1
|
Adam I, Motyka B, Pearcey J, Tao K, Cowan PJ, West LJ. ABO-A antibody induction in mice is T cell-dependent, estrogen-independent, and modulated by CD22. Am J Transplant 2025; 25:1180-1192. [PMID: 40057198 DOI: 10.1016/j.ajt.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 03/01/2025] [Indexed: 03/27/2025]
Abstract
ABO antibodies pose barriers in transplantation but remain poorly studied. We investigated anti-A natural antibodies (nAbs) and induced antibodies (iAbs) in wild-type (WT), CD19KO, and CD22KO mice in the context of major histocompatibility complex-syngeneic or major histocompatibility complex-allogeneic stimulation by ABO-A blood cell membranes (BCM) from A-transgenic mice, or xenogeneic human (Hu-A) BCM. CD19KO mice failed to produce anti-A nAbs and iAbs. Syngeneic A-transgenic-BCM failed to stimulate anti-A iAbs in WT mice, in contrast to allogeneic A-transgenic-BCM and xenogeneic Hu-A-BCM. Hu-A-BCM failed to stimulate anti-A iAbs in CD4-T cell-depleted or CD4KO mice, reversed with CD4-T cell reconstitution. Although anti-A nAbs were absent in estrogen-receptor-α-deficient mice, anti-A iAbs were easily stimulated. Anti-A nAbs were higher in CD22KO than in WT mice, with pubertal females producing higher levels than males. Anti-A iAbs were stimulated in CD22KO mice by syngeneic A-transgenic-BCM or by Hu-A-BCM after CD4T cell depletion. We conclude that anti-A nAbs and iAbs are produced by B1a-cells. In WT mice, stimulation of anti-A iAbs requires exposure to nonself A-antigen together with foreign proteins and is T cell dependent. Without CD22-mediated inhibition, anti-A iAb stimulation does not require foreign protein and is T cell-independent. Anti-A iAbs are estrogen-independent, whereas anti-A nAbs are estrogen-dependent and could be elicited by estrogen in males.
Collapse
Affiliation(s)
- Ibrahim Adam
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, Canada
| | - Bruce Motyka
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, Canada
| | - Jean Pearcey
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, Canada
| | - Kesheng Tao
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, Canada
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Lori J West
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, Edmonton, Canada; Department of Surgery, and Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Alonso S, Edelblum K. Metabolic regulation of γδ intraepithelial lymphocytes. DISCOVERY IMMUNOLOGY 2023; 2:kyad011. [PMID: 38179241 PMCID: PMC10766425 DOI: 10.1093/discim/kyad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Aidos L, Mirra G, Pallaoro M, Herrera Millar VR, Radaelli G, Bazzocchi C, Modina SC, Di Giancamillo A. How Do Alternative Protein Resources Affect the Intestine Morphology and Microbiota of Atlantic Salmon? Animals (Basel) 2023; 13:1922. [PMID: 37370432 DOI: 10.3390/ani13121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The availability and cost of fishmeal constitute a bottleneck in Atlantic salmon production expansion. Fishmeal is produced from wild fish species and constitutes the major feed ingredient in carnivorous species such as the Atlantic salmon. These natural stocks are at risk of depletion and it is therefore of major importance to find alternative protein sources that meet the nutritional requirements of the Atlantic salmon, without compromising the animals' health. Terrestrial animal by-products have been used in aquaculture feed, but their use is limited by the lack of several essential amino acids and consumer acceptance. In the case of plant ingredients, it is necessary to take into account both their concentration and the extraction methodologies, since, if not dosed correctly, they can cause macro- and microscopic alterations of the structure of the gastrointestinal tract and can also negatively modulate the microbiota composition. These alterations may compromise the digestive functions, growth of the animal, and, ultimately, its well-being. An updated revision of alternative protein sources is provided, with the respective impact on the intestine health in terms of both morphology and microbiota composition. Such information may constitute the premise for the choice and development of Atlantic salmon feeds that guarantee fish health and growth performance without having a significant impact on the surrounding environment, both in terms of depletion of the fish's natural stocks and in terms of pressure on the terrestrial agriculture. The sustainability of aquaculture should be a priority when choosing next-generation ingredients.
Collapse
Affiliation(s)
- Lucia Aidos
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Giorgio Mirra
- Department of Comparative Biomedicine and Food Science, University of Padua, 35122 Padova, Italy
| | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | | | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35122 Padova, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | | |
Collapse
|
4
|
Singh DK, Miller CM, Orgel KA, Dave M, Mackay S, Good M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front Pediatr 2023; 10:1107404. [PMID: 36714655 PMCID: PMC9874231 DOI: 10.3389/fped.2022.1107404] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating, multifactorial disease mainly affecting the intestine of premature infants. Recent discoveries have significantly enhanced our understanding of risk factors, as well as, cellular and genetic mechanisms of this complex disease. Despite these advancements, no essential, single risk factor, nor the mechanism by which each risk factor affects NEC has been elucidated. Nonetheless, recent research indicates that maternal factors, antibiotic exposure, feeding, hypoxia, and altered gut microbiota pose a threat to the underdeveloped immunity of preterm infants. Here we review predisposing factors, status of unwarranted immune responses, and microbial pathogenesis in NEC based on currently available scientific evidence. We additionally discuss novel techniques and models used to study NEC and how this research translates from the bench to the bedside into potential treatment strategies.
Collapse
Affiliation(s)
- Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mili Dave
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Gui Y, Cheng H, Zhou J, Xu H, Han J, Zhang D. Development and function of natural TCR + CD8αα + intraepithelial lymphocytes. Front Immunol 2022; 13:1059042. [PMID: 36569835 PMCID: PMC9768216 DOI: 10.3389/fimmu.2022.1059042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The complexity of intestinal homeostasis results from the ability of the intestinal epithelium to absorb nutrients, harbor multiple external and internal antigens, and accommodate diverse immune cells. Intestinal intraepithelial lymphocytes (IELs) are a unique cell population embedded within the intestinal epithelial layer, contributing to the formation of the mucosal epithelial barrier and serving as a first-line defense against microbial invasion. TCRαβ+ CD4- CD8αα+ CD8αβ- and TCRγδ+ CD4- CD8αα+ CD8αβ- IELs are the two predominant subsets of natural IELs. These cells play an essential role in various intestinal diseases, such as infections and inflammatory diseases, and act as immune regulators in the gut. However, their developmental and functional patterns are extremely distinct, and the mechanisms underlying their development and migration to the intestine are not fully understood. One example is that Bcl-2 promotes the survival of thymic precursors of IELs. Mature TCRαβ+ CD4- CD8αα+ CD8αβ- IELs seem to be involved in immune regulation, while TCRγδ+ CD4- CD8αα+ CD8αβ- IELs might be involved in immune surveillance by promoting homeostasis of host microbiota, protecting and restoring the integrity of mucosal epithelium, inhibiting microbiota invasion, and limiting excessive inflammation. In this review, we elucidated and organized effectively the functions and development of these cells to guide future studies in this field. We also discussed key scientific questions that need to be addressed in this area.
Collapse
Affiliation(s)
- Yuanyuan Gui
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Han
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| |
Collapse
|
6
|
Zhang X, Zhu B, Li L, Xu J, Han Y, Zhang J, Hua Z. The dephosphorylation of FADD at S191 induces an excessive expansion of TCRαβ + IELs in the intestinal mucosa. Immunology 2022; 167:233-246. [PMID: 35753028 DOI: 10.1111/imm.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) play a crucial role in host defence against pathogens in the intestinal mucosa. The development of intestinal IELs is distinct from peripheral T lymphocytes and remains elusive. Fas-associated protein with death domain (FADD) is important for T cell development in the thymus. Here we describe a novel function of FADD in the IEL development. FADD (S191A), a mouse FADD mutant at Ser191 to Ala mimicking constitutively unphosphorylated FADD, promoted a rapid expansion of TCRαβ+ IELs, not TCRγδ+ IELs. Mechanism investigation indicated that the dephosphorylation of FADD was required for cell activation mainly in TCRαβ+ CD8+ T cells. Consistently, FADD (S191A) as dephosphorylated FADD led to a high NF-κB activation in the TCR-dependent cell expansion. In addition, The FADD (S191A)-induced abnormal IEL populations resulted in the increased incidence and severity of colitis in mice. In summary, FADD signalling is involved in the intestinal IEL development and might be a regulator for intestinal mucosal homeostasis.
