1
|
Brown CN, Blaine RE, Barker CM, Coultrap SJ, Bayer KU. The neuroprotective γ-hydroxybutyrate analog 3-hydroxycyclopent-1-enecarboxylic acid does not directly affect CaMKIIα autophosphorylation at T286 or binding to GluN2B. Mol Pharmacol 2025; 107:100029. [PMID: 40184780 DOI: 10.1016/j.molpha.2025.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025] Open
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) mediates physiological long-term potentiation (LTP) of synaptic strength and pathological ischemic neuronal cell death. Both functions require CaMKII autophosphorylation at T286 (pT286) and binding to the NMDA-type glutamate receptor subunit GluN2B. The neuroprotection seen with 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) was thought to be mediated by impairing binding of the brain-specific CaMKIIα isozyme to GluN2B. However, we show that HOCPCA does not inhibit CaMKIIα enzymatic activity, pT286, cocondensation with GluN2B, or binding to GluN2B. Consistent with no effect on GluN2B binding in vitro or in HEK293 cells, HOCPCA also did not affect the CaMKIIα movement to excitatory synapses in hippocampal neurons in response to LTP stimuli. These findings leave the neuroprotective mechanism of HOCPCA unclear but explain why HOCPCA does not impair LTP. SIGNIFICANCE STATEMENT: This study found that the neuroprotective compound 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) does not directly interfere with Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) activity or GluN2B binding. Although this leaves the neuroprotective mechanism of HOCPCA unclear, it explains why HOCPCA does not impair long-term potentiation. Overall, this limits the use of HOCPCA as a tool compound to study CaMKII functions, but not its clinical potential.
Collapse
Affiliation(s)
- Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel E Blaine
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Chase Madison Barker
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Steven J Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Karl Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
2
|
Salem S, Alpaugh M, Saint-Pierre M, Alves-Martins-Borba FN, Cerquera-Cleves C, Lemieux M, Ngonza-Nito SB, De Koninck P, Melki R, Cicchetti F. Treatment with Tau fibrils impact Huntington's disease-related phenotypes in cell and mouse models. Neurobiol Dis 2024; 202:106696. [PMID: 39389154 DOI: 10.1016/j.nbd.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
There is now compelling evidence for the presence of pathological forms of Tau in tissues of both patients and animal models of Huntington's disease (HD). While the root cause of this illness is a mutation within the huntingtin gene, a number of studies now suggest that HD could also be considered a secondary tauopathy. However, the contributory role of Tau in the pathogenesis and pathophysiology of this condition, as well as its implications in cellular toxicity and consequent behavioral impairments are largely unknown. We therefore performed intracerebral stereotaxic injections of recombinant human Tau monomers and fibrils into the knock-in zQ175 mouse model of HD. Tau fibrils induced cognitive and anxiety-like phenotypes predominantly in zQ175 mice and increased the number and size of insoluble mutant huntingtin (mHTT) aggregates in the brains of treated animals. To better understand the putative mechanisms through which Tau could initiate and/or contribute to pathology, we incubated StHdh striatal cells, an in vitro model of HD, with the different Tau forms and evaluated the effects on cell functionality and heat shock proteins Hsp70 and Hsp90. Calcium imaging experiments showed functional impairments of HD StHdh cells following treatment with Tau fibrils, as well as significant changes to the levels of both heat shock proteins which were found trapped within mHTT aggregates. The accumulation of Hsp70 and 90 within aggregates was also present in mouse tissue which suggests that alteration of molecular chaperone-dependent protein quality control may influence aggregation, implicating proteostasis in the mHTT-Tau interplay.
Collapse
Affiliation(s)
- Shireen Salem
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Martine Saint-Pierre
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Flavia Natale Alves-Martins-Borba
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Catalina Cerquera-Cleves
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Mado Lemieux
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Soki Bradel Ngonza-Nito
- Labortory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Paul De Koninck
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Ronald Melki
- Labortory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Francesca Cicchetti
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Claiborne N, Anisimova M, Zito K. Activity-Dependent Stabilization of Nascent Dendritic Spines Requires Nonenzymatic CaMKIIα Function. J Neurosci 2024; 44:e1393222023. [PMID: 38050081 PMCID: PMC10860566 DOI: 10.1523/jneurosci.1393-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The outgrowth and stabilization of nascent dendritic spines are crucial processes underlying learning and memory. Most new spines retract shortly after growth; only a small subset is stabilized and integrated into the new circuit connections that support learning. New spine stabilization has been shown to rely upon activity-dependent molecular mechanisms that also contribute to long-term potentiation (LTP) of synaptic strength. Indeed, disruption of the activity-dependent targeting of the kinase CaMKIIα to the GluN2B subunit of the NMDA-type glutamate receptor disrupts both LTP and activity-dependent stabilization of new spines. Yet it is not known which of CaMKIIα's many enzymatic and structural functions are important for new spine stabilization. Here, we used two-photon imaging and photolysis of caged glutamate to monitor the activity-dependent stabilization of new dendritic spines on hippocampal CA1 neurons from mice of both sexes in conditions where CaMKIIα functional and structural interactions were altered. Surprisingly, we found that inhibiting CaMKIIα kinase activity either genetically or pharmacologically did not impair activity-dependent new spine stabilization. In contrast, shRNA knockdown of CaMKIIα abolished activity-dependent new spine stabilization, which was rescued by co-expressing shRNA-resistant full-length CaMKIIα, but not by a truncated monomeric CaMKIIα. Notably, overexpression of phospho-mimetic CaMKIIα-T286D, which exhibits activity-independent targeting to GluN2B, enhanced basal new spine survivorship in the absence of additional glutamatergic stimulation, even when kinase activity was disrupted. Together, our results support a model in which nascent dendritic spine stabilization requires structural and scaffolding interactions mediated by dodecameric CaMKIIα that are independent of its enzymatic activities.
Collapse
Affiliation(s)
- Nicole Claiborne
- Center for Neuroscience, University of California, Davis, California 95618
| | | | - Karen Zito
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
4
|
Wagle S, Kraynyukova N, Hafner AS, Tchumatchenko T. Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules. Mol Cell Neurosci 2023; 125:103846. [PMID: 36963534 DOI: 10.1016/j.mcn.2023.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Recent advances in experimental techniques provide an unprecedented peek into the intricate molecular dynamics inside synapses and dendrites. The experimental insights into the molecular turnover revealed that such processes as diffusion, active transport, spine uptake, and local protein synthesis could dynamically modulate the copy numbers of plasticity-related molecules in synapses. Subsequently, theoretical models were designed to understand the interaction of these processes better and to explain how local synaptic plasticity cues can up or down-regulate the molecular copy numbers across synapses. In this review, we discuss the recent advances in experimental techniques and computational models to highlight how these complementary approaches can provide insight into molecular cross-talk across synapses, ultimately allowing us to develop biologically-inspired neural network models to understand brain function.
Collapse
Affiliation(s)
- Surbhit Wagle
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany
| | - Nataliya Kraynyukova
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anne-Sophie Hafner
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands; Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Tatjana Tchumatchenko
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany; Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
5
|
Dai W, Zhao M, Chen C, Zhou C, Wang P, Yang Z, Gao S, Lu Y, Zhang J, Liu X. Nano C60 Promotes Synaptic Distribution of Phosphorylated CaMKIIα and Improves Cognitive Function in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2022; 13:3534-3543. [PMID: 36441865 DOI: 10.1021/acschemneuro.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The wide disparity in outcomes of Alzheimer's disease (AD) treatment from preclinical to clinical studies suggests an urgent need for more effective therapeutic targets and approaches to treat AD. CaMKII is a potential target for AD therapy; however, conflicting reports on the relationship between CaMKII and AD suggest a lack of deeper understanding of the interaction between CaMKII and AD. In addition to the lack of effective therapeutic targets, pharmacokinetic limitations of neuroprotective drugs, such as low lipophilicity to cross blood brain barrier, need to be urgently addressed in the practice of AD therapy. In this study, we prepared a carbon-based nanoparticle, Nano C60, and demonstrated that Nano C60 treatment promoted the translocation of phosphorylated CaMKIIα from the cytoplasm to the synapse in Aβ42 oligomers-treated cells and APP/PS1 mice. As a result, Nano C60 administration significantly improved spatial learning and memory in APP/PS1 mice. Our study suggests that synaptic-activated CaMKII may be more important than total CaMKII in AD treatment and provides a new strategy for AD therapy.
Collapse
Affiliation(s)
- Wei Dai
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Mingxu Zhao
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Caiyun Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Chang Zhou
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Peng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Zhilai Yang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230000, China
| | - Yao Lu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Jiqian Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| |
Collapse
|
6
|
Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci 2022; 23:666-682. [PMID: 36056211 DOI: 10.1038/s41583-022-00624-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/30/2022]
Abstract
Calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse-nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.
