1
|
Sonntag T, Omi S, Andreeva A, Valotteau C, Eichelbrenner J, Chisholm AD, Ward JD, Pujol N. A defining member of the new cysteine-cradle family is an aECM protein signalling skin damage in C. elegans. PLoS Genet 2025; 21:e1011593. [PMID: 40112269 PMCID: PMC11925461 DOI: 10.1371/journal.pgen.1011593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025] Open
Abstract
Apical extracellular matrices (aECMs) act as crucial barriers, and communicate with the epidermis to trigger protective responses following injury or infection. In Caenorhabditis elegans, the skin aECM, the cuticle, is produced by the epidermis and is decorated with periodic circumferential furrows. We previously showed that mutants lacking cuticle furrows exhibit persistent immune activation (PIA), providing a valuable model to study the link between cuticle damage and immune response. In a genetic suppressor screen, we identified spia-1 as a key gene downstream of furrow collagens and upstream of immune signalling. spia-1 expression oscillates during larval development, peaking between each moult together with patterning cuticular components. It encodes a secreted protein that localises to furrows. SPIA-1 shares a novel cysteine-cradle domain with other aECM proteins. SPIA-1 mediates immune activation in response to furrow loss and is proposed to act as an extracellular signal activator of cuticle damage. This research provides a molecular insight into intricate interplay between cuticle integrity and epidermal immune activation in C. elegans.
Collapse
Affiliation(s)
- Thomas Sonntag
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Shizue Omi
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Antonina Andreeva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Claire Valotteau
- Aix-Marseille Univ, INSERM, DyNaMo, Turing Centre for Living Systems, Marseille, France
| | - Jeanne Eichelbrenner
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
2
|
Kotowska AM, Hiramatsu F, Alexander MR, Scurr DJ, Lightfoot JW, Chauhan VM. Surface Lipids in Nematodes are Influenced by Development and Species-specific Adaptations. J Am Chem Soc 2025; 147:6439-6449. [PMID: 39936408 PMCID: PMC11869268 DOI: 10.1021/jacs.4c12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
The surface of an organism is a dynamic interface that continually adapts to its environment. In nematodes, the cuticle forms a complex boundary that protects against the physicochemical pressures. However, the precise molecular composition and function of this surface remain largely unexplored. By utilizing 3D-OrbiSIMS, an advanced surface-sensitive mass spectrometry method, we directly characterized the molecular composition of the outermost regions (∼50 nm) of Caenorhabditis elegans and Pristionchus pacificus to improve the understanding of species-specific surface lipid composition and its potential roles in nematode biology. We found that nematode surfaces consist of a lipid-dominated landscape (>81% C. elegans and >69% P. pacificus of all surveyed chemistries) with distinct compositions, which enrich in granularity and complexity through development. The surface lipids are also species-specific, potentially highlighting distinct molecular compositions that are derived from diverging evolutionary paths. By exploring the effect of mutations on lipid production, we found the peroxisomal fatty acid β-oxidation component daf-22 is essential for defining the surface molecular fingerprint. This pathway is conserved across species in producing distinct chemical profiles, indicating its fundamental role in lipid metabolism and maintaining the surface integrity and function. Furthermore, we discovered that variations in surface lipids of C. elegans daf-22 larvae contribute to significantly increased susceptibility to predation by P. pacificus. Therefore, our findings reveal that nematode surface lipids are developmentally dependent, species-specific, and fundamental in interspecies interactions. These insights pave the way for further exploration into the physiological and behavioral significance of surface lipids.
Collapse
Affiliation(s)
- Anna M. Kotowska
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - Fumie Hiramatsu
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Morgan R. Alexander
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - David J. Scurr
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - James W. Lightfoot
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Veeren M. Chauhan
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| |
Collapse
|
3
|
Lee KE, Cho JH, Song HO. Calcium-binding protein CALU-1 is essential for proper collagen formation in Caenorhabditis elegans. Cell Mol Life Sci 2025; 82:62. [PMID: 39862239 PMCID: PMC11762057 DOI: 10.1007/s00018-025-05582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025]
Abstract
Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance. We employed genetic analyses, including the generation of single and double mutants, scanning electron microscopy, and transcriptome profiling to characterize CALU-1 function. Our results demonstrate that CALU-1 is essential for proper cuticle structure, including annuli, furrows, and alae formation. Synthetic lethality was observed between calu-1 and dpy-18 (encoding a prolyl 4-hydroxylase subunit) mutations, while double mutants of calu-1 with peptidyl-prolyl cis-trans isomerase (PPIase) genes exhibited exacerbated phenotypes. CALU-1 deficiency led to altered collagen stability, increased cuticle permeability, and differential expression of stress response genes similar to collagen mutants. We conclude that CALU-1 plays a critical role in regulating collagen biosynthesis, possibly by modulating the ER environment to optimize the function of collagen-modifying enzymes. These findings provide new insights into the complex regulation of extracellular matrix formation in C. elegans, with potential implications for understanding related processes in other organisms.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Infection Biology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
- Department of Biomedical Science, Graduate School, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hyun-Ok Song
- Department of Infection Biology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
- Department of Biomedical Science, Graduate School, Wonkwang University, Iksan, 54538, Republic of Korea.
- Institute of Wonkwang Medical Science, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
4
|
Steinbach MK, Leipert J, Matzanke T, Tholey A. Digital Microfluidics for Sample Preparation in Low-Input Proteomics. SMALL METHODS 2025; 9:e2400495. [PMID: 39205538 PMCID: PMC11740955 DOI: 10.1002/smtd.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Low-input proteomics, also referred to as micro- or nanoproteomics, has become increasingly popular as it allows one to elucidate molecular processes in rare biological materials. A major prerequisite for the analytics of minute protein amounts, e.g., derived from low cell numbers, down to single cells, is the availability of efficient sample preparation methods. Digital microfluidics (DMF), a technology allowing the handling and manipulation of low liquid volumes, has recently been shown to be a powerful and versatile tool to address the challenges in low-input proteomics. Here, an overview is provided on recent advances in proteomics sample preparation using DMF. In particular, the capability of DMF to isolate proteomes from cells and small model organisms, and to perform all necessary chemical sample preparation steps, such as protein denaturation and proteolytic digestion on-chip, are highlighted. Additionally, major prerequisites to making these steps compatible with follow-up analytical methods such as liquid chromatography-mass spectrometry will be discussed.
Collapse
Affiliation(s)
- Max K. Steinbach
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Jan Leipert
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Theo Matzanke
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Andreas Tholey
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| |
Collapse
|
5
|
Sonntag T, Omi S, Andreeva A, Eichelbrenner J, Chisholm AD, Ward JD, Pujol N. A defining member of the new cysteine-cradle family is an aECM protein signalling skin damage in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589058. [PMID: 39574764 PMCID: PMC11580886 DOI: 10.1101/2024.04.11.589058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Apical extracellular matrices (aECMs) act as crucial barriers, and communicate with the epidermis to trigger protective responses following injury or infection. In Caenorhabditis elegans, the skin aECM, the cuticle, is produced by the epidermis and is decorated with periodic circumferential furrows. We previously showed that mutants lacking cuticle furrows exhibit persistent immune activation (PIA). In a genetic suppressor screen, we identified spia-1 as a key gene downstream of furrow collagens and upstream of immune signalling. spia-1 expression oscillates during larval development, peaking between each moult together with patterning cuticular components. It encodes a secreted protein that localises to furrows. SPIA-1 shares a novel cysteine-cradle domain with other aECM proteins. SPIA-1 mediates immune activation in response to furrow loss and is proposed to act as a sensor of cuticle damage. This research provides a molecular insight into intricate interplay between cuticle integrity and epidermal immune activation in C. elegans.
