMID: 26778556 DOI: 10.1016/bs.mie.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.
Collapse
|
15
|
Gentil BJ, Tibshirani M, Durham HD. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res 2015; 360:609-20. [PMID: 25567110 DOI: 10.1007/s00441-014-2082-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
Abstract
Neurons are extremely polarised cells in which the cytoskeleton, composed of microtubules, microfilaments and neurofilaments, plays a crucial role in maintaining structure and function. Neurofilaments, the 10-nm intermediate filaments of neurons, provide structure and mechanoresistance but also provide a scaffolding for the organization of the nucleus and organelles such as mitochondria and ER. Disruption of neurofilament organization and expression or metabolism of neurofilament proteins is characteristic of certain neurological syndromes including Amyotrophic Lateral Sclerosis, Charcot-Marie-Tooth sensorimotor neuropathies and Giant Axonal Neuropathy. Microfluorometric live imaging techniques have been instrumental in revealing the dynamics of neurofilament assembly and transport and their functions in organizing intracellular organelle networks. The insolubility of neurofilament proteins has limited identifying interactors by conventional biochemical techniques but yeast two-hybrid experiments have revealed new roles for oligomeric, nonfilamentous structures including vesicular trafficking. Although having long half-lives, new evidence points to degradation of subunits by the ubiquitin-proteasome system as a mechanism of normal turnover. Although certain E3-ligases ubiquitinating neurofilament proteins have been identified, the overall process of neurofilament degradation is not well understood. We review these mechanisms of neurofilament homeostasis and abnormalities in motor neuron and peripheral nerve disorders. Much remains to discover about the disruption of processes that leads to their pathological aggregation and accumulation and the relevance to pathogenesis. Understanding these mechanisms is crucial for identifying novel therapeutic strategies.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada,
| | | | | |
Collapse
|
16
|
Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells. Mol Neurobiol 2014; 52:1077-1092. [DOI: 10.1007/s12035-014-8906-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
17
|
Bouameur JE, Favre B, Borradori L. Plakins, a versatile family of cytolinkers: roles in skin integrity and in human diseases. J Invest Dermatol 2013; 134:885-894. [PMID: 24352042 DOI: 10.1038/jid.2013.498] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/16/2013] [Accepted: 10/25/2013] [Indexed: 11/09/2022]
Abstract
The plakin family consists of giant proteins involved in the cross-linking and organization of the cytoskeleton and adhesion complexes. They further modulate several fundamental biological processes, such as cell adhesion, migration, and polarization or signaling pathways. Inherited and acquired defects of plakins in humans and in animal models potentially lead to dramatic manifestations in the skin, striated muscles, and/or nervous system. These observations unequivocally demonstrate the key role of plakins in the maintenance of tissue integrity. Here we review the characteristics of the mammalian plakin members BPAG1 (bullous pemphigoid antigen 1), desmoplakin, plectin, envoplakin, epiplakin, MACF1 (microtubule-actin cross-linking factor 1), and periplakin, highlighting their role in skin homeostasis and diseases.
Collapse
Affiliation(s)
- Jamal-Eddine Bouameur
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bertrand Favre
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| | - Luca Borradori
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Castañón MJ, Walko G, Winter L, Wiche G. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol 2013; 140:33-53. [PMID: 23748243 PMCID: PMC3695321 DOI: 10.1007/s00418-013-1102-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 01/13/2023]
Abstract
Plectin is a large, 500-kDa, intermediate filament (IF)-associated protein. It acts as a cytoskeletal crosslinker and signaling scaffold, affecting mechanical as well as dynamic properties of the cytoskeleton. As a member of the plakin family of cytolinker proteins, plectin has a multidomain structure that is responsible for its vast binding portfolio. It not only binds to all types of IFs, actin filaments and microtubules, but also to transmembrane receptors, proteins of the subplasma membrane protein skeleton, components of the nuclear envelope, and several kinases with known roles in migration, proliferation, and energy metabolism of cells. Due to alternative splicing, plectin is expressed as various isoforms with differing N-terminal heads that dictate their differential subcellular targeting. Through specific interactions with other proteins at their target sites and their ability to bind to all types of IFs, plectin molecules provide strategically located IF anchorage sites within the cytoplasm of cells. In this review, we will present an overview of the structural features and functional properties of plectin and discuss recent progress in defining the role of its isoforms in stress-prone tissues and the implicated diseases, with focus on skin, skeletal muscle, and Schwann cells of peripheral nerve.
Collapse
Affiliation(s)
- Maria J. Castañón
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| | - Gernot Walko
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
- Present Address: Centre for Stem Cells and Regenerative Medicine, King’s College London School of Medicine, 28th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Lilli Winter
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
- Present Address: Institute of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Gerhard Wiche
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
19
|
Kim JS, Lee CH, Su BY, Coulombe PA. Mathematical modeling of the impact of actin and keratin filaments on keratinocyte cell spreading. Biophys J 2013. [PMID: 23199911 DOI: 10.1016/j.bpj.2012.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Keratin intermediate filaments (IFs) form cross-linked arrays to fulfill their structural support function in epithelial cells and tissues subjected to external stress. How the cross-linking of keratin IFs impacts the morphology and differentiation of keratinocytes in the epidermis and related surface epithelia remains an open question. Experimental measurements have established that keratinocyte spreading area is inversely correlated to the extent of keratin IF bundling in two-dimensional culture. In an effort to quantitatively explain this relationship, we developed a mathematical model in which isotropic cell spreading is considered as a first approximation. Relevant physical properties such as actin protrusion, adhesion events, and the corresponding response of lamellum formation at the cell periphery are included in this model. Through optimization with experimental data that relate time-dependent changes in keratinocyte surface area during spreading, our simulation results confirm the notion that the organization and mechanical properties of cross-linked keratin filaments affect cell spreading; in addition, our results provide details of the kinetics of this effect. These in silico findings provide further support for the notion that differentiation-related changes in the density and intracellular organization of keratin IFs affect tissue architecture in epidermis and related stratified epithelia.