Collapse
Affiliation(s)
- Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Zirotti Rosenberg A, Méndez-Ruette M, Gorziglia M, Alzerreca B, Cabello J, Kaufmann S, Rambousek L, Iturriaga Jofré A, Wyneken U, Lafourcade CA. Behavioral and Molecular Responses to Exogenous Cannabinoids During Pentylenetetrazol-Induced Convulsions in Male and Female Rats. Front Mol Neurosci 2022; 15:868583. [PMID: 36147210 PMCID: PMC9488559 DOI: 10.3389/fnmol.2022.868583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a disabling, chronic brain disease,affecting ~1% of the World’s population, characterized by recurrent seizures (sudden, uncontrolled brain activity), which may manifest with motor symptoms (e.g., convulsions) or non-motor symptoms. Temporal lobe epilepsies (TLE) compromising the hippocampus are the most common form of focal epilepsies. Resistance in ~1/3 of epileptic patients to the first line of treatment, i.e., antiepileptic drugs (AEDs), has been an important motivation to seek alternative treatments. Among these, the plant Cannabis sativa (commonly known as marihuana) or compounds extracted from it (cannabinoids) have gained widespread popularity. Moreover, sex differences have been proposed in epilepsy syndromes and in cannabinoid action. In the hippocampus, cannabinoids interact with the CB1R receptor whose membrane levels are regulated by β-Arrestin2, a protein that promotes its endocytosis and causes its downregulation. In this article, we evaluate the modulatory role of WIN 55,212-2 (WIN), a synthetic exogenous cannabinoid on behavioral convulsions and on the levels of CB1R and β-Arrestin2 in female and male adolescent rats after a single injection of the proconvulsant pentylenetetrazol (PTZ). As epilepsies can have a considerable impact on synaptic proteins that regulate neuronal toxicity, plasticity, and cognition, we also measured the levels of key proteins markers of excitatory synapses, in order to examine whether exogenous cannabinoids may prevent such pathologic changes after acute seizures. We found that the exogenous administration of WIN prevented convulsions of medium severity in females and males and increased the levels of phosphorylated CaMKII in the hippocampus. Furthermore, we observed a higher degree of colocalization between CB1R and β-Arrestin2 in the granule cell layer.
Collapse
Affiliation(s)
| | - Maxs Méndez-Ruette
- Centro de investigación e innovación Biomédica (CiiB), Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | - Mario Gorziglia
- Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | | | - Javiera Cabello
- Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Sofía Kaufmann
- Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Lukas Rambousek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Ursula Wyneken
- Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Carlos A. Lafourcade
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, China
- *Correspondence: Carlos A. Lafourcade
| |
Collapse
|
8
|
Pronot M, Poupon G, Pizzamiglio L, Prieto M, Chato-Astrain I, Lacagne I, Schorova L, Folci A, Brau F, Martin S. Bidirectional regulation of synaptic SUMOylation by Group 1 metabotropic glutamate receptors. Cell Mol Life Sci 2022; 79:378. [PMID: 35739402 PMCID: PMC9226087 DOI: 10.1007/s00018-022-04405-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
Abstract
SUMOylation is a post-translational modification essential to cell homeostasis. A tightly controlled equilibrium between SUMOylation and deSUMOylation processes is also critical to the neuronal function including neurotransmitter release and synaptic transmission and plasticity. Disruption of the SUMOylation homeostasis in neurons is associated with several neurological disorders. The balance between the SUMOylation and deSUMOylation of substrate proteins is maintained by a group of deSUMOylation enzymes called SENPs. We previously showed that the activation of type 5 metabotropic glutamate receptors (mGlu5R) first triggers a rapid increase in synaptic SUMOylation and then upon the sustained activation of these receptors, the deSUMOylase activity of SENP1 allows the increased synaptic SUMOylation to get back to basal levels. Here, we combined the use of pharmacological tools with subcellular fractionation and live-cell imaging of individual hippocampal dendritic spines to demonstrate that the synaptic accumulation of the deSUMOylation enzyme SENP1 is bidirectionally controlled by the activation of type 1 mGlu1 and mGlu5 receptors. Indeed, the pharmacological blockade of mGlu1R activation during type 1 mGluR stimulation leads to a faster and greater accumulation of SENP1 at synapses indicating that mGlu1R acts as a brake to the mGlu5R-dependent deSUMOylation process at the post-synapse. Altogether, our findings reveal that type 1 mGluRs work in opposition to dynamically tune the homeostasis of SUMOylation at the mammalian synapse.
Collapse
Affiliation(s)
- Marie Pronot
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | | | - Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | | | | | | | - Frédéric Brau
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France.
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des lucioles, 06560, Valbonne, France.
| |
Collapse
|
9
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Pchitskaya E, Rakovskaya A, Chigray M, Bezprozvanny I. Cytoskeleton Protein EB3 Contributes to Dendritic Spines Enlargement and Enhances Their Resilience to Toxic Effects of Beta-Amyloid. Int J Mol Sci 2022; 23:2274. [PMID: 35216391 PMCID: PMC8875759 DOI: 10.3390/ijms23042274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
EB3 protein is expressed abundantly in the nervous system and transiently enters the dendritic spines at the tip of the growing microtubule, which leads to spine enlargement. Nevertheless, the role of dynamic microtubules, and particularly EB3 protein, in synapse function is still elusive. By manipulating the EB3 expression level, we have shown that this protein is required for a normal dendritogenesis. Nonetheless, EB3 overexpression also reduces hippocampal neurons dendritic branching and total dendritic length. This effect likely occurs due to the speeding neuronal development cycle from dendrite outgrowth to the step when dendritic spines are forming. Implementing direct morphometric characterization of dendritic spines, we showed that EB3 overexpression leads to a dramatic increase in the dendritic spine head area. EB3 knockout oppositely reduces spine head area and increases spine neck length and spine neck/spine length ratio. The same effect is observed in conditions of amyloid-beta toxicity, modeling Alzheimer`s disease. Neck elongation is supposed to be a common detrimental effect on the spine's shape, which makes them biochemically and electrically less connected to the dendrite. EB3 also potentiates the formation of presynaptic protein Synapsin clusters and CaMKII-alpha preferential localization in spines rather than in dendrites of hippocampal neurons, while its downregulation has an opposite effect and reduces the size of presynaptic protein clusters Synapsin and PSD95. EB3's role in spine development and maturation determines its neuroprotective effect. EB3 overexpression makes dendritic spines resilient to amyloid-beta toxicity, restores altered PSD95 clustering, and reduces CaMKII-alpha localization in spines observed in this pathological state.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Anastasiya Rakovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Margarita Chigray
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Arora A, Goering R, Lo HYG, Lo J, Moffatt C, Taliaferro JM. The Role of Alternative Polyadenylation in the Regulation of Subcellular RNA Localization. Front Genet 2022; 12:818668. [PMID: 35096024 PMCID: PMC8795681 DOI: 10.3389/fgene.2021.818668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread and conserved regulatory mechanism that generates diverse 3' ends on mRNA. APA patterns are often tissue specific and play an important role in cellular processes such as cell proliferation, differentiation, and response to stress. Many APA sites are found in 3' UTRs, generating mRNA isoforms with different 3' UTR contents. These alternate 3' UTR isoforms can change how the transcript is regulated, affecting its stability and translation. Since the subcellular localization of a transcript is often regulated by 3' UTR sequences, this implies that APA can also change transcript location. However, this connection between APA and RNA localization has only recently been explored. In this review, we discuss the role of APA in mRNA localization across distinct subcellular compartments. We also discuss current challenges and future advancements that will aid our understanding of how APA affects RNA localization and molecular mechanisms that drive these processes.
Collapse
Affiliation(s)
- Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hei Yong G. Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joelle Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charlie Moffatt
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
12
|
Liao R, Mondal M, Nazaroff CD, Mastroeni D, Coleman PD, Labaer J, Guo J. Highly Sensitive and Multiplexed Protein Imaging With Cleavable Fluorescent Tyramide Reveals Human Neuronal Heterogeneity. Front Cell Dev Biol 2021; 8:614624. [PMID: 33585449 PMCID: PMC7874177 DOI: 10.3389/fcell.2020.614624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The ability to comprehensively profile proteins in intact tissues in situ is crucial for our understanding of health and disease. However, the existing methods suffer from low sensitivity and limited sample throughput. To address these issues, here we present a highly sensitive and multiplexed in situ protein analysis approach using cleavable fluorescent tyramide and off-the-shelf antibodies. Compared with the current methods, this approach enhances the detection sensitivity and reduces the imaging time by 1-2 orders of magnitude, and can potentially detect hundreds of proteins in intact tissues at the optical resolution. Applying this approach, we studied protein expression heterogeneity in a population of genetically identical cells, and performed protein expression correlation analysis to identify co-regulated proteins. We also profiled >6,000 neurons in a human formalin-fixed paraffin-embedded (FFPE) hippocampus tissue. By partitioning these neurons into varied cell clusters based on their multiplexed protein expression profiles, we observed different sub-regions of the hippocampus consist of neurons from distinct clusters.
