1
|
Jackson DM, Castanon-Cervantes O. Impaired Responses to In Vitro Lipopolysaccharide-Induced Stimulation After Long-Term, Rotating Shift Work. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:791. [PMID: 40427905 PMCID: PMC12110847 DOI: 10.3390/ijerph22050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Shift work is a common labor practice affecting nearly 30% of the U.S. workforce. Long-term, rotating-shift work is particularly harmful to health. Persistent sleep deprivation in shift workers, among other factors, facilitates the development of a state of subclinical but chronic systemic inflammation with a high incidence and prevalence of infections and inflammation-related pathologies, suggesting an underlying disruption of immune responses. However, despite this state of chronic immune activation, cell-mediated inflammatory responses in rotating-shift workers are poorly understood. Here, we used lipopolysaccharide (LPS) to stimulate peripheral blood mononuclear cells (PBMCs) isolated from rotating-shift workers and healthy day-shift workers and investigate their immune responses. The results showed that PBMCs from rotating-shift workers had a dampened inflammatory response. Specifically, the secretion of LPS-induced TNF-α in culture supernatants was significantly reduced compared to the response found in PBMCs from day-shift workers. However, anti-inflammatory responses, reflected by the secretion of LPS-induced IL-10, were indistinguishable between PBMCs from day-shift and rotating-shift workers. In addition, the correlation between the plasma concentration of lipopolysaccharide-binding protein (LBP, a marker of systemic inflammation) and LPS-induced responses was disrupted only in rotating-shift workers, suggesting that in this group, an impaired mechanism that weakens the relationship between pro- and anti-inflammatory signaling may underlie the hypo-responsiveness of PBMCs. Our results suggest that persistent subclinical systemic inflammation in rotating-shift workers disrupts cell-mediated immunity, increasing the risk of infection and other inflammation-related pathologies in this population.
Collapse
Affiliation(s)
| | - Oscar Castanon-Cervantes
- Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, 720 Westview DR SW, Atlanta, GA 30310, USA
| |
Collapse
|
2
|
Schultz TE, Mathmann CD, Domínguez Cadena LC, Muusse TW, Kim H, Wells JW, Ulett GC, Hamerman JA, Brooks AJ, Kobe B, Sweet MJ, Stacey KJ, Blumenthal A. TLR4 endocytosis and endosomal TLR4 signaling are distinct and independent outcomes of TLR4 activation. EMBO Rep 2025; 26:2740-2766. [PMID: 40204912 PMCID: PMC12116916 DOI: 10.1038/s44319-025-00444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Toll-like receptor 4 (TLR4) signaling at the plasma membrane and in endosomes results in distinct contributions to inflammation and host defence. Current understanding indicates that endocytosis of cell surface-activated TLR4 is required to enable subsequent signaling from endosomes. Contrary to this prevailing model, our data show that endosomal TLR4 signaling is not reliant on cell surface-expressed TLR4 or ligand-induced TLR4 endocytosis. Moreover, previously recognized requirements for the accessory molecule CD14 in TLR4 endocytosis and endosomal signaling are likely attributable to CD14 binding as well as trafficking and transferring lipopolysaccharide (LPS) to TLR4 at different subcellular localizations. TLR4 endocytosis requires the TLR4 intracellular signaling domain, contributions by phospholipase C gamma 2, spleen tyrosine kinase, E1/E2 ubiquitination enzymes, but not canonical TLR signaling adaptors and cascades. Thus, our study identifies independently operating TLR4 signaling modes that control TLR4 endocytosis, pro-inflammatory cell surface-derived, as well as endosomal TLR4 signaling. This revised understanding of how TLR4 functions within cells might be harnessed to selectively amplify or restrict TLR4 activation for the development of adjuvants, vaccines and therapeutics.
Collapse
Affiliation(s)
- Thomas E Schultz
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Carmen D Mathmann
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | | | - Timothy W Muusse
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hyoyoung Kim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - James W Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4215, Australia
| | - Jessica A Hamerman
- Immunology Program, Benaroya Research Institute, Seattle, WA, 98101, USA
| | - Andrew J Brooks
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Antje Blumenthal
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
3
|
Hansell CE, Aneis HA, Kitsios GD, Bain WG, Zhao Y, Suber TL, Evankovich JW, Sharma L, Ramakrishnan SK, Prendergast NT, Hensley MK, Malik S, Petro N, Patel JJ, Nouraie SM, Dela Cruz CS, Zhang Y, McVerry BJ, Shah FA. Glucagon-Like Peptide-1 Is Prognostic of Mortality in Acute Respiratory Failure. Crit Care Explor 2025; 7:e1247. [PMID: 40126931 PMCID: PMC11936568 DOI: 10.1097/cce.0000000000001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVES The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) have therapeutic effects in diabetes mellitus. Prior clinical studies suggest incretins are prognostic of adverse outcomes in critical illness. We investigated whether incretin levels indicate disease severity and clinical outcomes in patients with acute respiratory failure, a common cause of critical illness. DESIGN Retrospective cohort study. SETTING ICUs in UPMC Health Systems hospitals within Western Pennsylvania. PATIENTS Two hundred ninety-seven critically ill adults with acute respiratory failure. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We measured GLP-1 and GIP levels in baseline samples collected at the time of study enrollment. We compared incretin levels across subgroups differing by severity of illness and investigated associations between incretins and markers of systemic host responses and intestinal permeability. In our primary analysis, we tested the association of each incretin level with 90-day mortality by logistic regression in unadjusted analyses and in analyses adjusted for age, Sequential Organ Failure Assessment score, and circulating interleukin-6 levels. GLP-1 levels were higher in nonsurvivors and patients with or at-risk for acute respiratory distress syndrome compared to those intubated for airway protection. GLP-1 levels also positively correlated with systemic immune response biomarkers but not with markers of intestinal permeability. GLP-1 levels positively correlated with mortality in unadjusted (odds ratio, 1.99 [1.55-2.56]; p < 0.01) and adjusted (2.02 [1.23-3.31]; p < 0.01) analyses. GIP levels were not associated with mortality or with host response biomarkers. CONCLUSIONS GLP-1 but not GIP levels were positively associated with systemic inflammation and mortality in critically ill patients with acute respiratory failure. Increased circulating GLP-1 levels may serve as prognostic biomarkers to identify patients who are likely to have worse outcomes.