Collapse
Affiliation(s)
- Jin Seob Kim
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
20
|
Pilat U, Dechat T, Bertrand AT, Woisetschläger N, Gotic I, Spilka R, Biadasiewicz K, Bonne G, Foisner R. The muscle dystrophy-causing ΔK32 lamin A/C mutant does not impair the functions of the nucleoplasmic lamin-A/C-LAP2α complex in mice. J Cell Sci 2013; 126:1753-62. [PMID: 23444379 DOI: 10.1242/jcs.115246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A-type lamins are components of the nuclear lamina, a filamentous network of the nuclear envelope in metazoans that supports nuclear architecture. In addition, lamin A/C can also be found in the interior of the nucleus. This nucleoplasmic lamin pool is soluble in physiological buffer, depends on the presence of the lamin-binding protein, lamina-associated polypeptide 2α (LAP2α) and regulates cell cycle progression in tissue progenitor cells. ΔK32 mutations in A-type lamins cause severe congenital muscle disease in humans and a muscle maturation defect in Lmna(ΔK32/ΔK32) knock-in mice. Mutant ΔK32 lamin A/C protein levels were reduced and all mutant lamin A/C was soluble and mislocalized to the nucleoplasm. To test the role of LAP2α in nucleoplasmic ΔK32 lamin A/C regulation and functions, we deleted LAP2α in Lmna(ΔK32/ΔK32) knock-in mice. In double mutant mice the Lmna(ΔK32/ΔK32)-linked muscle defect was unaffected. LAP2α interacted with mutant lamin A/C, but unlike wild-type lamin A/C, the intranuclear localization of ΔK32 lamin A/C was not affected by loss of LAP2α. In contrast, loss of LAP2α in Lmna(ΔK32/ΔK32) mice impaired the regulation of tissue progenitor cells as in lamin A/C wild-type animals. These data indicate that a LAP2α-independent assembly defect of ΔK32 lamin A/C is the predominant cause of the mouse pathology, whereas the LAP2α-linked functions of nucleoplasmic lamin A/C in the regulation of tissue progenitor cells are not affected in Lmna(ΔK32/ΔK32) mice.
Collapse
Affiliation(s)
- Ursula Pilat
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Winter L, Wiche G. The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:77-93. [PMID: 22864774 DOI: 10.1007/s00401-012-1026-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/12/2012] [Accepted: 07/23/2012] [Indexed: 12/20/2022]
Abstract
Plectin, a giant multifunctional cytolinker protein, plays a crucial role in stabilizing and orchestrating intermediate filament networks in cells. Mutations in the human plectin gene result in multiple diseases manifesting with muscular dystrophy, skin blistering, and signs of neuropathy. The most common disease caused by plectin deficiency is epidermolysis bullosa simplex (EBS)-MD, a rare autosomal-recessive skin blistering disorder with late-onset muscular dystrophy. EBS-MD patients and plectin-deficient mice display pathologic desmin-positive protein aggregates, degenerated myofibrils, and mitochondrial abnormalities, the hallmarks of myofibrillar myopathies. In addition to EBS-MD, plectin mutations have been shown to cause EBS-MD with a myasthenic syndrome, limb-girdle muscular dystrophy type 2Q, EBS with pyloric atresia, and EBS-Ogna. This review focuses on clinical and pathological manifestations of these plectinopathies. It addresses especially plectin's role in skeletal muscle, where a loss of muscle fiber integrity and profound changes of myofiber cytoarchitecture are observed in its absence. Furthermore, the highly complex genetic and molecular structure of plectin is discussed; a high number of differentially spliced exons give rise to a variety of different isoforms, which fulfill distinct functions in different cell types and tissues. Plectin's abilities to act as a dynamic organizer of intermediate filament networks and to interact with a multitude of different interaction partners are the basis for its function as a scaffolding platform for proteins involved in signaling. Finally, the article addresses a series of genetically manipulated mouse lines that were generated to serve as powerful models to study functional and molecular consequences of plectin gene defects.
Collapse
Affiliation(s)
- Lilli Winter
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | |
Collapse
|
22
|
Boyd SE, Nair B, Ng SW, Keith JM, Orian JM. Computational characterization of 3' splice variants in the GFAP isoform family. PLoS One 2012; 7:e33565. [PMID: 22479412 PMCID: PMC3316583 DOI: 10.1371/journal.pone.0033565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/16/2012] [Indexed: 12/26/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein specific to central nervous system (CNS) astrocytes. It has been the subject of intense interest due to its association with neurodegenerative diseases, and because of growing evidence that IF proteins not only modulate cellular structure, but also cellular function. Moreover, GFAP has a family of splicing isoforms apparently more complex than that of other CNS IF proteins, consistent with it possessing a range of functional and structural roles. The gene consists of 9 exons, and to date all isoforms associated with 3' end splicing have been identified from modifications within intron 7, resulting in the generation of exon 7a (GFAPδ/ε) and 7b (GFAPκ). To better understand the nature and functional significance of variation in this region, we used a Bayesian multiple change-point approach to identify conserved regions. This is the first successful application of this method to a single gene--it has previously only been used in whole-genome analyses. We identified several highly or moderately conserved regions throughout the intron 7/7a/7b regions, including untranslated regions and regulatory features, consistent with the biology of GFAP. Several putative unconfirmed features were also identified, including a possible new isoform. We then integrated multiple computational analyses on both the DNA and protein sequences from the mouse, rat and human, showing that the major isoform, GFAPα, has highly conserved structure and features across the three species, whereas the minor isoforms GFAPδ/ε and GFAPκ have low conservation of structure and features at the distal 3' end, both relative to each other and relative to GFAPα. The overall picture suggests distinct and tightly regulated functions for the 3' end isoforms, consistent with complex astrocyte biology. The results illustrate a computational approach for characterising splicing isoform families, using both DNA and protein sequences.