Collapse
Affiliation(s)
- Renjie Liao
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Manas Mondal
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Christopher D. Nazaroff
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Diego Mastroeni
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
- L.J. Roberts Center for Alzheimer's Research, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Paul D. Coleman
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
- L.J. Roberts Center for Alzheimer's Research, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Joshua Labaer
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Shrestha A, Sultana R, Adeniyi PA, Lee CC, Ogundele OM. Positive Modulation of SK Channel Impedes Neuron-Specific Cytoskeletal Organization and Maturation. Dev Neurosci 2020; 42:59-71. [PMID: 32580196 PMCID: PMC7486235 DOI: 10.1159/000507989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) modulates the structural plasticity of dendritic spines by impacting cytoskeletal organization and kinase signaling. In the developing nervous system, activation of NMDAR is pertinent for neuronal migration, neurite differentiation, and cellular organization. Given that small conductance potassium channels (SK2/3) repress NMDAR ionotropic signaling, this study highlights the impact of neonatal SK channel potentiation on adult cortical and hippocampal organization. Neonatal SK channel potentiation was performed by one injection of SK2/3 agonist (CyPPA) into the pallium of mice on postnatal day 2 (P2). When the animals reached adulthood (P55), the hippocampus and cortex were examined to assess neuronal maturation, lamination, and the distribution of synaptic cytoskeletal proteins. Immunodetection of neuronal markers in the brain of P2-treated P55 mice revealed the presence of immature neurons in the upper cortical layers (layers II-IV) and CA1 (hippocampus). Also, layer-dependent cortical-cell density was attenuated due to the ectopic localization of mature (NeuN+) and immature (Doublecortin+ [DCX+]) neurons in cortical layers II-IV. Similarly, the decreased count of NeuN+ neurons in the CA1 is accompanied by an increase in the number of immature DCX+ neurons. Ectopic localization of neurons in the upper cortex and CA1 caused the dramatic expression of neuron-specific cytoskeletal proteins. In line with this, structural deformity of neuronal projections and the loss of postsynaptic densities suggests that postsynaptic integrity is compromised in the SK2/3+ brain. From these results, we deduced that SK channel activity in the developing brain likely impacts neuronal maturation through its effects on cytoskeletal formation.
Collapse
Affiliation(s)
- Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Razia Sultana
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Philip A Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA,
| |
Collapse
|
14
|
Abstract
Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.
Collapse
Affiliation(s)
- Pablo M Paez
- Department of Pharmacology and Toxicology and Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York 14203, USA;
| | - David A Lyons
- Centre for Discovery Brain Sciences, Centre for Multiple Sclerosis Research, and Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom;
| |
Collapse
|
15
|
Fitzgerald ZT, Rose JK. Locally-Induced CaMKII Translocation Requires Nucleotide Binding. Front Synaptic Neurosci 2020; 12:4. [PMID: 32116640 PMCID: PMC7019030 DOI: 10.3389/fnsyn.2020.00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Calcium-calmodulin-dependent protein kinase (CaMKII) is a molecule involved in several cell processes including plasticity related to learning and memory. Activation of NMDA-type glutamate receptors results in translocation of CaMKII to synapses. However, there are at least two distinct mechanisms by which glutamate-dependent CaMKII translocation occurs: one well-studied process resulting from whole-cell glutamate stimulation and one resulting from brief, local glutamate application. Unlike the relatively fast CaMKII translocation seen following whole-cell glutamate delivery (seconds), local application results in CaMKII translocation that occurs gradually within 6-10 min. This locally-induced translocation of CaMKII requires L-type Ca2+ channel co-activation but does not rely on GluN2B receptor subunit expression, unlike translocation following whole-cell application of glutamate. The current study examined if nucleotide binding is necessary for locally-induced CaMKII translocation, similar to CaMKII translocation resulting from whole-cell glutamate application. Three different mechanisms of inhibition were employed: staurosporine (ATP inhibitor), CaMKII(281-302) peptide inhibitor and expression of the K42M mutation. Locally-induced CaMKII translocation was moderately suppressed in the presence of either the broad-spectrum kinase inhibitor staurosporine (100 nm) or the CaMKII(281-302) peptide inhibitor. However, expression of the catalytically dead K42M mutation that prevents ATP-binding to CaMKII, significantly inhibited locally-induced translocation. Thus, CaMKII translocation following brief, local glutamate application requires nucleotide binding, providing support for future research into the molecular mechanisms of this distinct form of CaMKII translocation.
Collapse
Affiliation(s)
| | - Jacqueline K. Rose
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
16
|
Theart RP, Loos B, Niesler TR. Regression adjusted colocalisation colour mapping (RACC): A novel biological visual analysis method for qualitative colocalisation analysis of 3D fluorescence micrographs. PLoS One 2019; 14:e0225141. [PMID: 31710634 PMCID: PMC6844467 DOI: 10.1371/journal.pone.0225141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
The qualitative analysis of colocalisation in fluorescence microscopy is of critical importance to the understanding of biological processes and cellular function. However, the degree of accuracy achieved may differ substantially when executing different yet commonly utilized colocalisation analyses. We propose a novel biological visual analysis method that determines the correlation within the fluorescence intensities and subsequently uses this correlation to assign a colourmap value to each voxel in a three-dimensional sample while also highlighting volumes with greater combined fluorescence intensity. This addresses the ambiguity and variability which can be introduced into the visualisation of the spatial distribution of correlation between two fluorescence channels when the colocalisation between these channels is not considered. Most currently employed and generally accepted methods of visualising colocalisation using a colourmap can be negatively affected by this ambiguity, for example by incorrectly indicating non-colocalised voxels as positively correlated. In this paper we evaluate the proposed method by applying it to both synthetic data and biological fluorescence micrographs and demonstrate how it can enhance the visualisation in a robust way by visualising only truly colocalised regions using a colourmap to indicate the qualitative measure of the correlation between the fluorescence intensities. This approach may substantially support fluorescence microscopy applications in which precise colocalisation analysis is of particular relevance.
Collapse
Affiliation(s)
- Rensu P. Theart
- Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Thomas R. Niesler
- Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- * E-mail:
| |
Collapse
|
17
|
Schorova L, Pronot M, Poupon G, Prieto M, Folci A, Khayachi A, Brau F, Cassé F, Gwizdek C, Martin S. The synaptic balance between sumoylation and desumoylation is maintained by the activation of metabotropic mGlu5 receptors. Cell Mol Life Sci 2019; 76:3019-3031. [PMID: 30904951 PMCID: PMC11105596 DOI: 10.1007/s00018-019-03075-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Sumoylation is a reversible post-translational modification essential to the modulation of neuronal function, including neurotransmitter release and synaptic plasticity. A tightly regulated equilibrium between the sumoylation and desumoylation processes is critical to the brain function and its disruption has been associated with several neurological disorders. This sumoylation/desumoylation balance is governed by the activity of the sole SUMO-conjugating enzyme Ubc9 and a group of desumoylases called SENPs, respectively. We previously demonstrated that the activation of type 5 metabotropic glutamate receptors (mGlu5R) triggers the transient trapping of Ubc9 in dendritic spines, leading to a rapid increase in the overall synaptic sumoylation. However, the mechanisms balancing this increased synaptic sumoylation are still not known. Here, we examined the diffusion properties of the SENP1 enzyme using a combination of advanced biochemical approaches and restricted photobleaching/photoconversion of individual hippocampal spines. We demonstrated that the activation of mGlu5R leads to a time-dependent decrease in the exit rate of SENP1 from dendritic spines. The resulting post-synaptic accumulation of SENP1 restores synaptic sumoylation to initial levels. Altogether, our findings reveal the mGlu5R system as a central activity-dependent mechanism to maintaining the homeostasis of sumoylation at the mammalian synapse.
Collapse
Affiliation(s)
- Lenka Schorova
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Marie Pronot
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Gwénola Poupon
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Marta Prieto
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Alessandra Folci
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Anouar Khayachi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Frédéric Brau
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Frédéric Cassé
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Carole Gwizdek
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France.
| |
Collapse
|
18
|
Tardif C, Nadeau G, Labrecque S, Côté D, Lavoie-Cardinal F, De Koninck P. Fluorescence lifetime imaging nanoscopy for measuring Förster resonance energy transfer in cellular nanodomains. NEUROPHOTONICS 2019; 6:015002. [PMID: 30746389 PMCID: PMC6354015 DOI: 10.1117/1.nph.6.1.015002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/28/2018] [Indexed: 05/08/2023]
Abstract
Microscopy methods used to measure Förster resonance energy transfer (FRET) between fluorescently labeled proteins can provide information on protein interactions in cells. However, these methods are diffraction-limited, thus do not enable the resolution of the nanodomains in which such interactions occur in cells. To overcome this limitation, we assess FRET with an imaging system combining fluorescence lifetime imaging microscopy with stimulated emission depletion, termed fluorescence lifetime imaging nanoscopy (FLIN). The resulting FRET-FLIN approach utilizes immunolabeling of proteins in fixed cultured neurons. We demonstrate the capacity to discriminate nanoclusters of synaptic proteins exhibiting variable degrees of interactions with labeled binding partners inside dendritic spines of hippocampal neurons. This method enables the investigation of FRET within nanodomains of cells, approaching the scale of molecular signaling.