Collapse
Affiliation(s)
- Cole E. Hansell
- Department of Medicine, UPMC Presbyterian-Shadyside Hospitals, Pittsburgh, PA
| | - Hamam A. Aneis
- Department of Medicine, UPMC McKeesport Hospital, Pittsburgh, PA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| | - Yanwu Zhao
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tomeka L. Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - John W. Evankovich
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Aging Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | | | - Niall T. Prendergast
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Matthew K. Hensley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Shehryar Malik
- Department of Medicine, UPMC Mercy Hospital, Pittsburgh, PA
| | - Nancy Petro
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Jayshil J. Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Charles S. Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Faraaz A. Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| |
Collapse
|
4
|
Brooks K, Nelson CE, Aguilar C, Hoang TN, Ortiz AM, Langner CA, Yee DS, Flynn JK, Vrba S, Laidlaw E, Vannella KM, Grazioli A, Saharia KK, Purcell M, Singireddy S, Wu J, Stankiewicz J, Chertow DS, Sereti I, Paiardini M, Hickman HD, Via LE, Barber DL, Brenchley JM. SARS-CoV-2 infection perturbs the gastrointestinal tract and induces modest microbial translocation across the intestinal barrier. J Virol 2024; 98:e0128824. [PMID: 39264207 PMCID: PMC11495055 DOI: 10.1128/jvi.01288-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
SARS-CoV-2 infects via the respiratory tract, but COVID-19 includes an array of non-respiratory symptoms, among them gastrointestinal (GI) manifestations such as vomiting and diarrhea. Here we investigated the GI pathology of SARS-CoV-2 infections in rhesus macaques and humans. Macaques experienced mild infection with USA-WA1/2020 and shed viral RNA in the respiratory tract and stool, including subgenomic RNA indicative of replication in the GI tract. Intestinal immune cell populations were disturbed, with significantly fewer proliferating (Ki67+) jejunal B cells in SARS-CoV-2-infected macaques than uninfected ones. Modest translocation of bacteria/bacterial antigen was observed across the colonic epithelium, with a corresponding significant increase in plasma soluble CD14 (sCD14) that may be induced by LPS. Human plasma demonstrated significant decreases in interleukin (IL)-6 and sCD14 upon recovery from COVID-19, suggesting resolution of inflammation and response to translocated bacteria. sCD14 significantly positively correlated with zonulin, an indicator of gut barrier integrity, and IL-6. These results demonstrate that GI perturbations such as microbial translocation can occur in even mild SARS-CoV-2 infections and may contribute to the COVID-19 inflammatory state.IMPORTANCEThis study investigates gastrointestinal (GI) barrier disruption in SARS-CoV-2 infections and how it may contribute to disease. We observed bacteria or bacterial products crossing from the colon interior (the lumen) to the lamina propria during SARS-CoV-2 infection in macaques. Bacteria/bacterial products are tolerated in the lumen but may induce immune responses if they translocate to the lamina propria. We also observed a significant increase in soluble CD14, which is associated with an immune response to bacterial products. In addition, we observed that humans recovering from COVID-19 experienced a significant decrease in soluble CD14, as well as the inflammatory marker interleukin (IL)-6. IL-6 and sCD14 correlated significantly across macaque and human samples. These findings suggest that SARS-CoV-2 infection results in GI barrier disruption that permits microbial translocation and a corresponding immune response. These findings could aid in developing interventions to improve COVID-19 patient outcomes.
Collapse
Affiliation(s)
- Kelsie Brooks
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine E. Nelson
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia Aguilar
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy N. Hoang
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Alexandra M. Ortiz
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlotte A. Langner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra S. Yee
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob K. Flynn
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sophia Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin M. Vannella
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Alison Grazioli
- Department of Medicine and Program in Trauma, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kapil K. Saharia
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Madeleine Purcell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shreya Singireddy
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jocelyn Wu
- Department of Radiology and Imagining Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Stankiewicz
- Department of Pulmonary and Critical Care Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Daniel S. Chertow
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura E. Via
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Tuberculosis Imaging Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Formenti P, Gotti M, Palmieri F, Pastori S, Roccaforte V, Menozzi A, Galimberti A, Umbrello M, Sabbatini G, Pezzi A. Presepsin in Critical Illness: Current Knowledge and Future Perspectives. Diagnostics (Basel) 2024; 14:1311. [PMID: 38928726 PMCID: PMC11202475 DOI: 10.3390/diagnostics14121311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The accurate identification of infections is critical for effective treatment in intensive care units (ICUs), yet current diagnostic methods face limitations in sensitivity and specificity, alongside cost and accessibility issues. Consequently, there is a pressing need for a marker that is economically feasible, rapid, and reliable. Presepsin (PSP), also known as soluble CD14 subtype (sCD14-ST), has emerged as a promising biomarker for early sepsis diagnosis. PSP, derived from soluble CD14, reflects the activation of monocytes/macrophages in response to bacterial infections. It has shown potential as a marker of cellular immune response activation against pathogens, with plasma concentrations increasing during bacterial infections and decreasing post-antibiotic treatment. Unlike traditional markers such as procalcitonin (PCT) and C-reactive protein (CRP), PSP specifically indicates monocyte/macrophage activation. Limited studies in critical illness have explored PSP's role in sepsis, and its diagnostic accuracy varies with threshold values, impacting sensitivity and specificity. Recent meta-analyses suggest PSP's diagnostic potential for sepsis, yet its standalone effectiveness in ICU infection management remains uncertain. This review provides a comprehensive overview of PSP's utility in ICU settings, including its diagnostic accuracy, prognostic value, therapeutic implications, challenges, and future directions.
Collapse
Affiliation(s)
- Paolo Formenti
- Department of Anesthesia and Intensive Care, ASST Nord Milano, Ospedale Bassini, 20097 Cinisello Balsamo, Italy; (M.G.); (F.P.); (A.G.); (G.S.); (A.P.)
| | - Miriam Gotti
- Department of Anesthesia and Intensive Care, ASST Nord Milano, Ospedale Bassini, 20097 Cinisello Balsamo, Italy; (M.G.); (F.P.); (A.G.); (G.S.); (A.P.)
| | - Francesca Palmieri
- Department of Anesthesia and Intensive Care, ASST Nord Milano, Ospedale Bassini, 20097 Cinisello Balsamo, Italy; (M.G.); (F.P.); (A.G.); (G.S.); (A.P.)
| | - Stefano Pastori
- Department of Clinical Chemistry and Microbiological Analysis, ASST Nord Milano, Ospedale Bassini, 20097 Cinisello Balsamo, Italy; (S.P.); (V.R.)
| | - Vincenzo Roccaforte
- Department of Clinical Chemistry and Microbiological Analysis, ASST Nord Milano, Ospedale Bassini, 20097 Cinisello Balsamo, Italy; (S.P.); (V.R.)
| | - Alessandro Menozzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy;
| | - Andrea Galimberti
- Department of Anesthesia and Intensive Care, ASST Nord Milano, Ospedale Bassini, 20097 Cinisello Balsamo, Italy; (M.G.); (F.P.); (A.G.); (G.S.); (A.P.)
| | - Michele Umbrello
- Department of Intensive Care, ASST Ovest Milanese, New Hospital of Legnano, 20025 Legnano, Italy;
| | - Giovanni Sabbatini
- Department of Anesthesia and Intensive Care, ASST Nord Milano, Ospedale Bassini, 20097 Cinisello Balsamo, Italy; (M.G.); (F.P.); (A.G.); (G.S.); (A.P.)
| | - Angelo Pezzi
- Department of Anesthesia and Intensive Care, ASST Nord Milano, Ospedale Bassini, 20097 Cinisello Balsamo, Italy; (M.G.); (F.P.); (A.G.); (G.S.); (A.P.)
| |
Collapse
|
6
|
Chisholm LO, Jaeger NM, Murawsky HE, Harms MJ. S100A9 interacts with a dynamic region on CD14 to activate Toll-like receptor 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594416. [PMID: 38798518 PMCID: PMC11118535 DOI: 10.1101/2024.05.15.594416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
S100A9 is a Damage Associated Molecular Pattern (DAMP) that activates inflammatory pathways via Toll-like receptor 4 (TLR4). This activity plays important homeostatic roles in tissue repair, but can also contribute to inflammatory diseases. The mechanism of activation is unknown. Here, we follow up on a previous observation that the protein CD14 is an important co-receptor that enables S100A9 to activate TLR4. Using cell-based functional assays and a combination of mutations and pharmocological perturbations, we found that CD14 must be membrane bound to potentiate TLR4 activation by S100A9. Additionally, S100A9 is sensitive to inhibitors of pathways downstream of TLR4 internalization. Together, this suggests that S100A9 induces activity via CD14-dependent internalization of TLR4. We then used mutagenesis, structural modeling, and in vitro binding experiments to establish that S100A9 binds to CD14's N-terminus in a region that overlaps with, but is not identical to, the region where CD14 binds its canonical ligand, lipopolysaccharide (LPS). In molecular dynamics simulations, this region of the protein is dynamic, allowing it to reorganize to recognize both S100A9 (a soluble protein) and LPS (a small hydrophobic molecule). Our work is the first attempt at a molecular characterization of the S100A9/CD14 interaction, bringing us one step closer to unraveling the full mechanism by which S100A9 activates TLR4/MD-2.