Collapse
Affiliation(s)
- Sarah E. Boyd
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | - Betina Nair
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | - Sze Woei Ng
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | - Jonathan M. Keith
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
23
|
Ortega E, Buey RM, Sonnenberg A, de Pereda JM. The structure of the plakin domain of plectin reveals a non-canonical SH3 domain interacting with its fourth spectrin repeat. J Biol Chem 2011; 286:12429-38. [PMID: 21288893 PMCID: PMC3069446 DOI: 10.1074/jbc.m110.197467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/29/2010] [Indexed: 11/06/2022] Open
Abstract
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.
Collapse
Affiliation(s)
- Esther Ortega
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| | - Rubén M. Buey
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
- the Laboratory of Biomolecular Research, the Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland, and
| | - Arnoud Sonnenberg
- the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M. de Pereda
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| |
Collapse
|
24
|
Favre B, Schneider Y, Lingasamy P, Bouameur JE, Begré N, Gontier Y, Steiner-Champliaud MF, Frias MA, Borradori L, Fontao L. Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin. Eur J Cell Biol 2011; 90:390-400. [PMID: 21296452 DOI: 10.1016/j.ejcb.2010.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/16/2010] [Accepted: 11/22/2010] [Indexed: 12/26/2022] Open
Abstract
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.
Collapse
Affiliation(s)
- Bertrand Favre
- Department of Dermatology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wiche G, Winter L. Plectin isoforms as organizers of intermediate filament cytoarchitecture. BIOARCHITECTURE 2011; 1:14-20. [PMID: 21866256 PMCID: PMC3158638 DOI: 10.4161/bioa.1.1.14630] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 12/29/2022]
Abstract
Intermediate filaments (IFs) form cytoplamic and nuclear networks that provide cells with mechanical strength. Perturbation of this structural support causes cell and tissue fragility and accounts for a number of human genetic diseases. In recent years, important additional roles, nonmechanical in nature, were ascribed to IFs, including regulation of signaling pathways that control survival and growth of the cells, and vectorial processes such as protein targeting in polarized cellular settings. The cytolinker protein plectin anchors IF networks to junctional complexes, the nuclear envelope and cytoplasmic organelles and it mediates their cross talk with the actin and tubulin cytoskeleton. These functions empower plectin to wield significant influence over IF network cytoarchitecture. Moreover, the unusual diversity of plectin isoforms with different N termini and a common IF-binding (C-terminal) domain enables these isoforms to specifically associate with and thereby bridge IF networks to distinct cellular structures. Here we review the evidence for IF cytoarchitecture being controlled by specific plectin isoforms in different cell systems, including fibroblasts, endothelial cells, lens fibers, lymphocytes, myocytes, keratinocytes, neurons and astrocytes, and discuss what impact the absence of these isoforms has on IF cytoarchitecture-dependent cellular functions.
Collapse
Affiliation(s)
- Gerhard Wiche
- Department of Biochemistry and Cell Biology; Max F. Perutz Laboratories; University of Vienna; Vienna, Austria
| | | |
Collapse
|
26
|
Göb E, Schmitt J, Benavente R, Alsheimer M. Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS One 2010; 5:e12072. [PMID: 20711465 PMCID: PMC2919408 DOI: 10.1371/journal.pone.0012072] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND LINC complexes are nuclear envelope bridging protein structures formed by interaction of SUN and KASH proteins. They physically connect the nucleus with the peripheral cytoskeleton and are critically involved in a variety of dynamic processes, such as nuclear anchorage, movement and positioning and meiotic chromosome dynamics. Moreover, they are shown to be essential for maintaining nuclear shape. FINDINGS Based on detailed expression analysis and biochemical approaches, we show here that during mouse sperm development, a terminal cell differentiation process characterized by profound morphogenic restructuring, two novel distinctive LINC complexes are established. They consist either of spermiogenesis-specific Sun3 and Nesprin1 or Sun1eta, a novel non-nuclear Sun1 isoform, and Nesprin3. We could find that these two LINC complexes specifically polarize to opposite spermatid poles likely linking to sperm-specific cytoskeletal structures. Although, as shown in co-transfection/immunoprecipitation experiments, SUN proteins appear to arbitrarily interact with various KASH partners, our study demonstrates that they actually are able to confine their binding to form distinct LINC complexes. CONCLUSIONS Formation of the mammalian sperm head involves assembly and different polarization of two novel spermiogenesis-specific LINC complexes. Together, our findings suggest that theses LINC complexes connect the differentiating spermatid nucleus to surrounding cytoskeletal structures to enable its well-directed shaping and elongation, which in turn is a critical parameter for male fertility.
Collapse
Affiliation(s)
- Eva Göb
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Johannes Schmitt
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Rezniczek GA, Walko G, Wiche G. Plectin gene defects lead to various forms of epidermolysis bullosa simplex. Dermatol Clin 2010; 28:33-41. [PMID: 19945614 DOI: 10.1016/j.det.2009.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plectin is an important organizer of the keratin filament cytoskeleton in basal keratinocytes. It is essential for anchoring these filaments to the extracellular matrix via hemidesmosomal integrins. Loss of plectin or incorrect function of the protein due to mutations in its gene can lead to various forms of the skin blistering disease, epidermolysis bullosa simplex. Severity and subtype of the disease is dependent on the specific mutation and can be associated with (late-onset) muscular dystrophy or pyloric atresia. Mouse models mimicking the human phenotypes allow detailed study of plectin function.