Collapse
Affiliation(s)
| | | | | | - Daniel Côté
- CERVO Brain Research Center, Québec (QC), Canada
- Université Laval, Département de physique, de génie physique et d’optique, Québec (QC), Canada
| | | | - Paul De Koninck
- CERVO Brain Research Center, Québec (QC), Canada
- Université Laval, Département de biochimie, de microbiologie et de bio-informatique, Québec (QC), Canada
- Address all correspondence to Paul De Koninck, E-mail:
| |
Collapse
|
19
|
Wood BM, Simon M, Galice S, Alim CC, Ferrero M, Pinna NN, Bers DM, Bossuyt J. Cardiac CaMKII activation promotes rapid translocation to its extra-dyadic targets. J Mol Cell Cardiol 2018; 125:18-28. [PMID: 30321537 PMCID: PMC6279589 DOI: 10.1016/j.yjmcc.2018.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
Calcium-calmodulin dependent protein kinase IIδ (CaMKIIδ) is an important regulator of cardiac electrophysiology, calcium (Ca) balance, contraction, transcription, arrhythmias and progression to heart failure. CaMKII is readily activated at mouths of dyadic cleft Ca channels, but because of its low Ca-calmodulin affinity and presumed immobility it is less clear how CaMKII gets activated near other known, extra-dyad targets. CaMKII is typically considered to be anchored in cardiomyocytes, but while untested, mobility of active CaMKII could provide a mechanism for broader target phosphorylation in cardiomyocytes. We therefore tested CaMKII mobility and how this is affected by kinase activation in adult rabbit cardiomyocytes. We measured translocation of both endogenous and fluorescence-tagged CaMKII using immunocytochemistry, fluorescence recovery after photobleach (FRAP) and photoactivation of fluorescence. In contrast to the prevailing view that CaMKII is anchored near its myocyte targets, we found CaMKII to be highly mobile in resting myocytes, which was slowed by Ca chelation and accelerated by pacing. At low [Ca], CaMKII was concentrated at Z-lines near the dyad but spread throughout the sarcomere upon pacing. Nuclear exchange of CaMKII was also enhanced upon pacing- and heart failure-induced chronic activation. This mobilization of active CaMKII and its intrinsic memory may allow CaMKII to be activated in high [Ca] regions and then move towards more distant myocyte target sites.
Collapse
Affiliation(s)
- Brent M Wood
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Mitchell Simon
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Samuel Galice
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Chidera C Alim
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Maura Ferrero
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Natalie N Pinna
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Cheli VT, Santiago González DA, Zamora NN, Lama TN, Spreuer V, Rasmusson RL, Bett GC, Panagiotakos G, Paez PM. Enhanced oligodendrocyte maturation and myelination in a mouse model of Timothy syndrome. Glia 2018; 66:2324-2339. [PMID: 30151840 PMCID: PMC6697123 DOI: 10.1002/glia.23468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/13/2017] [Accepted: 05/16/2018] [Indexed: 01/09/2023]
Abstract
To study the role of L-type voltage-gated Ca++ channels in oligodendrocyte development, we used a mouse model of Timothy syndrome (TS) in which a gain-of-function mutation in the α1 subunit of the L-type Ca++ channel Cav1.2 gives rise to an autism spectrum disorder (ASD). Oligodendrocyte progenitor cells (OPCs) isolated from the cortex of TS mice showed greater L-type Ca++ influx and displayed characteristics suggestive of advanced maturation compared to control OPCs, including a more complex morphology and higher levels of myelin protein expression. Consistent with this, expression of Cav1.2 channels bearing the TS mutation in wild-type OPCs triggered process formation and promoted oligodendrocyte-neuron interaction via the activation of Ca++ /calmodulin-dependent protein kinase II. To ascertain whether accelerated OPC maturation correlated with functional enhancements, we examined myelination in the TS brain at different postnatal time points. The expression of myelin proteins was significantly higher in the corpus callosum, cortex and striatum of TS animals, and immunohistochemical analysis for oligodendrocyte stage-specific markers revealed an increase in the density of myelinating oligodendrocytes in several areas of the TS brain. Along the same line, electron microscopy studies in the corpus callosum of TS animals showed significant increases both in the percentage of myelinated axons and in the thickness of myelin sheaths. In summary, these data indicate that OPC development and oligodendrocyte myelination is enhanced in the brain of TS mice, and suggest that this mouse model of a syndromic ASD is a useful tool to explore the role of L-type Ca++ channels in myelination.
Collapse
Affiliation(s)
- Veronica T. Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Diara A. Santiago González
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Norma N. Zamora
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Tenzing N. Lama
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Vilma Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Randall L. Rasmusson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Glenna C. Bett
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Georgia Panagiotakos
- Department of Biochemistry and Biophysics and Kavli Institute for Fundamental Neuroscience, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Pablo M. Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| |
Collapse
|
21
|
Glasgow SD, Labrecque S, Beamish IV, Aufmkolk S, Gibon J, Han D, Harris SN, Dufresne P, Wiseman PW, McKinney RA, Séguéla P, De Koninck P, Ruthazer ES, Kennedy TE. Activity-Dependent Netrin-1 Secretion Drives Synaptic Insertion of GluA1-Containing AMPA Receptors in the Hippocampus. Cell Rep 2018; 25:168-182.e6. [DOI: 10.1016/j.celrep.2018.09.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022] Open
|
22
|
Oka M, Fujisaki N, Maruko-Otake A, Ohtake Y, Shimizu S, Saito T, Hisanaga SI, Iijima KM, Ando K. Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. J Biochem 2017; 162:335-342. [PMID: 28992057 DOI: 10.1093/jb/mvx038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 01/07/2023] Open
Abstract
Abnormal deposition of the microtubule-associated protein tau is a common pathological feature of multiple neurodegenerative diseases, including Alzheimer's disease (AD), and plays critical roles in their pathogenesis. Disruption of calcium homeostasis and the downstream kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) coincides with pathological phosphorylation of tau in AD brains. However, it remains unclear whether and how dysregulation of CaMKII affects tau toxicity. Using a Drosophila model, we found that CaMKII promotes neurodegeneration caused by tau phosphorylated at the AD-associated sites Ser262/356. Overexpression of CaMKII promoted, while RNA-mediated knockdown of CaMKII and inhibition of CaMKII activity by expression of an inhibitory peptide suppressed, tau-mediated neurodegeneration. Blocking tau phosphorylation at Ser262/356 by alanine substitutions suppressed promotion of tau toxicity by CaMKII, suggesting that tau phosphorylation at these sites is required for this phenomenon. However, neither knockdown nor overexpression of CaMKII affected tau phosphorylation levels at Ser262/356, suggesting that CaMKII is not directly involved in tau phosphorylation at Ser262/356 in this model. These results suggest that a pathological cascade of events, including elevated levels of tau phosphorylated at Ser262/356 and aberrant activation of CaMKII, work in concert to promote tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- Mikiko Oka
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoki Fujisaki
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-machi, Obu, Aichi 474-8511, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sawako Shimizu
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-machi, Obu, Aichi 474-8511, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
23
|
Malvaut S, Gribaudo S, Hardy D, David LS, Daroles L, Labrecque S, Lebel-Cormier MA, Chaker Z, Coté D, De Koninck P, Holzenberger M, Trembleau A, Caille I, Saghatelyan A. CaMKIIα Expression Defines Two Functionally Distinct Populations of Granule Cells Involved in Different Types of Odor Behavior. Curr Biol 2017; 27:3315-3329.e6. [PMID: 29107547 DOI: 10.1016/j.cub.2017.09.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/23/2017] [Accepted: 09/27/2017] [Indexed: 12/25/2022]
Abstract
Granule cells (GCs) in the olfactory bulb (OB) play an important role in odor information processing. Although they have been classified into various neurochemical subtypes, the functional roles of these subtypes remain unknown. We used in vivo two-photon Ca2+ imaging combined with cell-type-specific identification of GCs in the mouse OB to examine whether functionally distinct GC subtypes exist in the bulbar network. We showed that half of GCs express Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα+) and that these neurons are preferentially activated by olfactory stimulation. The higher activity of CaMKIIα+ neurons is due to the weaker inhibitory input that they receive compared to their CaMKIIα-immunonegative (CaMKIIα-) counterparts. In line with these functional data, immunohistochemical analyses showed that 75%-90% of GCs expressing the immediate early gene cFos are CaMKIIα+ in naive animals and in mice that have been exposed to a novel odor and go/no-go operant conditioning, or that have been subjected to long-term associative memory and spontaneous habituation/dishabituation odor discrimination tasks. On the other hand, a perceptual learning task resulted in increased activation of CaMKIIα- cells. Pharmacogenetic inhibition of CaMKIIα+ GCs revealed that this subtype is involved in habituation/dishabituation and go/no-go odor discrimination, but not in perceptual learning. In contrast, pharmacogenetic inhibition of GCs in a subtype-independent manner affected perceptual learning. Our results indicate that functionally distinct populations of GCs exist in the OB and that they play distinct roles during different odor tasks.
