1
|
Pissarek H, Huang N, Frasch LH, Aberle H, Frasch M. Formin 3 stabilizes the cytoskeleton of Drosophila tendon cells, thus enabling them to resist muscle tensile forces. J Cell Sci 2025; 138:jcs263543. [PMID: 40084430 PMCID: PMC12045603 DOI: 10.1242/jcs.263543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
The cytoskeleton of Drosophila tendon cells features specialized F-actin and microtubule arrays that endow these cells with resistance to the tensile forces exerted by the attached muscles. In a forward genetic screen for mutants with neuromuscular junction and muscle morphology phenotypes in larvae, we identified formin 3 (form3) as a crucial component for stabilizing these cytoskeletal arrays under muscle tension. form3 mutants exhibit severely stretched tendon cells in contact with directly attached larval body wall muscles, leading to muscle retraction and rounding. Both the actomyosin and microtubule arrays are expanded likewise in these mutants and can separate laterally in extreme cases. Analysis of a natively HA-tagged, functional version of Form3 reveals that Form3 is distributed along the length of these cytoskeletal arrays. Based on our findings and existing data on vertebrate and Caenorhabditis elegans orthologs of form3, we propose that the primary function of Form3 in this context is to co-bundle actin filaments and microtubules, thus maximizing the rigidity of these cytoskeletal structures against muscle tensile forces.
Collapse
Affiliation(s)
- Helena Pissarek
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Na Huang
- Heinrich Heine University Düsseldorf, Department of Biology, Institute for Functional Cell Morphology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Leanna H. Frasch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Hermann Aberle
- Heinrich Heine University Düsseldorf, Department of Biology, Institute for Functional Cell Morphology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Manfred Frasch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Chen J, Liu N, Qi H, Neuenkirchen N, Huang Y, Lin H. Piwi regulates the usage of alternative transcription start sites in the Drosophila ovary. Nucleic Acids Res 2025; 53:gkae1160. [PMID: 39657757 PMCID: PMC11724274 DOI: 10.1093/nar/gkae1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Alternative transcription initiation, which refers to the transcription of a gene from different transcription start sites (TSSs), is prevalent across metazoans and has important biological functions. Although transcriptional regulation has been extensively studied, the mechanism that selects one TSS over others within a gene remains elusive. Using the Cap Analysis of Gene Expression sequencing (CAGE-seq) method, we discovered that Piwi, an RNA-binding protein, regulates TSS usage in at least 87 genes. In piwi-deficient Drosophila ovaries, these genes displayed significantly altered TSS usage (ATU). The regulation of TSS usage occurred in both germline and somatic cells in ovaries, as well as in cultured ovarian somatic cells (OSCs). Correspondingly, RNA Polymerase II (Pol II) initiation and elongation at the TSSs of ATU genes were affected in germline-piwi-knockdown ovaries and piwi-knockdown OSCs. Furthermore, we identified a Facilitates Chromatin Transcription (FACT) complex component, Ssrp, that is essential for mRNA elongation, as a novel interactor of Piwi in the nucleus. Temporally controlled knockdown of ssrp affected TSS usage in ATU genes, whereas overexpression of ssrp partially rescued the TSS usage of ATU genes in piwi mutant ovaries. Thus, Piwi may interact with Ssrp to regulate TSS usage in Drosophila ovaries by affecting Pol II initiation and elongation.
Collapse
Affiliation(s)
- Jiaying Chen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Genetics, 333 Cedar St., New Haven, CT 06511, USA
| | - Na Liu
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Hongying Qi
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Yuedong Huang
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| |
Collapse
|
3
|
Medina-Jiménez BI, Budd GE, Janssen R. Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development. BMC Genomics 2024; 25:150. [PMID: 38326752 PMCID: PMC10848406 DOI: 10.1186/s12864-023-09898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
4
|
Yamaguchi N, Knaut H. Focal adhesion-mediated cell anchoring and migration: from in vitro to in vivo. Development 2022; 149:dev200647. [PMID: 35587444 PMCID: PMC9188754 DOI: 10.1242/dev.200647] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-extracellular matrix interactions have been studied extensively using cells cultured in vitro. These studies indicate that focal adhesion (FA)-based cell-extracellular matrix interactions are essential for cell anchoring and cell migration. Whether FAs play a similarly important role in vivo is less clear. Here, we summarize the formation and function of FAs in cultured cells and review how FAs transmit and sense force in vitro. Using examples from animal studies, we also describe the role of FAs in cell anchoring during morphogenetic movements and cell migration in vivo. Finally, we conclude by discussing similarities and differences in how FAs function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Pérez-Moreno JJ, Santa-Cruz Mateos C, Martín-Bermudo MD, Estrada B. LanB1 Cooperates With Kon-Tiki During Embryonic Muscle Migration in Drosophila. Front Cell Dev Biol 2022; 9:749723. [PMID: 35047493 PMCID: PMC8762229 DOI: 10.3389/fcell.2021.749723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Muscle development is a multistep process that involves cell specification, myoblast fusion, myotube migration, and attachment to the tendons. In spite of great efforts trying to understand the basis of these events, little is known about the molecular mechanisms underlying myotube migration. Knowledge of the few molecular cues that guide this migration comes mainly from studies in Drosophila. The migratory process of Drosophila embryonic muscles involves a first phase of migration, where muscle progenitors migrate relative to each other, and a second phase, where myotubes migrate searching for their future attachment sites. During this phase, myotubes form extensive filopodia at their ends oriented preferentially toward their attachment sites. This myotube migration and the subsequent muscle attachment establishment are regulated by cell adhesion receptors, such as the conserved proteoglycan Kon-tiki/Perdido. Laminins have been shown to regulate the migratory behavior of many cell populations, but their role in myotube migration remains largely unexplored. Here, we show that laminins, previously implicated in muscle attachment, are indeed required for muscle migration to tendon cells. Furthermore, we find that laminins genetically interact with kon-tiki/perdido to control both myotube migration and attachment. All together, our results uncover a new role for the interaction between laminins and Kon-tiki/Perdido during Drosophila myogenesis. The identification of new players and molecular interactions underlying myotube migration broadens our understanding of muscle development and disease.
Collapse
|
7
|
Tumor-derived MMPs regulate cachexia in a Drosophila cancer model. Dev Cell 2021; 56:2664-2680.e6. [PMID: 34473940 DOI: 10.1016/j.devcel.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Cachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1). Mmp1 can both modulate TGFβ signaling in the fat body and disrupt basement membrane (BM)/extracellular matrix (ECM) protein localization in both the fat body and the muscle. Inhibition of TGFβ signaling or Mmps in the fat body/muscle using a QF2-QUAS binary expression system rescues muscle wasting in the presence of tumor. Altogether, our study proposes that tumor-derived Mmps are central mediators of organ wasting in cancer cachexia.