Collapse
Affiliation(s)
- Thomas Sonntag
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Shizue Omi
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Antonina Andreeva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Jeanne Eichelbrenner
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
6
|
Pooranachithra M, Jyo EM, Brouilly N, Pujol N, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. Development 2024; 151:dev204330. [PMID: 39373389 PMCID: PMC11529277 DOI: 10.1242/dev.204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematodes is known as the cuticle and contains an external lipid-rich layer - the epicuticle. Epicuticlins are a family of tandem repeat cuticle proteins of unknown function. Here, we analyze the localization and function of the three C. elegans epicuticlins (EPIC proteins). EPIC-1 and EPIC-2 localize to the surface of the cuticle near the outer lipid layer, as well as to interfacial cuticles and adult-specific struts. EPIC-3 is expressed in dauer larvae and localizes to interfacial aECM in the buccal cavity. Skin wounding in the adult induces epic-3 expression, and EPIC proteins localize to wound sites. Null mutants lacking EPIC proteins are viable with reduced permeability barrier function and normal epicuticle lipid mobility. Loss of function in EPIC genes modifies the skin blistering phenotypes of Bli mutants and reduces survival after skin wounding. Our results suggest EPIC proteins define specific cortical compartments of the aECM and promote wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Erin M. Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Pujol
- Aix-Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009, Marseille, France
| | - Andreas M. Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Ragle JM, Turzo A, Jackson A, Vo AA, Pham VT, Ward JD. The NHR-23-regulated putative protease inhibitor mlt-11 gene is necessary for C. elegans cuticle structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593762. [PMID: 38766248 PMCID: PMC11100798 DOI: 10.1101/2024.05.12.593762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
C. elegans molting offers a powerful entry point to understanding developmentally programmed apical extracellular matrix remodeling. However, the gene regulatory network controlling this process remains poorly understood. Focusing on targets of NHR-23, a key transcription factor that drives molting, we confirmed the Kunitz family protease inhibitor gene mlt-11 as an NHR-23 target. Through reporter assays, we identified NHR-23-binding sites that are necessary and sufficient for epithelial expression. We generated a translational fusion and demonstrated that MLT-11 is localized to the cuticle and lined openings to the exterior (vulva, rectum, mouth). We created a set of strains expressing varied levels of MLT-11 by deleting endogenous cis-regulatory element sequences. Combined deletion of two cis-regulatory elements caused developmental delay, motility defects, and failure of the cuticle barrier. Inactivation of mlt-11 by RNAi produced even more pronounced defects. mlt-11 is necessary to pattern every layer of the adult cuticle, suggesting a broad patterning role prior to the formation of the mature cuticle. Together these studies provide an entry point into understanding how individual cis-regulatory elements function to coordinate expression of oscillating genes involved in molting and how MLT-11 ensures proper cuticle assembly.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ariela Turzo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anton Jackson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Vivian T. Pham
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Zhou Y, Chen J, Feng Y, Xiang P, Li J, Chen L, Guo Y. Biocontrol Potential of Bacillus strains against soybean cyst nematode (Heterodera glycines) and for promotion of soybean growth. BMC Microbiol 2024; 24:371. [PMID: 39342079 PMCID: PMC11438136 DOI: 10.1186/s12866-024-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The soybean cyst nematode (SCN, Heterodera glycines) is the most yield-limiting pathogen in soybeans worldwide. Using chemical pesticides to control this disease is harmful to human and environment. It is urgent to develop environment-friendly nematicides. The aim of this study was to discover novel biocontrol agents on H. glycines control and soybean growth under greenhouse and field conditions Eight Bacillus strains were isolated from soil rhizosphere soils and the stability and efficiency of H. glycines was assessed in greenhouse and field experiments in 2021 and 2022. In particular, the Ba2-6 strain had the highest potential, because it was a biocontrol agent against H. glycines shown to cause 93.85% juvenile mortality. Furthermore, strains Ba 1-7, Ba2-4, and Ba2-6 effectively reduced the number of females and improved the soybean seed number per plant. Based on their morphological, physiological, biochemical and molecular (16 S rRNA) characteristics, the three strains were identified as B. aryabhattai (Ba1-7), B. megatherium (Ba2-4), and B. halotolerans (Ba2-6). The ability of Ba2-6 to induce systemic resistance to H. glycines in soybeans was investigated by the split-root system and real-time quantitative PCR experiments. The results indicated that the Ba2-6 strain induced systemic resistance to suppress the penetration of H. glycines, and enhanced gene expression of PR1, PR3a, PR5, and NPR1-2, involved in the salicylic acid and jasmonic acid pathways. The study suggests that the strains of B. aryabhattai Ba1-7, B. megatherium Ba2-4, and B. halotolerans Ba2-6 can be considered as effective biocontrol agents to control H. glycines. Further, B. halotolerans Ba2-6 not only promotes soybean growth but also enhances resistance to H. glycines by regulating defense-related gene expression and inducing systemic resistance in soybean.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, Sichuan, China
| | - Yaxing Feng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Peng Xiang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, China
| | - Jing Li
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing Heilongjiang, China
| | - Lijie Chen
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yongxia Guo
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing Heilongjiang, China.
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R., Daqing, China.
| |
Collapse
|
10
|
Kamal M, Knox J, Horne RI, Tiwari OS, Burns AR, Han D, Levy D, Laor Bar-Yosef D, Gazit E, Vendruscolo M, Roy PJ. A rapid in vivo pipeline to identify small molecule inhibitors of amyloid aggregation. Nat Commun 2024; 15:8311. [PMID: 39333123 PMCID: PMC11436953 DOI: 10.1038/s41467-024-52480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Amyloids are associated with over 50 human diseases and have inspired significant effort to identify small molecule remedies. Here, we present an in vivo platform that efficiently yields small molecule inhibitors of amyloid formation. We previously identified small molecules that kill the nematode C. elegans by forming membrane-piercing crystals in the pharynx cuticle, which is rich in amyloid-like material. We show here that many of these molecules are known amyloid-binders whose crystal-formation in the pharynx can be blocked by amyloid-binding dyes. We asked whether this phenomenon could be exploited to identify molecules that interfere with the ability of amyloids to seed higher-order structures. We therefore screened 2560 compounds and found 85 crystal suppressors, 47% of which inhibit amyloid formation. This hit rate far exceeds other screening methodologies. Hence, in vivo screens for suppressors of crystal formation in C. elegans can efficiently reveal small molecules with amyloid-inhibiting potential.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Robert I Horne
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Andrew R Burns
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Duhyun Han
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Davide Levy
- Jan Koum Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
11
|
Fung W, Kolotuev I, Heiman MG. Specialized structure and function of the apical extracellular matrix at sense organs. Cells Dev 2024; 179:203942. [PMID: 39067521 PMCID: PMC11346620 DOI: 10.1016/j.cdev.2024.203942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks). We summarize the power of using C. elegans, in which defined sense organs associate with distinct aECM, as a model for understanding the tissue-specific structural and functional specializations of aECM. Finally, we synthesize results from recent studies in C. elegans and Drosophila into a conceptual framework for aECM patterning, including mechanisms that involve transient cellular or matrix scaffolds, mechanical pulling or pushing forces, and localized secretion or endocytosis.
Collapse
Affiliation(s)
- Wendy Fung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
13
|
Zhang X, Yang Y, Liu L, Sui X, Bermudez RS, Wang L, He W, Xu H. Insights into the efficient degradation mechanism of extracellular proteases mediated by Purpureocillium lilacinum. Front Microbiol 2024; 15:1404439. [PMID: 39040909 PMCID: PMC11260826 DOI: 10.3389/fmicb.2024.1404439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Protease secretion is crucial for degrading nematode cuticles using nematophagous fungus Purpureocillium lilacinum, but the secretion pattern of protease remains poorly understood. This study aimed to explore the degradation mechanism of proteases by investigating the characteristics of protease secretion under various carbon and nitrogen sources, and different carbon to nitrogen (C:N) ratios in P. lilacinum. The results showed that corn flour as a carbon source and yeast extract as a nitrogen source specifically induced protease secretion in P. lilacinum. P. lilacinum produced significant amounts of gelatinase and casein enzyme at C:N ratios of 10:1, 20:1, and 40:1, indicating that higher C:N ratios were more beneficial for secreting extracellular proteases. Proteomic analysis revealed 14 proteases, including 4 S8 serine endopeptidases and one M28 aminopeptidase. Among four S8 serine peptidases, Alp1 exhibited a high secretion level at C:N ratio less than 5:1, whereas PR1C, PR1D, and P32 displayed higher secretion levels at higher C:N ratios. In addition, the transcription levels of GATA transcription factors were investigated, revealing that Asd-4, A0A179G170, and A0A179HGL4 were more prevalent at a C:N ratio of 40:1. In contrast, the transcription levels of SREP, AreA, and NsdD were higher at lower C:N ratios. The putative regulatory profile of extracellular protease production in P. lilacinum, induced by different C:N ratios, was analyzed. The findings offered insights into the complexity of protease production and aided in the hydrolytic degradation of nematode cuticles.
Collapse
Affiliation(s)
- Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuhong Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Li Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xin Sui
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | | | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
14
|
Shang S, Gao F, Zhang Q, Song T, Wang W, Liu D, Gong Y, Lu X. 0.263 terahertz irradiation induced genes expression changes in Caenorhabditis elegans. iScience 2024; 27:109391. [PMID: 38532884 PMCID: PMC10963221 DOI: 10.1016/j.isci.2024.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The biosafety of terahertz (THz) waves has emerged as a new area of concern with the gradual application of terahertz radiation. Even though many studies have been conducted to investigate the influence of THz radiation on living organisms, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans) was used to evaluate the biological consequences of whole-body exposure to 0.263 THz irradiation. The integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of the cuticle collagen genes, and impaired the movement of C. elegans. Moreover, the genes involved in the immune system and the neural system were dramatically down-regulated by high-power THz irradiation. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.