Collapse
|
7
|
Anidi IU, Sakai S, Brooks K, Fling SP, Wagner MJ, Lurain K, Lindestam Arlehamn CS, Sette A, Knox KS, Brenchley JM, Uldrick TS, Sharon E, Barber DL. Exacerbation of CMV and Nontuberculous Mycobacterial Infections Following PD-1 Blockade for HIV-Associated Kaposi Sarcoma. Open Forum Infect Dis 2024; 11:ofae183. [PMID: 38680611 PMCID: PMC11049581 DOI: 10.1093/ofid/ofae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Blockade of the co-inhibitory receptor PD-1 enhances antitumor responses by boosting the function of antigen-specific T cells. Although rare, PD-1 blockade in patients with cancer can lead to exacerbation of infection-associated pathology. Here, we detail the case of a 38-year-old man who was enrolled in a clinical trial for assessment of the safety and activity of anti-PD-1 therapy for Kaposi sarcoma in people with HIV well-controlled on antiretroviral therapy. Less than a week after receiving the first dose of anti-PD-1 antibody (pembrolizumab), he presented with severe abdominal pain associated with sudden exacerbations of preexisting cytomegalovirus (CMV) enteritis and nontuberculous mycobacterial mesenteric lymphadenitis. Plasma biomarkers of gastrointestinal tract damage were highly elevated compared with healthy controls, consistent with HIV-associated loss of gut epithelial barrier integrity. Moreover, CMV-specific CD8 T cells expressed high levels of PD-1, and 7 days following PD-1 blockade, there was an increase in the frequency of activated CD38+ Ki67+ CMV-specific CD8 T cells. This case highlights the potential for PD-1 blockade to drive rapid exacerbations of inflammatory symptoms when administered to individuals harboring multiple unresolved infections.
Collapse
Affiliation(s)
- Ifeanyichukwu U Anidi
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven P Fling
- Cancer Immunotherapy Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael J Wagner
- Division of Medical Oncology, University of Washington and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecilia S Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Kenneth S Knox
- Department of Internal Medicine, College of Medicine Phoenix, University of Arizona Health Sciences, Phoenix, Arizona, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas S Uldrick
- Cancer Immunotherapy Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Elad Sharon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Luan R, Wang M, Gong Y, Liu B, Huang X, Wang J, Sun S, Zhao J, Chen X, Yang Q, Liu J, Shao Y, Li X. Optical coherence tomography biomarkers as outcome predictors to guide dexamethasone implant use in patients with iERM: a randomized controlled trial. BMC Ophthalmol 2024; 24:193. [PMID: 38664679 PMCID: PMC11044407 DOI: 10.1186/s12886-024-03429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND We aimed to investigate the anatomical features of optical coherence tomography (OCT) and vitreous cytokine levels as predictors of outcomes of combined phacovitrectomy with intravitreal dexamethasone (DEX) implants for idiopathic epiretinal membrane (iERM) treatment. METHODS A prospective, single-masked, randomized, controlled clinical trial included 48 eyes. They were randomly assigned in a 1:1 ratio to undergo the DEX group (combined phacovitrectomy with ERM peeling and Ozurdex implantation) and control group (phacovitrectomy only). Best-corrected visual acuity (BCVA) and central macular thickness (CMT) were assessed at 1 d, 1 week, 1 month, and 3 months. The structural features of OCT before surgery were analysed for stratified analysis. Baseline soluble CD14 (sCD14) and sCD163 levels in the vitreous fluid were measured using ELISA. RESULTS BCVA and CMT were not significantly different in the DEX and control groups. Eyes with hyperreflective foci (HRF) at baseline achieved better BCVA (Ptime*group=0.746; Pgroup=0.043, Wald χ²=7.869) and lower CMT (Ptime*group = 0.079; Pgroup = 0.001, Wald χ²=6.774) responses to DEX during follow-up. In all patients, the mean vitreous level of sCD163 in eyes with HRF was significantly higher than that in eyes without HRF (P = 0.036, Z=-2.093) at baseline. In the DEX group, higher sCD163 predicted greater reduction in CMT from baseline to 1 month (r = 0.470, P = 0.049). CONCLUSIONS We found that intraoperative DEX implantation did not have beneficial effects on BCVA and CMT over a 3-month period in all patients with iERM, implying that the use of DEX for all iERM is not recommended. In contrast, for those with HRF on OCT responded better to DEX implants at the 3-month follow-up and thier vitreous fluid expressed higher levels of sCD163 at baseline. These data support the hypothesis that DEX implants may be particularly effective in treating cases where ERM is secondary to inflammation. TRIAL REGISTRATION The trail has been registered at Chinese Clinical Trail Registry( https://www.chictr.org.cn ) on 2021/03/12 (ChiCTR2100044228). And all patients in the article were enrolled after registration.
Collapse
Affiliation(s)
- Rong Luan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Manqiao Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Yi Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Boshi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Xinyuan Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Jie Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Shuo Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Jinzhi Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Xiteng Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Qianhui Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Juping Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 384300, Tianjin, China.
| |
Collapse
|
9
|
Merk D, Cox FF, Jakobs P, Prömel S, Altschmied J, Haendeler J. Dose-Dependent Effects of Lipopolysaccharide on the Endothelium-Sepsis versus Metabolic Endotoxemia-Induced Cellular Senescence. Antioxidants (Basel) 2024; 13:443. [PMID: 38671891 PMCID: PMC11047739 DOI: 10.3390/antiox13040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The endothelium, the innermost cell layer of blood vessels, is not only a physical barrier between the bloodstream and the surrounding tissues but has also essential functions in vascular homeostasis. Therefore, it is not surprising that endothelial dysfunction is associated with most cardiovascular diseases. The functionality of the endothelium is compromised by endotoxemia, the presence of bacterial endotoxins in the bloodstream with the main endotoxin lipopolysaccharide (LPS). Therefore, this review will focus on the effects of LPS on the endothelium. Depending on the LPS concentration, the outcomes are either sepsis or, at lower concentrations, so-called low-dose or metabolic endotoxemia. Sepsis, a life-threatening condition evoked by hyperactivation of the immune response, includes breakdown of the endothelial barrier resulting in failure of multiple organs. A deeper understanding of the underlying mechanisms in the endothelium might help pave the way to new therapeutic options in sepsis treatment to prevent endothelial leakage and fatal septic shock. Low-dose endotoxemia or metabolic endotoxemia results in chronic inflammation leading to endothelial cell senescence, which entails endothelial dysfunction and thus plays a critical role in cardiovascular diseases. The identification of compounds counteracting senescence induction in endothelial cells might therefore help in delaying the onset or progression of age-related pathologies. Interestingly, two natural plant-derived substances, caffeine and curcumin, have shown potential in preventing endothelial cell senescence.