Collapse
|
8
|
Zhao XM, Niu N, Yang JP, Liu WM, Zhang JZ. LmIntegrinβ-PS is required for wing morphogenesis and development in Locusta migratoria. INSECT SCIENCE 2021; 28:705-717. [PMID: 32401389 DOI: 10.1111/1744-7917.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Wings are an important flight organ of insects and their morphogenesis depends on a series of cell-to-cell and cell-to-extracellular matrix interactions. Integrin as a transmembrane protein receptor mediates cell-to-cell adhesion, cell-to-extracellular matrix interactions and signal transduction. In the present study, we characterized an integrin gene that encodes integrinβ-PS protein in Locusta migratoria. LmIntegrinβ-PS is highly expressed in the wing pads and the middle stages of 5th instar nymphs. Immunohistochemical analysis revealed that the LmIntegrinβ-PS protein was localized at the cell base of the two layers of wings. After suppression of LmIntegrinβ-PS by RNA interference, the wing pads or wings were unable to form normally, with a blister wing appearance during nymph to nymph transition and nymph to adult transition. We further found that the dorsal and ventral epidermis of the wings after dsLmIntegrinβ-PS injection were improperly connected and formed huge cavities revealed by hematoxylin and eosin staining. Furthermore, the morphology and structure of the wing cuticle was significantly disturbed which affected the stable arrangement and attachments of the wing epidermis. Moreover, the expression of related cell adhesion genes was significantly decreased in LmIntegrinβ-PS-suppressed L. migratoria, suggesting that LmIntegrinβ-PS is required for the morphogenesis and development of wings during molting by stabilizing cell adhesion and maintaining the cytoskeleton of these cells.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Niu Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Jia-Peng Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Wei-Min Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
9
|
Identifying Key Genetic Regions for Cell Sheet Morphogenesis on Chromosome 2L Using a Drosophila Deficiency Screen in Dorsal Closure. G3-GENES GENOMES GENETICS 2020; 10:4249-4269. [PMID: 32978263 PMCID: PMC7642946 DOI: 10.1534/g3.120.401386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell sheet morphogenesis is essential for metazoan development and homeostasis of animal form - it contributes to developmental milestones including gastrulation, neural tube closure, heart and palate formation and to tissue maintenance during wound healing. Dorsal closure, a well-characterized stage in Drosophila embryogenesis and a model for cell sheet morphogenesis, is a remarkably robust process during which coordination of conserved gene expression patterns and signaling cascades regulate the cellular shape changes and movements. New 'dorsal closure genes' continue to be discovered due to advances in imaging and genetics. Here, we extend our previous study of the right arm of the 2nd chromosome to the left arm of the 2nd chromosome using the Bloomington deficiency kit's set of large deletions, which collectively remove 98.9% of the genes on the left arm of chromosome two (2L) to identify 'dorsal closure deficiencies'. We successfully screened 87.2% of the genes and identified diverse dorsal closure defects in embryos homozygous for 49 deficiencies, 27 of which delete no known dorsal closure gene. These homozygous deficiencies cause defects in cell shape, canthus formation and tissue dynamics. Within these deficiencies, we have identified pimples, odd-skipped, paired, and sloppy-paired 1 as dorsal closure genes on 2L that affect lateral epidermal cells. We will continue to identify novel 'dorsal closure genes' with further analysis. These forward genetic screens are expected to identify new processes and pathways that contribute to closure and links between pathways and structures already known to coordinate various aspects of closure.
Collapse
|
10
|
Zappia MP, de Castro L, Ariss MM, Jefferson H, Islam AB, Frolov MV. A cell atlas of adult muscle precursors uncovers early events in fibre-type divergence in Drosophila. EMBO Rep 2020; 21:e49555. [PMID: 32815271 PMCID: PMC7534622 DOI: 10.15252/embr.201949555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
In Drosophila, the wing disc‐associated muscle precursor cells give rise to the fibrillar indirect flight muscles (IFM) and the tubular direct flight muscles (DFM). To understand early transcriptional events underlying this muscle diversification, we performed single‐cell RNA‐sequencing experiments and built a cell atlas of myoblasts associated with third instar larval wing disc. Our analysis identified distinct transcriptional signatures for IFM and DFM myoblasts that underlie the molecular basis of their divergence. The atlas further revealed various states of differentiation of myoblasts, thus illustrating previously unappreciated spatial and temporal heterogeneity among them. We identified and validated novel markers for both IFM and DFM myoblasts at various states of differentiation by immunofluorescence and genetic cell‐tracing experiments. Finally, we performed a systematic genetic screen using a panel of markers from the reference cell atlas as an entry point and found a novel gene, Amalgam which is functionally important in muscle development. Our work provides a framework for leveraging scRNA‐seq for gene discovery and details a strategy that can be applied to other scRNA‐seq datasets.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia de Castro
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Holly Jefferson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul Bmmk Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Töpfer U, Holz A. Analysis of extracellular matrix composition in the visceral muscles of Nidogen mutant larvae in Drosophila. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32550499 PMCID: PMC7252342 DOI: 10.17912/micropub.biology.000251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Uwe Töpfer
- Technische Universität Dresden, Institute of Genetics
| | - Anne Holz
- Justus-Liebig-Universität Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie
| |
Collapse
|
12
|
Pastor-Pareja JC. Atypical basement membranes and basement membrane diversity - what is normal anyway? J Cell Sci 2020; 133:133/8/jcs241794. [PMID: 32317312 DOI: 10.1242/jcs.241794] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The evolution of basement membranes (BMs) played an essential role in the organization of animal cells into tissues and diversification of body plans. The archetypal BM is a compact extracellular matrix polymer containing laminin, nidogen, collagen IV and perlecan (LNCP matrix) tightly packed into a homogenously thin planar layer. Contrasting this clear-cut morphological and compositional definition, there are numerous examples of LNCP matrices with unusual characteristics that deviate from this planar organization. Furthermore, BM components are found in non-planar matrices that are difficult to categorize as BMs at all. In this Review, I discuss examples of atypical BM organization. First, I highlight atypical BM structures in human tissues before describing the functional dissection of a plethora of BMs and BM-related structures in their tissue contexts in the fruit fly Drosophila melanogaster To conclude, I summarize our incipient understanding of the mechanisms that provide morphological, compositional and functional diversity to BMs. It is becoming increasingly clear that atypical BMs are quite prevalent, and that even typical planar BMs harbor a lot of diversity that we do not yet comprehend.
Collapse
Affiliation(s)
- José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing 100084, China .,Peking-Tsinghua Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
13
|
Jevitt A, Chatterjee D, Xie G, Wang XF, Otwell T, Huang YC, Deng WM. A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol 2020; 18:e3000538. [PMID: 32339165 PMCID: PMC7205450 DOI: 10.1371/journal.pbio.3000538] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/07/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Oogenesis is a complex developmental process that involves spatiotemporally regulated coordination between the germline and supporting, somatic cell populations. This process has been modeled extensively using the Drosophila ovary. Although different ovarian cell types have been identified through traditional means, the large-scale expression profiles underlying each cell type remain unknown. Using single-cell RNA sequencing technology, we have built a transcriptomic data set for the adult Drosophila ovary and connected tissues. Using this data set, we identified the transcriptional trajectory of the entire follicle-cell population over the course of their development from stem cells to the oogenesis-to-ovulation transition. We further identify expression patterns during essential developmental events that take place in somatic and germline cell types such as differentiation, cell-cycle switching, migration, symmetry breaking, nurse-cell engulfment, egg-shell formation, and corpus luteum signaling. Extensive experimental validation of unique expression patterns in both ovarian and nearby, nonovarian cells also led to the identification of many new cell type-and stage-specific markers. The inclusion of several nearby tissue types in this data set also led to our identification of functional convergence in expression between distantly related cell types such as the immune-related genes that were similarly expressed in immune cells (hemocytes) and ovarian somatic cells (stretched cells) during their brief phagocytic role in nurse-cell engulfment. Taken together, these findings provide new insight into the temporal regulation of genes in a cell-type specific manner during oogenesis and begin to reveal the relatedness in expression between cell and tissues types.