Collapse
Affiliation(s)
- Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | - Simona Gribaudo
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Delphine Hardy
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | | | - Laura Daroles
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Simon Labrecque
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | | | - Zayna Chaker
- INSERM and Sorbonne Universités, UPMC, Centre de Recherche Saint-Antoine, Paris, France
| | - Daniel Coté
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Paul De Koninck
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Martin Holzenberger
- INSERM and Sorbonne Universités, UPMC, Centre de Recherche Saint-Antoine, Paris, France
| | - Alain Trembleau
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Isabelle Caille
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
24
|
Rich MT, Torregrossa MM. Molecular and synaptic mechanisms regulating drug-associated memories: Towards a bidirectional treatment strategy. Brain Res Bull 2017; 141:58-71. [PMID: 28916448 DOI: 10.1016/j.brainresbull.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
The successful treatment of substance use disorders is dependent on the establishment of a long-term abstinent state. Relapse can be suppressed by interfering with memories of drug use that are evoked by re-exposure to drug-associated contexts and cues. Two strategies for accomplishing this goal are either to prevent drug-memory reconsolidation or to induce the formation of a competing, extinction memory. However, clinical attempts to prolong abstinence by behavioral modification of drug-related memories have had limited success. One approach to improve behavioral treatment strategies is to identify the molecular mechanisms that regulate these memory processes and then use pharmacological tools as supplements to improve efficacy. Still, due to the involvement of several overlapping signaling cascades in both reconsolidation and extinction, it is difficult to specifically modify one of the two processes. For example, attempting to elicit extinction may instead initiate reconsolidation, resulting in the unintentional strengthening of drug-related memories. A better approach is to identify diverging components of the two processes, whereby a single medication would simultaneously weaken reconsolidation and enhance extinction. This review will provide an overview of the neural substrates that are involved in the regulation of drug-associated memories, and will discuss emerging approaches to pharmacologically weaken these memories, including recent efforts to precisely and bidirectionally target reconsolidation and extinction. Ultimately, pharmacologically-enhanced memory-based approaches have the potential to produce more informed relapse-prevention therapies.
Collapse
Affiliation(s)
- Matthew T Rich
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St., Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA, 15213, United States.
| | - Mary M Torregrossa
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
25
|
Novozhylov DO, Karpov PA, Blume YB. Bioinformatic search for Ca2+- and calmodulin-dependent protein kinases potentially associated with the regulation of plant cytoskeleton. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717040053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Phosphoproteomic Analysis Reveals a Novel Mechanism of CaMKIIα Regulation Inversely Induced by Cocaine Memory Extinction versus Reconsolidation. J Neurosci 2017; 36:7613-27. [PMID: 27445140 DOI: 10.1523/jneurosci.1108-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Successful addiction treatment depends on maintaining long-term abstinence, making relapse prevention an essential therapeutic goal. However, exposure to environmental cues associated with drug use often thwarts abstinence efforts by triggering drug using memories that drive craving and relapse. We sought to develop a dual approach for weakening cocaine memories through phosphoproteomic identification of targets regulated in opposite directions by memory extinction compared with reconsolidation in male Sprague-Dawley rats that had been trained to self-administer cocaine paired with an audiovisual cue. We discovered a novel, inversely regulated, memory-dependent phosphorylation event on calcium-calmodulin-dependent kinase II α (CaMKIIα) at serine (S)331. Correspondingly, extinction-associated S331 phosphorylation inhibited CaMKIIα activity. Intra-basolateral amygdala inhibition of CaMKII promoted memory extinction and disrupted reconsolidation, leading to a reduction in subsequent cue-induced reinstatement. CaMKII inhibition had no effect if the memory was neither retrieved nor extinguished. Therefore, inhibition of CaMKII represents a novel mechanism for memory-based addiction treatment that leverages both extinction enhancement and reconsolidation disruption to reduce relapse-like behavior. SIGNIFICANCE STATEMENT Preventing relapse to drug use is an important goal for the successful treatment of addictive disorders. Relapse-prevention therapies attempt to interfere with drug-associated memories, but are often hindered by unintentional memory strengthening. In this study, we identify phosphorylation events that are bidirectionally regulated by the reconsolidation versus extinction of a cocaine-associated memory, including a novel site on CaMKIIα. Additionally, using a rodent model of addiction, we show that CaMKII inhibition in the amygdala can reduce relapse-like behavior. Together, our data supports the existence of mechanisms that can be used to enhance current strategies for addiction treatment.
Collapse
|
27
|
Deciphering CaMKII Multimerization Using Fluorescence Correlation Spectroscopy and Homo-FRET Analysis. Biophys J 2017; 112:1270-1281. [PMID: 28355553 DOI: 10.1016/j.bpj.2017.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 11/20/2022] Open
Abstract
While kinases are typically composed of one or two subunits, calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is composed of 8-14 subunits arranged as pairs around a central core. It is not clear if the CaMKII holoenzyme functions as an assembly of independent subunits, as catalytic pairs, or as a single unit. One strategy to address this question is to genetically engineer monomeric and dimeric CaMKII and evaluate how their activity compares to the wild-type (WT) holoenzyme. Here a technique that combines fluorescence correlation spectroscopy and homo-FRET analysis was used to characterize assembly mutants of Venus-tagged CaMKIIα to identify a dimeric CaMKII. Spectroscopy was then used to compare how holoenzyme structure and function changes in response to activation with CaM in the dimeric mutant, WT-holoenzyme, and a monomeric CaMKII oligomerization-domain deletion mutant control. CaM triggered an increase in hydrodynamic volume in both WT and dimeric CaMKII without altering subunit stoichiometry or the net homo-FRET between Venus-tagged catalytic domains. Biochemical analysis revealed that the dimeric mutant also functioned like WT holoenzyme in terms of its kinase activity with an exogenous substrate, and for endogenous T286 autophosphorylation. We conclude that the fundamental functional units of CaMKII holoenzyme are paired catalytic-domains.
Collapse
|
28
|
Keller A, Ambert N, Legendre A, Bedez M, Bouteiller JM, Bischoff S, Baudry M, Moussaoui S. Impact of synaptic localization and subunit composition of ionotropic glutamate receptors on synaptic function: modeling and simulation studies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:892-904. [PMID: 27164603 DOI: 10.1109/tcbb.2016.2561932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ionotropic NMDA and AMPA glutamate receptors (iGluRs) play important roles in synaptic function under physiological and pathological conditions. iGluRs sub-synaptic localization and subunit composition are dynamically regulated by activity-dependent insertion and internalization. However, understanding the impact on synaptic transmission of changes in composition and localization of iGluRs is difficult to address experimentally. To address this question, we developed a detailed computational model of glutamatergic synapses, including spine and dendritic compartments, elementary models of subtypes of NMDA and AMPA receptors, glial glutamate transporters, intracellular calcium and a calcium-dependent signaling cascade underlying the development of long-term potentiation (LTP). These synapses were distributed on a neuron model and numerical simulations were performed to assess the impact of changes in composition and localization (synaptic vs extrasynaptic) of iGluRs on synaptic transmission and plasticity following various patterns of presynaptic stimulation. In addition, the effects of various pharmacological compounds targeting NMDARs or AMPARs were determined. Our results showed that changes in NMDAR localization have a greater impact on synaptic plasticity than changes in AMPARs. Moreover, the results suggest that modulators of AMPA and NMDA receptors have differential effects on restoring synaptic plasticity under different experimental situations mimicking various human diseases.