Collapse
Affiliation(s)
- Xuerui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- School of Pharmaceutical Sciences, Shandong First Medical University, Taian, China
| | - Banghui Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiahong Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuheng Han
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China
| |
Collapse
|
7
|
Wiarda JE, Trachsel JM, Sivasankaran SK, Tuggle CK, Loving CL. Intestinal single-cell atlas reveals novel lymphocytes in pigs with similarities to human cells. Life Sci Alliance 2022; 5:e202201442. [PMID: 35995567 PMCID: PMC9396248 DOI: 10.26508/lsa.202201442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphocytes can heavily influence intestinal health, but resolving intestinal lymphocyte function is challenging as the intestine contains a vastly heterogeneous mixture of cells. Pigs are an advantageous biomedical model, but deeper understanding of intestinal lymphocytes is warranted to improve model utility. Twenty-six cell types were identified in the porcine ileum by single-cell RNA sequencing and further compared with cells in human and murine ileum. Though general consensus of cell subsets across species was revealed, some porcine-specific lymphocyte subsets were identified. Differential tissue dissection and in situ analyses conferred spatial context, revealing similar locations of lymphocyte subsets in Peyer's patches and epithelium in pig-to-human comparisons. Like humans, activated and effector lymphocytes were abundant in the ileum but not periphery of pigs, suggesting tissue-specific and/or activation-associated gene expression. Gene signatures for peripheral and ileal innate lymphoid cells newly discovered in pigs were defined and highlighted similarities to human innate lymphoid cells. Overall, we reveal novel lymphocyte subsets in pigs and highlight utility of pigs for intestinal research applications.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Julian M Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | | | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
8
|
Barreto de Albuquerque J, Mueller C, Gungor B. Tissue-Resident T Cells in Chronic Relapsing-Remitting Intestinal Disorders. Cells 2021; 10:1882. [PMID: 34440651 PMCID: PMC8393248 DOI: 10.3390/cells10081882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Tissue-resident memory T (TRM) cells critically contribute to the rapid immunoprotection and efficient immunosurveillance against pathogens, particularly in barrier tissues, but also during anti-tumor responses. However, the involvement of TRM cells also in the induction and exacerbation of immunopathologies, notably in chronically relapsing auto-inflammatory disorders, is becoming increasingly recognized as a critical factor. Thus, TRM cells may also represent an attractive target in the management of chronic (auto-) inflammatory disorders, including multiple sclerosis, rheumatoid arthritis, celiac disease and inflammatory bowel diseases. In this review, we focus on current concepts of TRM cell biology, particularly in the intestine, and discuss recent findings on their involvement in chronic relapsing-remitting inflammatory disorders. Potential therapeutic strategies to interfere with these TRM cell-mediated immunopathologies are discussed.
Collapse
Affiliation(s)
| | | | - Bilgi Gungor
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland;
| |
Collapse
|
9
|
Sumida H. Recent advances in roles of G-protein coupled receptors in intestinal intraepithelial lymphocytes. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:77-82. [PMID: 32775124 PMCID: PMC7392907 DOI: 10.12938/bmfh.2019-053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Intestinal intraepithelial lymphocytes (IELs) potentially provide the first line of immune defense against enteric pathogens. In addition, there is growing evidence supporting the
involvement of IELs in the pathogenesis of gut disorders such as inflammatory bowel diseases. Various kinds of molecules are involved in the dynamics of IELs, such as homing to the
intestinal epithelium and retention in the intestinal mucosa. G protein-coupled receptors (GPCRs) comprise the largest family of cell surface receptors and regulate many biological
responses. Although some GPCRs, like CCR9, have been implicated to have roles in IEL homing, little is still known regarding the functional roles of GPCRs in IEL biology. In this
review, we provide a concise overview of recent advances in the roles of novel GPCRs like GPR55 and GPR18 in the dynamics of IELs.
Collapse
Affiliation(s)
- Hayakazu Sumida
- 1Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
10
|
McDonald BD, Jabri B, Bendelac A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat Rev Immunol 2019; 18:514-525. [PMID: 29717233 DOI: 10.1038/s41577-018-0013-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intestinal epithelial barrier is patrolled by resident intraepithelial lymphocytes (IELs) that are involved in host defence against pathogens, wound repair and homeostatic interactions with the epithelium, microbiota and nutrients. Intestinal IELs are one of the largest populations of lymphocytes in the body and comprise several distinct subsets, the identity and lineage relationships of which have long remained elusive. Here, we review advances in unravelling the complexity of intestinal IEL populations, which comprise conventional αβ T cell receptor (TCRαβ)+ subsets, unconventional TCRαβ+ and TCRγδ+ subsets, group 1 innate lymphoid cells (ILC1s) and ILC1-like cells. Although these intestinal IEL lineages have partially overlapping effector programmes and recognition properties, they have strikingly different developmental pathways. We suggest that evolutionary pressure has driven the recurrent generation of cytolytic effector lymphocytes to protect the intestinal epithelial layer, but they may also precipitate intestinal inflammatory disorders, such as coeliac disease.
Collapse
Affiliation(s)
- Benjamin D McDonald
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA. .,Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Van Kaer L, Olivares-Villagómez D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 200:2235-2244. [PMID: 29555677 PMCID: PMC5863587 DOI: 10.4049/jimmunol.1701704] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
The intestine is continuously exposed to commensal microorganisms, food, and environmental agents and also serves as a major portal of entry for many pathogens. A critical defense mechanism against microbial invasion in the intestine is the single layer of epithelial cells that separates the gut lumen from the underlying tissues. The barrier function of the intestinal epithelium is supported by cells and soluble factors of the intestinal immune system. Chief among them are intestinal intraepithelial lymphocytes (iIELs), which are embedded in the intestinal epithelium and represent one of the single largest populations of lymphocytes in the body. Compared with lymphocytes in other parts of the body, iIELs exhibit unique phenotypic, developmental, and functional properties that reflect their key roles in maintaining the intestinal epithelial barrier. In this article, we review the biology of iIELs in supporting normal health and how their dysregulation can contribute to disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
12
|
Zeissig S, Rosati E, Dowds CM, Aden K, Bethge J, Schulte B, Pan WH, Mishra N, Zuhayra M, Marx M, Paulsen M, Strigli A, Conrad C, Schuldt D, Sinha A, Ebsen H, Kornell SC, Nikolaus S, Arlt A, Kabelitz D, Ellrichmann M, Lützen U, Rosenstiel PC, Franke A, Schreiber S. Vedolizumab is associated with changes in innate rather than adaptive immunity in patients with inflammatory bowel disease. Gut 2019; 68:25-39. [PMID: 29730603 DOI: 10.1136/gutjnl-2018-316023] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Vedolizumab, a monoclonal antibody directed against the integrin heterodimer α4β7, is approved for the treatment of Crohn's disease and ulcerative colitis. The efficacy of vedolizumab has been suggested to result from inhibition of intestinal T cell trafficking although human data to support this conclusion are scarce. We therefore performed a comprehensive analysis of vedolizumab-induced alterations in mucosal and systemic immunity in patients with inflammatory bowel disease (IBD), using anti-inflammatory therapy with the TNFα antibody infliximab as control. DESIGN Immunophenotyping, immunohistochemistry, T cell receptor profiling and RNA sequencing were performed using blood and colonic biopsies from patients with IBD before and during treatment with vedolizumab (n=18) or, as control, the anti-TNFα antibody infliximab (n=20). Leucocyte trafficking in vivo was assessed using single photon emission computed tomography and endomicroscopy. RESULTS Vedolizumab was not associated with alterations in the abundance or phenotype of lamina propria T cells and did not affect the mucosal T cell repertoire or leucocyte trafficking in vivo. Surprisingly, however, α4β7 antibody treatment was associated with substantial effects on innate immunity including changes in macrophage populations and pronounced alterations in the expression of molecules involved in microbial sensing, chemoattraction and regulation of the innate effector response. These effects were specific to vedolizumab, not observed in response to the TNFα antibody infliximab, and associated with inhibition of intestinal inflammation. CONCLUSION Our findings suggest that modulation of innate immunity contributes to the therapeutic efficacy of vedolizumab in IBD. TRIAL REGISTRATION NUMBER NCT02694588.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Department of Medicine I, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität (TU) Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany.,Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - C Marie Dowds
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johannes Bethge
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Berenice Schulte
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wei Hung Pan
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maaz Zuhayra
- Department of Nuclear Medicine, Molecular Diagnostic Imaging and Therapy, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marlies Marx
- Department of Nuclear Medicine, Molecular Diagnostic Imaging and Therapy, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maren Paulsen
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anne Strigli
- Department of Medicine I, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität (TU) Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Claudio Conrad
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dörthe Schuldt
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anupam Sinha
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henriette Ebsen
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabin-Christin Kornell
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Mark Ellrichmann
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Diagnostic Imaging and Therapy, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip C Rosenstiel
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
13
|
Olivares-Villagómez D, Van Kaer L. Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol 2018; 39:264-275. [PMID: 29221933 PMCID: PMC8056148 DOI: 10.1016/j.it.2017.11.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Intestinal intraepithelial lymphocytes (IELs) are a large and diverse population of lymphoid cells that reside between the intestinal epithelial cells (IECs) that form the intestinal mucosal barrier. Although IEL biology has traditionally focused on T cells, recent studies have identified several subsets of T cell receptor (TCR)-negative IELs with intriguing properties. New insight into the development, homeostasis, and functions of distinct IEL subsets has recently been provided. Additional studies have revealed intricate interactions between different IEL subsets, reciprocal interactions between IELs and IECs, and communication of IELs with immune cells that reside outside the intestinal epithelium. We review here sentinel functions of IELs in the maintenance of the mucosal barrier integrity, as well as how dysregulated IEL responses can contribute to pathology.