Collapse
Affiliation(s)
- Günther A Rezniczek
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | | | | |
Collapse
|
28
|
Fuchs P, Zörer M, Reipert S, Rezniczek GA, Propst F, Walko G, Fischer I, Bauer J, Leschnik MW, Lüscher B, Thalhammer JG, Lassmann H, Wiche G. Targeted inactivation of a developmentally regulated neural plectin isoform (plectin 1c) in mice leads to reduced motor nerve conduction velocity. J Biol Chem 2009; 284:26502-9. [PMID: 19625254 PMCID: PMC2785338 DOI: 10.1074/jbc.m109.018150] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/08/2009] [Indexed: 12/27/2022] Open
Abstract
Cytolinker proteins stabilize cells mechanically, regulate cytoskeleton dynamics, and provide scaffolds for signaling molecules. For plectin, the prototype of these proteins, an unusual diversity of isoforms has been reported, which show distinct expression patterns, subcellular localizations, and functions. Plectin has been shown to have important functions in skin and muscle, but little is known about its role in neural cells. To address this issue, we generated two knock-out mouse lines, one which was selectively lacking plectin 1c (P1c), the major isoform expressed in neural cells, and another in which plectin was conditionally deleted in neuronal precursor cells. Using isoform-specific antibodies, we found P1c to be expressed late in development and to associate with postsynaptic dendrites of central nervous system neurons, motorneurons of spinal cord, sciatic nerve axons, and Schwann cells. Motor nerve conduction velocity was found significantly reduced in sciatic nerve from P1c-deficient as well as from conditional knock-out mice. This defect was traceable to an increased number of motor nerve fibers with small cross-sectional areas; the thicknesses of axons and of myelin sheaths were unaffected. This is the first report demonstrating an important role of plectin in a major nerve function.
Collapse
Affiliation(s)
- Peter Fuchs
- From the Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Michael Zörer
- From the Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Siegfried Reipert
- From the Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Günther A. Rezniczek
- From the Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Friedrich Propst
- From the Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Gernot Walko
- From the Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Irmgard Fischer
- From the Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jan Bauer
- the Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael W. Leschnik
- the Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, 1210 Vienna, Austria, and
| | - Bernhard Lüscher
- the Division of Biochemistry and Molecular Biology, Medical Faculty of the Rheinisch-Westfaelische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Johann G. Thalhammer
- the Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, 1210 Vienna, Austria, and
| | - Hans Lassmann
- the Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerhard Wiche
- From the Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
29
|
Gerashchenko MV, Chernoivanenko IS, Moldaver MV, Minin AA. Dynein is a motor for nuclear rotation while vimentin IFs is a "brake". Cell Biol Int 2009; 33:1057-64. [PMID: 19560548 DOI: 10.1016/j.cellbi.2009.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/22/2009] [Accepted: 06/03/2009] [Indexed: 11/24/2022]
Abstract
The positioning of the nucleus is achieved by two interconnected processes, anchoring and migration, both of which are controlled by cytoskeleton structures. Rotation is a special type of nuclear motility in many cell types, but its significance remains unclear. We used a vimentin-null cell line, MFT-16, which shows extensive nuclear rotation to study the phenomenon in detail. By selective disruption of cytoskeletal structures and video-microscopic analysis, nuclear rotation was a microtubule-dependent process that F-actin partially impedes. The dynein-dynactin complex is responsible and inhibiting this motor by expression of a dominant negative mutant of its component P-150 completely stops it. Nuclear rotation is powered by dynein associated with the nuclear envelope along stationary microtubules, centrosomes remaining immobile. We confirmed that vimentin IFs inhibit nuclear rotation, and variant proteins of the mutated wild type gene for vimentin that lacked considerable fragments of the N- and C-terminal domains restored nuclear anchoring. Immunochemical analysis showed that these mutated IFs also bound plectin, arguing for a key role of this cytolinker protein in nuclear anchoring. It is proposed that this versatile machinery guarantees not only rotation and the correct location of a nucleus, but also its orientation in a cell.
Collapse
Affiliation(s)
- Maxim V Gerashchenko
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | | | | | | |
Collapse
|
30
|
MELLERIO J, SMITH F, McMILLAN J, McLEAN W, McGRATH J, MORRISON G, TIERNEY P, ALBERT D, WICHE G, LEIGH I, GEDDES J, LANE E, UITTO J, EADY R. Recessive epidermolysis bullosa simplex associated with plectin mutations: infantile respiratory complications in two unrelated cases. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1997.19832064.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Hijikata T, Nakamura A, Isokawa K, Imamura M, Yuasa K, Ishikawa R, Kohama K, Takeda S, Yorifuji H. Plectin 1 links intermediate filaments to costameric sarcolemma through β-synemin, α-dystrobrevin and actin. J Cell Sci 2008; 121:2062-74. [DOI: 10.1242/jcs.021634] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In skeletal muscles, the sarcolemma is possibly stabilized and protected against contraction-imposed stress by intermediate filaments (IFs) tethered to costameric sarcolemma. Although there is emerging evidence that plectin links IFs to costameres through dystrophin-glycoprotein complexes (DGC), the molecular organization from plectin to costameres still remains unclear. Here, we show that plectin 1, a plectin isoform expressed in skeletal muscle, can interact with β-synemin, actin and a DGC component, α-dystrobrevin, in vitro. Ultrastructurally, β-synemin molecules appear to be incorporated into costameric dense plaques, where they seem to serve as actin-associated proteins rather than IF proteins. In fact, they can bind actin and α-dystrobrevin in vitro. Moreover, in vivo immunoprecipitation analyses demonstrated that β-synemin- and plectin-immune complexes from lysates of muscle light microsomes contained α-dystrobrevin, dystrophin, nonmuscle actin, metavinculin, plectin and β-synemin. These findings suggest a model in which plectin 1 interacts with DGC and integrin complexes directly, or indirectly through nonmuscle actin and β-synemin within costameres. The DGC and integrin complexes would cooperate to stabilize and fortify the sarcolemma by linking the basement membrane to IFs through plectin 1, β-synemin and actin. Besides, the two complexes, together with plectin and IFs, might have their own functions as platforms for distinct signal transduction.