Collapse
Affiliation(s)
- Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Fei Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Qi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Tao Song
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei Wang
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Diwei Liu
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yubin Gong
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| |
Collapse
|
15
|
La Cavera S, Chauhan VM, Hardiman W, Yao M, Fuentes-Domínguez R, Setchfield K, Abayzeed SA, Pérez-Cota F, Smith RJ, Clark M. Label-free Brillouin endo-microscopy for the quantitative 3D imaging of sub-micrometre biology. Commun Biol 2024; 7:451. [PMID: 38622287 PMCID: PMC11018753 DOI: 10.1038/s42003-024-06126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
This report presents an optical fibre-based endo-microscopic imaging tool that simultaneously measures the topographic profile and 3D viscoelastic properties of biological specimens through the phenomenon of time-resolved Brillouin scattering. This uses the intrinsic viscoelasticity of the specimen as a contrast mechanism without fluorescent tags or photoacoustic contrast mechanisms. We demonstrate 2 μm lateral resolution and 320 nm axial resolution for the 3D imaging of biological cells and Caenorhabditis elegans larvae. This has enabled the first ever 3D stiffness imaging and characterisation of the C. elegans larva cuticle in-situ. A label-free, subcellular resolution, and endoscopic compatible technique that reveals structural biologically-relevant material properties of tissue could pave the way toward in-vivo elasticity-based diagnostics down to the single cell level.
Collapse
Affiliation(s)
- Salvatore La Cavera
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Veeren M Chauhan
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - William Hardiman
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mengting Yao
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Rafael Fuentes-Domínguez
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Kerry Setchfield
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sidahmed A Abayzeed
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Fernando Pérez-Cota
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard J Smith
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matt Clark
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
16
|
Pooranachithra M, Jyo EM, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575393. [PMID: 38260454 PMCID: PMC10802564 DOI: 10.1101/2024.01.12.575393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematode is known as the cuticle and contains an external lipid-rich layer, the epicuticle. Epicuticlins are a family of tandem repeat proteins originally identified as components of the insoluble fraction of the cuticular aECM and thought to localize in or near epicuticle. However, there has been little in vivo analysis of epicuticlins. Here, we report the localization analysis of the three C. elegans epicuticlins (EPIC proteins) using fluorescent protein knock-ins to visualize endogenously expressed proteins, and further examine their in vivo function using genetic null mutants. By TIRF microscopy, we find that EPIC-1 and EPIC-2 localize to the surface of the cuticle in larval and adult stages in close proximity to the outer lipid layer. EPIC-1 and EPIC-2 also localize to interfacial cuticles and adult-specific cuticle struts. EPIC-3 expression is restricted to the stress-induced dauer stage, where it localizes to interfacial aECM in the buccal cavity. Strikingly, skin wounding in the adult induces epic-3 expression, and EPIC-3::mNG localizes to wound scars. Null mutants lacking one, two, or all three EPIC proteins display reduced survival after skin wounding yet are viable with low penetrance defects in epidermal morphogenesis. Our results suggest EPIC proteins define specific aECM compartments and have roles in wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
17
|
Cornwell A, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568222. [PMID: 38045350 PMCID: PMC10690244 DOI: 10.1101/2023.11.22.568222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to forkhead box transcription factor A) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress -such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have different roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biological Sciences, GITAM University, Andhra Pradesh, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd Batavia, NY 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Adams JRG, Pooranachithra M, Jyo EM, Zheng SL, Goncharov A, Crew JR, Kramer JM, Jin Y, Ernst AM, Chisholm AD. Nanoscale patterning of collagens in C. elegans apical extracellular matrix. Nat Commun 2023; 14:7506. [PMID: 37980413 PMCID: PMC10657453 DOI: 10.1038/s41467-023-43058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts. Defects in struts result in swelling of the fluid-filled medial cuticle layer ('blistering', Bli). Here we show that three cuticle collagens BLI-1, BLI-2, and BLI-6, play key roles in struts. BLI-1 and BLI-2 are essential for strut formation whereas activating mutations in BLI-6 disrupt strut formation. BLI-1, BLI-2, and BLI-6 precisely colocalize to arrays of puncta in the adult cuticle, corresponding to struts, initially deposited in diffuse stripes adjacent to cuticle furrows. They eventually exhibit tube-like morphology, with the basal ends of BLI-containing struts contact regularly spaced holes in the cuticle. Genetic interaction studies indicate that BLI strut patterning involves interactions with other cuticle components. Our results reveal strut formation as a tractable example of precise aECM patterning at the nanoscale.
Collapse
Affiliation(s)
- Jennifer R G Adams
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sherry Li Zheng
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alexandr Goncharov
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jennifer R Crew
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL, 60611, USA
| | - James M Kramer
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL, 60611, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
19
|
Johnson LC, Vo AA, Clancy JC, Myles KM, Pooranachithra M, Aguilera J, Levenson MT, Wohlenberg C, Rechtsteiner A, Ragle JM, Chisholm AD, Ward JD. NHR-23 activity is necessary for C. elegans developmental progression and apical extracellular matrix structure and function. Development 2023; 150:dev201085. [PMID: 37129010 PMCID: PMC10233720 DOI: 10.1242/dev.201085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Collapse
Affiliation(s)
- Londen C. Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John C. Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T. Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chloe Wohlenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Wang D, Ma N, Rao W, Zhang Y. Recent Advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and Its Application in Sustainable Agriculture. Pathogens 2023; 12:pathogens12030367. [PMID: 36986289 PMCID: PMC10056792 DOI: 10.3390/pathogens12030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Parasitic nematodes cause great annual loss in the agricultural industry globally. Arthrobotrys oligospora is the most prevalent and common nematode-trapping fungus (NTF) in the environment and the candidate for the control of plant- and animal-parasitic nematodes. A. oligospora is also the first recognized and intensively studied NTF species. This review highlights the recent research advances of A. oligospora as a model to study the biological signals of the switch from saprophytism to predation and their sophisticated mechanisms for interacting with their invertebrate hosts, which is of vital importance for improving the engineering of this species as an effective biocontrol fungus. The application of A. oligospora in industry and agriculture, especially as biological control agents for sustainable purposes, was summarized, and we discussed the increasing role of A. oligospora in studying its sexual morph and genetic transformation in complementing biological control research.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Nan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- Correspondence:
| |
Collapse
|
21
|
Kucharíková S, Hockicková P, Melnikov K, Bárdyová Z, Kaiglová A. The Caenorhabditis elegans cuticle plays an important role against toxicity to bisphenol A and bisphenol S. Toxicol Rep 2023; 10:341-347. [PMID: 36923443 PMCID: PMC10008966 DOI: 10.1016/j.toxrep.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Caenorhabditis elegans represents a favorite non-mammalian animal model, which is often used to study the effect of foreign substances on living organisms. Its epidermal barrier is a primary biological barrier that protects nematodes from the toxicity of chemicals. In this study, we investigated the effect of Bisphenol A (BPA), an endocrine disrupting chemical, and its structural analog Bisphenol S (BPS), which is often used as a substitute for BPA in some products, on the behavior of C. elegans wild type (N2) and C. elegans bli-1 mutant strain, which is characterized by the production of abnormal cuticle blisters. We found that exposure of C. elegans wild type (N2), as well as its mutant strain bli-1, to selected concentrations of BPA (0.1, 0.5, 1 and 5 µM) and BPS (0.1, 0.5, 1 and 5 µM) resulted in significant changes in reproduction, habituation behavior, and body length of nematodes. Based on our findings, we can conclude that BPS, which was supposed to be a safer alternative to BPA, caused almost identical detrimental effects on C. elegans behavior. Furthermore, compared to the wild type of C. elegans, these effects were more pronounced in the bli-1 strain, which is characterized by a mutation in an individual collagen gene responsible for proper cuticle formation, underlying the role of the epidermal barrier in bisphenol toxicity. Taken together, our data indicate the potential risks of using BPS as a BPA alternative.