Collapse
Affiliation(s)
- Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
14
|
Golec DP, Hoeppli RE, Henao Caviedes LM, McCann J, Levings MK, Baldwin TA. Thymic progenitors of TCRαβ + CD8αα intestinal intraepithelial lymphocytes require RasGRP1 for development. J Exp Med 2017; 214:2421-2435. [PMID: 28652304 PMCID: PMC5551581 DOI: 10.1084/jem.20170844] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022] Open
Abstract
Golec et al. show that RasGRP1, a critical Ras activator in thymocytes, is required for TCRαβ+CD8αα IEL development by regulating the survival of a heterogeneous population of thymic progenitors that receive a strong TCR signal. Therefore, RasGRP1 is necessary for thymic selection events stemming from strong or weak TCR signals. Strong T cell receptor (TCR) signaling largely induces cell death during thymocyte development, whereas weak TCR signals induce positive selection. However, some T cell lineages require strong TCR signals for differentiation through a process termed agonist selection. The signaling relationships that underlie these three fates are unknown. RasGRP1 is a Ras activator required to transmit weak TCR signals leading to positive selection. Here, we report that, despite being dispensable for thymocyte clonal deletion, RasGRP1 is critical for agonist selection of TCRαβ+CD8αα intraepithelial lymphocyte (IEL) progenitors (IELps), even though both outcomes require strong TCR signaling. Bim deficiency rescued IELp development in RasGRP1−/− mice, suggesting that RasGRP1 functions to promote survival during IELp generation. Additionally, expression of CD122 and the adhesion molecules α4β7 and CD103 define distinct IELp subsets with differing abilities to generate TCRαβ+CD8αα IEL in vivo. These findings demonstrate that RasGRP1-dependent signaling underpins thymic selection processes induced by both weak and strong TCR signals and is differentially required for fate decisions derived from a strong TCR stimulus.
Collapse
Affiliation(s)
- Dominic P Golec
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Romy E Hoeppli
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Henao Caviedes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Jillian McCann
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Fan X, Rudensky AY. Hallmarks of Tissue-Resident Lymphocytes. Cell 2016; 164:1198-1211. [PMID: 26967286 DOI: 10.1016/j.cell.2016.02.048] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Indexed: 01/20/2023]
Abstract
Although they are classically viewed as continuously recirculating through the lymphoid organs and blood, lymphocytes also establish residency in non-lymphoid tissues, most prominently at barrier sites, including the mucosal surfaces and skin. These specialized tissue-resident lymphocyte subsets span the innate-adaptive continuum and include innate lymphoid cells (ILCs), unconventional T cells (e.g., NKT, MAIT, γδ T cells, and CD8αα(+) IELs), and tissue-resident memory T (T(RM)) cells. Although these diverse cell types differ in the particulars of their biology, they nonetheless exhibit important shared features, including a role in the preservation of tissue integrity and function during homeostasis, infection, and non-infectious perturbations. In this Review, we discuss the hallmarks of tissue-resident innate, innate-like, and adaptive lymphocytes, as well as their potential functions in non-lymphoid organs.
Collapse
Affiliation(s)
- Xiying Fan
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA; Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA.
| |
Collapse
|
16
|
Qiu Y, Peng K, Liu M, Xiao W, Yang H. CD8αα TCRαβ Intraepithelial Lymphocytes in the Mouse Gut. Dig Dis Sci 2016; 61:1451-60. [PMID: 26769056 DOI: 10.1007/s10620-015-4016-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
The epithelium of the mouse small intestine harbors an abundant CD8αα(+)TCRαβ(+) intraepithelial lymphocyte (IEL) population. This unique IEL subset is a self-reactive population that requires exposure to self-agonists for selection in the thymus, similarly to other regulatory T cell populations. After leaving the thymus, these cells directly seed the intestinal epithelium, which provides a unique combination of cellular interactions together with cytokines, nutrients, and antigens that guide the lineage-specific differentiation and function of these IELs. For instance, epithelial cells and nearby immune cells secrete a number of cytokines, including interleukin-15 (IL-15), IL-7, and transforming growth factor-β, resulting in an assortment of cellular responses, including activation of master transcription factors, cell proliferation, and cytokine secretion. Recent advances have also highlighted the importance of diet-derived substances and commensal metabolites, such as the aryl hydrocarbon receptor ligands and vitamin D, in controlling the survival and gene expression of CD8αα(+)TCRαβ(+) IELs. Furthermore, these cells function in the epithelium and require constant communication between cells in the form of cell-to-cell contacts. These interactions tune the antigen sensitivity of the TCR and maintain the quiescence of the CD8αα(+)TCRαβ(+) IELs. Finally, we discuss how these cells might contribute to tolerance and immunopathological responses in the gut. Therefore, an increased understanding of CD8αα(+)TCRαβ(+) IELs in the gut will help us understand how these cells participate in immune regulation and protection.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Minqiang Liu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China.
| |
Collapse
|
17
|
Kadowaki A, Miyake S, Saga R, Chiba A, Mochizuki H, Yamamura T. Gut environment-induced intraepithelial autoreactive CD4(+) T cells suppress central nervous system autoimmunity via LAG-3. Nat Commun 2016; 7:11639. [PMID: 27198196 PMCID: PMC4876462 DOI: 10.1038/ncomms11639] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 04/15/2016] [Indexed: 01/10/2023] Open
Abstract
The gut environment has been found to significantly influence autoimmune diseases such as multiple sclerosis; however, immune cell mechanisms are unclear. Here we show that the gut epithelium of myelin oligodendrocyte glycoprotein(35-55)-specific T-cell receptor transgenic mice contains environmental stimuli-induced intraepithelial lymphocytes (IELs) that inhibit experimental autoimmune encephalomyelitis on transfer. These cells express surface markers phenotypical of 'induced' IELs, have a TH17-like profile and infiltrate the central nervous system (CNS). They constitutively express Ctla4 and Tgfb1 and markedly upregulate Lag3 expression in the CNS, thereby inhibiting inflammation. We also demonstrate the suppressive capability of CD4(+) IELs with alternative antigen specificities, their proliferation in response to gut-derived antigens and contribution of the microbiota and dietary aryl hydrocarbon receptor ligands to their induction. Thus, the gut environment favours the generation of autoreactive CD4(+) T cells with unique regulatory functions, potentially important for preventing CNS autoimmunity.
Collapse
Affiliation(s)
- Atsushi Kadowaki
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Sachiko Miyake
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan.,Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | - Ryoko Saga
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan
| | - Asako Chiba
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan.,Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan
| |
Collapse
|
18
|
Habtezion A, Nguyen LP, Hadeiba H, Butcher EC. Leukocyte Trafficking to the Small Intestine and Colon. Gastroenterology 2016; 150:340-54. [PMID: 26551552 PMCID: PMC4758453 DOI: 10.1053/j.gastro.2015.10.046] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
Leukocyte trafficking to the small and large intestines is tightly controlled to maintain intestinal immune homeostasis, mediate immune responses, and regulate inflammation. A wide array of chemoattractants, chemoattractant receptors, and adhesion molecules expressed by leukocytes, mucosal endothelium, epithelium, and stromal cells controls leukocyte recruitment and microenvironmental localization in intestine and in the gut-associated lymphoid tissues (GALTs). Naive lymphocytes traffic to the gut-draining mesenteric lymph nodes where they undergo antigen-induced activation and priming; these processes determine their memory/effector phenotypes and imprint them with the capacity to migrate via the lymph and blood to the intestines. Mechanisms of T-cell recruitment to GALT and of T cells and plasmablasts to the small intestine are well described. Recent advances include the discovery of an unexpected role for lectin CD22 as a B-cell homing receptor GALT, and identification of the orphan G-protein-coupled receptor 15 (GPR15) as a T-cell chemoattractant/trafficking receptor for the colon. GPR15 decorates distinct subsets of T cells in mice and humans, a difference in species that could affect translation of the results of mouse colitis models to humans. Clinical studies with antibodies to integrin α4β7 and its vascular ligand mucosal vascular addressin cell adhesion molecule 1 are proving the value of lymphocyte trafficking mechanisms as therapeutic targets for inflammatory bowel diseases. In contrast to lymphocytes, cells of the innate immune system express adhesion and chemoattractant receptors that allow them to migrate directly to effector tissue sites during inflammation. We review the mechanisms for innate and adaptive leukocyte localization to the intestinal tract and GALT, and discuss their relevance to human intestinal homeostasis and inflammation.
Collapse
Affiliation(s)
- Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California.
| | - Linh P Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Husein Hadeiba
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Eugene C Butcher
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research, Palo Alto, California; Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
19
|
Turner DL, Farber DL. Mucosal resident memory CD4 T cells in protection and immunopathology. Front Immunol 2014; 5:331. [PMID: 25071787 PMCID: PMC4094908 DOI: 10.3389/fimmu.2014.00331] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident memory T cells (TRM) comprise a newly defined subset, which comprises a major component of lymphocyte populations in diverse peripheral tissue sites, including mucosal tissues, barrier surfaces, and in other non-lymphoid and lymphoid sites in humans and mice. Many studies have focused on the role of CD8 TRM in protection; however, there is now accumulating evidence that CD4 TRM predominate in tissue sites, and are integral for in situ protective immunity, particularly in mucosal sites. New evidence suggests that mucosal CD4 TRM populations differentiate at tissue sites following the recruitment of effector T cells by local inflammation or infection. The resulting TRM populations are enriched in T-cell specificities associated with the inducing pathogen/antigen. This compartmentalization of memory T cells at specific tissue sites may provide an optimal design for future vaccination strategies. In addition, emerging evidence suggests that CD4 TRM may also play a role in immunoregulation and immunopathology, and therefore, targeting TRM may be a viable therapeutic approach to treat inflammatory diseases in mucosal sites. This review will summarize our current understanding of CD4 TRM in diverse tissues, with an emphasis on their role in protective immunity and the mechanisms by which these populations are established and maintained in diverse mucosal sites.