Collapse
Affiliation(s)
- Allison Jevitt
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Taylor Otwell
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
14
|
Lambrechts RA, Schepers H, Yu Y, van der Zwaag M, Autio KJ, Vieira-Lara MA, Bakker BM, Tijssen MA, Hayflick SJ, Grzeschik NA, Sibon OC. CoA-dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases. EMBO Mol Med 2019; 11:e10488. [PMID: 31701655 PMCID: PMC6895606 DOI: 10.15252/emmm.201910488] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
PKAN, CoPAN, MePAN, and PDH‐E2 deficiency share key phenotypic features but harbor defects in distinct metabolic processes. Selective damage to the globus pallidus occurs in these genetic neurodegenerative diseases, which arise from defects in CoA biosynthesis (PKAN, CoPAN), protein lipoylation (MePAN), and pyruvate dehydrogenase activity (PDH‐E2 deficiency). Overlap of their clinical features suggests a common molecular etiology, the identification of which is required to understand their pathophysiology and design treatment strategies. We provide evidence that CoA‐dependent activation of mitochondrial acyl carrier protein (mtACP) is a possible process linking these diseases through its effect on PDH activity. CoA is the source for the 4′‐phosphopantetheine moiety required for the posttranslational 4′‐phosphopantetheinylation needed to activate specific proteins. We show that impaired CoA homeostasis leads to decreased 4′‐phosphopantetheinylation of mtACP. This results in a decrease of the active form of mtACP, and in turn a decrease in lipoylation with reduced activity of lipoylated proteins, including PDH. Defects in the steps of a linked CoA‐mtACP‐PDH pathway cause similar phenotypic abnormalities. By chemically and genetically re‐activating PDH, these phenotypes can be rescued, suggesting possible treatment strategies for these diseases.
Collapse
Affiliation(s)
- Roald A Lambrechts
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yi Yu
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marianne van der Zwaag
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Marcel A Vieira-Lara
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marina A Tijssen
- Neurology Department, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan J Hayflick
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Nicola A Grzeschik
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ody Cm Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Thuveson M, Gaengel K, Collu GM, Chin ML, Singh J, Mlodzik M. Integrins are required for synchronous ommatidial rotation in the Drosophila eye linking planar cell polarity signalling to the extracellular matrix. Open Biol 2019; 9:190148. [PMID: 31409231 PMCID: PMC6731590 DOI: 10.1098/rsob.190148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrins mediate the anchorage between cells and their environment, the extracellular matrix (ECM), and form transmembrane links between the ECM and the cytoskeleton, a conserved feature throughout development and morphogenesis of epithelial organs. Here, we demonstrate that integrins and components of the ECM are required during the planar cell polarity (PCP) signalling-regulated cell movement of ommatidial rotation in the Drosophila eye. The loss-of-function mutations of integrins or ECM components cause defects in rotation, with mutant clusters rotating asynchronously compared to wild-type clusters. Initially, mutant clusters tend to rotate faster, and at later stages they fail to be synchronous with their neighbours, leading to aberrant rotation angles and resulting in a disorganized ommatidial arrangement in adult eyes. We further demonstrate that integrin localization changes dynamically during the rotation process. Our data suggest that core Frizzled/PCP factors, acting through RhoA and Rho kinase, regulate the function/activity of integrins and that integrins thus contribute to the complex interaction network of PCP signalling, cell adhesion and cytoskeletal elements required for a precise and synchronous 90° rotation movement.
Collapse
Affiliation(s)
- Maria Thuveson
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Konstantin Gaengel
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA.,Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Giovanna M Collu
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mei-Ling Chin
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jaskirat Singh
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Building 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
16
|
Uesugi K, Sakuma Y, Akiyama Y, Akiyama Y, Iwabuchi K, Okano T, Morishima K. Temperature-responsive culture surfaces for insect cell sheets to fabricate a bioactuator. Adv Robot 2019. [DOI: 10.1080/01691864.2019.1568908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kaoru Uesugi
- Department of Mechanical Engineering, Osaka University, Osaka, Japan
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yui Sakuma
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshitake Akiyama
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | - Yoshikatsu Akiyama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, Tokyo, Japan
| | - Kikuo Iwabuchi
- Department of Applied Molecular Biology and Biochemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, Tokyo, Japan
- Cell Sheet Tissue Engineering Center (CSTEC), School of Medicine & College of Pharmacy, University of Utah, LS Skaggs Pharmacy Institute, Salt Lake City, UT, USA
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, Osaka, Japan
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
17
|
Wolfstetter G, Dahlitz I, Pfeifer K, Töpfer U, Alt JA, Pfeifer DC, Lakes-Harlan R, Baumgartner S, Palmer RH, Holz A. Characterization of Drosophila Nidogen/ entactin reveals roles in basement membrane stability, barrier function and nervous system patterning. Development 2019; 146:dev.168948. [PMID: 30567930 DOI: 10.1242/dev.168948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Basement membranes (BMs) are specialized layers of extracellular matrix (ECM) mainly composed of Laminin, type IV Collagen, Perlecan and Nidogen/entactin (NDG). Recent in vivo studies challenged the initially proposed role of NDG as a major ECM linker molecule by revealing dispensability for viability and BM formation. Here, we report the characterization of the single Ndg gene in Drosophila. Embryonic Ndg expression was primarily observed in mesodermal tissues and the chordotonal organs, whereas NDG protein localized to all BMs. Although loss of Laminin strongly affected BM localization of NDG, Ndg-null mutants exhibited no overt changes in the distribution of BM components. Although Drosophila Ndg mutants were viable, loss of NDG led to ultrastructural BM defects that compromised barrier function and stability in vivo Moreover, loss of NDG impaired larval crawling behavior and reduced responses to vibrational stimuli. Further morphological analysis revealed accompanying defects in the larval peripheral nervous system, especially in the chordotonal organs and the neuromuscular junction (NMJ). Taken together, our analysis suggests that NDG is not essential for BM assembly but mediates BM stability and ECM-dependent neural plasticity during Drosophila development.
Collapse
Affiliation(s)
- Georg Wolfstetter
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany.,The Sahlgrenska Academy at the University of Gothenburg, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Medicinaregatan 9A, 41390 Gothenburg, Sweden
| | - Ina Dahlitz
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany
| | - Kathrin Pfeifer
- The Sahlgrenska Academy at the University of Gothenburg, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Medicinaregatan 9A, 41390 Gothenburg, Sweden
| | - Uwe Töpfer
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany
| | - Joscha Arne Alt
- Justus-Liebig-Universitaet Giessen, Institut für Tierphysiologie, Integrative Sinnesphysiologie, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
| | - Daniel Christoph Pfeifer
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany
| | - Reinhard Lakes-Harlan
- Justus-Liebig-Universitaet Giessen, Institut für Tierphysiologie, Integrative Sinnesphysiologie, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
| | - Stefan Baumgartner
- Lund University, Department of Experimental Medical Sciences, BMC D10, 22184 Lund, Sweden
| | - Ruth H Palmer
- The Sahlgrenska Academy at the University of Gothenburg, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Medicinaregatan 9A, 41390 Gothenburg, Sweden
| | - Anne Holz
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany
| |
Collapse
|
18
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
19
|
De Las Heras JM, García-Cortés C, Foronda D, Pastor-Pareja JC, Shashidhara LS, Sánchez-Herrero E. The Drosophila Hox gene Ultrabithorax controls appendage shape by regulating extracellular matrix dynamics. Development 2018; 145:dev.161844. [PMID: 29853618 DOI: 10.1242/dev.161844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
Abstract
Although the specific form of an organ is frequently important for its function, the mechanisms underlying organ shape are largely unknown. In Drosophila, the wings and halteres, homologous appendages of the second and third thoracic segments, respectively, bear different forms: wings are flat, whereas halteres are globular, and yet both characteristic shapes are essential for a normal flight. The Hox gene Ultrabithorax (Ubx) governs the difference between wing and haltere development, but how Ubx function in the appendages prevents or allows flat or globular shapes is unknown. Here, we show that Ubx downregulates Matrix metalloproteinase 1 (Mmp1) expression in the haltere pouch at early pupal stage, which in turn prevents the rapid clearance of Collagen IV compared with the wing disc. This difference is instrumental in determining cell shape changes, expansion of the disc and apposition of dorsal and ventral layers, all of these phenotypic traits being characteristic of wing pouch development. Our results suggest that Ubx regulates organ shape by controlling Mmp1 expression, and the extent and timing of extracellular matrix degradation.