Collapse
|
29
|
Verstraelen P, Detrez JR, Verschuuren M, Kuijlaars J, Nuydens R, Timmermans JP, De Vos WH. Dysregulation of Microtubule Stability Impairs Morphofunctional Connectivity in Primary Neuronal Networks. Front Cell Neurosci 2017; 11:173. [PMID: 28690500 PMCID: PMC5480095 DOI: 10.3389/fncel.2017.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
Functionally related neurons assemble into connected networks that process and transmit electrochemical information. To do this in a coordinated manner, the number and strength of synaptic connections is tightly regulated. Synapse function relies on the microtubule (MT) cytoskeleton, the dynamics of which are in turn controlled by a plethora of MT-associated proteins, including the MT-stabilizing protein Tau. Although mutations in the Tau-encoding MAPT gene underlie a set of neurodegenerative disorders, termed tauopathies, the exact contribution of MT dynamics and the perturbation thereof to neuronal network connectivity has not yet been scrutinized. Therefore, we investigated the impact of targeted perturbations of MT stability on morphological (e.g., neurite- and synapse density) and functional (e.g., synchronous calcium bursting) correlates of connectivity in networks of primary hippocampal neurons. We found that treatment with MT-stabilizing or -destabilizing compounds impaired morphofunctional connectivity in a reversible manner. We also discovered that overexpression of MAPT induced significant connectivity defects, which were accompanied by alterations in MT dynamics and increased resistance to pharmacological MT depolymerization. Overexpression of a MAPT variant harboring the P301L point mutation in the MT-binding domain did far less, directly linking neuronal connectivity with Tau's MT binding affinity. Our results show that MT stability is a vulnerable node in tauopathies and that its precise pharmacological tuning may positively affect neuronal network connectivity. However, a critical balance in MT turnover causes it to be a difficult therapeutic target with a narrow operating window.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Jan R. Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Division of Janssen Pharmaceutica N.V.Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
- Department of Molecular Biotechnology, University of GhentGhent, Belgium
| |
Collapse
|
30
|
Brandt R, Bakota L. Microtubule dynamics and the neurodegenerative triad of Alzheimer's disease: The hidden connection. J Neurochem 2017; 143:409-417. [PMID: 28267200 DOI: 10.1111/jnc.14011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/03/2017] [Accepted: 02/17/2017] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and is, on a histopathological level, characterized by the presence of extracellular amyloid plaques composed of the protein fragment Aβ, and intracellular neurofibrillary tangles, which contain the microtubule-associated protein tau in a hyperphosphorylated state. In AD defects in microtubule (MT) assembly and organization have also been reported; however, it is unclear whether MT abnormalities have a causal and early role in the disease process or represent a common end point downstream of the neurodegenerative cascade. Recent evidence indicates that microtubule-stabilizing drugs prevent axonopathy in animal models of tauopathies and reverse Aβ-induced loss of synaptic connectivity in an ex vivo model of amyloidosis. This could suggest that MT dysfunction connects some of the degenerative events and provides a useful target to simultaneously prevent several neurodegenerative processes in AD. Here, we describe how changes in the structure and dynamics of MTs are involved in the different aspects of the neurodegenerative triad of AD. We discuss evidence that MTs are affected both by tau-dependent and tau-independent mechanisms but appear to be regulated in a distinct way in different neuronal compartments. We argue that modulation of MT dynamics could be of potential benefit but needs to be precisely controlled in a cell and compartment-specific manner to avoid harmful side effects. This article is part of the series "Beyond Amyloid".
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
31
|
Hoffman L, Li L, Alexov E, Sanabria H, Waxham MN. Cytoskeletal-like Filaments of Ca 2+-Calmodulin-Dependent Protein Kinase II Are Formed in a Regulated and Zn 2+-Dependent Manner. Biochemistry 2017; 56:2149-2160. [PMID: 28318265 DOI: 10.1021/acs.biochem.7b00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ca2+-calmodulin-dependent protein kinase II (CaMKII) is highly abundant in neurons, where its concentration reaches that typically found for cytoskeletal proteins. Functional reasons for such a high concentration are not known, but given the multitude of known binding partners for CaMKII, a role as a scaffolding molecule has been proposed. In this report, we provide experimental evidence that demonstrates a novel structural role for CaMKII. We discovered that CaMKII forms filaments that can extend for several micrometers in the presence of certain divalent cations (Zn2+, Cd2+, and Cu2+) but not with others (Ca2+, Mg2+, Co2+, and Ni2+). Once formed, depleting the divalent ion concentration with chelators completely dissociated the filaments, and this process could be repeated by cyclic addition and removal of divalent ions. Using the crystal structure of the CaMKII holoenzyme, we computed an electrostatic potential map of the dodecameric complex to predict divalent ion binding sites. This analysis revealed a potential surface-exposed divalent ion binding site involving amino acids that also participate in calmodulin (CaM) binding and suggested CaM binding might inhibit formation of the filaments. As predicted, Ca2+/CaM binding both inhibited divalent ion-induced filament formation and could disassemble preformed filaments. Interestingly, CaMKII within the filaments retains the capacity to autophosphorylate; however, activity toward exogenous substrates is significantly decreased. Activity is restored upon filament disassembly. We compile our results with structural and mechanistic data from the literature to propose a model of Zn2+-mediated CaMKII filament formation, in which assembly and activity are further regulated by Ca2+/CaM.
Collapse
Affiliation(s)
- Laurel Hoffman
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston , 6431 Fannin, Room 7.254, MSB, Houston, Texas 77030, United States
| | - Lin Li
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston , 6431 Fannin, Room 7.254, MSB, Houston, Texas 77030, United States
| |
Collapse
|
32
|
Mondal M, Liao R, Xiao L, Eno T, Guo J. Highly Multiplexed Single-Cell In Situ Protein Analysis with Cleavable Fluorescent Antibodies. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Manas Mondal
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| | - Renjie Liao
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| | - Lu Xiao
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| | - Taylor Eno
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
33
|
Mondal M, Liao R, Xiao L, Eno T, Guo J. Highly Multiplexed Single-Cell In Situ Protein Analysis with Cleavable Fluorescent Antibodies. Angew Chem Int Ed Engl 2017; 56:2636-2639. [PMID: 28128531 DOI: 10.1002/anie.201611641] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/24/2016] [Indexed: 01/23/2023]
Abstract
Limitations on the number of proteins that can be quantified in single cells in situ impede advances in our deep understanding of normal cell physiology and disease pathogenesis. Herein, we present a highly multiplexed single-cell in situ protein analysis approach that is based on chemically cleavable fluorescent antibodies. In this method, antibodies tethered to fluorophores through a novel azide-based cleavable linker are utilized to detect their protein targets. After fluorescence imaging and data storage, the fluorophores coupled to the antibodies are efficiently cleaved without loss of protein target antigenicity. Upon continuous cycles of target recognition, fluorescence imaging, and fluorophore cleavage, this approach has the potential to quantify over 100 different proteins in individual cells at optical resolution. This single-cell in situ protein profiling technology will have wide applications in signaling network analysis, molecular diagnosis, and cellular targeted therapies.
Collapse
Affiliation(s)
- Manas Mondal
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Renjie Liao
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Lu Xiao
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Taylor Eno
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| |
Collapse
|
34
|
Kejiou NS, Palazzo AF. mRNA localization as a rheostat to regulate subcellular gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Nevraj S. Kejiou
- Department of Biochemistry; University of Toronto; Toronto Canada
| | | |
Collapse
|
35
|
Kim K, Saneyoshi T, Hosokawa T, Okamoto K, Hayashi Y. Interplay of enzymatic and structural functions of CaMKII in long-term potentiation. J Neurochem 2016; 139:959-972. [DOI: 10.1111/jnc.13672] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Karam Kim
- Brain Science Institute; RIKEN; Wako Saitama Japan
| | | | | | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
- Department of Molecular Genetics; Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - Yasunori Hayashi
- Brain Science Institute; RIKEN; Wako Saitama Japan
- Saitama University Brain Science Institute; Saitama University; Saitama Japan
- School of Life Science; South China Normal University; Guangzhou China
| |
Collapse
|
36
|
The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun 2016; 7:11613. [PMID: 27194588 PMCID: PMC4874034 DOI: 10.1038/ncomms11613] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
Hippocampal long-term potentiation (LTP) represents the cellular response of excitatory synapses to specific patterns of high neuronal activity and is required for learning and memory. Here we identify a mechanism that requires the calcium-binding protein Copine-6 to translate the initial calcium signals into changes in spine structure. We show that Copine-6 is recruited from the cytosol of dendrites to postsynaptic spine membranes by calcium transients that precede LTP. Cpne6 knockout mice are deficient in hippocampal LTP, learning and memory. Hippocampal neurons from Cpne6 knockouts lack spine structural plasticity as do wild-type neurons that express a Copine-6 calcium mutant. The function of Copine-6 is based on its binding, activating and recruiting the Rho GTPase Rac1 to cell membranes. Consistent with this function, the LTP deficit of Cpne6 knockout mice is rescued by the actin stabilizer jasplakinolide. These data show that Copine-6 links activity-triggered calcium signals to spine structural plasticity necessary for learning and memory.