Collapse
Affiliation(s)
- Damian Lanz Turner
- Columbia Center for Translational Immunology, Columbia University Medical Center , New York, NY , USA ; Department of Medicine, Columbia University Medical Center , New York, NY , USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center , New York, NY , USA ; Department of Surgery, Columbia University Medical Center , New York, NY , USA ; Department of Microbiology and Immunology, Columbia University Medical Center , New York, NY , USA
| |
Collapse
|
20
|
Guy-Grand D, Vassalli P, Eberl G, Pereira P, Burlen-Defranoux O, Lemaitre F, Di Santo JP, Freitas AA, Cumano A, Bandeira A. Origin, trafficking, and intraepithelial fate of gut-tropic T cells. ACTA ACUST UNITED AC 2013; 210:1839-54. [PMID: 23918956 PMCID: PMC3754871 DOI: 10.1084/jem.20122588] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Tropism to the small intestinal epithelium is a general property of unconventional and conventional recent thymic emigrants, but for both cell types only GALT-related cycling thoracic duct lymphocytes are the precursors of cytotoxic intraepithelial lymphocytes. The small intestine epithelium (SI-Ep) harbors millions of unconventional (γδ and CD4− CD8− NK1.1− TCRαβ) and conventional (CD8αβ and CD4) T cells, designated intraepithelial lymphocytes (IELs). Here, we identified the circulating pool of SI-Ep–tropic T cells and studied their capacity to colonize the SI-Ep under steady-state conditions in SPF mice. Developmentally regulated levels of α4β7 endowed recent thymic emigrants (RTEs) of unconventional types with higher SI-Ep tropism than their conventional homologues. SI-Ep–tropic RTEs, which in all lineages emerged naive, homed to the SI-Ep, but this environment was inadequate to stimulate them to cycle. In contrast, conventional and, unexpectedly, unconventional T cells, particularly Vγ7+ (hallmark of γδ IELs), previously stimulated to cycle in the gut-associated lymphoid tissue (GALT), proliferated in the SI-Ep. Cycling unconventional SI-Ep immigrants divided far more efficiently than their conventional homologues, thereby becoming predominant. This difference impacted on acquisition of high Granzyme B content, which required extensive proliferation. In conclusion, SI-Ep–tropic T cells follow a thymus–SI-Ep or a GALT–SI-Ep pathway, the latter generating highly competitive immigrants that are the sole precursors of cytotoxic IELs. These events occur continuously as part of the normal IEL dynamics.
Collapse
|
21
|
Markle JG, Mortin-Toth S, Wong AS, Geng L, Hayday A, Danska JS. γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5392-401. [PMID: 23626013 PMCID: PMC3836168 DOI: 10.4049/jimmunol.1203502] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γδ T cells, a lineage of innate-like lymphocytes, are distinguished from conventional αβ T cells in their Ag recognition, cell activation requirements, and effector functions. γδ T cells have been implicated in the pathology of several human autoimmune and inflammatory diseases and their corresponding mouse models, but their specific roles in these diseases have not been elucidated. We report that γδ TCR(+) cells, including both the CD27(-)CD44(hi) and CD27(+)CD44(lo) subsets, infiltrate islets of prediabetic NOD mice. Moreover, NOD CD27(-)CD44(hi) and CD27(+)CD44(lo) γδ T cells were preprogrammed to secrete IL-17, or IFN-γ upon activation. Adoptive transfer of type 1 diabetes (T1D) to T and B lymphocyte-deficient NOD recipients was greatly potentiated when γδ T cells, and specifically the CD27(-) γδ T cell subset, were included compared with transfer of αβ T cells alone. Ab-mediated blockade of IL-17 prevented T1D transfer in this setting. Moreover, introgression of genetic Tcrd deficiency onto the NOD background provided robust T1D protection, supporting a nonredundant, pathogenic role of γδ T cells in this model. The potent contributions of CD27(-) γδ T cells and IL-17 to islet inflammation and diabetes reported in this study suggest that these mechanisms may also underlie human T1D.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Female
- Gene Dosage
- Genotype
- Humans
- Hyaluronan Receptors/metabolism
- Interleukin-17/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
Collapse
Affiliation(s)
- Janet G.M. Markle
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
| | - Steve Mortin-Toth
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
| | - Andrea S.L. Wong
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
| | - Liping Geng
- Peter Gorer Department of Immunobiology, King’s College London at Guy’s Hospital, London, UK, SE1 9RT
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King’s College London at Guy’s Hospital, London, UK, SE1 9RT
- Immune Surveillance Laboratory; London Research Institute, Cancer Research UK, London, WC2, UK
| | - Jayne S. Danska
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
- Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
22
|
Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol 2013; 6:14-23. [PMID: 23131785 PMCID: PMC4034055 DOI: 10.1038/mi.2012.96] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucosal tissues are continually bombarded with infectious agents seeking to gain entry into the body. The absence of a tough physical exterior layer surrounding these tissues creates a unique challenge for the immune system, which manages to provide broad protection against a plethora of different organisms with the aid of special adaptations that augment immunity at these vulnerable sites. For example, specialized populations of memory T lymphocytes reside at initial sites of pathogen entry into the body, where they provide an important protective barrier. Similar anatomically-confined populations of pathogen-specific CD8 T cells can be found near the outer margins of the body following recovery from a variety of local infections, where they share very similar phenotypic characteristics. How these tissue-resident T cells are retained in a single anatomic location where they can promote immunity is beginning to be defined. Here, we will review current knowledge of the mechanisms that help establish and maintain these regional lymphocytes in the mucosal tissues and discuss relevant data that enhance our understanding of the contribution of these lymphocyte populations to protective immunity against infectious diseases.
Collapse
|
23
|
Yao Y, Han W, Liang J, Ji J, Wang J, Cantor H, Lu L. Glatiramer acetate ameliorates inflammatory bowel disease in mice through the induction of Qa-1-restricted CD8⁺ regulatory cells. Eur J Immunol 2012; 43:125-36. [PMID: 23002042 DOI: 10.1002/eji.201242758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/17/2012] [Accepted: 09/18/2012] [Indexed: 01/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) are complex multifactorial immunological disorders characterized by dysregulated immune reactivity in the intestine. Here, we investigated the contribution of Qa-1-restricted CD8(+) Treg cells in regulating experimental IBD in mice. We found that CD8(+) T cells induced by T-cell vaccination ameliorated the pathological manifestations of dextran sulfate sodium induced IBD when adoptively transferred into IBD mice. In addition, CD8(+) cell suppressive activity was induced by vaccination with glatiramer acetate (GA), an FDA-approved drug for multiple sclerosis (MS). We next showed that GA-induced CD8(+) Treg cells worked in a Qa-1-dependent manner and their suppressive activity depends on perforin-mediated cytotoxicity. Finally, we confirmed the role of CD4(+) T cells in dextran sulfate sodium induced colitis progression, and clarified that GA-induced CD8(+) T cells exerted their therapeutic effects on colitis by targeting pathogenic CD4(+) T cells. Our results reveal a new regulatory role of Qa-1-restricted CD8(+) Treg cells in IBD and suggest their induction by GA vaccination as a potential therapeutic approach to IBD.
Collapse
Affiliation(s)
- Yunliang Yao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, P R China
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
After infection, most antigen-specific memory T cells reside in nonlymphoid tissues. Tissue-specific programming during priming leads to directed migration of T cells to the appropriate tissue, which promotes the development of tissue-resident memory in organs such as intestinal mucosa and skin. Mechanisms that regulate the retention of tissue-resident memory T cells include transforming growth factor-β (TGF-β)-mediated induction of the E-cadherin receptor CD103 and downregulation of the chemokine receptor CCR7. These pathways enhance protection in internal organs, such as the nervous system, and in the barrier tissues--the mucosa and skin. Memory T cells that reside at these surfaces provide a first line of defense against subsequent infection, and defining the factors that regulate their development is critical to understanding organ-based immunity.
Collapse
Affiliation(s)
- Brian S Sheridan
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| | | |
Collapse
|
25
|
Abstract
The mucosal immune system is constantly exposed to a wide range of commensal and potentially pathogenic microbial species. Chronic exposure to foreign organisms makes generation of an appropriate immune response critical in maintaining a balance between elimination of harmful pathogens, peaceful coexistence with commensals, and prevention of autoimmunity. Intestinal intraepithelial lymphocytes provide a first line of defense at this extensive barrier with the outside world, and as such, understanding their role in immunity is critical.
Collapse
Affiliation(s)
- Brian S. Sheridan
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Leo Lefrançois
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
26
|
Quantitative isolation of mouse and human intestinal intraepithelial lymphocytes by elutriation centrifugation. J Immunol Methods 2009; 344:26-34. [PMID: 19278662 DOI: 10.1016/j.jim.2009.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/21/2022]
Abstract
Intestinal intraepithelial lymphocytes (IEL) are specialized subsets of T cells with distinct functional capacities. While some IEL subsets are circulating, others such as CD8alphaalpha TCRalphabeta IEL are believed to represent non-circulating resident T cell subsets [Sim, G.K., Intraepithelial lymphocytes and the immune system. Adv. Immunol., 1995. 58: 297-343.]. Current methods to obtain enriched preparations of intraepithelial lymphocytes are mostly based on Percoll density gradient or magnetic bead-based technologies [Lundqvist, C., et al., Isolation of functionally active intraepithelial lymphocytes and enterocytes from human small and large intestine. J. Immunol. Methods, 1992. 152(2): 253-263.]. However, these techniques are hampered by a generally low yield of isolated cells, and potential artifacts due to the interference of the isolation procedure with subsequent functional assays, in particular, when antibodies against cell surface markers are required. Here we describe a new method for obtaining relatively pure populations of intestinal IEL (55-75%) at a high yield (>85%) by elutriation centrifugation. This technique is equally suited for the isolation and enrichment of intraepithelial lymphocytes of both mouse and human origin. Time requirements for fractionating cell suspensions by elutriation centrifugation are comparable to Percoll-, or MACS-based isolation procedures. Hence, the substantially higher yield and the consistent robust enrichment for intraepithelial lymphocytes, together with the gentle treatment of the cells during elutriation that does not interfere with subsequent functional assays, are important aspects that are in favor of using this elegant technology to obtain unmanipulated, unbiased populations of intestinal intraepithelial lymphocytes, and, if desired, also of pure epithelial cells.