Collapse
Affiliation(s)
- José M De Las Heras
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Celia García-Cortés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | | | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
20
|
Díaz de la Loza MC, Díaz-Torres A, Zurita F, Rosales-Nieves AE, Moeendarbary E, Franze K, Martín-Bermudo MD, González-Reyes A. Laminin Levels Regulate Tissue Migration and Anterior-Posterior Polarity during Egg Morphogenesis in Drosophila. Cell Rep 2018; 20:211-223. [PMID: 28683315 PMCID: PMC5507772 DOI: 10.1016/j.celrep.2017.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 06/10/2017] [Indexed: 10/31/2022] Open
Abstract
Basement membranes (BMs) are specialized extracellular matrices required for tissue organization and organ formation. We study the role of laminin and its integrin receptor in the regulation of tissue migration during Drosophila oogenesis. Egg production in Drosophila involves the collective migration of follicle cells (FCs) over the BM to shape the mature egg. We show that laminin content in the BM increases with time, whereas integrin amounts in FCs do not vary significantly. Manipulation of integrin and laminin levels reveals that a dynamic balance of integrin-laminin amounts determines the onset and speed of FC migration. Thus, the interplay of ligand-receptor levels regulates tissue migration in vivo. Laminin depletion also affects the ultrastructure and biophysical properties of the BM and results in anterior-posterior misorientation of developing follicles. Laminin emerges as a key player in the regulation of collective cell migration, tissue stiffness, and the organization of anterior-posterior polarity in Drosophila.
Collapse
Affiliation(s)
- María C Díaz de la Loza
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Alfonsa Díaz-Torres
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Federico Zurita
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica, 18071 Granada, Spain
| | - Alicia E Rosales-Nieves
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| |
Collapse
|
21
|
Itoh K, Akimoto Y, Kondo S, Ichimiya T, Aoki K, Tiemeyer M, Nishihara S. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles. Dev Biol 2018; 436:108-124. [PMID: 29499182 DOI: 10.1016/j.ydbio.2018.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 01/27/2023]
Abstract
T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization, basement membrane formation, and NMJ arborization on larval muscles.
Collapse
Affiliation(s)
- Kazuyoshi Itoh
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
22
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
23
|
Valdivia M, Vega-Macaya F, Olguín P. Mechanical Control of Myotendinous Junction Formation and Tendon Differentiation during Development. Front Cell Dev Biol 2017; 5:26. [PMID: 28386542 PMCID: PMC5362613 DOI: 10.3389/fcell.2017.00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/07/2017] [Indexed: 01/01/2023] Open
Abstract
The development of the musculoskeletal system is a great model to study the interplay between chemical and mechanical inter-tissue signaling in cell adhesion, tissue morphogenesis and differentiation. In both vertebrates and invertebrates (e.g., Drosophila melanogaster) the formation of muscle-tendon interaction generates mechanical forces which are required for myotendinous junction maturation and tissue differentiation. In addition, these forces must be withstood by muscles and tendons in order to prevent detachment from each other, deformation or even losing their integrity. Extracellular matrix remodeling at the myotendinous junction is key to resist mechanical load generated by muscle contraction. Recent evidences in vertebrates indicate that mechanical forces generated during junction formation regulate chemical signaling leading to extracellular matrix remodeling, however, the mechanotransduction mechanisms associated to this response remains elusive. In addition to extracellular matrix remodeling, the ability of Drosophila tendon-cells to bear mechanical load depends on rearrangement of tendon cell cytoskeleton, thus studying the molecular mechanisms involved in this process is critical to understand the contribution of mechanical forces to the development of the musculoskeletal system. Here, we review recent findings regarding the role of chemical and mechanical signaling in myotendinous junction formation and tendon differentiation, and discuss molecular mechanisms of mechanotransduction that may allow tendon cells to withstand mechanical load during development of the musculoskeletal system.
Collapse
Affiliation(s)
- Mauricio Valdivia
- Program in Human Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, University of Chile Santiago, Chile
| | - Franco Vega-Macaya
- Program in Human Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, University of Chile Santiago, Chile
| | - Patricio Olguín
- Program in Human Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, University of Chile Santiago, Chile
| |
Collapse
|
24
|
dMyc is required in retinal progenitors to prevent JNK-mediated retinal glial activation. PLoS Genet 2017; 13:e1006647. [PMID: 28267791 PMCID: PMC5360344 DOI: 10.1371/journal.pgen.1006647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/21/2017] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
In the nervous system, glial cells provide crucial insulation and trophic support to neurons and are important for neuronal survival. In reaction to a wide variety of insults, glial cells respond with changes in cell morphology and metabolism to allow repair. Additionally, these cells can acquire migratory and proliferative potential. In particular, after axonal damage or pruning the clearance of axonal debris by glial cells is key for a healthy nervous system. Thus, bidirectional neuron-glial interactions are crucial in development, but little is known about the cellular sensors and signalling pathways involved. In here, we show that decreased cellular fitness in retinal progenitors caused by reduced Drosophila Myc expression triggers non cell-autonomous activation of retinal glia proliferation and overmigration. Glia migration occurs beyond its normal limit near the boundary between differentiated photoreceptors and precursor cells, extending into the progenitor domain. This overmigration is stimulated by JNK activation (and the function of its target Mmp1), while proliferative responses are mediated by Dpp/TGF-β signalling activation. For a functional nervous system, neurons transmit information from cell to cell while glial cells provide crucial insulation and trophic support to neurons, which is important for neuronal survival. Glial cells are one of the most plastic cell types being able to adapt and respond to changing environmental stimuli. In this work we inhibit the function of the growth regulator dMyc in Drosophila retinal primordium, the eye imaginal discs. Glial cell numbers and migration pattern to the eye disc are tightly controlled but in dMyc-depleted retinas the glial cells overcome their normal barriers and overmigrate into the eye progenitors domain. We show evidence that this process is mediated by JNK activation in the presence of metalloproteinases. We discuss the biological role of overmigrating glia in tissue regeneration and/or confinement of the damaged area.