Collapse
Affiliation(s)
- Soňa Kucharíková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné námestie 1, 918 43 Trnava, Slovakia
| | - Patrícia Hockicková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné námestie 1, 918 43 Trnava, Slovakia
| | - Kamila Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné námestie 1, 918 43 Trnava, Slovakia
| | - Zuzana Bárdyová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné námestie 1, 918 43 Trnava, Slovakia
| | - Alžbeta Kaiglová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné námestie 1, 918 43 Trnava, Slovakia
| |
Collapse
|
22
|
Discovery of Natural Small Molecules Promoting Collagen Secretion by High-Throughput Screening in Caenorhabditis elegans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238361. [PMID: 36500453 PMCID: PMC9736230 DOI: 10.3390/molecules27238361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Advancing approaches for drug screening are in great demand to explore natural small molecules that may play important roles in collagen biogenesis, secretion, and assembly, which may find novel lead compounds for treating collagen-related diseases or preventing skin aging. In this study, we generated a single copy insertion transgenic Pcol-19- COL-12::GFP Caenorhabditis elegans (C. elegans) strain to label epidermis collagen XII (COL-12), a cuticle structure component, and established an efficient high-content screening techniques to discover bioactive natural products in this worm strain through quantification of fluorescence imaging. We performed a preliminary screening of 614 compounds from the laboratory's library of natural small molecule compounds on the COL-12 labeling worm model, which was tested once at a single concentration of 100 µM to screen for compounds that promoted COL-12 protein amount. Besides col-12, the transcriptional levels of worm-associated collagen coding genes col-19 and sqt-3 were also examined, and none of the compounds affected their transcriptional levels. Meanwhile, the protein levels of COL-12 were significantly upregulated after treating with Danshensu, Lawsone, and Sanguinarine. The effects of these drugs on COL-12 overexpressing worms occur mainly after collagen transcription. Through various validation methods, Danshensu, Lawsone, and Sanguinarine were more effective in promoting the synthesis or secretion of COL-12.
Collapse
|
23
|
Njume FN, Razzauti A, Soler M, Perschin V, Fazeli G, Bourez A, Delporte C, Ghogomu SM, Poelvoorde P, Pichard S, Birck C, Poterszman A, Souopgui J, Van Antwerpen P, Stigloher C, Vanhamme L, Laurent P. A lipid transfer protein ensures nematode cuticular impermeability. iScience 2022; 25:105357. [PMID: 36339267 PMCID: PMC9626681 DOI: 10.1016/j.isci.2022.105357] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
The cuticle of C. elegans is impermeable to chemicals, toxins, and pathogens. However, increased permeability is a desirable phenotype because it facilitates chemical uptake. Surface lipids contribute to the permeability barrier. Here, we identify the lipid transfer protein GMAP-1 as a critical element setting the permeability of the C. elegans cuticle. A gmap-1 deletion mutant increases cuticular permeability to sodium azide, levamisole, Hoechst, and DiI. Expressing GMAP-1 in the hypodermis or transiently in the adults is sufficient to rescue this gmap-1 permeability phenotype. GMAP-1 protein is secreted from the hypodermis to the aqueous fluid filling the space between collagen fibers of the cuticle. In vitro, GMAP-1 protein binds phosphatidylserine and phosphatidylcholine while in vivo, GMAP-1 sets the surface lipid composition and organization. Altogether, our results suggest GMAP-1 secreted by hypodermis shuttles lipids to the surface to form the permeability barrier of C. elegans. GMAP-1 is secreted by the hypodermis toward the cuticle of Caenorhabditis elegans GMAP-1 binds and shuttle phosphoglycerides GMAP-1 sets the lipid composition of the cuticle While healthy, gmap-1 mutant displays high cuticular permeability
Collapse
Affiliation(s)
- Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Adria Razzauti
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Miguel Soler
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gholamreza Fazeli
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Axelle Bourez
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Cedric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Stephen M. Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Simon Pichard
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Catherine Birck
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Arnaud Poterszman
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
- Corresponding author
| |
Collapse
|
24
|
Betschart B, Bisoffi M, Alaeddine F. Identification and characterization of epicuticular proteins of nematodes sharing motifs with cuticular proteins of arthropods. PLoS One 2022; 17:e0274751. [PMID: 36301857 PMCID: PMC9612446 DOI: 10.1371/journal.pone.0274751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Specific collagens and insoluble proteins called cuticlins are major constituents of the nematode cuticles. The epicuticle, which forms the outermost electron-dense layer of the cuticle, is composed of another category of insoluble proteins called epicuticlins. It is distinct from the insoluble cuticlins localized in the cortical layer and the fibrous ribbon underneath lateral alae. Our objective was to identify and characterize genes and their encoded proteins forming the epicuticle. The combination between previously obtained laboratory results and recently made available data through the whole-genome shotgun contigs (WGS) and the transcriptome Shotgun Assembly (TSA) sequencing projects of Ascaris suum allowed us to identify the first epicuticlin gene, Asu-epic-1, on the chromosome VI. This gene is formed of exon1 (55 bp) and exon2 (1067 bp), separated by an intron of 1593 bp. Exon 2 is formed of tandem repeats (TR) whose number varies in different cDNA and genomic clones of Asu-epic-1. These variations could be due to slippage of the polymerases during DNA replication and RNA transcription leading to insertions and deletions (Indels). The deduced protein, Asu-EPIC-1, consists of a signal peptide of 20 amino acids followed by 353 amino acids composed of seven TR of 49 or 51 amino acids each. Three highly conserved tyrosine motifs characterize each repeat. The GYR motif is the Pfam motif PF02756 present in several cuticular proteins of arthropods. Asu-EPIC-1 is an intrinsically disordered protein (IDP) containing seven predicted molecular recognition features (MoRFs). This type of protein undergoes a disorder-to-order transition upon binding protein partners. Three epicuticular sequences have been identified in A. suum, Ascaris lumbricoides, and Toxocara canis. Homologous epicuticular proteins were identified in over 50 other nematode species. The potential of this new category of proteins in forming the nematode cuticle through covalent interactions with other cuticular components, particularly with collagens, is discussed. Their localization in the outermost layer of the nematode body and their unique structure render them crucial candidates for biochemical and molecular interaction studies and targets for new biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Bruno Betschart
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Marco Bisoffi
- Chemistry and Biochemistry, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Ferial Alaeddine
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
25
|
Kamal M, Tokmakjian L, Knox J, Mastrangelo P, Ji J, Cai H, Wojciechowski JW, Hughes MP, Takács K, Chu X, Pei J, Grolmusz V, Kotulska M, Forman-Kay JD, Roy PJ. A spatiotemporal reconstruction of the C. elegans pharyngeal cuticle reveals a structure rich in phase-separating proteins. eLife 2022; 11:e79396. [PMID: 36259463 PMCID: PMC9629831 DOI: 10.7554/elife.79396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
How the cuticles of the roughly 4.5 million species of ecdysozoan animals are constructed is not well understood. Here, we systematically mine gene expression datasets to uncover the spatiotemporal blueprint for how the chitin-based pharyngeal cuticle of the nematode Caenorhabditis elegans is built. We demonstrate that the blueprint correctly predicts expression patterns and functional relevance to cuticle development. We find that as larvae prepare to molt, catabolic enzymes are upregulated and the genes that encode chitin synthase, chitin cross-linkers, and homologs of amyloid regulators subsequently peak in expression. Forty-eight percent of the gene products secreted during the molt are predicted to be intrinsically disordered proteins (IDPs), many of which belong to four distinct families whose transcripts are expressed in overlapping waves. These include the IDPAs, IDPBs, and IDPCs, which are introduced for the first time here. All four families have sequence properties that drive phase separation and we demonstrate phase separation for one exemplar in vitro. This systematic analysis represents the first blueprint for cuticle construction and highlights the massive contribution that phase-separating materials make to the structure.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Levon Tokmakjian
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Pharmacology and Toxicology, University of TorontoTorontoCanada
| | - Jessica Knox
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Peter Mastrangelo
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Jingxiu Ji
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Hao Cai
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
| | - Jakub W Wojciechowski
- Wroclaw University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical EngineeringWroclawPoland
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Kristóf Takács
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös UniversityBudapestHungary
| | - Xiaoquan Chu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Jianfeng Pei
- Department of Computer Science and Technology, Tsinghua UniversityBeijingChina
| | - Vince Grolmusz
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös UniversityBudapestHungary
| | - Malgorzata Kotulska
- Wroclaw University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical EngineeringWroclawPoland
| | - Julie Deborah Forman-Kay
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Peter J Roy
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Pharmacology and Toxicology, University of TorontoTorontoCanada
| |
Collapse
|
26
|
Ichiishi K, Ekino T, Kanzaki N, Shinya R. Predation drives convergent evolution of the thick and baggy cuticle in nematodes. NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The nematode cuticle is an important structure that provides protection from abiotic environmental stresses and natural enemies. The cuticle ultrastructure of a Myolaimus species (culture code NKZ384) isolated from Kyoto, Japan, was examined in relation to its avoidance of predation by an aphelenchoidid predator, Seinura caverna. The survivability of Myolaimus sp. co-cultured with the predator was examined and compared with those of four Poikilolaimus spp. previously reported by the present authors. Myolaimus and two of the four Poikilolaimus spp. share a ‘baggy’ cuticle and resisted predation effectively. However, the ultrastructure differed between these two genera: i.e., the cuticle of Myolaimus sp. is seven-zoned, while that of P. regenfussi and P. oxycercus is five-zoned. In addition, Myolaimus sp. does not possess the characteristic osmophilic zone reported in Poikilolaimus spp. Therefore, although the ultrastructure differs, the thick and baggy cuticle found in these two phylogenetically distant genera exhibits functional convergence to resist predation.