Collapse
Affiliation(s)
- Dennis Merk
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
| | - Fiona Frederike Cox
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
- Medical Faculty, Institute for Translational Pharmacology, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Philipp Jakobs
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
| | - Simone Prömel
- Department of Biology, Institute of Cell Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
- Medical Faculty, Cardiovascular Research Institute Düsseldorf, CARID, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
- Medical Faculty, Cardiovascular Research Institute Düsseldorf, CARID, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Wei S, Shen Z, Yin Y, Cong Z, Zeng Z, Zhu X. Advances of presepsin in sepsis-associated ARDS. Postgrad Med J 2024; 100:209-218. [PMID: 38147883 DOI: 10.1093/postmj/qgad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 12/28/2023]
Abstract
This article reviews the correlation between presepsin and sepsis and the resulting acute respiratory distress syndrome (ARDS). ARDS is a severe complication of sepsis. Despite the successful application of protective mechanical ventilation, restrictive fluid therapy, and neuromuscular blockade, which have effectively reduced the morbidity and mortality associated with ARDS, the mortality rate among patients with sepsis-associated ARDS remains notably high. The challenge lies in the prediction of ARDS onset and the timely implementation of intervention strategies. Recent studies have demonstrated significant variations in presepsin (PSEP) levels between patients with sepsis and those without, particularly in the context of ARDS. Moreover, these studies have revealed substantially elevated PSEP levels in patients with sepsis-associated ARDS compared to those with nonsepsis-associated ARDS. Consequently, PSEP emerges as a valuable biomarker for identifying patients with an increased risk of sepsis-associated ARDS and to predict in-hospital mortality.
Collapse
Affiliation(s)
- Senhao Wei
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Graduate School of Peking University Health Science Center, Peking University Health Science Center, Beijing 100191, China
| | - Ziyuan Shen
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Graduate School of Peking University Health Science Center, Peking University Health Science Center, Beijing 100191, China
| | - Yiyuan Yin
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhukai Cong
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhaojin Zeng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Graduate School of Peking University Health Science Center, Peking University Health Science Center, Beijing 100191, China
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
11
|
Bonhomme D, Cavaillon JM, Werts C. The dangerous liaisons in innate immunity involving recombinant proteins and endotoxins: Examples from the literature and the Leptospira field. J Biol Chem 2024; 300:105506. [PMID: 38029965 PMCID: PMC10777017 DOI: 10.1016/j.jbc.2023.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | | | - Catherine Werts
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France.
| |
Collapse
|
12
|
Phiri TN, Mutasa K, Rukobo S, Govha M, Mushayanembwa P, Mwakamui S, Haider T, Zyambo K, Dumbura C, Tome J, Runodamoto T, Chidamba L, Majo FD, Ngosa D, Chandwe K, Kapoma C, Mwapenya B, Mufukari W, Sturgeon JP, Robertson RC, Smuk M, Ntozini R, Nathoo K, Amadi B, Kelly P, Bwakura-Dangarembizi M, Prendergast AJ, Bourke CD. Severe acute malnutrition promotes bacterial binding over proinflammatory cytokine secretion by circulating innate immune cells. SCIENCE ADVANCES 2023; 9:eadh2284. [PMID: 37910623 PMCID: PMC10619937 DOI: 10.1126/sciadv.adh2284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Children with severe acute malnutrition (SAM) have high infectious mortality and morbidity, implicating defects in their immune defenses. We hypothesized that circulating innate immune cells from children (0 to 59 months) hospitalized with SAM in Zambia and Zimbabwe (n = 141) have distinct capacity to respond to bacteria relative to adequately nourished healthy controls (n = 92). SAM inpatients had higher neutrophil and monocyte Escherichia coli binding capacity but lower monocyte activation and proinflammatory mediator secretion in response to lipopolysaccharide or heat-killed Salmonella typhimurium than controls. Among SAM cases, wasting severity was negatively associated with cytokine secretion, children with HIV had lower monocyte activation, and the youngest children released the least myeloperoxidase upon stimulation. Inpatient bacterial binding capacity and monocyte activation were associated with higher odds of persistent SAM at discharge, a risk factor for subsequent mortality. Thus, SAM shifts innate immune cell function, favoring bacterial containment over proinflammatory activation, which may contribute to health deficits after discharge.
Collapse
Affiliation(s)
- Tracy N. Phiri
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Simutanyi Mwakamui
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Tafhima Haider
- Blizard Institute, Queen Mary University of London, London, UK
| | - Kanekwa Zyambo
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Cherlynn Dumbura
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Joice Tome
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Leah Chidamba
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Florence D. Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Deophine Ngosa
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Kanta Chandwe
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Chanda Kapoma
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Benjamin Mwapenya
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Wadzanai Mufukari
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jonathan P. Sturgeon
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Melanie Smuk
- Blizard Institute, Queen Mary University of London, London, UK
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kusum Nathoo
- Department of Paediatrics and Child Health, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Beatrice Amadi
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Queen Mary University of London, London, UK
| | - Mutsa Bwakura-Dangarembizi
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of Paediatrics and Child Health, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Andrew J. Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Claire D. Bourke
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Sanjurjo L, Castelblanco E, Julve J, Villalmanzo N, Téllez É, Ramirez-Morros A, Alonso N, Mauricio D, Sarrias MR. Contribution of Elevated Glucose and Oxidized LDL to Macrophage Inflammation: A Role for PRAS40/Akt-Dependent Shedding of Soluble CD14. Antioxidants (Basel) 2023; 12:antiox12051083. [PMID: 37237950 DOI: 10.3390/antiox12051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis, a process in which macrophages play a key role, is accelerated in diabetes. Elevated concentrations of serum-oxidized low-density lipoproteins (oxLDL) represent a common feature of both conditions. The main goal of this study was to determine the contribution of oxLDL to the inflammatory response of macrophages exposed to diabetic-mimicking conditions. THP1 cells and peripheral blood monocytes purified from non-diabetic healthy donors were cultured under normal (5 mM) or high glucose (HG) (15 mM) with oxLDL. Then, foam cell formation, expression of CD80, HLADR, CD23, CD206, and CD163, as well as toll-like receptor 4 (TLR4) and co-receptors CD36 and CD14 (both at the cell surface and soluble (sCD14)), and inflammatory mediators' production were measured by flow cytometry, RT-qPCR, or ELISA. Additionally, serum sCD14 was determined in subjects with subclinical atherosclerosis with and without diabetes by ELISA. Our results showed that oxLDL-mediated intracellular lipid accumulation via CD36 increased under HG and that HG + oxLDL enhanced TNF, IL1B, and IL8, and decreased IL10. Moreover, TLR4 was upregulated in macrophages under HG and monocytes of subjects with diabetes and atherosclerosis. Interestingly, HG-oxLDL upregulated CD14 gene expression, although its total cellular protein abundance remained unaltered. sCD14 shedding via PRAS40/Akt-dependent mechanisms, with pro-inflammatory activity, was significantly increased in cultured macrophages and plasma from subjects with diabetes and subclinical atherosclerosis or hypercholesterolemia. Our data support an enhanced synergistic pro-inflammatory effect induced by HG and oxLDL in cultured human macrophages, possibly explained by increased sCD14 shedding.