Collapse
Affiliation(s)
- Takao Hijikata
- Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Akio Nakamura
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Katsutoshi Yuasa
- Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Ryoki Ishikawa
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Kazuhiro Kohama
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Shinichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Hiroshi Yorifuji
- Department of Anatomy, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| |
Collapse
|
32
|
Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: role in contraceptive development. Pharmacol Rev 2008; 60:146-80. [PMID: 18483144 PMCID: PMC3023124 DOI: 10.1124/pr.107.07105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential "druggable" targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, The Mary M Wohlford Laboratory for Male Contraceptive Research, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
33
|
Ketema M, Wilhelmsen K, Kuikman I, Janssen H, Hodzic D, Sonnenberg A. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J Cell Sci 2008; 120:3384-94. [PMID: 17881500 DOI: 10.1242/jcs.014191] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer nuclear membrane proteins nesprin-1 and nesprin-2 are retained at the nuclear envelope through an interaction of their klarsicht/ANC-1/syne homology (KASH) domain with Sun proteins present at the inner nuclear membrane. We investigated the requirements for the localization of nesprin-3alpha at the outer nuclear membrane and show that the mechanism by which its localization is mediated is similar to that reported for the localization of nesprin-1 and nesprin-2: the last four amino acids of the nesprin-3alpha KASH domain are essential for its interaction with Sun1 and Sun2. Moreover, deletion of these amino acids or knockdown of the Sun proteins results in a redistribution of nesprin-3alpha away from the nuclear envelope and into the endoplasmic reticulum (ER), where it becomes colocalized with the cytoskeletal crosslinker protein plectin. Both nesprin-3alpha and plectin can form dimers, and dimerization of plectin is required for its interaction with nesprin-3alpha at the nuclear envelope, which is mediated by its N-terminal actin-binding domain. Additionally, overexpression of the plectin actin-binding domain stabilizes the actin cytoskeleton and prevents the recruitment of endogenous plectin to the nuclear envelope. Our studies support a model in which the actin cytoskeleton influences the binding of plectin dimers to dimers of nesprin-3alpha, which in turn are retained at the nuclear envelope through an interaction with Sun proteins.
Collapse
Affiliation(s)
- Mirjam Ketema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Kreplak L, Richter K, Aebi U, Herrmann H. Chapter 15 Electron Microscopy of Intermediate Filaments: Teaming up with Atomic Force and Confocal Laser Scanning Microscopy. Methods Cell Biol 2008; 88:273-97. [DOI: 10.1016/s0091-679x(08)00415-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Muscular Integrity—A Matter of Interlinking Distinct Structures via Plectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:165-75. [DOI: 10.1007/978-0-387-84847-1_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Ding Y, Zhang L, Goodwin JS, Wang Z, Liu B, Zhang J, Fan GH. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection. Exp Cell Res 2007; 314:590-602. [PMID: 18155192 DOI: 10.1016/j.yexcr.2007.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 11/24/2022]
Abstract
The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection.
Collapse
Affiliation(s)
- Yun Ding
- Department of Veterans Affairs, Nashville, TN 37212, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Perrot R, Lonchampt P, Peterson AC, Eyer J. Axonal neurofilaments control multiple fiber properties but do not influence structure or spacing of nodes of Ranvier. J Neurosci 2007; 27:9573-84. [PMID: 17804618 PMCID: PMC6672964 DOI: 10.1523/jneurosci.1224-07.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the vertebrate nervous system, axon calibers correlate positively with myelin sheath dimensions and electrophysiological parameters including action potential amplitude and conduction velocity. Neurofilaments, a prominent component of the neuronal cytoskeleton, are required by axons to support their normal radial growth. To distinguish between fiber features that arise in response to absolute axon caliber and those that are under autonomous control, we investigated transgenic mice in which neurofilaments are sequestered in neuronal cell bodies. The neurofilament deficient axons in such mice achieve mature calibers only 50% of normal and have altered conduction properties. We show here that this primary axonal defect also induces multiple changes in myelin sheath composition and radial dimensions. Remarkably, other fundamental fiber features, including internodal spacing and the architecture and composition of nodes of Ranvier, remain unaltered. Thus, many fiber characteristics are controlled through mechanisms operating independently of absolute axon caliber and the neurofilament cytoskeleton.
Collapse
Affiliation(s)
- Rodolphe Perrot
- Laboratoire de Neurobiologie et Transgenese, Unité Propre de Recherche de l'Enseignement Supérieur-Equipe d'Accueil 3143, Institut National de la Santé et de la Recherche Médicale, Bâtiment Monteclair, Centre Hospitalier Universitaire, Angers, 49033, France, and
| | - Pierre Lonchampt
- Laboratoire de Neurobiologie et Transgenese, Unité Propre de Recherche de l'Enseignement Supérieur-Equipe d'Accueil 3143, Institut National de la Santé et de la Recherche Médicale, Bâtiment Monteclair, Centre Hospitalier Universitaire, Angers, 49033, France, and
| | - Alan C. Peterson
- Molecular Oncology Group, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada H3A1A1
| | - Joël Eyer
- Laboratoire de Neurobiologie et Transgenese, Unité Propre de Recherche de l'Enseignement Supérieur-Equipe d'Accueil 3143, Institut National de la Santé et de la Recherche Médicale, Bâtiment Monteclair, Centre Hospitalier Universitaire, Angers, 49033, France, and
| |
Collapse
|
38
|
Lapouge K, Fontao L, Champliaud MF, Jaunin F, Frias MA, Favre B, Paulin D, Green KJ, Borradori L. New insights into the molecular basis of desmoplakinand desmin-related cardiomyopathies. J Cell Sci 2006; 119:4974-85. [PMID: 17105773 DOI: 10.1242/jcs.03255] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Desmosomes are intercellular adhesive complexes that anchor the intermediate filament cytoskeleton to the cell membrane in epithelia and cardiac muscle cells. The desmosomal component desmoplakin plays a key role in tethering various intermediate filament networks through its C-terminal plakin repeat domain. To gain better insight into the cytoskeletal organization of cardiomyocytes, we investigated the association of desmoplakin with desmin by cell transfection, yeast two-hybrid, and/or in vitro binding assays. The results indicate that the association of desmoplakin with desmin depends on sequences within the linker region and C-terminal extremity of desmoplakin, where the B and C subdomains contribute to efficient binding; a potentially phosphorylatable serine residue in the C-terminal extremity of desmoplakin affects its association with desmin; the interaction of desmoplakin with non-filamentous desmin requires sequences contained within the desmin C-terminal rod portion and tail domain in yeast, whereas in in vitro binding studies the desmin tail is dispensable for association; and mutations in either the C-terminus of desmoplakin or the desmin tail linked to inherited cardiomyopathy seem to impair desmoplakindesmin interaction. These studies increase our understanding of desmoplakin-intermediate filament interactions, which are important for maintenance of cytoarchitecture in cardiomyocytes, and give new insights into the molecular basis of desmoplakin- and desmin-related human diseases.