Collapse
Affiliation(s)
- Kanata Ichiishi
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Fushimi, Kyoto 612-0855, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
27
|
Steinbach MK, Leipert J, Blurton C, Leippe M, Tholey A. Digital Microfluidics Supported Microproteomics for Quantitative Proteome Analysis of Single Caenorhabditis elegans Nematodes. J Proteome Res 2022; 21:1986-1996. [PMID: 35771142 DOI: 10.1021/acs.jproteome.2c00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.
Collapse
Affiliation(s)
- Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Christine Blurton
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
28
|
Lee JH, Anderson AJ, Kim YC. Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Microorganisms 2022; 10:microorganisms10051053. [PMID: 35630495 PMCID: PMC9146382 DOI: 10.3390/microorganisms10051053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Biological control is an important process for sustainable plant production, and this trait is found in many plant-associated microbes. This study reviews microbes that could be formulated into pesticides active against various microbial plant pathogens as well as damaging insects or nematodes. The focus is on the beneficial microbes that colonize the rhizosphere where, through various mechanisms, they promote healthy plant growth. Although these microbes have adapted to cohabit root tissues without causing disease, they are pathogenic to plant pathogens, including microbes, insects, and nematodes. The cocktail of metabolites released from the beneficial strains inhibits the growth of certain bacterial and fungal plant pathogens and participates in insect and nematode toxicity. There is a reinforcement of plant health through the systemic induction of defenses against pathogen attack and abiotic stress in the plant; metabolites in the beneficial microbial cocktail function in triggering the plant defenses. The review discusses a wide range of metabolites involved in plant protection through biocontrol in the rhizosphere. The focus is on the beneficial firmicutes and pseudomonads, because of the extensive studies with these isolates. The review evaluates how culture conditions can be optimized to provide formulations containing the preformed active metabolites for rapid control, with or without viable microbial cells as plant inocula, to boost plant productivity in field situations.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Agricultural Solutions, BASF Korea Ltd., Seoul 04518, Korea;
| | - Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA;
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
- Correspondence:
| |
Collapse
|
29
|
Datta R, Robertson A, Martin R, Kashyap S. High concentrations of the anthelmintic diethylcarbamazine paralyze C. elegans independently of TRP-2. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000548. [PMID: 35622518 PMCID: PMC9021882 DOI: 10.17912/micropub.biology.000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022]
Abstract
Diethylcarbamazine (DEC) has been used to treat lymphatic filariasis in tropical countries since the 1940s. Its mode of action is still unclear, with several reports suggesting a host immune system-mediated mechanism. We previously demonstrated that DEC causes transient spastic paralysis in the filarial nematode Brugia malayi due to the activation of TRP-2. Here we show that DEC causes transient paralysis in C. elegans at high concentrations and is 200x less potent compared to its effect on B. malayi. C. elegans trp-2(sy691) mutants are like the wild-type and only paralyzed by high concentrations of DEC. Our results demonstrate that high concentrations of DEC cause paralysis of C. elegans independent of TRP-2.
Collapse
Affiliation(s)
- Real Datta
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | - Alan Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | - Richard Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | - Sudhanva Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
30
|
Ali M, Gu T, Yu X, Bashir A, Wang Z, Sun X, Ashraf NM, Li L. Identification of the Genes of the Plant Pathogen Pseudomonas syringae MB03 Required for the Nematicidal Activity Against Caenorhabditis elegans Through an Integrated Approach. Front Microbiol 2022; 13:826962. [PMID: 35356513 PMCID: PMC8959697 DOI: 10.3389/fmicb.2022.826962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
Nematicidal potential of the common plant pathogen Pseudomonas syringae has been recently identified against Caenorhabditis elegans. The current study was designed to investigate the detailed genetic mechanism of the bacterial pathogenicity by applying comparative genomics, transcriptomics, mutant library screening, and protein expression. Results showed that P. syringae strain MB03 could kill C. elegans in the liquid assay by gut colonization. The genome of P. syringae MB03 was sequenced and comparative analysis including multi locus sequence typing, and genome-to-genome distance placed MB03 in phylogroup II of P. syringae. Furthermore, comparative genomics of MB03 with nematicidal strains of Pseudomonas aeruginosa (PAO1 and PA14) predicted 115 potential virulence factors in MB03. However, genes for previously reported nematicidal metabolites, such as phenazine, pyochelin, and pyrrolnitrin, were found absent in the MB03 genome. Transcriptomics analysis showed that the growth phase of the pathogen considerably affected the expression of virulence factors, as genes for the flagellum, glutamate ABC transporter, phoP/phoQ, fleS/fleR, type VI secretion system, and serralysin were highly up-regulated when stationary phase MB03 cells interacted with C. elegans. Additionally, screening of a transposon insertion mutant library led to the identification of other nematicidal genes such as acnA, gltP, oprD, and zapE. Finally, the nematicidal activity of selected proteins was confirmed by heterologous expression in Escherichia coli.
Collapse
Affiliation(s)
- Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Tong Gu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xun Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Anum Bashir
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaowen Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lin Li,
| |
Collapse
|
31
|
Wimberly K, Choe KP. An extracellular matrix damage sensor signals through membrane-associated kinase DRL-1 to mediate cytoprotective responses in Caenorhabditis elegans. Genetics 2022; 220:iyab217. [PMID: 34849856 PMCID: PMC9208646 DOI: 10.1093/genetics/iyab217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
We and others previously identified circumferential bands of collagen named annular furrows as key components of a damage sensor in the cuticle of Caenorhabditis elegans that regulates cytoprotective genes. Mutation or loss of noncollagen secreted proteins OSM-7, OSM-8, and OSM-11 activate the same cytoprotective responses without obvious changes to the cuticle indicating that other extracellular proteins are involved. Here, we used RNAi screening to identify protein kinase DRL-1 as a key modulator of cytoprotective gene expression and stress resistance in furrow and extracellular OSM protein mutants. DRL-1 functions downstream from furrow disruption and is expressed in cells that induce cytoprotective genes. DRL-1 is not required for the expression of cytoprotective genes under basal or oxidative stress conditions consistent with specificity to extracellular signals. DRL-1 was previously shown to regulate longevity via a "Dietary Restriction-Like" state, but it functions downstream from furrow disruption by a distinct mechanism. The kinase domain of DRL-1 is related to mammalian MEKK3, and MEKK3 is recruited to a plasma membrane osmosensor complex by a scaffold protein. In C. elegans, DRL-1 contains an atypical hydrophobic C-terminus with predicted transmembrane domains and is constitutively expressed at or near the plasma membrane where it could function to receive extracellular damage signals for cells that mount cytoprotective responses.
Collapse
Affiliation(s)
- Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Rahimi M, Sohrabi S, Murphy CT. Novel elasticity measurements reveal C. elegans cuticle stiffens with age and in a long-lived mutant. Biophys J 2022; 121:515-524. [PMID: 35065051 PMCID: PMC8874029 DOI: 10.1016/j.bpj.2022.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/27/2022] Open
Abstract
Changes in biomechanical properties have profound impacts on human health. C. elegans might serve as a model for studying the molecular genetics of mammalian tissue decline. Previously, we found that collagens are required for insulin signaling mutants' long lifespan and that overexpression of specific collagens extends wild-type lifespan. However, whether these effects on lifespan are due to mechanical changes during aging has not yet been established. Here, we have developed two novel methods to study the cuticle: we measure mechanical properties of live animals using osmotic shock, and we directly perform the tensile test on isolated cuticles using microfluidic technology. Using these tools, we find that the cuticle, not the muscle, is responsible for changes in the "stretchiness" of C. elegans, and that cuticle stiffness is highly nonlinear and anisotropic. We also found that collagen mutations alter the integrity of the cuticle by significantly changing the elasticity. In addition, aging stiffens the cuticle under mechanical loads beyond the cuticle's healthy stretched state. Measurements of elasticity showed that long-lived daf-2 mutants were considerably better at preventing progressive mechanical changes with age. These tests of C. elegans biophysical properties suggest that the cuticle is responsible for their resilience.