Collapse
|
25
|
Huang H, Kornberg TB. Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes. eLife 2016; 5. [PMID: 27591355 PMCID: PMC5030081 DOI: 10.7554/elife.18979] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/31/2016] [Indexed: 01/10/2023] Open
Abstract
Drosophila dorsal air sac development depends on Decapentaplegic (Dpp) and Fibroblast growth factor (FGF) proteins produced by the wing imaginal disc and transported by cytonemes to the air sac primordium (ASP). Dpp and FGF signaling in the ASP was dependent on components of the planar cell polarity (PCP) system in the disc, and neither Dpp- nor FGF-receiving cytonemes extended over mutant disc cells that lacked them. ASP cytonemes normally navigate through extracellular matrix (ECM) composed of collagen, laminin, Dally and Dally-like (Dlp) proteins that are stratified in layers over the disc cells. However, ECM over PCP mutant cells had reduced levels of laminin, Dally and Dlp, and whereas Dpp-receiving ASP cytonemes navigated in the Dally layer and required Dally (but not Dlp), FGF-receiving ASP cytonemes navigated in the Dlp layer, requiring Dlp (but not Dally). These findings suggest that cytonemes interact directly and specifically with proteins in the stratified ECM.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
26
|
A Common Suite of Coagulation Proteins Function in Drosophila Muscle Attachment. Genetics 2016; 204:1075-1087. [PMID: 27585844 DOI: 10.1534/genetics.116.189787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
The organization and stability of higher order structures that form in the extracellular matrix (ECM) to mediate the attachment of muscles are poorly understood. We have made the surprising discovery that a subset of clotting factor proteins are also essential for muscle attachment in the model organism Drosophila melanogaster One such coagulation protein, Fondue (Fon), was identified as a novel muscle mutant in a pupal lethal genetic screen. Fon accumulates at muscle attachment sites and removal of this protein results in decreased locomotor behavior and detached larval muscles. A sensitized genetic background assay reveals that fon functions with the known muscle attachment genes Thrombospondin (Tsp) and Tiggrin (Tig). Interestingly, Tig is also a component of the hemolymph clot. We further demonstrate that an additional clotting protein, Larval serum protein 1γ (Lsp1γ), is also required for muscle attachment stability and accumulates where muscles attach to tendons. While the local biomechanical and organizational properties of the ECM vary greatly depending on the tissue microenvironment, we propose that shared extracellular protein-protein interactions influence the strength and elasticity of ECM proteins in both coagulation and muscle attachment.
Collapse
|
27
|
Pers D, Buchta T, Özüak O, Wolff S, Pietsch JM, Memon MB, Roth S, Lynch JA. Global analysis of dorsoventral patterning in the wasp Nasonia reveals extensive incorporation of novelty in a regulatory network. BMC Biol 2016; 14:63. [PMID: 27480122 PMCID: PMC4968023 DOI: 10.1186/s12915-016-0285-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/18/2016] [Indexed: 01/23/2023] Open
Abstract
Background Gene regulatory networks (GRNs) underlie developmental patterning and morphogenetic processes, and changes in the interactions within the underlying GRNs are a major driver of evolutionary processes. In order to make meaningful comparisons that can provide significant insights into the evolution of regulatory networks, homologous networks from multiple taxa must be deeply characterized. One of the most thoroughly characterized GRNs is the dorsoventral (DV) patterning system of the Drosophila melanogaster embryo. We have developed the wasp Nasonia as a comparative DV patterning model because it has shown the convergent evolution of a mode of early embryonic patterning very similar to that of the fly, and it is of interest to know whether the similarity at the gross level also extends to the molecular level. Results We used RNAi to dorsalize and ventralize Nasonia embryos, RNAseq to quantify transcriptome-wide expression levels, and differential expression analysis to identify genes whose expression levels change in either RNAi case. This led to the identification of >100 genes differentially expressed and regulated along the DV axis. Only a handful of these genes are shared DV components in both fly and wasp. Many of those unique to Nasonia are cytoskeletal and adhesion molecules, which may be related to the divergent cell and tissue behavior observed at gastrulation. In addition, many transcription factors and signaling components are only DV regulated in Nasonia, likely reflecting the divergent upstream patterning mechanisms involved in producing the conserved pattern of cell fates observed at gastrulation. Finally, several genes that lack Drosophila orthologs show robust and distinct expression patterns. These include genes with vertebrate homologs that have been lost in the fly lineage, genes that are found only among Hymenoptera, and several genes that entered the Nasonia genome through lateral transfer from endosymbiotic bacteria. Conclusions Altogether, our results provide insights into how GRNs respond to new functional demands and how they can incorporate novel components. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0285-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Pers
- Department of Biological Sciences, University of Illinois at Chicago, MBRB 4020, 900 S. Ashland Avenue, Chicago, IL, 60402, USA
| | - Thomas Buchta
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Orhan Özüak
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Selma Wolff
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Jessica M Pietsch
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Mohammad Bilal Memon
- Department of Biological Sciences, University of Illinois at Chicago, MBRB 4020, 900 S. Ashland Avenue, Chicago, IL, 60402, USA
| | - Siegfried Roth
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, MBRB 4020, 900 S. Ashland Avenue, Chicago, IL, 60402, USA.
| |
Collapse
|
28
|
Andersen D, Horne-Badovinac S. Influence of ovarian muscle contraction and oocyte growth on egg chamber elongation in Drosophila. Development 2016; 143:1375-87. [PMID: 26952985 DOI: 10.1242/dev.131276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/18/2016] [Indexed: 01/05/2023]
Abstract
Organs are formed from multiple cell types that make distinct contributions to their shape. The Drosophila egg chamber provides a tractable model to dissect such contributions during morphogenesis. Egg chambers consist of 16 germ cells (GCs) surrounded by a somatic epithelium. Initially spherical, these structures elongate as they mature. This morphogenesis is thought to occur through a 'molecular corset' mechanism, whereby structural elements within the epithelium become circumferentially organized perpendicular to the elongation axis and resist the expansive growth of the GCs to promote elongation. Whether this epithelial organization provides the hypothesized constraining force has been difficult to discern, however, and a role for GC growth has not been demonstrated. Here, we provide evidence for this mechanism by altering the contractile activity of the tubular muscle sheath that surrounds developing egg chambers. Muscle hypo-contraction indirectly reduces GC growth and shortens the egg, which demonstrates the necessity of GC growth for elongation. Conversely, muscle hyper-contraction enhances the elongation program. Although this is an abnormal function for this muscle, this observation suggests that a corset-like force from the egg chamber's exterior could promote its lengthening. These findings highlight how physical contributions from several cell types are integrated to shape an organ.
Collapse
Affiliation(s)
- Darcy Andersen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Isabella AJ, Horne-Badovinac S. Building from the Ground up: Basement Membranes in Drosophila Development. CURRENT TOPICS IN MEMBRANES 2015; 76:305-36. [PMID: 26610918 DOI: 10.1016/bs.ctm.2015.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Basement membranes (BMs) are sheetlike extracellular matrices found at the basal surfaces of epithelial tissues. The structural and functional diversity of these matrices within the body endows them with the ability to affect multiple aspects of cell behavior and communication; for this reason, BMs are integral to many developmental processes. The power of Drosophila genetics, as applied to the BM, has yielded substantial insight into how these matrices influence development. Here, we explore three facets of BM biology to which Drosophila research has made particularly important contributions. First, we discuss how newly synthesized BM proteins are secreted to and assembled exclusively on basal epithelial surfaces. Next, we examine how regulation of the structural properties of the BM mechanically supports and guides tissue morphogenesis. Finally, we explore how BMs influence development through the modulation of several major signaling pathways.
Collapse
Affiliation(s)
- Adam J Isabella
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
30
|
Schardt L, Ander JJ, Lohmann I, Papagiannouli F. Stage-specific control of niche positioning and integrity in the Drosophila testis. Mech Dev 2015; 138 Pt 3:336-48. [PMID: 26226434 DOI: 10.1016/j.mod.2015.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
A fundamental question is how complex structures are maintained after their initial specification. Stem cells reside in a specialized microenvironment, called niche, which provides essential signals controlling stem cell behavior. We addressed this question by studying the Drosophila male stem cell niche, called the hub. Once specified, the hub cells need to maintain their position and architectural integrity through embryonic, larval and pupal stages of testis organogenesis and during adult life. The Hox gene Abd-B, in addition to its described role in male embryonic gonads, maintains the architecture and positioning of the larval hub from the germline by affecting integrin localization in the neighboring somatic cyst cells. We find that the AbdB-Boss/Sev cascade affects integrin independent of Talin, while genetic interactions depict integrin as the central downstream player in this system. Focal adhesion and integrin-adaptor proteins within the somatic stem cells and cyst cells, such as Paxillin, Pinch and Vav, also contribute to proper hub integrity and positioning. During adult stages, hub positioning is controlled by Abd-B activity in the outer acto-myosin sheath, while Abd-B expression in adult spermatocytes exerts no effect on hub positioning and integrin localization. Our data point at a cell- and stage-specific function of Abd-B and suggest that the occurrence of new cell types and cell interactions in the course of testis organogenesis made it necessary to adapt the whole system by reusing the same players for male stem cell niche positioning and integrity in an alternative manner.