Collapse
|
37
|
Kaczmarczyk L, Labrie-Dion É, Sehgal K, Sylvester M, Skubal M, Josten M, Steinhäuser C, De Koninck P, Theis M. New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein. PLoS One 2016; 11:e0150000. [PMID: 26915047 PMCID: PMC4767366 DOI: 10.1371/journal.pone.0150000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- * E-mail:
| | | | - Kapil Sehgal
- Institut universitaire en santé mentale de Québec, Québec, QC, Canada
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Magdalena Skubal
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michele Josten
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Paul De Koninck
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
- Institut universitaire en santé mentale de Québec, Québec, QC, Canada
| | - Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Nguyen TA, Sarkar P, Veetil JV, Davis KA, Puhl HL, Vogel SS. Covert Changes in CaMKII Holoenzyme Structure Identified for Activation and Subsequent Interactions. Biophys J 2016; 108:2158-70. [PMID: 25954874 DOI: 10.1016/j.bpj.2015.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 11/29/2022] Open
Abstract
Between 8 to 14 calcium-calmodulin (Ca(2+)/CaM) dependent protein kinase-II (CaMKII) subunits form a complex that modulates synaptic activity. In living cells, the autoinhibited holoenzyme is organized as catalytic-domain pairs distributed around a central oligomerization-domain core. The functional significance of catalytic-domain pairing is not known. In a provocative model, catalytic-domain pairing was hypothesized to prevent ATP access to catalytic sites. If correct, kinase-activity would require catalytic-domain pair separation. Simultaneous homo-FRET and fluorescence correlation spectroscopy was used to detect structural changes correlated with kinase activation under physiological conditions. Saturating Ca(2+)/CaM triggered Threonine-286 autophosphorylation and a large increase in CaMKII holoenzyme hydrodynamic volume without any appreciable change in catalytic-domain pair proximity or subunit stoichiometry. An alternative hypothesis is that two appropriately positioned Threonine-286 interaction-sites (T-sites), each located on the catalytic-domain of a pair, are required for holoenzyme interactions with target proteins. Addition of a T-site ligand, in the presence of Ca(2+)/CaM, elicited a large decrease in catalytic-domain homo-FRET, which was blocked by mutating the T-site (I205K). Apparently catalytic-domain pairing is altered to allow T-site interactions.
Collapse
Affiliation(s)
- Tuan A Nguyen
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Pabak Sarkar
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jithesh V Veetil
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Kaitlin A Davis
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Henry L Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S Vogel
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland.
| |
Collapse
|
39
|
Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca²⁺ signaling in neurons. Sci Rep 2016; 6:20619. [PMID: 26857748 PMCID: PMC4746645 DOI: 10.1038/srep20619] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling.
Collapse
|
40
|
Wang X, Pan T. Methionine Mistranslation Bypasses the Restraint of the Genetic Code to Generate Mutant Proteins with Distinct Activities. PLoS Genet 2015; 11:e1005745. [PMID: 26709516 PMCID: PMC4692448 DOI: 10.1371/journal.pgen.1005745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Although mistranslation is commonly believed to be deleterious, recent evidence indicates that mistranslation can be actively regulated and be beneficial in stress response. Methionine mistranslation in mammalian cells is regulated by reactive oxygen species where cells deliberately alter the proteome through incorporating Met at non-Met positions to enhance oxidative stress response. However, it was not known whether specific, mistranslated mutant proteins have distinct activities from the wild-type protein whose sequence is restrained by the genetic code. Here, we show that Met mistranslation with and without Ca2+ overload generates specific mutant Ca2+/calmodulin-dependent protein kinase II (CaMKII) proteins substituting non-Met with Met at multiple locations. Compared to the genetically encoded wild-type CaMKII, specific mutant CaMKIIs can have distinct activation profiles, intracellular localization and enhanced phenotypes. Our results demonstrate that Met-mistranslation, or “Met-scan” can indeed generate mutant proteins in cells that expand the activity profile of the wild-type protein, and provide a molecular mechanism for the role of regulated mistranslation. Methionine-mistranslation is a recently discovered phenomenon where mammalian cells deliberately mischarge non-Met-tRNAs with amino acid methionine in unstressed cells and in response to innate immune and chemically triggered oxidative stress. These mischarged tRNAs are used in translation to generate mutant proteins containing non-Met to Met substitutions. Accumulating evidence shows that cells employ regulated mistranslation to enhance response to oxidative and other stresses. However, it was unknown whether any specific mutant proteins generated in mistranslation truly have distinct activities as the wild-type protein. Here, we identify and characterize naturally occurring Met-mistranslated proteins in human cells and show that specific Met-mistranslated proteins can have very distinct properties compared to the wild-type protein in vitro and in vivo. For the Ca2+/calmodulin-dependent protein kinase II (CaMKII), Met-mistranslated CaMKII show significant differences in catalytic activities, subcellular localization and elevated caspase-3 activity from the wild-type CaMKII. Our results provide a molecular mechanism on how mistranslation is used as an adaptive mechanism to stress, and establish Met-mistranslation as a nature’s way to overcome the restraint on the protein sequence by the genetic code.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (XW); (TP)
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (XW); (TP)
| |
Collapse
|
41
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
42
|
Kim M, Jeong Y, Chang YC. Extracellular matrix protein reelin regulate dendritic spine density through CaMKIIβ. Neurosci Lett 2015; 599:97-101. [PMID: 26003447 DOI: 10.1016/j.neulet.2015.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/17/2023]
Abstract
Reelin, an extracellular matrix protein, plays an important role in brain development as well as synaptic plasticity. Interestingly, several recent studies have found that Reelin is important for dendritic spine formation in vitro and in vivo. However, the molecular mechanism by which Reelin regulates the dendritic spine density has not been studied well yet. In this study, we found that exogenous Reelin treatment was significantly increased the dendritic spine density in the primary hippocampal neurons. In addition, Reelin was increased the puncta numbers of synaptophysin and PSD-95. Moreover, we found that Reelin modulated the levels of CaMKIIβ, and CaMKIIβ siRNA prevented Reelin's effect on the dendritic spine density. Overall, our results are the first to demonstrate that CaMKIIβ might be required to enable Reelin to alter the dendritic spine density.
Collapse
Affiliation(s)
- Mihyun Kim
- Department of Physical Therapy, Inje University, Gimhae, 621-749, Republic of Korea
| | - Yun Jeong
- Department of Physical Therapy, Inje University, Gimhae, 621-749, Republic of Korea; Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea.
| |
Collapse
|
43
|
Bressloff PC, Levien E. Synaptic democracy and vesicular transport in axons. PHYSICAL REVIEW LETTERS 2015; 114:168101. [PMID: 25955074 DOI: 10.1103/physrevlett.114.168101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| | - Ethan Levien
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
44
|
Kabakov AY, Lisman JE. Catalytically Dead αCaMKII K42M Mutant Acts as a Dominant Negative in the Control of Synaptic Strength. PLoS One 2015; 10:e0123718. [PMID: 25905720 PMCID: PMC4408036 DOI: 10.1371/journal.pone.0123718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/05/2015] [Indexed: 01/17/2023] Open
Abstract
During long-term potentiation (LTP) of excitatory synapses, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated by Ca(2+) influx through NMDA receptors that potentiate AMPA receptor currents by insertion of additional GluR1-containing receptors at the synapse and by increasing AMPA channel conductance, as well as by stimulating structural changes. CaMKII is also involved in the maintenance of LTP and contributes to maintenance of behavioral sensitization by cocaine or amphetamine. Recent studies show that transient expression of catalytically dead αCaMKII K42M mutant after exposure to amphetamine persistently reverses the behavioral effects of the addiction. A suggested interpretation is that this mutant acts as a dominant negative in the control of synaptic strength, but this interpretation has not been physiologically tested. Here we investigate the effect of αCaMKII K42M mutant expressed in single CA1 pyramidal neurons on basal excitatory neurotransmission in cultured rat hippocampal organotypic slices. The mutant caused nearly 50% reduction in the basal CA3-CA1 transmission, while overexpression of the wild-type αCaMKII had no effect. This result is consistent with the dominant negative hypothesis, but there are complexities. We found that the decrease in basal transmission did not occur when activity in the slices was suppressed after transfection by TTX or when NMDA receptors were blocked by APV. Thus, the dominant negative effect requires neural activity for its expression.