Collapse
Affiliation(s)
- Mohammad Rahimi
- Department of Molecular Biology & Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Salman Sohrabi
- Department of Molecular Biology & Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Coleen T Murphy
- Department of Molecular Biology & Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
33
|
Ekino T, Yoshiga T, Kanzaki N. Cuticle ultrastructure differences among the four adult forms of Deladenus nitobei (Tylenchomorpha: Allantonematidae). NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Deladenus nitobei, a hexatylinid species, is a parasite of the wood wasp Sirex nitobei and a fungal feeder, i.e., the nematode parasitises the wasp to be carried to a new environment (a dead tree) where it propagates after feeding on Amylostereum areolatum, a fungus mutualistically associated with the wasp. The complex life history involves four adult forms: mycophagous male, mycophagous female, insect-infective female, and insect-parasitic female. To understand the morphological strategies of D. nitobei, the cuticle ultrastructure of the four adult forms was observed using transmission electron microscopy (TEM). The structures were compared with those of other hexatylinid species, particularly Fergusobia spp. TEM revealed that the insect-infective females of D. nitobei have a more developed cuticle compared with mycophagous males and females, whereas insect-infective females of Fergusobia do not. The developed cuticle enables D. nitobei infective females to move actively and easily penetrate the host cuticle using their hypertrophied stylet. In terms of parasitic stage, the cuticle structure was typical of an insect-parasitic stage, as in Fergusobia, although with some differences. A remnant cuticle is not found in Fergusobia yet retained in D. nitobei. These structural differences imply that D. nitobei is in the middle of evolving transepidermal nutrient acquisition from per os acquisition, whereas Fergusobia is near the end of this evolutionary trend.
Collapse
Affiliation(s)
- Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Toyoshi Yoshiga
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Fushimi, Kyoto 612-0855, Japan
| |
Collapse
|
34
|
Huang Y, Wu J, Chen X, Tong D, Zhou J, Wu F, Zhang H, Yang Y, Ma G, Du A. A Zinc Metalloprotease nas-33 Is Required for Molting and Survival in Parasitic Nematode Haemonchus contortus. Front Cell Dev Biol 2021; 9:695003. [PMID: 34327203 PMCID: PMC8313830 DOI: 10.3389/fcell.2021.695003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Molting is of great importance for the survival and development of nematodes. Nematode astacins (NAS), a large family of zinc metalloproteases, have been proposed as novel anthelmintic targets due to their multiple roles in biological processes of parasitic nematodes. In this study, we report a well conserved nas-33 gene in nematodes of clade V and elucidate how this gene is involved in the molting process of the free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. A predominant transcription of nas-33 is detected in the larval stages of these worms, particularly in the molting process. Knockdown of this gene results in marked molecular changes of genes involved in cuticle synthesis and ecdysis, compromised shedding of the old cuticle, and reduced worm viability in H. contortus. The crucial role of nas-33 in molting is closely associated with a G protein beta subunit (GPB-1). Suppression of both nas-33 and gpb-1 blocks shedding of the old cuticle, compromises the connection between the cuticle and hypodermis, and leads to an increased number of sick and dead worms, indicating essentiality of this module in nematode development and survival. These findings reveal the functional role of nas-33 in nematode molting process and identify astacins as novel anthelmintic targets for parasitic nematodes of socioeconomic significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Njom VS, Winks T, Diallo O, Lowe A, Behnke J, Dickman MJ, Duce I, Johnstone I, Buttle DJ. The effects of plant cysteine proteinases on the nematode cuticle. Parasit Vectors 2021; 14:302. [PMID: 34090505 PMCID: PMC8180098 DOI: 10.1186/s13071-021-04800-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant-derived cysteine proteinases of the papain family (CPs) attack nematodes by digesting the cuticle, leading to rupture and death of the worm. The nematode cuticle is composed of collagens and cuticlins, but the specific molecular target(s) for the proteinases have yet to be identified. METHODS This study followed the course of nematode cuticle disruption using immunohistochemistry, scanning electron microscopy and proteomics, using a free-living nematode, Caenorhabditis elegans and the murine GI nematode Heligmosomoides bakeri (H. polygyrus) as target organisms. RESULTS Immunohistochemistry indicated that DPY-7 collagen is a target for CPs on the cuticle of C. elegans. The time course of loss of DPY-7 from the cuticle allowed us to use it to visualise the process of cuticle disruption. There was a marked difference in the time course of damage to the cuticles of the two species of nematode, with H. bakeri being more rapidly hydrolysed. In general, the CPs' mode of attack on the nematode cuticle was by degrading the structural proteins, leading to loss of integrity of the cuticle, and finally death of the nematode. Proteomic analysis failed conclusively to identify structural targets for CPs, but preliminary data suggested that COL-87 and CUT-19 may be important targets for the CPs, the digestion of which may contribute to cuticle disruption and death of the worm. Cuticle globin was also identified as a cuticular target. The presence of more than one target protein may slow the development of resistance against this new class of anthelmintic. CONCLUSIONS Scanning electron microscopy and immunohistochemistry allowed the process of disruption of the cuticle to be followed with time. Cuticle collagens and cuticlins are molecular targets for plant cysteine proteinases. However, the presence of tyrosine cross-links in nematode cuticle proteins seriously impeded protein identification by proteomic analyses. Multiple cuticle targets exist, probably making resistance to this new anthelmintic slow to develop.
Collapse
Affiliation(s)
- Victor S Njom
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Enugu, 1660, PMB, Nigeria
| | - Tim Winks
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Oumu Diallo
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Ann Lowe
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jerzy Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield, S1 3JD, UK
| | - Ian Duce
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Iain Johnstone
- Department of Life Sciences and Biomolecular Sciences, University of Glasgow, Glasgow, UK
| | - David J Buttle
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
36
|
Hedfi A, Ben Ali M, Hassan MM, Albogami B, Al-Zahrani SS, Mahmoudi E, Karachle PK, Rohal-Lupher M, Boufahja F. Nematode traits after separate and simultaneous exposure to Polycyclic Aromatic Hydrocarbons (anthracene, pyrene and benzo[a]pyrene) in closed and open microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116759. [PMID: 33639491 DOI: 10.1016/j.envpol.2021.116759] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The majority of experimental studies carried out to date, regarding the effects of pollutants on meiofauna have been conducted by means of closed systems, and rarely using open ones. The current work explored the impact of three Polycyclic Aromatic Hydrocarbons (PAHs), anthracene, pyrene and benzo[a]pyrene, applied alone or combined, on meiobenthic nematodes using both systems. The results revealed that single PAHs impacted the nematofauna similarly in closed or open systems with a higher toxicity observed for benzo[a]pyrene. However, the closed microcosms contaminated with PAHs became organically enriched, resulting in more non-selective deposit feeders and omnivores-carnivores. Taxonomic and functional effects related to combinations of PAHs were close to those of individual treatments in closed systems, however, for open ones, the outcomes were different. The caudal morphology influenced the response of taxa during their avoidance/endurance of hydrocarbons in open systems where the effects of PAHs mixtures appeared not only additive but also synergetic. Based on the results of the study, the use of open systems is preferred to closed ones as the research outcomes were more accurate and representing better conditions prevailing in nature.
Collapse
Affiliation(s)
- Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| | - Montaser M Hassan
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; Zoology Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt.
| | - Bander Albogami
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Samia S Al-Zahrani
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Ezzeddine Mahmoudi
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| | - Paraskevi K Karachle
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 Athens-Sounio Ave., P.O. Box 712, 19013, Anavyssos, Attika, Greece.
| | - Melissa Rohal-Lupher
- Texas Water Development Board, 1700 North Congress Avenue, Austin, TX, 78701, USA.
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| |
Collapse
|
37
|
Sandhu A, Badal D, Sheokand R, Tyagi S, Singh V. Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. Genetics 2021; 217:iyaa047. [PMID: 33789349 PMCID: PMC8045729 DOI: 10.1093/genetics/iyaa047] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Collagen-enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode's genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens-DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10-led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs- levamisole and ivermectin. Upon exposure to PQ, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Divakar Badal
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Riya Sheokand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Shalini Tyagi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Lead contact
| |
Collapse
|
38
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
39
|
Ono M, Hayakawa Y, Hama Y, Yoshiga T. The suppressive effect of bacterial-feeding nematodes on hemocyte spreading of Galleria mellonella. Microb Pathog 2021; 153:104742. [PMID: 33460746 DOI: 10.1016/j.micpath.2021.104742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 10/24/2022]
Abstract
Insect parasitic nematodes have developed a mechanism to escape from the cellular immunity of their insect hosts for successful parasitism. However, the detailed mechanism whereby they achieve this remains unclear. In our previous study, we demonstrated that non-parasitic nematodes such as Caenorhabditis elegans potentially have the ability to escape from the cellular immunity of the greater wax moth Galleria mellonella. Here we aimed to clarify the effect of non-parasitic and parasitic nematodes on the spreading of hemocytes-an essential cellular reaction for adhering to a foreign substance -from G. mellonella larvae. The hexane/methanol extract of C. elegans inhibited the spreading of hemocytes. Using 2D-TLC and reversed-phase HPLC, we detected a single peak that inhibited the spreading of hemocytes. In addition, the spreading of hemocytes recovered from C. elegans-injected insects was significantly delayed. Western blotting analysis showed that phosphorylated extracellular signal-regulated protein kinase (ERK) -an essential signaling component for spreading in hemocytes-was decreased by the injection of C. elegans, and that plasma from nematode-injected insects contained the factor that causes the decrease of phosphorylated ERK. We also observed this phenomenon using other non-parasitic and parasitic bacterial-feeding nematodes. These results suggest that the factors inhibiting hemocyte adhesion and delaying the spreading of hemocytes are conserved in bacterial-feeding nematodes and could be a pre-adaptation for parasitism.