Collapse
Affiliation(s)
- Lisa Schardt
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany; Deutsches Krebsforschungszentrum (DKFZ), D-69120, Germany
| | - Janina-Jacqueline Ander
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany.
| | - Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany.
| |
Collapse
|
31
|
Tong X, He S, Chen J, Hu H, Xiang Z, Lu C, Dai F. A novel laminin β gene BmLanB1-w regulates wing-specific cell adhesion in silkworm, Bombyx mori. Sci Rep 2015. [PMID: 26212529 PMCID: PMC4515764 DOI: 10.1038/srep12562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Laminins are important basement membrane (BM) components with crucial roles in development. The numbers of laminin isoforms in various organisms are determined by the composition of the different α, β, and γ chains, and their coding genes, which are variable across spieces. In insects, only two α, one β, and one γ chains have been identified thus far. Here, we isolated a novel laminin β gene, BmLanB1-w, by positional cloning of the mutant (crayfish, cf) with blistered wings in silkworm. Gene structure analysis showed that a 2 bp deletion of the BmLanB1-w gene in the cf mutant caused a frame-shift in the open reading frame (ORF) and generated a premature stop codon. Knockdown of the BmLanB1-w gene produced individuals exhibiting blistered wings, indicating that this laminin gene was required for cell adhesion during wing development. We also identified laminin homologs in different species and showed that two copies of β laminin likely originated in Lepidoptera during evolution. Furthermore, phylogenetic and gene expression analyses of silkworm laminin genes revealed that the BmLanB1-w gene is newly evolved, and is required for wing-specific cell adhesion. This is the first report showing the tissue specific distribution and functional differentiation of β laminin in insects.
Collapse
Affiliation(s)
- Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Songzhen He
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Jun Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400700, China
| |
Collapse
|
32
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
33
|
Papagiannouli F, Lohmann I. Stage-specific control of stem cell niche architecture in the Drosophila testis by the posterior Hox gene Abd-B. Comput Struct Biotechnol J 2015; 13:122-30. [PMID: 25750700 PMCID: PMC4348433 DOI: 10.1016/j.csbj.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
A fundamental question in biology is how complex structures are maintained after their initial specification. We address this question by reviewing the role of the Hox gene Abd-B in Drosophila testis organogenesis, which proceeds through embryonic, larval and pupal stages to reach maturation in adult stages. The data presented in this review highlight a cell- and stage-specific function of Abd-B, since the mechanisms regulating stem cell niche positioning and architecture at different stages seem to be different despite the employment of similar factors. In addition to its described role in the male embryonic gonads, sustained activity of Abd-B in the pre-meiotic germline spermatocytes during larval stages is required to maintain the architecture of the stem cell niche by regulating βPS-integrin localization in the neighboring somatic cyst cells. Loss of Abd-B is associated with cell non-autonomous effects within the niche, leading to a dramatic reduction of pre-meiotic cell populations in adult testes. Identification of Abd-B target genes revealed that Abd-B mediates its effects by controlling the activity of the sevenless ligand Boss via its direct targets Src42A and Sec63. During adult stages, when testis morphogenesis is completed with the addition of the acto-myosin sheath originating from the genital disc, stem cell niche positioning and integrity are regulated by Abd-B activity in the acto-myosin sheath whereas integrin acts in an Abd-B independent way. It seems that the occurrence of new cell types and cell interactions in the course of testis organogenesis made it necessary to adapt the system to the new cellular conditions by reusing the same players for testis stem cell niche positioning in an alternative manner.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| |
Collapse
|
34
|
Nagendran M, Arora P, Gori P, Mulay A, Ray S, Jacob T, Sonawane M. Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages. Development 2014; 142:320-30. [PMID: 25519245 PMCID: PMC4302845 DOI: 10.1242/dev.118703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The patterning and morphogenesis of body appendages – such as limbs and fins – is orchestrated by the activities of several developmental pathways. Wnt signalling is essential for the induction of limbs. However, it is unclear whether a canonical Wnt signalling gradient exists and regulates the patterning of epithelium in vertebrate appendages. Using an evolutionarily old appendage – the median fin in zebrafish – as a model, we show that the fin epithelium exhibits graded changes in cellular morphology along the proximo-distal axis. This epithelial pattern is strictly correlated with the gradient of canonical Wnt signalling activity. By combining genetic analyses with cellular imaging, we show that canonical Wnt signalling regulates epithelial cell morphology by modulating the levels of laminins, which are extracellular matrix components. We have unravelled a hitherto unknown mechanism involved in epithelial patterning, which is also conserved in the pectoral fins – evolutionarily recent appendages that are homologous to tetrapod limbs. Highlighted article: In the zebrafish fin, a Wnt gradient dictates the expression of laminin α5, which signals via integrin α3 to control epithelial cell morphology.
Collapse
Affiliation(s)
- Monica Nagendran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Prateek Arora
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Payal Gori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Aditya Mulay
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Shinjini Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Tressa Jacob
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
35
|
Two protein N-acetylgalactosaminyl transferases regulate synaptic plasticity by activity-dependent regulation of integrin signaling. J Neurosci 2014; 34:13047-65. [PMID: 25253852 DOI: 10.1523/jneurosci.1484-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using a Drosophila whole-genome transgenic RNAi screen for glycogenes regulating synapse function, we have identified two protein α-N-acetylgalactosaminyltransferases (pgant3 and pgant35A) that regulate synaptic O-linked glycosylation (GalNAcα1-O-S/T). Loss of either pgant alone elevates presynaptic/postsynaptic molecular assembly and evoked neurotransmission strength, but synapses appear restored to normal in double mutants. Likewise, activity-dependent facilitation, augmentation, and posttetanic potentiation are all suppressively impaired in pgant mutants. In non-neuronal contexts, pgant function regulates integrin signaling, and we show here that the synaptic Position Specific 2 (αPS2) integrin receptor and transmembrane tenascin ligand are both suppressively downregulated in pgant mutants. Channelrhodopsin-driven activity rapidly (<1 min) drives integrin signaling in wild-type synapses but is suppressively abolished in pgant mutants. Optogenetic stimulation in pgant mutants alters presynaptic vesicle trafficking and postsynaptic pocket size during the perturbed integrin signaling underlying synaptic plasticity defects. Critically, acute blockade of integrin signaling acts synergistically with pgant mutants to eliminate all activity-dependent synaptic plasticity.
Collapse
|
36
|
Basement membrane and cell integrity of self-tissues in maintaining Drosophila immunological tolerance. PLoS Genet 2014; 10:e1004683. [PMID: 25329560 PMCID: PMC4199487 DOI: 10.1371/journal.pgen.1004683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
The mechanism underlying immune system recognition of different types of pathogens has been extensively studied over the past few decades; however, the mechanism by which healthy self-tissue evades an attack by its own immune system is less well-understood. Here, we established an autoimmune model of melanotic mass formation in Drosophila by genetically disrupting the basement membrane. We found that the basement membrane endows otherwise susceptible target tissues with self-tolerance that prevents autoimmunity, and further demonstrated that laminin is a key component for both structural maintenance and the self-tolerance checkpoint function of the basement membrane. Moreover, we found that cell integrity, as determined by cell-cell interaction and apicobasal polarity, functions as a second discrete checkpoint. Target tissues became vulnerable to blood cell encapsulation and subsequent melanization only after loss of both the basement membrane and cell integrity.