Collapse
|
27
|
Hirosako S, Goto E, Fujii K, Tsumori K, Hirata N, Tsumura S, Kamohara H, Kohrogi H. Human bronchial intraepithelial T cells produce interferon-gamma and stimulate epithelial cells. Clin Exp Immunol 2008; 155:266-74. [PMID: 19040600 DOI: 10.1111/j.1365-2249.2008.03811.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intraepithelial lymphocytes (IELs) can be identified among epithelial cells in systemic mucosal tissues. Although intestinal IELs play a crucial role in mucosal immunity, their bronchial counterparts have not been well studied. The purpose of this study was to determine the immunological functions of human bronchial IELs, which interact directly with epithelial cells, unlike lamina propria lymphocytes (LPLs). We isolated successfully bronchial IELs and LPLs using a magnetic cell separation system from the T cell suspensions extracted from bronchial specimens far from the tumours of resected lungs. Human bronchial IELs showed an apparent type 1 cytokine profile and proliferated more actively in response to CD2 signalling than did bronchial LPLs. CD8(+) IELs were identified as the most significant sources of interferon (IFN)-gamma. Human bronchial epithelial cells constitutively produced the T cell growth factors interleukin (IL)-7 and IL-15, and levels of those factors increased when cells were stimulated by IFN-gamma. Bronchial epithelial cells expressed cell surface proteins CD58 and E-cadherin, possibly enabling adhesion to IELs. In summary, human bronchial IELs have immunological functions distinct from bronchial LPLs and may interact with epithelial cells to maintain mucosal homeostasis.
Collapse
Affiliation(s)
- S Hirosako
- Department of Respiratory Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University Hospital, Honjo, Kumamota, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Randall KJ, Pearse G. A Dual-label Technique for the Immunohistochemical Demonstration of T-Lymphocyte Subsets in Formalin-fixed, Paraffin-Embedded Rat Lymphoid Tissue. Toxicol Pathol 2008; 36:795-804. [DOI: 10.1177/0192623308322311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunotoxicology has developed into an integral regulatory requirement of the toxicological assessment of xenobiotics. Histopathological assessment of lymphoid tissues can provide genuine insight into perturbations of lymphoid cell populations. To facilitate retrospective examination of lymphoid organs should concerns over immunotoxicity be raised, we have endeavored to develop a panel of immunohistochemical techniques to demonstrate T-cells and T-cell subsets in formalin-fixed, paraffin-embedded rat lymphoid tissues. We were successful in developing methods for CD3 and CD8 but failed to arrive at a satisfactory technique for the direct demonstration of CD4 in these tissues. Taking the assumption that the majority of mature T-cells are either CD4+ orCD8+, we have combined our methods for CD3 and CD8 in a novel dual-labeling IHC method to simultaneously demonstrate CD3, CD8, and, by implication, CD4 in rat spleen, thymus, lymph node, and Peyer’s patch.
Collapse
Affiliation(s)
- Kevin J. Randall
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Gail Pearse
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| |
Collapse
|
29
|
Lefrançois L, Lycke N. Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer's patch, and lamina propria cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 3:Unit 3.19. [PMID: 18432783 DOI: 10.1002/0471142735.im0319s17] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestinal mucosal immune system is composed of three major lymphoid areas: the lamina propria (LP), which lies just underneath the basement membrane in the intestinal villi; (2) the intraepithelial compartment, which contains the intraepithelial lymphocytes (IEL) and is located just above the basement membrane, between the columnar epithelial cells; and (3) Peyer's patches (PP), lymphoid nodules (akin to lymph nodes) embedded in the gut wall, separated from the LP and IEL. The LP, PP, and IEL lymphoid populations form a complex, interconnected network that responds to immunological insults in the intestine. Therefore, these lymphocyte populations should be analyzed when studying the immunological status of the intestine, for example in oral immunization or in intestinal disease (including infectious disease and tumors). This unit details techniques for isolation of IEL, PP cells, and LP cells from the small intestine of the mouse.
Collapse
Affiliation(s)
- L Lefrançois
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
30
|
Zhou R, Wei H, Sun R, Tian Z. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:4548-56. [PMID: 17372013 DOI: 10.4049/jimmunol.178.7.4548] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of TLRs on intestinal epithelial cells (IECs) is controversial, and the mechanisms by which TLRs influence mucosal homeostasis are obscure. In this study, we report that genomic dsRNA from rotavirus, and its synthetic analog polyinosinic-polycytidylic acid (poly(I:C)), induce severe mucosal injury in the small intestine. Upon engaging TLR3 on IECs, dsRNA triggers IECs to secrete IL-15, which functions to increase the percentage of CD3+NK1.1+ intestinal intraepithelial lymphocytes (IELs) and enhances the cytotoxicity of IELs. Moreover, The CD3+NK1.1+ IELs are proved as CD8alphaalpha+ IELs. These results provide direct evidence that abnormal TLR3 signaling contributes to breaking down mucosal homeostasis and the first evidence of pathogenic effects mediated by CD8alphaalpha+ IELs. The data also suggest that genomic dsRNA may be involved in the pathogenesis of acute rotavirus gastroenteritis.
Collapse
Affiliation(s)
- Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 443 Huang-shan Road, Hefei, China
| | | | | | | |
Collapse
|
31
|
Probert CSJ, Saubermann LJ, Balk S, Blumberg RS. Repertoire of the alpha beta T-cell receptor in the intestine. Immunol Rev 2007; 215:215-25. [PMID: 17291291 DOI: 10.1111/j.1600-065x.2006.00480.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The majority of T cells in the human and mouse intestine express the T-cell receptor (TCR) as an alphabeta heterodimer on their cell surface. As the major recognition element of antigens in the context of major histocompatibility complex-derived proteins, an examination of the structure of the alpha beta TCR in intestines has provided significant insights into the potential function of these cells and the major determinants that drive their selection. Studies in the human intestine have shown that the repertoires of intraepithelial lymphocytes (IELs), and likely lamina propria lymphocytes, are polyclonal before and shortly after birth, with the repertoire becoming oligoclonal in adults. Similarly, in adult mice the repertoire is oligoclonal, while in the newborn it is polyclonal. Investigations in mice have shown that some T cells may evade thymic selection. The population size and oligoclonality of IELs is influenced by the microbial content of the luminal microenvironment. This microenvironment probably directly determines the TCR repertoire. Studies in human inflammatory bowel disease (IBD) indicate that inflammation further skews the TCR repertoire. We speculate that dominant antigens associated with the pathogenesis of IBD are responsible for such skewing and that identifying the antigenic drivers may shed light on the environmental factors that trigger or potentiate human IBD.
Collapse
MESH Headings
- Animals
- Epithelial Cells/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Immunity, Mucosal
- Inflammatory Bowel Diseases/immunology
- Intestinal Mucosa/immunology
- Phenotype
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Christopher S J Probert
- Bristol Royal Infirmary, Clinical Science at South Bristol, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
32
|
Ishikawa H, Naito T, Iwanaga T, Takahashi-Iwanaga H, Suematsu M, Hibi T, Nanno M. Curriculum vitae of intestinal intraepithelial T cells: their developmental and behavioral characteristics. Immunol Rev 2007; 215:154-65. [PMID: 17291286 DOI: 10.1111/j.1600-065x.2006.00473.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alimentary tract has an epithelial layer, consisting mainly of intestinal epithelial cells (IECs), that is exposed to the exterior world through the intestinal lumen. The IEC layer contains many intestinal intraepithelial T cells (IELs), and the total number of IELs constitutes the largest population in the peripheral T-cell pool. Virtually all gammadelta-IELs and many alphabeta-IELs in the mouse small intestine are known to express CD8 alpha alpha homodimers. A wide range of evidence that supports extrathymic development of these CD8 alpha alpha(+) IELs has been collected. In addition, while several studies identified cells with precursor T-cell phenotypes within the gut epithelium, how these precursors, which are dispersed along the length of the intestine, develop into gammadelta-IELs and/or alphabeta-IELs has not been clarified. The identification of lymphoid cell aggregations named 'cryptopatches' (CPs) in the intestinal crypt lamina propria of mice as sites rich in T-cell precursors in 1996 by our research group, however, provided evidence for a central site, whereby precursor IELs could give rise to T-cell receptor-bearing IELs. In this review, we discuss the development of IELs in the intestinal mucosa and examine the possibility that CPs serve as a production site of extrathymic IELs.