Collapse
Affiliation(s)
- Karine Lapouge
- Clinic of Dermatology, University Hospital, Geneva, Rue Micheli-du-Crest 14, 1211-Geneva 14, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Osmanagic-Myers S, Gregor M, Walko G, Burgstaller G, Reipert S, Wiche G. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. ACTA ACUST UNITED AC 2006; 174:557-68. [PMID: 16908671 PMCID: PMC2064261 DOI: 10.1083/jcb.200605172] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plectin is a major intermediate filament (IF)-based cytolinker protein that stabilizes cells and tissues mechanically, regulates actin filament dynamics, and serves as a scaffolding platform for signaling molecules. In this study, we show that plectin deficiency is a cause of aberrant keratin cytoskeleton organization caused by a lack of orthogonal IF cross-linking. Keratin networks in plectin-deficient cells were more susceptible to osmotic shock-induced retraction from peripheral areas, and their okadaic acid-induced disruption (paralleled by stress-activated MAP kinase p38 activation) proceeded faster. Basal activities of the MAP kinase Erk1/2 and of the membrane-associated upstream protein kinases c-Src and PKCdelta were significantly elevated, and increased migration rates, as assessed by in vitro wound-closure assays and time-lapse microscopy, were observed. Forced expression of RACK1, which is the plectin-binding receptor protein for activated PKCdelta, in wild-type keratinocytes elevated their migration potential close to that of plectin-null cells. These data establish a link between cytolinker-controlled cytoarchitecture/scaffolding functions of keratin IFs and specific MAP kinase cascades mediating distinct cellular responses.
Collapse
Affiliation(s)
- Selma Osmanagic-Myers
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Steinboeck F, Kristufek D. Identification of the cytolinker protein plectin in neuronal cells - expression of a rodless isoform in neurons of the rat superior cervical ganglion. Cell Mol Neurobiol 2005; 25:1151-69. [PMID: 16392043 PMCID: PMC11529549 DOI: 10.1007/s10571-005-8503-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 08/12/2004] [Indexed: 10/25/2022]
Abstract
Plectin, a large (> 500 kDa) dumbbell-shaped cytolinker protein plays an important role in the organization of the cytoskeletal network and the maintenance of cell integrity in a wide variety of tissues and cell types. Earlier experiments revealed the presence of plectin in the central nervous system, whereas the expression in the peripheral nervous system remained unclear. Our results obtained with reverse transcriptase-PCR (RT-PCR) provide evidence that plectin is expressed in structures of the rat peripheral nervous system. In addition to well-characterized plectin transcripts we were able to reveal novel splicing variants affecting the region coding for the central rod domain. Previous studies report a high, but tissue-specific variability of the N-terminal domain of plectin due to alternatively spliced first coding exons and the optionally spliced small exons 2 alpha and 3 alpha. We demonstrate for the first time, using single-cell RT-PCR and immunocytochemistry, that plectin is expressed in neurons of the rat superior cervical ganglion (SCG). Plectin transcripts of single SCG neurons, starting with exon 1c as the first coding exon, contain the optionally spliced exon 2 alpha but lack exon 31. These data therefore suggest that plectin is expressed in rat SCG neurons as a rodless isoform with the molecular mass of 390 kDa.
Collapse
Affiliation(s)
- Ferdinand Steinboeck
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
41
|
Fuchs P, Spazierer D, Wiche G. Plectin rodless isoform expression and its detection in mouse brain. Cell Mol Neurobiol 2005; 25:1141-50. [PMID: 16392042 PMCID: PMC11529570 DOI: 10.1007/s10571-005-7826-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/08/2005] [Indexed: 11/27/2022]
Abstract
The widely expressed cytolinker protein plectin shows extensive isoform diversity both at the N-terminus and in the central part of the molecule. Judged on mRNA data, plectin variants lacking the central rod domain are expressed at a approximately 20-fold lower level than full-length proteins and their detection on the protein level can be difficult. Here we present data on the expression of plectin rodless isoforms in mouse brain and in rat glioma C6 cells on RNA and protein levels. Our data indicate that among the rodless variants expressed in neuronal tissues, those starting with exon 1c (plectin 1c) seem to be the most prominent ones. In addition, we show that similar to other monoclonal antibodies reported in the literature, the widely used mAb 7A8 recognizes an epitope within plectin's rod domain and therefore is unsuited to detect rodless variants of plectin.