Collapse
Affiliation(s)
- Lucía Sanjurjo
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
| | - Josep Julve
- Endocrinology, Diabetes and Nutrition Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IRHSCSP), 08041 Barcelona, Spain
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Nuria Villalmanzo
- Department of Endocrinology and Nutrition, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Érica Téllez
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Ramirez-Morros
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
- Gerència Territorial de la Catalunya Central, Institut Català de la Salut, 08272 Sant Fruitós de Bages, Spain
| | - Núria Alonso
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Dídac Mauricio
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Sant Pau Biomedical Research Institute, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
14
|
Lv X, Li S, Yu Y, Jin S, Zhang X, Li F. LvCD14L Acts as a Novel Pattern Recognition Receptor and a Regulator of the Toll Signaling Pathway in Shrimp. Int J Mol Sci 2023; 24:ijms24097770. [PMID: 37175476 PMCID: PMC10178686 DOI: 10.3390/ijms24097770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Leucine-rich repeat (LRR) is a structural motif has important recognition function in immune receptors, such as Tolls and NOD-like receptors (NLRs). The immune-related LRR proteins can be divided into two categories, LRR-containing proteins and LRR-only proteins. The latter contain LRR motifs while they are without other functional domains. However, the functional mechanisms of the LRR-only proteins were still unclear in invertebrates. Here, we identified a gene encoding a secretory LRR-only protein, which possessed similarity with vertebrate CD14 and was designated as LvCD14L, from the Pacific whiteleg shrimp Litopenaeus vannamei. Its transcripts in shrimp hemocytes were apparently responsive to the infection of Vibrio parahaemolyticus. Knockdown of LvCD14L with dsRNA resulted in significant increase of the viable bacteria in the hepatopancreas of shrimp upon V. parahaemolyticus infection. Further functional studies revealed that LvCD14L could bind to microorganisms' PAMPs, showed interaction with LvToll1 and LvToll2, and regulated the expression of LvDorsal and LvALF2 in hemocytes. These results suggest that LvCD14L functions as a pattern recognition receptor and activates the NF-κB pathway through interaction with LvTolls. The present study reveals a shrimp LvCD14L-Tolls-NF-κB signaling pathway like the CD14/TLR4/NF-κB signaling pathway in mammalians, which enriches the functional mechanism of secretory LRR-only immune receptors during pathogens infection in invertebrates.
Collapse
Affiliation(s)
- Xinjia Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
15
|
Pacia MZ, Chorazy N, Sternak M, Wojnar-Lason K, Chlopicki S. Vascular lipid droplets formed in response to TNF, hypoxia or OA: biochemical composition and prostacyclin generation. J Lipid Res 2023; 64:100355. [PMID: 36934842 DOI: 10.1016/j.jlr.2023.100355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Biogenesis of lipid droplets (LDs) in various cells plays an important role in various physiological and pathological processes. However, the function of LDs in endothelial physiology and pathology is not well understood. In the present work, we investigated the formation of LDs and prostacyclin (PGI2) generation in the vascular tissue of isolated murine aortas following activation by pro-inflammatory factors: tumor necrosis factor (TNF), lipopolysaccharides (LPS), angiotensin II (AngII), hypoxic conditions, or oleic acid (OA). The abundance, size, and biochemical composition of LDs was characterized based on Raman spectroscopy and fluorescence imaging. We found that blockade of lipolysis by the adipose triglyceride lipase (ATGL) delayed LDs degradation and simultaneously blunted PGI2 generation in aorta treated with all tested pro-inflammatory stimuli. Furthermore, the analysis of Raman spectra of LDs in the isolated vessels stimulated by TNF, LPS, AngII, or hypoxia uncovered that these LDs were all rich in highly unsaturated lipids and had a negligible content of phospholipids and cholesterols. Additionally, by comparing the Raman signature of endothelial LDs under hypoxic or OA-overload conditions in the presence or absence of ATGL inhibitor, atglistatin, we show that atglistatin does not affect the biochemical composition of LDs. Altogether, independent of whether LDs were induced by pro-inflammatory stimuli, hypoxia, or oleic acid, and of whether they were composed of highly unsaturated or less unsaturated lipids, we observed LDs formation invariably associated with ATGL-dependent PGI2 generation. In conclusion, vascular LDs formation and ATGL-dependent PGI2 generation represent a universal response to vascular pro-inflammatory insult.
Collapse
Affiliation(s)
- Marta Z Pacia
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Natalia Chorazy
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland
| |
Collapse
|
16
|
Takimoto Y, Chu PS, Nakamoto N, Hagihara Y, Mikami Y, Miyamoto K, Morikawa R, Teratani T, Taniki N, Fujimori S, Suzuki T, Koda Y, Ishihara R, Ichikawa M, Honda A, Kanai T. Myeloid TLR4 signaling promotes post-injury withdrawal resolution of murine liver fibrosis. iScience 2023; 26:106220. [PMID: 36876136 PMCID: PMC9982274 DOI: 10.1016/j.isci.2023.106220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/25/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The fate of resolution of liver fibrosis after withdrawal of liver injury is still incompletely elucidated. Toll-like receptor 4 (TLR4) in tissue fibroblasts is pro-fibrogenic. After withdrawal of liver injury, we unexpectedly observed a significant delay of fibrosis resolution as TLR4 signaling was pharmacologically inhibited in vivo in two murine models. Single-cell transcriptome analysis of hepatic CD11b+ cells, main producers of matrix metalloproteinases (MMPs), revealed a prominent cluster of restorative Tlr4-expressing Ly6c2-low myeloid cells. Delayed resolution after gut sterilization suggested its microbiome-dependent nature. Enrichment of a metabolic pathway linking to a significant increase of bile salt hydrolase-possessing family Erysipelotrichaceae during resolution. Farnesoid X receptor-stimulating secondary bile acids including 7-oxo-lithocholic acids upregulated MMP12 and TLR4 in myeloid cells in vitro. Fecal material transplant in germ-free mice confirmed phenotypical correlations in vivo. These findings highlight a pro-fibrolytic role of myeloid TLR4 signaling after injury withdrawal and may provide targets for anti-fibrotic therapy.
Collapse
Affiliation(s)
- Yoichi Takimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuya Hagihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Miyarisan Pharmaceutical Co., Ltd, Kita-ku, Tokyo 114-0016, Japan
| | - Rei Morikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sota Fujimori
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Research Unit/Immunology and Inflammation, Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Miyarisan Pharmaceutical Co., Ltd, Kita-ku, Tokyo 114-0016, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Research Unit/Immunology and Inflammation, Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan
| | - Rino Ishihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki-gun, Ibaraki 300-0395, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
17
|
Pallett LJ, Swadling L, Diniz M, Maini AA, Schwabenland M, Gasull AD, Davies J, Kucykowicz S, Skelton JK, Thomas N, Schmidt NM, Amin OE, Gill US, Stegmann KA, Burton AR, Stephenson E, Reynolds G, Whelan M, Sanchez J, de Maeyer R, Thakker C, Suveizdyte K, Uddin I, Ortega-Prieto AM, Grant C, Froghi F, Fusai G, Lens S, Pérez-Del-Pulgar S, Al-Akkad W, Mazza G, Noursadeghi M, Akbar A, Kennedy PTF, Davidson BR, Prinz M, Chain BM, Haniffa M, Gilroy DW, Dorner M, Bengsch B, Schurich A, Maini MK. Tissue CD14 +CD8 + T cells reprogrammed by myeloid cells and modulated by LPS. Nature 2023; 614:334-342. [PMID: 36697826 DOI: 10.1038/s41586-022-05645-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/12/2022] [Indexed: 01/26/2023]
Abstract
The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.