Collapse
Affiliation(s)
- Hiromichi Ishikawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Intraepithelial lymphocytes (IELs) contain several subsets, but the origin of the T-cell receptor (TCR)alphabeta(+) CD8 alpha alpha(+) IELs has been particularly controversial. Here we provide a synthesis, based on recent work, that attempts to unify the divergent views. The intestine has a primordial function in lymphopoiesis, and precursors with the potential to differentiate into T cells are found both in the epithelium and underlying lamina propria. Moreover, the thymus has been reported to export cells to the intestine that are not fully differentiated. TCR alpha beta(+) CD8 alpha alpha(+) IELs can differentiate in the intestine from each of these sources, but in normal euthymic mice, the thymus appears to be the major source for TCR alpha beta(+) CD8 alpha alpha(+) IELs. This unique IEL subset is a self-reactive population that requires exposure to self-agonists for selection in the thymus, similar to other regulatory T-cell populations. IELs transition through a double-positive (DP) intermediate in the thymus, but they originate from a subset of the DP cells that can be identified by its expression of CD8 alpha alpha homodimers. The agonist-selected cells in the thymus are TCRbeta(+) but CD4 and CD8 double negative. The evidence suggests that reacquired expression of CD8 alpha alpha and downregulation of CD5 occur after thymus export, perhaps in the intestine under the influence of interleukin-15. As a result of agonist exposure, a new gene expression program is activated. Therefore, the increased understanding of the developmental origin of TCR alpha beta(+) CD8 alpha alpha(+) IELs may help us to understand how they participate in immune regulation and protection in the intestine.
Collapse
Affiliation(s)
- Florence Lambolez
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Ménager-Marcq I, Pomié C, Romagnoli P, van Meerwijk JP. CD8+CD28- regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice. Gastroenterology 2006; 131:1775-85. [PMID: 17087950 PMCID: PMC1950262 DOI: 10.1053/j.gastro.2006.09.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 08/31/2006] [Indexed: 01/23/2023]
Abstract
BACKGROUND & AIMS Immune responses to innocuous intestinal antigens appear tightly controlled by regulatory T lymphocytes. While CD4+ T lymphocytes have recently attracted the most attention, CD8+ regulatory T-cell populations are also believed to play an important role in control of mucosal immunity. However, CD8+ regulatory T-cell function has mainly been studied in vitro and no direct in vivo evidence exists that they can control mucosal immune responses. We investigated the capacity of CD8+CD28- T cells to prevent experimental inflammatory bowel disease (IBD) in mice. METHODS CD8+CD28- regulatory T cells were isolated from unmanipulated mice and tested for their capacity to inhibit T-cell activation in allogeneic mixed lymphocyte cultures in vitro and to prevent IBD induced by injection of CD4+CD45RB(high) cells into syngeneic immunodeficient RAG-2 mutant mice. RESULTS CD8+CD28- T lymphocytes inhibited proliferation and interferon gamma production by CD4+ responder T cells in vitro. CD8+CD28- regulatory T cells freshly isolated from spleen or gut efficiently prevented IBD induced by transfer of colitogenic T cells into immunodeficient hosts. Regulatory CD8+CD28- T cells incapable of producing interleukin-10 did not prevent colitis. Moreover, IBD induced with colitogenic T cells incapable of responding to transforming growth factor beta could not be prevented with CD8+CD28- regulatory T cells. CD8+CD28+ T cells did not inhibit in vitro or in vivo immune responses. CONCLUSIONS Our findings show that naturally occurring CD8+CD28- regulatory T lymphocytes can prevent experimental IBD in mice and suggest that these cells may play an important role in control of mucosal immunity.
Collapse
Affiliation(s)
- Ingrid Ménager-Marcq
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563 IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan Place du Docteur Baylac
31024 Toulouse,FR
| | - Céline Pomié
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563 IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan Place du Docteur Baylac
31024 Toulouse,FR
| | - Paola Romagnoli
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563 IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan Place du Docteur Baylac
31024 Toulouse,FR
| | - Joost P.M. van Meerwijk
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563 IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan Place du Docteur Baylac
31024 Toulouse,FR
- Institut universitaire de France
103, bd Saint-Michel
75005 Paris,FR
- Faculté des sciences
Université Paul Sabatier - Toulouse IIIFR
| |
Collapse
|
35
|
McCarthy DD, Chiu S, Gao Y, Summers-deLuca LE, Gommerman JL. BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol 2006; 241:85-94. [PMID: 16987502 DOI: 10.1016/j.cellimm.2006.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/01/2006] [Accepted: 08/03/2006] [Indexed: 11/21/2022]
Abstract
BAFF is a peripheral B cell survival factor and can mediate antibody (Ab) class switching. Over-expression of BAFF in mice results in B cell hyperplasia, elevated serum immunoglobulin (Ig), spontaneous germinal centre (GC) reactions and mild glomerulonephritis (GN). Here we show that, in addition to driving excessive levels of serum IgA, BAFF over-expression results in increased IgA levels within the intestinal lamina propria (LP) and deposition of IgA immune complexes in the renal glomerular mesangium. LIGHT has been previously shown to mediate a similar phenotype via signaling through the lymphotoxin-beta receptor (LTbetaR). We evaluated if LIGHT and BAFF cooperate in the etiology of a hyper-IgA syndrome in BAFF-overexpressing transgenic (BAFF-Tg) mice. We find that LIGHT-deficient BAFF-Tg mice exhibit similar levels of IgA in the serum, gut and kidney and develop nephritis to the same degree as LIGHT-sufficient BAFF-Tg mice. Therefore, in the context of BAFF over-expression, LIGHT is dispensable for the generation of a hyper-IgA syndrome accompanied by nephritis.
Collapse
Affiliation(s)
- Douglas D McCarthy
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | | | | | | | |
Collapse
|
36
|
Bernard D, Six A, Rigottier-Gois L, Messiaen S, Chilmonczyk S, Quillet E, Boudinot P, Benmansour A. Phenotypic and Functional Similarity of Gut Intraepithelial and Systemic T Cells in a Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2006; 176:3942-9. [PMID: 16547228 DOI: 10.4049/jimmunol.176.7.3942] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gut-associated lymphocytes were described in fish, but their involvement in immune responses is still unknown. In rainbow trout, intraepithelial lymphocytes (IELs) are scattered between gut epithelial cells, but neither Peyer's patches nor mesenteric lymph nodes were identified. Rainbow trout IELs contain mainly T cells, because they expressed transcripts of T cell marker homologs of CD8, CD4, CD28, CD3epsilon, TCRzeta, TCRgamma, and TCRbeta and lacked IgM. However, trout IELs did not show specific homing to the gut mucosa, which in mammals defines IELs as a distinctive mucosal population. A detailed analysis of the TCRbeta repertoire of rainbow trout IELs was performed in both naive and virus-infected animals. TCRbeta transcripts of rainbow trout IELs were highly diverse and polyclonal in adult naive individuals, in sharp contrast with the restricted diversity of IEL oligoclonal repertoires described in birds and mammals. Significant modifications of the trout IEL TCRbeta repertoire were observed after a systemic infection with a fish rhabdovirus and were especially marked for Vbeta4-bearing receptors as previously reported for spleen cells. Thus, we could not find any specific properties of the trout IEL TCRbeta repertoire compared with the spleen and pronephros TCRbeta repertoire, which questions the reality of a distinct IEL compartment in teleosts. Our findings suggest that a highly diversified alphabeta TauCR repertoire is maintained in fish IELs in the absence of Peyer's patches and mesenteric lymph nodes, whereas the restricted diversity of mouse alphabeta IELs is attributed to multiple cycles of activation and recirculation, allowing a progressive narrowing of the repertoire.
Collapse
Affiliation(s)
- David Bernard
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Miura N, Yamamoto M, Fukutake M, Ohtake N, Iizuka S, Ishige A, Sasaki H, Fukuda K, Yamamoto T, Hayakawa S. Anti-CD3 induces bi-phasic apoptosis in murine intestinal epithelial cells: possible involvement of the Fas/Fas ligand system in different T cell compartments. Int Immunol 2005; 17:513-22. [PMID: 15778290 DOI: 10.1093/intimm/dxh231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies have suggested that Fas-mediated apoptosis is involved in the pathogenesis of intestinal injury. In this study, we determined the role of Fas/Fas ligand (FasL) interactions in different T cell compartments using a murine model of small intestinal injury. An intraperitoneal injection of 145-2C11 (anti-CD3) antibody into C3H/HeN, BALB/c and MRL mice induced mucosal flattening and rapid, bi-phasic intestinal epithelial cell (IEC) apoptosis, which was detected by conventional light and electron microscopy and by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. In the first, early phase, villous apoptosis was observed up to 4 h after injection, and in the second, later phase, apoptotic crypt cells gradually accumulated for up to 24 h. The early and later phases of apoptosis were reduced in lpr/lpr and nude mice compared with those in control strains. In addition, the kinetics of Fas-mediated killer activity induced by the antibody injection were different between intestinal intraepithelial lymphocytes (IEL) and splenocytes (SPL) and seemed to correlate with the bi-phasic occurrence of the apoptosis. Finally, the transfer of intestinal IEL from euthymic to nude mice induced both phases of apoptosis, whereas SPL induced the second phase's crypt apoptosis only by the antibody injection. Together, these results suggest the involvement of Fas-mediated killer activity of thymus-derived T cells in different compartments. Namely, T cell populations in different compartments are differentially involved in the induction of IEC apoptosis and contribute to the complex pathogenesis of immune-mediated intestinal injury in which Fas/FasL interactions may play a critical role.