Collapse
Affiliation(s)
- Anatoli Y. Kabakov
- Biology Department and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - John E. Lisman
- Biology Department and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Otmakhov N, Gorbacheva EV, Regmi S, Yasuda R, Hudmon A, Lisman J. Excitotoxic insult results in a long-lasting activation of CaMKIIα and mitochondrial damage in living hippocampal neurons. PLoS One 2015; 10:e0120881. [PMID: 25793533 PMCID: PMC4368532 DOI: 10.1371/journal.pone.0120881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 02/11/2015] [Indexed: 12/11/2022] Open
Abstract
Over-activation of excitatory NMDA receptors and the resulting Ca2+ overload is the main cause of neuronal toxicity during stroke. CaMKII becomes misregulated during such events. Biochemical studies show either a dramatic loss of CaMKII activity or its persistent autonomous activation after stroke, with both of these processes being implicated in cell toxicity. To complement the biochemical data, we monitored CaMKII activation in living hippocampal neurons in slice cultures using high spatial/temporal resolution two-photon imaging of the CaMKIIα FRET sensor, Camui. CaMKII activation state was estimated by measuring Camui fluorescence lifetime. Short NMDA insult resulted in Camui activation followed by a redistribution of its protein localization: an increase in spines, a decrease in dendritic shafts, and concentration into numerous clusters in the cell soma. Camui activation was either persistent (> 1-3 hours) or transient (~20 min) and, in general, correlated with its protein redistribution. After longer NMDA insult, however, Camui redistribution persisted longer than its activation, suggesting distinct regulation/phases of these processes. Mutational and pharmacological analysis suggested that persistent Camui activation was due to prolonged Ca2+ elevation, with little impact of autonomous states produced by T286 autophosphorylation and/or by C280/M281 oxidation. Cell injury was monitored using expressible mitochondrial marker mito-dsRed. Shortly after Camui activation and clustering, NMDA treatment resulted in mitochondrial swelling, with persistence of the swelling temporarily linked to the persistence of Camui activation. The results suggest that in living neurons excitotoxic insult produces long-lasting Ca2+-dependent active state of CaMKII temporarily linked to cell injury. CaMKII function, however, is to be restricted due to strong clustering. The study provides the first characterization of CaMKII activation dynamics in living neurons during excitotoxic insults.
Collapse
Affiliation(s)
- Nikolai Otmakhov
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
- * E-mail:
| | - Elena V. Gorbacheva
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| | - Shaurav Regmi
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| | - Ryohei Yasuda
- Max Planck Florida Institute, One Max Planck Way, Jupiter, Florida, 33458, United States of America
| | - Andy Hudmon
- STARK Neuroscience Research Institute, Indiana University School of Medicine, 950 West Walnut Street, Research Building II, Room 480, Indianapolis, Indiana, 46202, United States of America
| | - John Lisman
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| |
Collapse
|
46
|
Doré K, Labrecque S, Tardif C, De Koninck P. FRET-FLIM investigation of PSD95-NMDA receptor interaction in dendritic spines; control by calpain, CaMKII and Src family kinase. PLoS One 2014; 9:e112170. [PMID: 25393018 PMCID: PMC4230936 DOI: 10.1371/journal.pone.0112170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Little is known about the changes in protein interactions inside synapses during synaptic remodeling, as their live monitoring in spines has been limited. We used a FRET-FLIM approach in developing cultured rat hippocampal neurons expressing fluorescently tagged NMDA receptor (NMDAR) and PSD95, two essential proteins in synaptic plasticity, to examine the regulation of their interaction. NMDAR stimulation caused a transient decrease in FRET between the NMDAR and PSD95 in spines of young and mature neurons. The activity of both CaMKII and calpain were essential for this effect in both developmental stages. Meanwhile, inhibition of Src family kinase (SFK) had opposing impacts on this decrease in FRET in young versus mature neurons. Our data suggest concerted roles for CaMKII, SFK and calpain activity in regulating activity-dependent separation of PSD95 from GluN2A or GluN2B. Finally, we found that calpain inhibition reduced spine growth that was caused by NMDAR activity, supporting the hypothesis that PSD95-NMDAR separation is implicated in synaptic remodeling.
Collapse
Affiliation(s)
- Kim Doré
- Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, QC, Canada
| | - Simon Labrecque
- Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, QC, Canada
| | - Christian Tardif
- Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, QC, Canada
| | - Paul De Koninck
- Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, QC, Canada
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, QC, Canada
- * E-mail:
| |
Collapse
|
47
|
Villers A, Giese KP, Ris L. Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation. ACTA ACUST UNITED AC 2014; 21:616-26. [PMID: 25322797 PMCID: PMC4201817 DOI: 10.1101/lm.035972.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
α-calcium/calmodulin-dependent protein kinase (αCaMKII) T286-autophosphorylation provides a short-term molecular memory that was thought to be required for LTP and for learning and memory. However, it has been shown that learning can occur in αCaMKII-T286A mutant mice after a massed training protocol. This raises the question of whether there might be a form of LTP in these mice that can occur without T286 autophosphorylation. In this study, we confirmed that in CA1 pyramidal cells, LTP induced in acute hippocampal slices, after a recovery period in an interface chamber, is strictly dependent on postsynaptic αCaMKII autophosphorylation. However, we demonstrated that αCaMKII-autophosphorylation-independent plasticity can occur in the hippocampus but at the expense of synaptic specificity. This nonspecific LTP was observed in mutant and wild-type mice after a recovery period in a submersion chamber and was independent of NMDA receptors. Moreover, when slices prepared from mutant mice were preincubated during 2 h with rapamycin, high-frequency trains induced a synapse-specific LTP which was added to the nonspecific LTP. This specific LTP was related to an increase in the duration and the amplitude of NMDA receptor-mediated response induced by rapamycin.
Collapse
Affiliation(s)
- Agnès Villers
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| | - Karl Peter Giese
- MRC Centre for Neurodegeneration, Institute of Psychiatry, King's College London, SE5 9NU, London, United Kingdom
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| |
Collapse
|
48
|
McVicker DP, Millette MM, Dent EW. Signaling to the microtubule cytoskeleton: an unconventional role for CaMKII. Dev Neurobiol 2014; 75:423-34. [PMID: 25156276 DOI: 10.1002/dneu.22227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022]
Abstract
Synaptic plasticity is a hallmark of the nervous system and is thought to be integral to higher brain functions such as learning and memory. Calcium, acting as a second messenger, and the calcium/calmodulin dependent kinase CaMKII are key regulators of neuronal plasticity. Given the importance of the actin and microtubule (MT) cytoskeleton in dendritic spine morphology, composition and plasticity, it is not surprising that many regulators of these cytoskeletal elements are downstream of the CaMKII pathway. In this review, we discuss the emerging role of calcium and CaMKII in the regulation of MTs and cargo unloading during synaptic plasticity.
Collapse
Affiliation(s)
- Derrick P McVicker
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | | | | |
Collapse
|
49
|
Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J Neurosci 2014; 34:7600-10. [PMID: 24872564 DOI: 10.1523/jneurosci.4364-13.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is essential for synaptic plasticity underlying memory formation. Some functions of CaMKII are mediated by interactions with synaptic proteins, and activity-triggered translocation of CaMKII to synapses has been heavily studied. However, CaMKII actions away from the postsynaptic density (PSD) remain poorly understood, in part because of the difficulty in discerning where CaMKII binds in live cells. We used photoactivated localization microscopy (PALM) in rat hippocampal neurons to track single molecules of CaMKIIα, mapping its spatial and kinetic heterogeneity at high resolution. We found that CaMKIIα exhibits at least three kinetic subpopulations, even within individual spines. Latrunculin application or coexpression of CaMKIIβ carrying its actin-binding domain strongly modulated CaMKII diffusion, indicating that a major subpopulation is regulated by the actin cytoskeleton. CaMKII in spines was typically more slowly mobile than in dendrites, consistent with presence of a higher density of binding partners or obstacles. Importantly, NMDA receptor stimulation that triggered CaMKII activation prompted the immobilization and presumed binding of CaMKII in spines not only at PSDs but also at other points up to several hundred nanometers away, suggesting that activated kinase does not target only the PSD. Consistent with this, single endogenous activated CaMKII molecules detected via STORM immunocytochemistry were concentrated in spines both at the PSD and at points quite distant from the synapse. Together, these results indicate that CaMKII mobility within spines is determined by association with multiple interacting proteins, even outside the PSD, suggesting diverse mechanisms by which CaMKII may regulate synaptic transmission.
Collapse
|
50
|
Hell JW. CaMKII: claiming center stage in postsynaptic function and organization. Neuron 2014; 81:249-65. [PMID: 24462093 DOI: 10.1016/j.neuron.2013.12.024] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 11/16/2022]
Abstract
While CaMKII has long been known to be essential for synaptic plasticity and learning, recent work points to new dimensions of CaMKII function in the nervous system, revealing that CaMKII also plays an important role in synaptic organization. Ca(2+)-triggered autophosphorylation of CaMKII not only provides molecular memory by prolonging CaMKII activity during long-term plasticity (LTP) and learning but also represents a mechanism for autoactivation of CaMKII's multifaceted protein-docking functions. New details are also emerging about the distinct roles of CaMKIIα and CaMKIIβ in synaptic homeostasis, further illustrating the multilayered and complex nature of CaMKII's involvement in synaptic regulation. Here, I review novel molecular and functional insight into how CaMKII supports synaptic function.
Collapse
Affiliation(s)
- Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA 95615, USA.
| |
Collapse
|