Collapse
Affiliation(s)
- Laura J Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| | - Leo Swadling
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Mariana Diniz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | | | | | - Jessica Davies
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Stephanie Kucykowicz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | - Niclas Thomas
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Oliver E Amin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Upkar S Gill
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kerstin A Stegmann
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Alice R Burton
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matt Whelan
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Jenifer Sanchez
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Roel de Maeyer
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Clare Thakker
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Kornelija Suveizdyte
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Imran Uddin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | | | - Farid Froghi
- Division of Surgery, University College London, London, UK
| | - Giuseppe Fusai
- Division of Surgery, University College London, London, UK
| | - Sabela Lens
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Sofia Pérez-Del-Pulgar
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Walid Al-Akkad
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Giuseppe Mazza
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Arne Akbar
- Division of Medicine, University College London, London, UK
| | - Patrick T F Kennedy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Benjamin M Chain
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Marcus Dorner
- Department of Medicine, Imperial College London, London, UK
| | - Bertram Bengsch
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Anna Schurich
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| |
Collapse
|
18
|
Izadparast F, Riahi-Zajani B, Yarmohammadi F, Hayes AW, Karimi G. Protective effect of berberine against LPS-induced injury in the intestine: a review. Cell Cycle 2022; 21:2365-2378. [PMID: 35852392 PMCID: PMC9645259 DOI: 10.1080/15384101.2022.2100682] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a systemic inflammatory condition caused by an unbalanced immunological response to infection, which affects numerous organs, including the intestines. Lipopolysaccharide (LPS; also known as endotoxin), a substance found in Gram-negative bacteria, plays a major role in sepsis and is mostly responsible for the disease's morbidity and mortality. Berberine is an isoquinoline alkaloid found in a variety of plant species that has anti-inflammatory properties. For many years, berberine has been used to treat intestinal inflammation and infection. Berberine has been reported to reduce LPS-induced intestinal damage. The potential pathways through which berberine protects against LPS-induced intestinal damage by inhibiting NF-κB, suppressing MAPK, modulating ApoM/S1P pathway, inhibiting COX-2, modulating Wnt/Beta-Catenin signaling pathway, and/or increasing ZIP14 expression are reviewed.Abbreviations: LPS, lipopolysaccharide; TLR, Toll-like receptor; MD-2, myeloid differentiation factor 2; CD14, cluster of differentiation 14; LBP, lipopolysaccharide-binding protein; MYD88, myeloid differentiation primary response 88; NF-κB, nuclear factor kappa light-chain enhancer of activated B cells; MAPK, mitogen-activated protein kinase; IL, interleukin; TNFα, tumor necrosis factor-alpha; Caco-2, cyanocobalamin uptake by human colon adenocarcinoma cell line; MLCK, myosin light-chain kinase; TJ, tight junction; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; IBS, irritable bowel syndrome; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase (JNK; GVB, gut-vascular barrier; ApoM, apolipoprotein M; S1P, sphingosine-1-phosphate; VE-cadherin, vascular endothelial cadherin; AJ, adherens junction; PV1, plasmalemma vesicle-associated protein-1; HDL, high-density lipoprotein; Wnt, wingless-related integration site; Fzd, 7-span transmembrane protein Frizzled; LRP, low-density lipoprotein receptor-related protein; TEER, transendothelial/transepithelial electrical resistance; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase; IGF, insulin-like growth factor; IGFBP, insulin-like growth factor-binding protein; ZIP, Zrt-Irt-like protein; PPAR, peroxisome proliferator-activated receptors; p-PPAR, phosphorylated-peroxisome proliferator-activated receptors; ATF, activating transcription factors; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; SARA, subacute ruminal acidosis; IPEC-J2, porcine intestinal epithelial cells; ALI, acute lung injury; ARDS, acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Faezeh Izadparast
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zajani
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Lengi AJ, Stewart JW, Makris M, Rhoads ML, Corl BA. Heat Stress Increases Mammary Epithelial Cells and Reduces Viable Immune Cells in Milk of Dairy Cows. Animals (Basel) 2022; 12:2810. [PMID: 36290196 PMCID: PMC9597744 DOI: 10.3390/ani12202810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Somatic cells normally found in milk are generally either immune cells such as lymphocytes, monocytes and granulocytes, or mammary epithelial cells. The number and composition of somatic cells in milk can be influenced by a variety of factors, including infection and temperature-humidity index. The objective of this study was to determine the specific effects of heat stress on the cellular composition of the somatic cell population in milk. We used flow cytometry to ascertain the concentration and viability of mammary epithelial cells, T cells, monocyte/macrophage, and granulocytes in milk from cows maintained under heat stressed conditions compared to thermoneutral conditions. We found a significant 10% increase in the natural log concentration of epithelial cells in the milk of heat stressed cows compared to thermoneutral cows (9.3 vs. 8.4 ln(cells/mL, p = 0.02)). We also found a 12% decrease in the log concentration of live CD45+ cells (p = 0.04), and a 17% decrease in the log concentration of live CD45+ granulocytes (p = 0.04). No changes were found in CD3+CD45+ cells or CD14+CD45+ cells, however, we noted an unusual population of CD14+CD45- cells that showed significant increases of 10% (p = 0.03) and 12% (p = 0.01) in the log concentration of total and dead cells, respectively, under heat stressed conditions. These results suggest that heat stress influences the relative populations and viability of some somatic cells populations in milk. Increased losses of secretory epithelial cells into milk could have implications for milk production, and fewer viable immune cells could negatively impact the immunocompetence of dairy cows under heat stress.
Collapse
Affiliation(s)
- Andrea J. Lengi
- Department of Dairy Science, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jacob W. Stewart
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Melissa Makris
- Flow Cytometry Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle L. Rhoads
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Benjamin A. Corl
- Department of Dairy Science, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
20
|
Gauthier AE, Rotjan RD, Kagan JC. Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature. Open Biol 2022; 12:220146. [PMID: 36196535 PMCID: PMC9533005 DOI: 10.1098/rsob.220146] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.
Collapse
Affiliation(s)
- Anna E. Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Randi D. Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, USA
| |
Collapse
|
21
|
Bonhomme D, Werts C. Host and Species-Specificities of Pattern Recognition Receptors Upon Infection With Leptospira interrogans. Front Cell Infect Microbiol 2022; 12:932137. [PMID: 35937697 PMCID: PMC9353586 DOI: 10.3389/fcimb.2022.932137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a zoonotic infectious disease affecting all vertebrates. It is caused by species of the genus Leptospira, among which are the highly pathogenic L. interrogans. Different mammals can be either resistant or susceptible to the disease which can present a large variety of symptoms. Humans are mostly asymptomatic after infection but can have in some cases symptoms varying from a flu-like syndrome to more severe forms such as Weil's disease, potentially leading to multiorgan failure and death. Similarly, cattle, pigs, and horses can suffer from acute forms of the disease, including morbidity, abortion, and uveitis. On the other hand, mice and rats are resistant to leptospirosis despite chronical colonization of the kidneys, excreting leptospires in urine and contributing to the transmission of the bacteria. To this date, the immune mechanisms that determine the severity of the infection and that confer susceptibility to leptospirosis remain enigmatic. To our interest, differential immune sensing of leptospires through the activation of or escape from pattern recognition receptors (PRRs) by microbe-associated molecular patterns (MAMPs) has recently been described. In this review, we will summarize these findings that suggest that in various hosts, leptospires differentially escape recognition by some Toll-like and NOD-like receptors, including TLR4, TLR5, and NOD1, although TLR2 and NLRP3 responses are conserved independently of the host. Overall, we hypothesize that these innate immune mechanisms could play a role in determining host susceptibility to leptospirosis and suggest a central, yet complex, role for TLR4.