Collapse
|
37
|
Bilousov O, Koval A, Keshelava A, Katanaev VL. Identification of novel elements of the Drosophila blisterome sheds light on potential pathological mechanisms of several human diseases. PLoS One 2014; 9:e101133. [PMID: 24968325 PMCID: PMC4072764 DOI: 10.1371/journal.pone.0101133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which – apposition of the dorsal and ventral wing sheets during metamorphosis – is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Collapse
Affiliation(s)
- Oleksii Bilousov
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Amiran Keshelava
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L. Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Hollfelder D, Frasch M, Reim I. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2014; 14:26. [PMID: 24935095 PMCID: PMC4068974 DOI: 10.1186/1471-213x-14-26] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.
Collapse
Affiliation(s)
- Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
39
|
Abstract
Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. Although it is likely that cardiovascular clinicians and scientists have the highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. After a general introduction to integrin biology, the article will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.
Collapse
Affiliation(s)
- Sharon Israeli-Rosenberg
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Hideshi Okada
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
40
|
Papagiannouli F, Schardt L, Grajcarek J, Ha N, Lohmann I. The Hox gene Abd-B controls stem cell niche function in the Drosophila testis. Dev Cell 2014; 28:189-202. [PMID: 24480643 DOI: 10.1016/j.devcel.2013.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/06/2013] [Accepted: 12/23/2013] [Indexed: 01/20/2023]
Abstract
Proper niche architecture is critical for stem cell function, yet only few upstream regulators are known. Here, we report that the Hox transcription factor Abdominal-B (Abd-B), active in premeiotic spermatocytes of Drosophila testes, is essential for positioning the niche to the testis anterior by regulating integrin in neighboring somatic cyst cells. Abd-B also non-cell-autonomously controls critical features within the niche, including centrosome orientation and division rates of germline stem cells. By using genome-wide binding studies, we find that Abd-B mediates its effects on integrin localization by directly controlling at multiple levels the signaling activity of the Sev ligand Boss via its direct targets src42A and sec63, two genes involved in protein trafficking and recycling. Our data show that Abd-B, through local signaling between adjucent cell types, provides positional cues for integrin localization, which is critical for placement of the distant stem cell niche and stem cell activity.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany.
| | - Lisa Schardt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| | - Janin Grajcarek
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
| | - Nati Ha
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany.
| |
Collapse
|
41
|
O'Keefe DD, Thomas S, Edgar BA, Buttitta L. Temporal regulation of Dpp signaling output in the Drosophila wing. Dev Dyn 2014; 243:818-32. [PMID: 24591046 DOI: 10.1002/dvdy.24122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The Decapentaplegic (Dpp) signaling pathway is used in many developmental and homeostatic contexts, each time resulting in cellular responses particular to that biological niche. The flexibility of Dpp signaling is clearly evident in epithelial cells of the Drosophila wing imaginal disc. During larval stages of development, Dpp functions as a morphogen, patterning the wing developmental field and stimulating tissue growth. A short time later, however, as wing-epithelial cells exit the cell cycle and begin to differentiate, Dpp is a critical determinant of vein-cell fate. It is likely that the Dpp signaling pathway regulates different sets of target genes at these two developmental time points. RESULTS To identify mechanisms that temporally control the transcriptional output of Dpp signaling in this system, we have taken a gene expression profiling approach. We identified genes affected by Dpp signaling at late larval or early pupal developmental time points, thereby identifying patterning- and differentiation-specific downstream targets, respectively. CONCLUSIONS Analysis of target genes and transcription factor binding sites associated with these groups of genes revealed potential mechanisms by which target-gene specificity of the Dpp signaling pathway is temporally regulated. In addition, this approach revealed novel mechanisms by which Dpp affects the cellular differentiation of wing-veins.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | |
Collapse
|
42
|
Patel U, Myat MM. Receptor guanylyl cyclase Gyc76C is required for invagination, collective migration and lumen shape in the Drosophila embryonic salivary gland. Biol Open 2013; 2:711-7. [PMID: 23862019 PMCID: PMC3711039 DOI: 10.1242/bio.20134887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/25/2013] [Indexed: 01/02/2023] Open
Abstract
The Drosophila embryonic salivary gland is formed by the invagination and collective migration of cells. Here, we report on a novel developmental role for receptor-type guanylyl cyclase at 76C, Gyc76C, in morphogenesis of the salivary gland. We demonstrate that Gyc76C and downstream cGMP-dependent protein kinase 1 (DG1) function in the gland and surrounding mesoderm to control invagination, collective migration and lumen shape. Loss of gyc76C resulted in glands that failed to invaginate, complete posterior migration and had branched lumens. Salivary gland migration defects of gyc76C mutant embryos were rescued by expression of wild-type gyc76C specifically in the gland or surrounding mesoderm, whereas invagination defects were rescued primarily by expression in the gland. In migrating salivary glands of gyc76C mutant embryos, integrin subunits localized normally to gland-mesoderm contact sites but talin localization in the surrounding circular visceral mesoderm and fat body was altered. The extracellular matrix protein, laminin, also failed to accumulate around the migrating salivary gland of gyc76C mutant embryos, and gyc76C and laminin genetically interacted in gland migration. Our studies suggest that gyc76C controls salivary gland invagination, collective migration and lumen shape, in part by regulating the localization of talin and the laminin matrix.
Collapse
Affiliation(s)
| | - Monn Monn Myat
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
43
|
The conserved ADAMTS-like protein lonely heart mediates matrix formation and cardiac tissue integrity. PLoS Genet 2013; 9:e1003616. [PMID: 23874219 PMCID: PMC3708815 DOI: 10.1371/journal.pgen.1003616] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/22/2013] [Indexed: 11/25/2022] Open
Abstract
Here we report on the identification and functional characterization of the ADAMTS-like homolog lonely heart (loh) in Drosophila melanogaster. Loh displays all hallmarks of ADAMTSL proteins including several thrombospondin type 1 repeats (TSR1), and acts in concert with the collagen Pericardin (Prc). Loss of either loh or prc causes progressive cardiac damage peaking in the abolishment of heart function. We show that both proteins are integral components of the cardiac ECM mediating cellular adhesion between the cardiac tube and the pericardial cells. Loss of ECM integrity leads to an altered myo-fibrillar organization in cardiac cells massively influencing heart beat pattern. We show evidence that Loh acts as a secreted receptor for Prc and works as a crucial determinant to allow the formation of a cell and tissue specific ECM, while it does not influence the accumulation of other matrix proteins like Nidogen or Perlecan. Our findings demonstrate that the function of ADAMTS-like proteins is conserved throughout evolution and reveal a previously unknown interaction of these proteins with collagens. Cellular adhesion and tissue integrity in multicellular organisms strongly depend on the molecular network of the extracellular matrix (ECM). The number, topology and function of ECM molecules are highly diverse in different species, or even in single matrices in one organism. In our study we focus on the protein class of ADAMTS-like proteins. We identified Lonely heart (Loh) a member of this protein family and describe its function using the cardiac system of Drosophila melanogaster as model. Loh constitutes a secreted protein that resides in the ECM of heart cells and mediates the adhesion between different cell types - the pericadial cells and the cardiomyocytes. Lack of Loh function induces the dissociation of these cells and consequently leads to a breakdown of heart function. We found evidence that the major function of Loh is to recruit the collagen Pericardin (Prc) to the ECM of the cells and allow the proper organization of Prc into a reticular matrix. Since the function of Loh homologous proteins in other systems is rather elusive, this work provides new important insights into the biology of cell adhesion, matrix formation and indicates that ADAMTS-like proteins might facilitate an evolutionary conserved function.