Collapse
Affiliation(s)
- Naoko Miura
- Tsumura Research Institute, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Poussier P, Ning T, Murphy T, Dabrowski D, Ramanathan S. Impaired Post-Thymic Development of Regulatory CD4+25+ T Cells Contributes to Diabetes Pathogenesis in BB Rats. THE JOURNAL OF IMMUNOLOGY 2005; 174:4081-9. [DOI: 10.4049/jimmunol.174.7.4081] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Hoffman-Goetz L, Quadrilatero J, Boudreau J, Guan J. Adrenalectomy in mice does not prevent loss of intestinal lymphocytes after exercise. J Appl Physiol (1985) 2005; 96:2073-81. [PMID: 15133013 DOI: 10.1152/japplphysiol.01262.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exhaustive exercise is associated with an increase in circulating glucocorticoids (GCs), lymphocyte apoptosis, and a reduction in intestinal lymphocyte number. The present study examined the role of GCs on the numerical changes seen in intestinal lymphocytes after exercise. Female C57BL/6 mice were bilaterally adrenalectomized (ADX; n = 18) or given sham surgery (Sham; n = 18) and assigned to one of three exercise conditions: treadmill running (28 m/min, 90 min, 2 degrees slope) and killed immediately or after 24 h recovery, or not exercised and killed immediately after 90-min exposure to the treadmill environment. Lymphocytes were isolated from the intestines with CD45(+) cells collected by positive selection using magnetic bead separation columns, and lymphocyte subpopulations were analyzed by flow cytometry for CD45(+), CD3alphabeta(+), CD3gammadelta(+), CD8beta(+), CD8alpha(+), CD4(+), and NK(+) phenotypic markers. ADX mice had significantly more intestinal CD45(+) leukocytes (P < 0.05) and CD3alphabeta(+) (P < 0.05), CD3gammadelta(+) (P < 0.01), CD8alpha(+) (P < 0.001), and NK(+) (P < 0.05) intestinal lymphocytes than Sham mice. There was a significant effect of exercise condition on total intestinal CD45(+) leukocytes (P < 0.01) and CD3alphabeta(+) (P < 0.05), CD8alpha(+) (P < 0.001), and CD4(+) (P < 0.05) intestinal lymphocytes, with fewer cells at 24 h postexercise compared with the other treatment conditions. There were no surgical x exercise interaction effects on the CD3 and CD8 phenotype numbers. Plasma corticosterone was virtually nil in ADX mice regardless of exercise condition but was significantly elevated in Sham mice immediately postexercise (P < 0.001). The data indicate that ADX does not prevent the loss of lymphocytes from the intestinal mucosa 24 h after strenuous exercise and GCs are not directly causal in the leukopenia of exercise.
Collapse
Affiliation(s)
- L Hoffman-Goetz
- Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
40
|
Development and Function of Organized Gut-Associated Lymphoid Tissues. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Williams AM, Bland PW, Phillips AC, Turner S, Brooklyn T, Shaya G, Spicer RD, Probert CSJ. Intestinal αβ T Cells Differentiate and Rearrange Antigen Receptor Genes In Situ in the Human Infant. THE JOURNAL OF IMMUNOLOGY 2004; 173:7190-9. [PMID: 15585840 DOI: 10.4049/jimmunol.173.12.7190] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intestinal Ag exposure during neonatal life influences appropriate adult immune responses. To define the mechanisms shaping the T cell repertoire during this period, we examined T cell differentiation and receptor diversity in the intestine of human infants. Developmental phenotypes of intraepithelial and lamina propria intestinal T cells from infants aged 1 day to 2 years were assessed ex vivo by flow cytometry and in situ by triple-fluorescent immunohistochemistry. Gene recombination-specific enzymes were assessed by PCR. TCR beta-chain V region gene diversity was determined by sequencing. Several different early lineage T cell populations were present neonatally: CD3(+)4(-)8(-) T cells were present at birth and numbers decreased during the neonatal period; CD3(+)4(+)8(+) T cells were present in low numbers throughout infancy; and CD3(+)4(+)8(-) or CD3(+)4(-)8(+) T cells increased with age. Very early lineage T cells, CD3(-)2(-)7(+) and CD3(-)2(+)7(+), were present neonatally, but were essentially absent at 1 year. Most lamina propria T cells differentiated rapidly after birth, but maturation of intraepithelial T cells took place over 1 year. Intestinal samples from infants less than 6 mo old contained transcripts of T early alpha and TdT, and 15 of 19 infant samples contained mRNA for RAG-1, some coexpressing RAG-2. TCR beta-chain repertoires were polyclonal in infants. Immature T cells, pre-T cells, and genes involved in T cell recombination were found in the intestine during infancy. T cell differentiation occurs within the neonatal human intestine, and the TCR repertoire of these developing immature T cells is likely to be influenced by luminal Ags. Thus, mucosal T cell responsiveness to environmental Ag is shaped in situ during early life.
Collapse
MESH Headings
- Adolescent
- Aging/genetics
- Aging/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Child, Preschool
- Clone Cells
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Immunophenotyping
- Infant
- Infant, Newborn
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestine, Large/cytology
- Intestine, Large/immunology
- Intestine, Large/metabolism
- Intestine, Small/cytology
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Lymphocyte Count
- Organ Specificity/genetics
- Organ Specificity/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombination, Genetic
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Amanda M Williams
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The mucosa-associated lymphoid tissue (MALT) has the task of protecting the host from pathogens while maintaining the integrity of the gut. Immune responses are tightly regulated such that there is tolerance of nonpathogenic bacteria as well as dietary antigens present in the intestinal lumen. The failure to control these responses leads to a disruption in tolerance, which has been proposed as one mechanism involved in the development of inflammatory bowel disease (IBD). Different mechanisms are involved in the control of immune responses in the intestinal tract, including active suppression by regulatory T cells. Distinct subsets of regulatory T cells coexist in the intestinal mucosa, which is a fertile environment for their growth. Most of these are defined by their phenotype and/or their ability to produce regulatory cytokines such as interleukin-10 and transforming growth factor-beta A lack of activation and/or expansion of regulatory cells could play a role in the uncontrolled inflammation seen in IBD. Regulatory T cells may be activated by cytokines, and their inductive phase may be antigen-driven. There are limited data relating to the true surface interactions regulating the activation of these cells. Most of the CD4 regulatory T cells (Tr1, Th3, and CD4 CD25+) are thought to interact with dendritic cells. Subsets of regulatory T cells (such as CD8 TrE cells) may recognize antigens presented by intestinal epithelial cells. A better understanding of the mechanisms by which these regulatory T cells are expanded and/or activated in the intestinal mucosa may provide clues as how to use them as a novel therapeutic tool in the treatment of patients with IBD.
Collapse
Affiliation(s)
- Matthieu Allez
- Service de Gastroentérologic and INSERM U396, Hôpital Saint-Louis, Paris, France.
| | | |
Collapse
|
43
|
Abstract
The gastrointestinal tract is the central organ for uptake of fluids and nutrients, and at the same time it forms the main protective barrier between the sterile environment of the body and the outside world. In mammals, the intestine has further evolved to harbor a vast load of commensal bacteria that have important functions for the host. Discrimination by the host defense system of nonself from self can prevent invasion of pathogens, but equivalent responses to dietary or colonizing bacteria can lead to devastating consequences for the organism. This dilemma imposed by the gut environment has probably contributed significantly to the evolutionary drive that has led to sophisticated mechanisms and diversification of the immune system to allow for protection while maintaining the integrity of the mucosal barrier. The immense expansion and specialization of the immune system is particularly mirrored in the phylogeny, ontogeny, organization, and regulation of the adaptive intraepithelial lymphocytes, or IEL, which are key players in the unique intestinal defense mechanisms that have evolved in mammals.
Collapse
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
44
|
Saurer L, Seibold I, Rihs S, Vallan C, Dumrese T, Mueller C. Virus-Induced Activation of Self-Specific TCRαβ CD8αα Intraepithelial Lymphocytes Does Not Abolish Their Self-Tolerance in the Intestine. THE JOURNAL OF IMMUNOLOGY 2004; 172:4176-83. [PMID: 15034030 DOI: 10.4049/jimmunol.172.7.4176] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
TCRalphabeta CD8alphaalpha intestinal intraepithelial lymphocytes (IEL) represent an enigmatic subset of T cells, particularly, in regard to their potential functions and the apparent persistence of cells expressing self-specific TCR. We have used mice that are transgenic for the TCRalphabeta specific for the lymphocytic choriomeningitis virus (LCMV)-derived peptide gp33, and TCRalphabeta-transgenic mice that coexpress the gp33 Ag ubiquitously, to analyze the functional properties of TCRalphabeta CD8alphaalpha IEL in the presence, or absence, of their specific MHC-restricted Ag, and to assess the impact of molecular mimicry during a potent LCMV infection on potentially self-reactive TCRalphabeta CD8alphaalpha IEL. In this study, we show that the presence of the specific self-Ag results in reduced expression of IL-2, IFN-gamma, and IL-10 by resident TCRalphabeta CD8alphaalpha IEL while expression of mRNA for TGFbeta is not affected. We further demonstrate that despite their secluded location in the epithelium, TCRalphabeta CD8alphaalpha IEL are activated after infection of the intestinal mucosa with LCMV. Importantly, LCMV-induced activation of self-specific TCRalphabeta CD8alphaalpha IEL does not reverse their tolerance as no cytotoxic activity or up-regulated expression of proinflammatory cytokines is detected and no overt signs of autoimmunity are seen. Taken together, these results are in support of an immunoregulatory role for self-specific TCRalphabeta CD8alphaalpha in the intestinal mucosa and clearly speak against an involvement of this cell subset in inflammatory reactions and tissue destruction.