Collapse
Affiliation(s)
| | - Catherine Werts
- Institut Pasteur, Université de Paris, CNRS UMR2001, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| |
Collapse
|
22
|
Bartosova M, Borilova Linhartova P, Musilova K, Broukal Z, Kukletova M, Kukla L, Izakovicova Holla L. Association of the CD14 -260C/T polymorphism with plaque-induced gingivitis depends on the presence of Porphyromonas gingivalis. Int J Paediatr Dent 2022; 32:223-231. [PMID: 34097794 DOI: 10.1111/ipd.12847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Plaque-induced gingivitis is the most prevalent periodontal disease associated with pathogenic biofilms. The host immune system responds to pathogens through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and their co-receptor cluster of differentiation 14 (CD14). AIM This study investigated the association between the functional polymorphism in the CD14 gene and the dental plaque microbiota in children with gingivitis. DESIGN A total of 590 unrelated children (307 with plaque-induced gingivitis and 283 controls, aged 13-15 years) were enrolled in this case-control study. Dental plaque was processed using a ParoCheck® 20 detection kit. The CD14 -260C/T (rs2569190) polymorphism was determined with the PCR-RFLP method. RESULTS Gingivitis was detected in 64.2% of boys and 35.8% of girls (P < .001). Children with gingivitis had a significantly higher occurrence of dental caries (P < .001). No significant differences in the CD14 -260C/T allele and genotype distribution among individuals with or without gingivitis in the whole cohort were found. Children with gingivitis and P gingivalis, however, were significantly more frequent carriers of the CT and TT genotypes than children with gingivitis without P gingivalis or healthy controls (P < .05). CONCLUSIONS The CD14 -260C/T polymorphism acts in cooperation with P gingivalis to trigger plaque-induced gingivitis in Czech children.
Collapse
Affiliation(s)
- Michaela Bartosova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Petra Borilova Linhartova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristina Musilova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Zdenek Broukal
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Kukletova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Lubomir Kukla
- Research Centre for Toxic Compounds in the Environment (RECETOX), Chemistry Section, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment (RECETOX), Chemistry Section, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Sturm R, Haag F, Janicova A, Xu B, Vollrath JT, Bundkirchen K, Dunay IR, Neunaber C, Marzi I, Relja B. Acute alcohol consumption increases systemic endotoxin bioactivity for days in healthy volunteers-with reduced intestinal barrier loss in female. Eur J Trauma Emerg Surg 2022; 48:1569-1577. [PMID: 33839799 PMCID: PMC9192383 DOI: 10.1007/s00068-021-01666-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Trauma is the most common cause of death among young adults. Alcohol intoxication plays a significant role as a cause of accidents and as a potent immunomodulator of the post-traumatic response to tissue injury. Polytraumatized patients are frequently at risk to developing infectious complications, which may be aggravated by alcohol-induced immunosuppression. Systemic levels of integral proteins of the gastrointestinal tract such as syndecan-1 or intestinal fatty acid binding proteins (FABP-I) reflect the intestinal barrier function. The exact impact of acute alcohol intoxication on the barrier function and endotoxin bioactivity have not been clarified yet. METHODS 22 healthy volunteers received a precisely defined amount of alcohol (whiskey-cola) every 20 min over a period of 4 h to reach the calculated blood alcohol concentration (BAC) of 1‰. Blood samples were taken before alcohol drinking as a control, and after 2, 4, 6, 24 and 48 h after beginning with alcohol consumption. In addition, urine samples were collected. Intestinal permeability was determined by serum and urine values of FABP-I, syndecan-1, and soluble (s)CD14 as a marker for the endotoxin translocation via the intestinal barrier by ELISA. BAC was determined. RESULTS Systemic FABP-I was significantly reduced 2 h after the onset of alcohol drinking, and remained decreased after 4 h. However, at 6 h, FABP-I significantly elevated compared to previous measurements as well as to controls (p < 0.05). Systemic sCD14 was significantly elevated after 6, 24 and 48 h after the onset of alcohol consumption (p < 0.05). Systemic FABP-I at 2 h after drinking significantly correlated with the sCD14 concentration after 24 h indicating an enhanced systemic LPS bioactivity. Women showed significantly lower levels of syndecan-1 in serum and urine and urine for all time points until 6 h and lower FABP-I in the serum after 2 h. CONCLUSIONS Even relative low amounts of alcohol affect the immune system of healthy volunteers, although these changes appear minor in women. A potential damage to the intestinal barrier and presumed enhanced systemic endotoxin bioactivity after acute alcohol consumption is proposed, which represents a continuous immunological challenge for the organism and should be considered for the following days after drinking.
Collapse
Affiliation(s)
- Ramona Sturm
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Florian Haag
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto Von Guericke University, Magdeburg, Germany
| | - Andrea Janicova
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto Von Guericke University, Magdeburg, Germany
| | - Baolin Xu
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto Von Guericke University, Magdeburg, Germany
| | - Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | | | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto Von Guericke University, Magdeburg, Germany
| | | | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany.
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto Von Guericke University, Magdeburg, Germany.
| |
Collapse
|
24
|
Singer SN, Ndumnego OC, Kim RS, Ndung'u T, Anastos K, French A, Churchyard G, Paramithiothis E, Kasprowicz VO, Achkar JM. Plasma host protein biomarkers correlating with increasing Mycobacterium tuberculosis infection activity prior to tuberculosis diagnosis in people living with HIV. EBioMedicine 2022; 75:103787. [PMID: 34968761 PMCID: PMC8718743 DOI: 10.1016/j.ebiom.2021.103787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Biomarkers correlating with Mycobacterium tuberculosis infection activity/burden in asymptomatic individuals are urgently needed to identify and treat those at highest risk for developing active tuberculosis (TB). Our main objective was to identify plasma host protein biomarkers that change over time prior to developing TB in people living with HIV (PLHIV). METHODS Using multiplex MRM-MS, we investigated host protein expressions from 2 years before until time of TB diagnosis in longitudinally collected (every 3-6 months) and stored plasma from PLHIV with incident TB, identified within a South African (SA) and US cohort. We performed temporal trend and discriminant analyses for proteins, and, to assure clinical relevance, we further compared protein levels at TB diagnosis to interferon-gamma release assay (IGRA; SA) or tuberculin-skin test (TST; US) positive and negative cohort subjects without TB. SA and US exploratory data were analyzed separately. FINDINGS We identified 15 proteins in the SA (n=30) and 10 in the US (n=24) incident TB subjects which both changed from 2 years prior until time of TB diagnosis after controlling for 10% false discovery rate, and were significantly different at time of TB diagnosis compared to non-TB subjects (p<0.01). Five proteins, CD14, A2GL, NID1, SCTM1, and A1AG1, overlapped between both cohorts. Furthermore, after cross-validation, panels of 5 - 12 proteins were able to predict TB up to two years before diagnosis. INTERPRETATION Host proteins can be biomarkers for increasing Mycobacterium tuberculosis infection activity/burden, incipient TB, and predict TB development in PLHIV. FUNDING NIH/NIAID AI117927, AI146329, and AI127173 to JMA.