Collapse
|
44
|
Müller R, Jenny A, Stanley P. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One 2013; 8:e62835. [PMID: 23671640 PMCID: PMC3650022 DOI: 10.1371/journal.pone.0062835] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.
Collapse
Affiliation(s)
- Reto Müller
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AJ); (PS)
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AJ); (PS)
| |
Collapse
|
45
|
Ismat A, Cheshire AM, Andrew DJ. The secreted AdamTS-A metalloprotease is required for collective cell migration. Development 2013; 140:1981-93. [PMID: 23536567 DOI: 10.1242/dev.087908] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the ADAMTS family of secreted metalloproteases play crucial roles in modulating the extracellular matrix (ECM) in development and disease. Here, we show that ADAMTS-A, the Drosophila ortholog of human ADAMTS 9 and ADAMTS 20, and of C. elegans GON-1, is required for cell migration during embryogenesis. AdamTS-A is expressed in multiple migratory cell types, including hemocytes, caudal visceral mesoderm (CVM), the visceral branch of the trachea (VBs) and the secretory portion of the salivary gland (SG). Loss of AdamTS-A causes defects in germ cell, CVM and VB migration and, depending on the tissue, AdamTS-A functions both autonomously and non-autonomously. In the highly polarized collective of the SG epithelium, loss of AdamTS-A causes apical surface irregularities and cell elongation defects. We provide evidence that ADAMTS-A is secreted into the SG lumen where it functions to release cells from the apical ECM, consistent with the defects observed in AdamTS-A mutant SGs. We show that loss of the apically localized protocadherin Cad99C rescues the SG defects, suggesting that Cad99C serves as a link between the SG apical membrane and the secreted apical ECM component(s) cleaved by ADAMTS-A. Our analysis of AdamTS-A function in the SG suggests a novel role for ADAMTS proteins in detaching cells from the apical ECM, facilitating tube elongation during collective cell migration.
Collapse
Affiliation(s)
- Afshan Ismat
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| |
Collapse
|
47
|
Activity-dependent retrograde laminin A signaling regulates synapse growth at Drosophila neuromuscular junctions. Proc Natl Acad Sci U S A 2012; 109:17699-704. [PMID: 23054837 DOI: 10.1073/pnas.1206416109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retrograde signals induced by synaptic activities are derived from postsynaptic cells to potentiate presynaptic properties, such as cytoskeletal dynamics, gene expression, and synaptic growth. However, it is not known whether activity-dependent retrograde signals can also depotentiate synaptic properties. Here we report that laminin A (LanA) functions as a retrograde signal to suppress synapse growth at Drosophila neuromuscular junctions (NMJs). The presynaptic integrin pathway consists of the integrin subunit βν and focal adhesion kinase 56 (Fak56), both of which are required to suppress crawling activity-dependent NMJ growth. LanA protein is localized in the synaptic cleft and only muscle-derived LanA is functional in modulating NMJ growth. The LanA level at NMJs is inversely correlated with NMJ size and regulated by larval crawling activity, synapse excitability, postsynaptic response, and anterograde Wnt/Wingless signaling, all of which modulate NMJ growth through LanA and βν. Our data indicate that synaptic activities down-regulate levels of the retrograde signal LanA to promote NMJ growth.
Collapse
|
48
|
Liu ZC, Geisbrecht ER. "Importin" signaling roles for import proteins: the function of Drosophila importin-7 (DIM-7) in muscle-tendon signaling. Cell Adh Migr 2012; 6:4-12. [PMID: 22647935 DOI: 10.4161/cam.19774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of a mature myotendinous junction (MTJ) between a muscle and its site of attachment is a highly regulated process that involves myofiber migration, cell-cell signaling, and culminates with the stable adhesion between the adjacent muscle-tendon cells. Improper establishment or maintenance of muscle-tendon attachment sites results in a decrease in force generation during muscle contraction and progressive muscular dystrophies in vertebrate models. Many studies have demonstrated the important role of the integrins and integrin-associated proteins in the formation and maintenance of the MTJ. We recently demonstrated that moleskin (msk), the gene that encodes for Drosophila importin-7 (DIM-7), is required for the proper formation of muscle-tendon adhesion sites in the developing embryo. Further studies demonstrated an enrichment of DIM-7 to the ends of muscles where the muscles attach to their target tendon cells. Genetic analysis supports a model whereby msk is required in the muscle and signals via the secreted epidermal growth factor receptor (Egfr) ligand Vein to regulate tendon cell maturation. These data demonstrate a novel role for the canonical nuclear import protein DIM-7 in establishment of the MTJ.
Collapse
Affiliation(s)
- Ze Cindy Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO, USA
| | | |
Collapse
|
49
|
Han C, Wang D, Soba P, Zhu S, Lin X, Jan LY, Jan YN. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 2012; 73:64-78. [PMID: 22243747 DOI: 10.1016/j.neuron.2011.10.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2011] [Indexed: 11/19/2022]
Abstract
Dendrites of the same neuron usually avoid each other. Some neurons also repel similar neurons through dendrite-dendrite interaction to tile the receptive field. Nonoverlapping coverage based on such contact-dependent repulsion requires dendrites to compete for limited space. Here we show that Drosophila class IV dendritic arborization (da) neurons, which tile the larval body wall, grow their dendrites mainly in a 2D space on the extracellular matrix (ECM) secreted by the epidermis. Removing neuronal integrins or blocking epidermal laminin production causes dendrites to grow into the epidermis, suggesting that integrin-laminin interaction attaches dendrites to the ECM. We further show that some of the previously identified tiling mutants fail to confine dendrites in a 2D plane. Expansion of these mutant dendrites in three dimensions results in overlap of dendritic fields. Moreover, overexpression of integrins in these mutant neurons effectively reduces dendritic crossing and restores tiling, revealing an additional mechanism for tiling.
Collapse
Affiliation(s)
- Chun Han
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wolfstetter G, Holz A. The role of LamininB2 (LanB2) during mesoderm differentiation in Drosophila. Cell Mol Life Sci 2012; 69:267-82. [PMID: 21387145 PMCID: PMC11114671 DOI: 10.1007/s00018-011-0652-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 02/02/2011] [Accepted: 02/15/2011] [Indexed: 12/31/2022]
Abstract
In Drosophila, four genes encode for laminin subunits and the formation of two laminin heterotrimers has been postulated. We report the identification of mutations in the Drosophila LamininB2 (LanB2) gene that encodes for the only laminin γ subunit and is found in both heterotrimers. We describe their effects on embryogenesis, in particular the differentiation of visceral tissues with respect to the ECM. Analysis of mesoderm endoderm interaction indicates disrupted basement membranes and defective endoderm migration, which finally interferes with visceral myotube stretching. Extracellular deposition of laminin is blocked due to the loss of the LanB2 subunit, resulting in an abnormal distribution of ECM components. Our data, concerning the different function of both trimers during organogenesis, suggest that these trimers might act in a cumulative way and probably at multiple steps during ECM assembly. We also observed genetic interactions with kon-tiki and thrombospondin, indicating a role for laminin during muscle attachment.
Collapse
Affiliation(s)
- Georg Wolfstetter
- Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Giessen, Stephanstrasse 24, 35390 Giessen, Germany
| | - Anne Holz
- Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Giessen, Stephanstrasse 24, 35390 Giessen, Germany
| |
Collapse
|