Collapse
Affiliation(s)
- Leslie Saurer
- Institute of Pathology, Division of Immunopathology, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
This article outlines the lymphoid structures and cell types important in the intestinal immune response. Particular attention is paid to differences between rodents and man where there appears to be fundamental differences in the sources of the T and B cells which populate the mucosa. The majority of the data still suggest that Peyer's patches are the inductive site of mucosal immunity and the mucosa (lamina propria and epithelium) is the effector site, but there is growing realization that mucosal immune responses can occur in the absence of Peyer's patches and that antigen sampling may also occur in the lamina propria.
Collapse
Affiliation(s)
- Thomas T MacDonald
- Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton, UK.
| |
Collapse
|
46
|
Abstract
We develop a mathematical formula that provides the number of cells in an isolated population that have divided k times in n days (O< or =k< or =n). This differential cell division formula is applied to the kinetics of peripheral T cells in the diabetes-prone BB rat following thymectomy. These rats received daily intraperitoneal injections of the DNA precursor, bromodeoxyuridine (BrdUrd), over a period of 12-13 days. As the cells divided, they incorporated BrdUrd progressively into their DNA molecules, and the differential formula provides a close prediction of the fraction of BrdUrd-positive T cells present each day during this 'pulse' phase. No further BrdUrd was administered after 13 days, and the diminishing fraction of BrdUrd-positive cells was recorded for several more weeks. The differential cell division formula was capable of describing the rather complex form of the retention curve as BrdUrd-tagged DNA molecules passed to progeny cells during this 'chase' phase. We believe that this simple formula may be found generally useful in describing cell kinetic data in mitotically active cells.
Collapse
Affiliation(s)
- K H Norwich
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
47
|
Ghaleb M, Hamad M, Abu-Elteen KH. Vaginal T lymphocyte population kinetics during experimental vaginal candidosis: evidence for a possible role of CD8+ T cells in protection against vaginal candidosis. Clin Exp Immunol 2003; 131:26-33. [PMID: 12519382 PMCID: PMC1808609 DOI: 10.1046/j.1365-2249.2003.02032.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaginal candidosis represents a significant health problem to women of childbearing age worldwide. It has been postulated that localized T cells play a role in protection against vaginal candidosis. In an attempt to evaluate the role of vaginal T cells in protection against vaginal candidosis, T cell population kinetics was evaluated using an oestrogen-dependent vaginal candidosis murine model. Vaginal T lymphocytes were isolated at different time points post C. albicans inoculation, viable cells were enumerated, phenotypically analysed for the expression of CD3, CD4 and CD8 T cell markers and absolute numbers of T cell subsets were calculated. Oestrogen-induced persistence of vaginal candidosis resulted in a significant increase in the total number of vaginal lymphocytes within 24-48 h post infection; increased vaginal lymphocyte numbers persisted throughout the infection period. The number of CD3+ T cells dramatically increased following C. albicans administration and was maintained at high levels throughout the infection period. The majority of CD3+ T cells were of the CD8+ type; however, considerable numbers of both CD4+ T cells and CD4+CD8+ T cells were also observed throughout the infection period. The considerable and persistent increase in vaginal T cell numbers in general and that of CD8+ T cells in particular are evidence of the possible role played by localized T cells in protection against vaginal candidosis.
Collapse
Affiliation(s)
- M Ghaleb
- Department of Biological Sciences, Hashemite University, Jordan
| | | | | |
Collapse
|
48
|
Marsal J, Svensson M, Ericsson A, Iranpour AH, Carramolino L, Márquez G, Agace WW. Involvement of CCL25 (TECK) in the generation of the murine small-intestinal CD8alpha alpha+CD3+ intraepithelial lymphocyte compartment. Eur J Immunol 2002; 32:3488-97. [PMID: 12442331 DOI: 10.1002/1521-4141(200212)32:12<3488::aid-immu3488>3.0.co;2-e] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The CC chemokine CCL25 (TECK) is selectively expressed in the thymus and small intestine, indicating a potential role in T lymphocyte development. In the present study we examined the role of CCL25 in the generation of the small-intestinal CD8alpha alpha(+)CD3(+) intraepithelial lymphocyte (IEL) compartment. CCL25 mRNA expression in the murine small intestine increased at three weeks of age and corresponded with the appearance of CD8alpha alpha(+)CD3(+) lymphocytes in the small-intestinal epithelium. Administration of monoclonal neutralizing anti-CCL25 antibody to two-week-old mice led to a approximately 50% reduction in the total number of CD8alpha alpha(+)TCRgamma delta(+) and CD8alpha alpha(+)TCRalpha beta(+) IEL at four weeks of age. Freshly isolated murine CD8alpha alpha(+)CD3(+) IEL migrated in response to CCL25 and expressed the CCL25 receptor, CCR9. Analysis of CCR9 expression on putative IEL precursor populations demonstrated the presence of both CCR9(-) and CCR9(+) cells and indicated that up-regulation of this receptor occurred during IEL precursor differentiation. Finally, data from wild-type and RAG(-/-) mice suggested that the reduction in CD8alpha alpha(+)CD3(+) IEL in anti-CCL25 antibody treated mice resulted primarily from defective maintenance and/or development of IEL precursors rather than a direct effect on mature CD8alpha alpha(+)CD3(+) IEL.
Collapse
MESH Headings
- Animals
- CD3 Complex/metabolism
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Survival
- Chemokines, CC/antagonists & inhibitors
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Chemotaxis, Leukocyte
- Epithelial Cells/cytology
- Epithelial Cells/immunology
- Genes, RAG-1
- Intestine, Small/cytology
- Intestine, Small/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Jan Marsal
- Immunology Section, Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
49
|
Hart AL, Stagg AJ, Frame M, Graffner H, Glise H, Falk P, Kamm MA. The role of the gut flora in health and disease, and its modification as therapy. Aliment Pharmacol Ther 2002; 16:1383-93. [PMID: 12182739 DOI: 10.1046/j.1365-2036.2002.01310.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gut flora is a vast interior ecosystem whose nature is only beginning to be unravelled, due to the emergence of sophisticated molecular tools. Techniques such as 16S ribosomal RNA analysis, polymerase chain reaction amplification and the use of DNA microarrays now facilitate rapid identification and characterization of species resistant to conventional culture and possibly unknown species. Life-long cross-talk between the host and the gut flora determines whether health is maintained or disease intervenes. An understanding of these bacteria-bacteria and bacteria-host immune and epithelial cell interactions is likely to lead to a greater insight into disease pathogenesis. Studies of single organism-epithelial interactions have revealed the large range of metabolic processes that gut bacteria may influence. In inflammatory bowel diseases, bacteria drive the inflammatory process, and genetic predisposition to disease identified to date, such as the recently described NOD2/CARD15 gene variants, may relate to altered bacterial recognition. Extra-intestinal disorders, such as atopy and arthritis, may also have an altered gut milieu as their basis. Clinical evidence is emerging that the modification of this internal environment, using either antibiotics or probiotic bacteria, is beneficial in preventing and treating disease. This natural and apparently safe approach holds great appeal.
Collapse
Affiliation(s)
- A L Hart
- St. Mark's Hospital, Harrow, Middlesex, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Pang M, Setoyama Y, Tsuzaka K, Yoshimoto K, Amano K, Abe T, Takeuchi T. Defective expression and tyrosine phosphorylation of the T cell receptor zeta chain in peripheral blood T cells from systemic lupus erythematosus patients. Clin Exp Immunol 2002; 129:160-8. [PMID: 12100036 PMCID: PMC1906428 DOI: 10.1046/j.1365-2249.2002.01833.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have reported that tyrosine phosphorylation and expression of the T cell receptor zeta chain (TCR zeta) was decreased in two systemic lupus erythematosus (SLE) patients with an abnormal TCR zeta lacking exon-7. To examine further the TCR zeta defect and any possible relationship with specific clinical features, we studied the expression of TCR zeta in peripheral blood T cells from 44 patients with SLE, 53 with other rheumatic diseases (30 rheumatoid arthritis (RA), 11 systemic sclerosis (SSc) and 12 primary Sjögren's syndrome(SjS)) and 39 healthy individuals. Flow cytometric analysis demonstrated a significant decrease in the expression of TCR zeta in SLE (P < 0.001), but not in the other rheumatic diseases. Immunoprecipitation experiments confirmed that the expression of TCR zeta in SLE T cells was decreased dramatically (normal: 111.4 +/- 22.6%, SLE: 51.6 +/- 37.4%, P < 0.0001). The decrease in TCR zeta did not correlate with disease activity, or with the dose of prednisolone (PSL). There were, however, three SLE patients in whom the level of TCR zeta expression normalized after treatment, suggesting that mechanisms responsible for the TCR zeta defect appear to be heterogeneous. These results confirm the defective expression and altered tyrosine phosphorylation of TCR zeta in a large proportion of SLE patients, suggesting that it may play an important role in T cell dysfunction in SLE.
Collapse
MESH Headings
- Adult
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/immunology
- Autoimmune Diseases/blood
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/immunology
- Autoimmunity
- Female
- Gene Expression Regulation
- Humans
- Immunosuppressive Agents/therapeutic use
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Phosphorylation
- Prednisolone/therapeutic use
- Protein Processing, Post-Translational
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Sjogren's Syndrome/blood
- Sjogren's Syndrome/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- M Pang
- Second Department of Internal Medicine, Saitama Medical Center, Saitama Medical School, Kawagoe, Japan
| | | | | | | | | | | | | |
Collapse
|