Collapse
Affiliation(s)
- Peter Fuchs
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Daniel Spazierer
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Gerhard Wiche
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030, Vienna, Austria
| |
Collapse
|
42
|
Mücke N, Wedig T, Bürer A, Marekov LN, Steinert PM, Langowski J, Aebi U, Herrmann H. Molecular and biophysical characterization of assembly-starter units of human vimentin. J Mol Biol 2004; 340:97-114. [PMID: 15184025 DOI: 10.1016/j.jmb.2004.04.039] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/06/2004] [Accepted: 04/20/2004] [Indexed: 11/23/2022]
Abstract
We have developed an assembly protocol for the intermediate filament (IF) protein vimentin based on a phosphate buffer system, which enables the dynamic formation of authentic IFs. The advantage of this physiological buffer is that analysis of the subunit interactions by chemical cross-linking of internal lysine residues becomes feasible. By this system, we have analyzed the potential interactions of the coiled-coil rod domains with one another, which are assumed to make a crucial contribution to IF formation and stability. We show that headless vimentin, which dimerizes under low salt conditions, associates into tetramers of the A(22)-type configuration under assembly conditions, indicating that one of the effects of increasing the ionic strength is to favor coil 2-coil 2 interactions. Furthermore, in order to obtain insight into the molecular interactions that occur during the first phase of assembly of full-length vimentin, we employed a temperature-sensitive variant of human vimentin, which is arrested at the "unit-length filament" (ULF) state at room temperature, but starts to elongate upon raising the temperature to 37 degrees C. Most importantly, we demonstrate by cross-linking analysis that ULF formation predominantly involves A(11)-type dimer-dimer interactions. The presence of A(22) and A(12) cross-linking products in mature IFs, however, indicates that major rearrangements do occur during the longitudinal annealing and radial compaction steps of IF assembly.
Collapse
Affiliation(s)
- Norbert Mücke
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kalinin AE, Idler WW, Marekov LN, McPhie P, Bowers B, Steinert PM, Steven AC. Co-assembly of Envoplakin and Periplakin into Oligomers and Ca2+-dependent Vesicle Binding. J Biol Chem 2004; 279:22773-80. [PMID: 15033990 DOI: 10.1074/jbc.m313660200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plakin family members envoplakin and periplakin have been shown to be part of the cornified cell envelope in terminally differentiating stratified squamous epithelia. In the present study, purified recombinant human envoplakin and periplakin were used to investigate their properties and interactions. We found that envoplakin was insoluble at physiological conditions in vitro, and co-assembly with periplakin was required for its solubility. Envoplakin and periplakin formed soluble complexes with equimolar stoichiometry. Chemical cross-linking revealed that the major soluble form of all periplakin constructs and of envoplakin/periplakin rod domains was a dimer, although co-assembly of the full-length proteins resulted in formation of higher order oligomers. Electron microscopy of rotary-shadowed periplakin demonstrated thin flexible molecules with an average contour length of 88 nm for the rod-plus-tail fragment, and immunolabeling EM confirmed the molecule as a parallel, in-register, dimer. Both periplakin and envoplakin/periplakin oligomers were able to bind synthetic lipid vesicles whose composition mimicked the cytoplasmic side of the plasma membrane of eukaryotic cells. This binding was dependent on anionic phospholipids and Ca(2+). These findings raise the possibility that envoplakin and periplakin bind to the plasma membrane upon elevation of intracellular [Ca(2+)] in differentiating keratinocytes, where they serve as a scaffold for cornified cell envelope assembly.
Collapse
Affiliation(s)
- Andrey E Kalinin
- Laboratory of Skin Biology and Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Koster J, Borradori L, Sonnenberg A. Hemidesmosomes: molecular organization and their importance for cell adhesion and disease. Handb Exp Pharmacol 2004:243-280. [PMID: 20455096 DOI: 10.1007/978-3-540-68170-0_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the skin, basal epithelial cells constantly divide to renew the epidermis. The newly formed epithelial cells then differentiate in a process called keratinization, ultimately leading to the death of these cells and a pile-up of cell material containing vast amounts of keratins. The basal keratinocytes in skin are attached to their underlying basement membrane via specialized adhesion complexes termed hemidesmosomes (HDs). These complexes ascertain stable adhesion of the epidermis to the dermis, and mutations in components of these complexes often result in tissue fragility and blistering of the skin. In this review, we will describe the various hemidesmosomal proteins in detail as well as, briefly, the protein families to which they belong. Specifically, we will report the protein-protein interactions involved in the assembly of hemidesmosomes and their molecular organization. Some signaling pathways involving primarily the alpha6beta4 integrin will be discussed, since they appear to profoundly modulate the assembly and function of hemidesmosomes. Furthermore, the importance of these hemidesmosomal components for the maintenance of tissue homeostasis and their involvement in various clinical disorders will be emphasized. Finally, we will present a model for the assembly of HDs, based on our present knowledge.
Collapse
Affiliation(s)
- J Koster
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
45
|
|
46
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
47
|
Werrlein RJ, Madren-Whalley JS. Multiphoton microscopy: an optical approach to understanding and resolving sulfur mustard lesions. JOURNAL OF BIOMEDICAL OPTICS 2003; 8:396-409. [PMID: 12880345 DOI: 10.1117/1.1584687] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sulfur mustard (SM; 2,2(')-dichloroethyl sulfide) is a percutaneous alkylating agent first used as a chemical weapon at Ypres, Belgium, in World War I. Despite its well-documented history, the primary lesions effecting dermal-epidermal separation and latent onset of incapacitating blisters remain poorly understood. By immunofluorescent imaging of human epidermal keratinocytes (HEK) and epidermal tissues exposed to SM (400 microM for 5 min), we have amassed unequivocal evidence that SM disrupts adhesion complex molecules, which are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Images of keratin 14 (K14) in control cells showed tentlike filament networks linking the HEK's basolateral anchoring sites to the dorsal surface of its nuclei. Images from 6-h postexposure profiles revealed early disruption (</=1 h) and progressive collapse of the K14 cytoskeleton. Collapse involved focal erosions, loss of functional asymmetry, and displacement of nuclei beneath a mat of jumbled filaments. In complementary studies, 1-h images showed statistically significant (p<0.01) decreases of 25 to 30% in emissions from labeled alpha(6)beta(4) integrin and laminin 5, plus disruption of their receptor-ligand organization. Results indicate that SM alkylation destabilizes dermal-epidermal attachments and potentiates vesication by disrupting adhesion complex molecules and associated signaling mechanisms required for their maintenance and repair.