Collapse
Affiliation(s)
- Masaya Ono
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichiro Hama
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Toyoshi Yoshiga
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
40
|
Le Guern F, Mussard V, Gaucher A, Rottman M, Prim D. Fluorescein Derivatives as Fluorescent Probes for pH Monitoring along Recent Biological Applications. Int J Mol Sci 2020; 21:E9217. [PMID: 33287208 PMCID: PMC7729466 DOI: 10.3390/ijms21239217] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Potential of hydrogen (pH) is one of the most relevant parameters characterizing aqueous solutions. In biology, pH is intrinsically linked to cellular life since all metabolic pathways are implicated into ionic flows. In that way, determination of local pH offers a unique and major opportunity to increase our understanding of biological systems. Whereas the most common technique to obtain these data in analytical chemistry is to directly measure potential between two electrodes, in biological systems, this information has to be recovered in-situ without any physical interaction. Based on their non-invasive optical properties, fluorescent pH-sensitive probe are pertinent tools to develop. One of the most notorious pH-sensitive probes is fluorescein. In addition to excellent photophysical properties, this fluorophore presents a pH-sensitivity around neutral and physiologic domains. This review intends to shed new light on the recent use of fluorescein as pH-sensitive probes for biological applications, including targeted probes for specific imaging, flexible monitoring of bacterial growth, and biomedical applications.
Collapse
Affiliation(s)
- Florent Le Guern
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (V.M.); (A.G.); (D.P.)
| | - Vanessa Mussard
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (V.M.); (A.G.); (D.P.)
| | - Anne Gaucher
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (V.M.); (A.G.); (D.P.)
| | - Martin Rottman
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France;
- Hôpital Raymond Poincaré, AP-HP, GHU Paris Saclay, 104 Bd Poincaré, 92380 Garches, France
| | - Damien Prim
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (V.M.); (A.G.); (D.P.)
| |
Collapse
|
41
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
42
|
Ekino T, Kirino H, Kanzaki N, Shinya R. Ultrastructural plasticity in the plant-parasitic nematode, Bursaphelenchus xylophilus. Sci Rep 2020; 10:11576. [PMID: 32665657 PMCID: PMC7360551 DOI: 10.1038/s41598-020-68503-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 01/27/2023] Open
Abstract
Phenotypic plasticity is one of the most important strategies used by organisms with low mobility to survive in fluctuating environments. Phenotypic plasticity plays a vital role in nematodes because they have small bodies and lack wings or legs and thus, cannot move far by themselves. Bursaphelenchus xylophilus, the pathogenic nematode species that causes pine wilt disease, experiences fluctuating conditions throughout their life history; i.e., in both the phytophagous and mycetophagous phases. However, whether the functional morphology changes between the life phases of B. xylophilus remains unknown. Our study revealed differences in the ultrastructure of B. xylophilus between the two phases. Well-developed lateral alae and atrophied intestinal microvilli were observed in the phytophagous phase compared with the mycetophagous phase. The ultrastructure in the phytophagous phase was morphologically similar to that at the dauer stage, which enables the larvae to survive in harsh environments. It suggests that the living tree represents a harsh environment for B. xylophilus, and ultrastructural phenotypic plasticity is a key strategy for B. xylophilus to survive in a living tree. In addition, ultrastructural observations of obligate plant-parasitic species closely related to B. xylophilus revealed that B. xylophilus may be in the process of adapting to feed on plant cells.
Collapse
Affiliation(s)
- Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Haru Kirino
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), Kyoto, Kyoto, 612-0855, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan.
- JST PRESTO, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
43
|
Brivio MF, Mastore M. When Appearance Misleads: The Role of the Entomopathogen Surface in the Relationship with Its Host. INSECTS 2020; 11:E387. [PMID: 32585858 PMCID: PMC7348879 DOI: 10.3390/insects11060387] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Currently, potentially harmful insects are controlled mainly by chemical synthetic insecticides, but environmental emergencies strongly require less invasive control techniques. The use of biological insecticides in the form of entomopathogenic organisms is undoubtedly a fundamental resource for the biological control of insect pests in the future. These infectious agents and endogenous parasites generally act by profoundly altering the host's physiology to death, but their success is closely related to the neutralization of the target insect's immune response. In general, entomopathogen parasites, entomopathogenic bacteria, and fungi can counteract immune processes through the effects of secretion/excretion products that interfere with and damage the cells and molecules typical of innate immunity. However, these effects are observed in the later stages of infection, whereas the risk of being recognized and neutralized occurs very early after penetration and involves the pathogen surface components and molecular architecture; therefore, their role becomes crucial, particularly in the earliest pathogenesis. In this review, we analyze the evasion/interference strategies that entomopathogens such as the bacterium Bacillus thuringiensis, fungi, nematocomplexes, and wasps implement in the initial stages of infection, i.e., the phases during which body or cell surfaces play a key role in the interaction with the host receptors responsible for the immunological discrimination between self and non-self. In this regard, these organisms demonstrate evasive abilities ascribed to their body surface and cell wall; it appears that the key process of these mechanisms is the capability to modify the surface, converting it into an immunocompatible structure, or interaction that is more or less specific to host factors.
Collapse
Affiliation(s)
- Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | | |
Collapse
|
44
|
Allouche M, Hamdi I, Nasri A, Harrath AH, Mansour L, Beyrem H, Boufahja F. Laboratory bioassay exploring the effects of anti-aging skincare products on free-living marine nematodes: a case study of collagen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11403-11412. [PMID: 31965497 DOI: 10.1007/s11356-020-07655-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Organic enrichment due to human impact is one of the major threats that affect benthic communities in semi-enclosed marine ecosystems, such as the Mediterranean Sea. However, many emerging sources of organic pollutants, such as those released to nature through human practices related to esthetics and cosmetics, remain underestimated, despite being an increasingly important source of organic matter input following a decade of expansion by the cosmetic industry. Therefore, an experiment was designed to explore the influence of collagen, the main component of commercialized skin anti-aging products, on a Mediterranean community of free-living marine nematodes from a beach in Rimel, northeast Tunisia. The effects of exposure for 30 days to a control treatment and three test treatments, corresponding to three levels of sedimentary enrichment with collagen (3, 6, and 12 ppm dry weight (DW)), were examined using a microcosm approach. Reductions in abundance and diversity were noted with an increase in collagen enrichment, together with a slight increase in individual weight. The presence of three species characteristic of control microcosms, Ptycholaimellus ponticus, Theristus modicus, and Kraspedonema reflectans, was clearly affected at the lowest dose; these were therefore classified as "collagen-sensitive." In contrast, the numbers of "collagen-tolerant" species, including Sigmophoranema rufum, Lauratonema hospitum, Enoploides spiculohamatus, and Trichotheristus mirabilis, increased significantly in the treated microcosms.
Collapse
Affiliation(s)
- Mohamed Allouche
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Ilhem Hamdi
- Faculty of Sciences of Tunis, Laboratory of Ecology, Parasitology and Biology of Aquatic Organisms, University of Tunis El Manar, Tunis, Tunisia
| | - Ahmed Nasri
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
45
|
Haarith D, Bushley KE, Chen S. Fungal communities associated with Heterodera glycines and their potential in biological control: a current update. J Nematol 2020; 52:1-17. [PMID: 32180383 PMCID: PMC7266048 DOI: 10.21307/jofnem-2020-022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 11/11/2022] Open
Abstract
The soybean cyst nematode (SCN) is the most important pest on soybean, a major crop worldwide. The SCN is considered both parasitic and pathogenic as it derives nutrition from the host and manipulates host physiology to do so. Currently, there are no commercially available chemicals that are specific, environmentally safe and cost effective to control SCN levels. Crop rotation, use of host resistance and other cultural practices remain the main management strategies. The need for bioprospecting other methods of controlling SCN is paramount, and fungi show promise in that respect. Several studies have evaluated fungi and fungal products as biocontrol options against plant-parasitic nematodes. This review discusses fungal genera isolated from the SCN with potential for use as biocontrol agents and the effects of their secondary metabolites on various stages of SCN development. The review also summarizes efforts to control SCN using soil amendments that could potentially impact fungal communities in the soil. The soybean cyst nematode (SCN) is the most important pest on soybean, a major crop worldwide. The SCN is considered both parasitic and pathogenic as it derives nutrition from the host and manipulates host physiology to do so. Currently, there are no commercially available chemicals that are specific, environmentally safe and cost effective to control SCN levels. Crop rotation, use of host resistance and other cultural practices remain the main management strategies. The need for bioprospecting other methods of controlling SCN is paramount, and fungi show promise in that respect. Several studies have evaluated fungi and fungal products as biocontrol options against plant-parasitic nematodes. This review discusses fungal genera isolated from the SCN with potential for use as biocontrol agents and the effects of their secondary metabolites on various stages of SCN development. The review also summarizes efforts to control SCN using soil amendments that could potentially impact fungal communities in the soil.