Collapse
Affiliation(s)
- Robert J Werrlein
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010-5400, USA.
| | | |
Collapse
|
48
|
García-Alvarez B, Bobkov A, Sonnenberg A, de Pereda JM. Structural and functional analysis of the actin binding domain of plectin suggests alternative mechanisms for binding to F-actin and integrin beta4. Structure 2003; 11:615-25. [PMID: 12791251 DOI: 10.1016/s0969-2126(03)00090-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plectin is a widely expressed cytoskeletal linker. Here we report the crystal structure of the actin binding domain of plectin and show that this region is sufficient for interaction with F-actin or the cytoplasmic region of integrin alpha6beta4. The structure is formed by two calponin homology domains arranged in a closed conformation. We show that binding to F-actin induces a conformational change in plectin that is inhibited by an engineered interdomain disulfide bridge. A two-step induced fit mechanism involving binding and subsequent domain rearrangement is proposed. In contrast, interaction with integrin alpha6beta4 occurs in a closed conformation. Competitive binding of plectin to F-actin and integrin alpha6beta4 may rely on the observed alternative binding mechanisms and involve both allosteric and steric factors.
Collapse
Affiliation(s)
- Begoña García-Alvarez
- Program on Cell Adhesion, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
49
|
Fontao L, Favre B, Riou S, Geerts D, Jaunin F, Saurat JH, Green KJ, Sonnenberg A, Borradori L. Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus. Mol Biol Cell 2003; 14:1978-92. [PMID: 12802069 PMCID: PMC165091 DOI: 10.1091/mbc.e02-08-0548] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Revised: 12/11/2002] [Accepted: 12/27/2002] [Indexed: 01/06/2023] Open
Abstract
The bullous pemphigoid antigen 1 (BP230) and desmoplakin (DP) are members of the plakin protein family of cytolinkers. Despite their homology, their COOH termini selectively bind distinct intermediate filaments (IFs). We studied sequences within their COOH termini required for their interaction with the epidermal keratins K5/K14, the simple epithelial keratins K8/K18, and type III IF vimentin by yeast three-hybrid, cell transfection, and overlay assays. The results indicate that BP230 interacts with K5/K14 but not with K8/K18 or vimentin via a region encompassing both the B and C subdomains and the COOH extremity, including a COOH-terminal eight-amino-acid stretch. In contrast, the C subdomain with the COOH-terminal extremity of DP interacts with K5/K14 and K8/K18, and its linker region is able to associate with K8/K18 and vimentin. Furthermore, the potential of DP to interact with IF proteins in yeast seems to be regulated by phosphorylation of Ser 2849 within its COOH terminus. Strikingly, BP230 and DP interacted with cytokeratins only when both type I and type II keratins were present. The head and tail domains of K5/K14 keratins were dispensable for their interaction with BP230 or DP. On the basis of our findings, we postulate that (1) the binding specificity of plakins for various IF proteins depends on their linker region between the highly homologous B and C subdomains and their COOH extremity and (2) the association of DP and BP230 with both epidermal and simple keratins is critically affected by the tertiary structure induced by heterodimerization and involves recognition sites located primarily in the rod domain of these keratins.
Collapse
Affiliation(s)
- Lionel Fontao
- Department of Dermatology, University Hospital, Geneva, Switzerland CH-1211
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hijikata T, Murakami T, Ishikawa H, Yorifuji H. Plectin tethers desmin intermediate filaments onto subsarcolemmal dense plaques containing dystrophin and vinculin. Histochem Cell Biol 2003; 119:109-23. [PMID: 12610730 DOI: 10.1007/s00418-003-0496-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2002] [Indexed: 01/23/2023]
Abstract
Plectin is a versatile cytoskeletal linker protein that preferentially localizes at interfaces between intermediate filaments and the plasma membrane in muscle, epithelial cells, and other tissues. Its deficiency causes muscular dystrophy with epidermolysis bullosa simplex. To better understand the functional roles of plectin beneath the sarcolemma of skeletal muscles and to gain some insights into the underlying mechanism of plectin-deficient muscular dystrophy, we studied in vivo structural and molecular relationships of plectin to subsarcolemmal cytoskeletal components, such as desmin, dystrophin, and vinculin, in rat skeletal muscles. Immunogold electron microscopy revealed that plectin fine threads tethered desmin intermediate filaments onto subsarcolemmal dense plaques overlying Z-lines and I-bands. These dense plaques were found to contain dystrophin and vinculin, and thus may be the structural basis of costameres. The in vivo association of plectin with desmin, (meta-)vinculin, dystrophin, and actin was demonstrated by immunoprecipitation experiments. Treatment of plectin immunoprecipitates with gelsolin reduced actin, dystrophin, and (meta-)vinculin but not desmin, implicating that subsarcolemmal actin could partly mediate the interaction between plectin and dystrophin or (meta-)vinculin. Altogether, our data suggest that plectin, along with desmin intermediate filaments, might serve a vital structural role in the stabilization of the subsarcolemmal cytoskeleton.
Collapse
Affiliation(s)
- Takao Hijikata
- Department of Anatomy, Gunma University School of Medicine, 3-39-22 Showa-machi, 371-8511 Maebashi, Japan.
| | | | | | | |
Collapse
|