Collapse
Affiliation(s)
- Deepak Haarith
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Kathryn E. Bushley
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| | - Senyu Chen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
46
|
SHALABY H, ASHRY H, SAAD M, FARAG T. In Vitro Effects of Streptomyces tyrosinase on the Egg and Adult Worm of Toxocara vitulorum. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:67-75. [PMID: 32489377 PMCID: PMC7244832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Several species of streptomycetes, saprophytic bacteria found widely distributed in soil, water and plants, produce bioactive compounds such as intra and extracellular hydrolases including lytic enzymes which reflecting on their importance in the biological control of insects and parasites. This study assessed the in vitro effects of Streptomyces tyrosinase, produced from Streptomyces spp. isolated from Egyptian soil, on animal-parasitic nematode Toxocara vitulorum, in terms of egg development and adult worm's cuticular structure, and as an alternative strategy to alleviate this infection. METHODS This study was conducted at the National Research Centre, Egypt in 2018. Five different concentrations of tyrosinase, ranged from 1%-30% were tested against the development of T. vitulorum eggs. The concentration induced the highest inhibitory activity was tested against adult T. vitulorum cuticle, which is essential for the protective and nutritive functions. The results were compared with those observed in the egg development and worm cuticle following incubation in Streptomyces protease (as a reference enzyme). RESULTS Compared to Streptomyces protease, higher inhibitory activity on T. vitulorum egg development and extreme cuticular alterations of the treated adult worms had been observed following 24 h exposure to Streptomyces tyrosinase. Once the cuticle had been damaged, the enzyme would be able to penetrate deeper into the internal tissues of the nematode and caused more widespread disruption. CONCLUSION The current study could offer a promising bio-control agent, Streptomyces tyrosinase, against T. vitulorum alternative to the more expensive synthetic anthelmintics.
Collapse
Affiliation(s)
- Hatem SHALABY
- Department of Parasitology and Animal Diseases, National Research Center, Giza, Egypt,Correspondence
| | - Heba ASHRY
- Department of Parasitology and Animal Diseases, National Research Center, Giza, Egypt
| | - Moataza SAAD
- Department of Microbial Chemistry, National Research Center, Giza, Egypt
| | - Tarek FARAG
- Department of Parasitology and Animal Diseases, National Research Center, Giza, Egypt
| |
Collapse
|
47
|
Optimizing and Evaluating the Antihelminthic Activity of the Biocompatible Zinc Oxide Nanoparticles Against the Ascaridid Nematode, Parascaris equorum In Vitro. Acta Parasitol 2019; 64:873-886. [PMID: 31478140 DOI: 10.2478/s11686-019-00111-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE In the present study, the effect of different biocompatible concentrations from ZnO nanoparticles (ZnO NPs) on the physiological state and surface topography of the nematode P. equorum was determined in vitro. METHODS Different concentrations of ZnO NPs (100, 200, 300 and 400 mg/l) synthesized using the egg white were prepared followed by the incubation of parasitic worms with these concentrations in vitro. The physiological state of treated worms such as oxidative stress markers, enzymatic activities and biochemical parameters in addition to the surface topography was determined and compared with control untreated worms. RESULTS In comparison to control worms, it was observed that at high concentrations of ZnO NPs, most of the treated worms showed an increase in the levels of ALT, AST and ALP (worm muscle damage, and gonad injury); enhancement of the total protein content (worm cellular dysfunction); significant increase in MDA level (free radical-mediated worm cell membrane damage); depletion in GST and GSH activities (reduced ability to clear toxic compounds like lipid peroxides); CAT depletion (superoxide dismutase and hydrogen peroxide toxicity) and NO increase (detoxification activity and stressful conditions on worms). SEM showed that there was a modified morphological appearance in the surface of treated worms; lips were wrinkled with irregularly arranged denticles, weathering of cuticle, bursts of cuticle layers, disruption of surface annulations and erosion of surface papillae of male around the cloacal opening. CONCLUSION ZnO NPs at environmentally relevant concentrations achieved a significant antihelminthic activity against P. equorum which represents a successful model used in parasite control experiments.
Collapse
|
48
|
Pandarakalam GC, Speake M, McElroy S, Alturkistani A, Philippe L, Pettitt J, Müller B, Connolly B. A high-throughput screen for the identification of compounds that inhibit nematode gene expression by targeting spliced leader trans-splicing. Int J Parasitol Drugs Drug Resist 2019; 10:28-37. [PMID: 31015150 PMCID: PMC6479105 DOI: 10.1016/j.ijpddr.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 02/05/2023]
Abstract
Infections with parasitic nematodes are among the most significant of the neglected tropical diseases affecting about a billion people living mainly in tropical regions with low economic activity. The most effective current strategy to control nematode infections involves large scale treatment programs with anthelmintic drugs. This strategy is at risk from the emergence of drug resistant parasites. Parasitic nematodes also affect livestock, which are treated with the same limited group of anthelmintic drugs. Livestock parasites resistant to single drugs, and even multi-drug resistant parasites, are appearing in many areas. There is therefore a pressing need for new anthelmintic drugs. Here we use the nematode Caenorhabditis elegans as a model for parasitic nematodes and demonstrate that sinefungin, a competitive inhibitor of methyltransferases, causes a delay in development and reduced fecundity, and inhibits spliced leader trans-splicing. Spliced leader trans-splicing is an essential step in gene expression that does not occur in the hosts of parasitic nematodes, and is therefore a potential target for new anthelmintic drugs. We have exploited the ability of sinefungin to inhibit spliced leader trans-splicing to adapt a green fluorescent protein based reporter gene assay that monitors spliced leader trans-splicing for high-throughput screening for new anthelmintic compounds. We have established a protocol for robust high-throughput screening, combining mechanical dispensing of living C. elegans into 384- or 1536- well plates with addition of compounds using an acoustic liquid dispenser, and the detection of the inhibition of SL trans-splicing using a microplate reader. We have tested this protocol in a first pilot screen and envisage that this assay will be a valuable tool in the search for new anthelmintic drugs.
Collapse
Affiliation(s)
- George Cherian Pandarakalam
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Michael Speake
- European Screening Centre, University of Dundee, Biocity Scotland, Bo'ness Road, Newhouse, ML1 5UH, Scotland, UK
| | - Stuart McElroy
- European Screening Centre, University of Dundee, Biocity Scotland, Bo'ness Road, Newhouse, ML1 5UH, Scotland, UK
| | - Ammar Alturkistani
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Lucas Philippe
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Bernadette Connolly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
49
|
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol (Camb) 2019; 11:186-207. [DOI: 10.1093/intbio/zyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
50
|
The in-silico characterization of the Caenorhabditis elegans matrisome and proposal of a novel collagen classification. Matrix Biol Plus 2019; 1:100001. [PMID: 33543001 PMCID: PMC7852208 DOI: 10.1016/j.mbplus.2018.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Proteins are the building blocks of life. While proteins and their localization within cells and sub-cellular compartments are well defined, the proteins predicted to be secreted to form the extracellular matrix - or matrisome - remain elusive in the model organism C. elegans. Here, we used a bioinformatic approach combining gene orthology and protein structure analysis and an extensive curation of the literature to define the C. elegans matrisome. Similar to the human genome, we found that 719 out of ~20,000 genes (~4%) of the C. elegans genome encodes matrisome proteins, including 181 collagens, 35 glycoproteins, 10 proteoglycans, and 493 matrisome-associated proteins. We report that 173 out of the 181 collagen genes are unique to nematodes and are predicted to encode cuticular collagens, which we are proposing to group into five clusters. To facilitate the use of our lists and classification by the scientific community, we developed an automated annotation tool to identify ECM components in large datasets. We also established a novel database of all C. elegans collagens (CeColDB). Last, we provide examples of how the newly defined C. elegans matrisome can be used for annotations and gene ontology analyses of transcriptomic, proteomic, and RNAi screening data. Because C. elegans is a widely used model organism for high throughput genetic and drug screens, and to study biological and pathological processes, the conserved matrisome genes may aid in identifying potential drug targets. In addition, the nematode-specific matrisome may be exploited for targeting parasitic infection of man and crops. Pipeline combining gene- and protein-sequence analysis to predict the C. elegans matrisome The in-silicoC. elegans matrisome comprises 719 genes. The 185 C. elegans collagen-domain-containing proteins are classified into 4 groups. The 173 cuticular collagens are further classified into 5 clusters based on their domain organization. The C. elegans Matrisome Annotator is an online tool to identify matrisome genes and proteins in large datasets.
Collapse
|