Collapse
Affiliation(s)
- Sarah N Singer
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Ryung S Kim
- Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban 4013, South Africa; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA; Max Planck Institute of Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, London, UK
| | - Kathryn Anastos
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Audrey French
- Department of Medicine, Stroger Hospital of Cook County, Chicago, IL, USA
| | - Gavin Churchyard
- Aurum Institute, Johannesburg, South Africa; School of Public Health, University of Witwatersrand, Johannesburg, South Africa; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Eustache Paramithiothis
- CellCarta Biosciences Inc, 201 President-Kennedy Ave., Suite 3900 Montreal, H2×3Y7, Quebec, Canada
| | - Victoria O Kasprowicz
- Africa Health Research Institute, Durban 4013, South Africa; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jacqueline M Achkar
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
25
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
26
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Gorabi AM, Kiaie N, Khosrojerdi A, Jamialahmadi T, Al-Rasadi K, Johnston TP, Sahebkar A. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med 2021; 32:525-533. [PMID: 34492295 DOI: 10.1016/j.tcm.2021.08.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Mounting scientific evidence over decades has established that atherosclerosis is a chronic inflammatory disorder. Among the potentially critical sources of vascular inflammation during atherosclerosis are the components of pathogenic bacteria, especially lipopolysaccharide (LPS). Toll-like receptor (TLR)-4, expressed on different inflammatory cells involved with the recognition of bacterial LPS, has been recognized to have mutations that are prevalent in a number of ethnic groups. Such mutations have been associated with a decreased risk of atherosclerosis. In addition, epidemiological investigations have proposed that LPS confers a risk factor for the development of atherosclerosis. Gram-negative bacteria are the major source of LPS in an individual's serum, which may be generated during subclinical infections. The major cell receptors on inflammatory cells involved in the pathogenesis of atherosclerosis, like macrophages, monocytes, and dendritic cells (DCs), are CD14, MD-2, and LPS binding protein (LBP). These receptors have been blamed for the development of atherosclerosis through dysregulated activation following LPS recognition. Lipoproteins may also play a role in modulating the LPS-induced inflammatory events during atherosclerosis development. In this review article, we attempt to clarify the role of LPS in the initiation and progression of atherosclerotic lesion development.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Medical Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Zhu CS, Wang W, Qiang X, Chen W, Lan X, Li J, Wang H. Endogenous Regulation and Pharmacological Modulation of Sepsis-Induced HMGB1 Release and Action: An Updated Review. Cells 2021; 10:2220. [PMID: 34571869 PMCID: PMC8469563 DOI: 10.3390/cells10092220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis remains a common cause of death in intensive care units, accounting for approximately 20% of total deaths worldwide. Its pathogenesis is partly attributable to dysregulated inflammatory responses to bacterial endotoxins (such as lipopolysaccharide, LPS), which stimulate innate immune cells to sequentially release early cytokines (such as tumor necrosis factor (TNF) and interferons (IFNs)) and late mediators (such as high-mobility group box 1, HMGB1). Despite difficulties in translating mechanistic insights into effective therapies, an improved understanding of the complex mechanisms underlying the pathogenesis of sepsis is still urgently needed. Here, we review recent progress in elucidating the intricate mechanisms underlying the regulation of HMGB1 release and action, and propose a few potential therapeutic candidates for future clinical investigations.
Collapse
Affiliation(s)
- Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Wei Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Xiqian Lan
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| |
Collapse
|
29
|
Czamara K, Stojak M, Pacia MZ, Zieba A, Baranska M, Chlopicki S, Kaczor A. Lipid Droplets Formation Represents an Integral Component of Endothelial Inflammation Induced by LPS. Cells 2021; 10:cells10061403. [PMID: 34204022 PMCID: PMC8227392 DOI: 10.3390/cells10061403] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial inflammation is the hallmark of vascular pathology often proceeding with cardiovascular diseases. Here, we adopted a multiparameter approach combining various imaging techniques at the nano- and microscale (Raman, AFM and fluorescence) to investigate endothelial inflammation in response to lipopolysaccharides (LPS) in vitro in human microvascular endothelial cells (HMEC-1) with a focus on lipid droplets (LDs) formation. Our results show that LPS-induced LDs in HMEC-1 have a composition depending on LPS-incubation time and their formation requires the presence of serum. Robust endothelial inflammation induced by LPS was linked to LDs composed of highly unsaturated lipids, as well as prostacyclin release. LPS-induced LDs were spatially associated with nanostructural changes in the cell membrane architecture. In summary, LDs formation represents an integral component of endothelial inflammation induced by LPS.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Marta Stojak
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Marta Z. Pacia
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Alicja Zieba
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Malgorzata Baranska
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Stefan Chlopicki
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Pharmacology Department, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
- Correspondence:
| |
Collapse
|
30
|
Wagner C, Torow N, Hornef MW, Lelouard H. Spatial and temporal key steps in early-life intestinal immune system development and education. FEBS J 2021; 289:4731-4757. [PMID: 34076962 DOI: 10.1111/febs.16047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Education of our intestinal immune system early in life strongly influences adult health. This education strongly relies on series of events that must occur in well-defined time windows. From initial colonization by maternal-derived microbiota during delivery to dietary changes from mother's milk to solid foods at weaning, these early-life events have indeed long-standing consequences on our immunity, facilitating tolerance to environmental exposures or, on the contrary, increasing the risk of developing noncommunicable diseases such as allergies, asthma, obesity, and inflammatory bowel diseases. In this review, we provide an outline of the recent advances in our understanding of these events and how they are mechanistically related to intestinal immunity development and education. First, we review the susceptibility of neonates to infections and inflammatory diseases, related to their immune system and microbiota changes. Then, we highlight the maternal factors involved in protection and education of the mucosal immune system of the offspring, the role of the microbiota, and the nature of neonatal immune system until weaning. We also present how the development of some immune responses is intertwined in temporal and spatial windows of opportunity. Finally, we discuss pending questions regarding the neonate particular immune status and the activation of the intestinal immune system at weaning.
Collapse
Affiliation(s)
- Camille Wagner
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | | |
Collapse
|
31
|
Uddin MI, Hossain M, Islam S, Akter A, Nishat NS, Nila TA, Rafique TA, Leung DT, Calderwood SB, Ryan ET, Harris JB, LaRocque RC, Bhuiyan TR, Qadri F. An assessment of potential biomarkers of environment enteropathy and its association with age and microbial infections among children in Bangladesh. PLoS One 2021; 16:e0250446. [PMID: 33886672 PMCID: PMC8061931 DOI: 10.1371/journal.pone.0250446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Interventional studies targeting environment enteropathy (EE) are impeded by the lack of appropriate, validated, non-invasive biomarkers of EE. Thus, we aimed to validate the association of potential biomarkers for EE with enteric infections and nutritional status in a longitudinal birth cohort study. We measured endotoxin core antibody (EndoCab) and soluble CD14 (sCD14) in serum, and myeloperoxidase (MPO) in feces using commercially available enzyme-linked immunosorbent assay (ELISA) kits. We found that levels of serum EndoCab and sCD14 increase with the cumulative incidence of enteric infections. We observed a significant correlation between the fecal MPO level in the children at 24 months of age with the total number of bacterial and viral infections, the total number of parasitic infections, and the total number of diarrheal episodes and diarrheal duration. We observed that the levels of serum EndoCab, sCD14, and fecal MPO at 3 months of age were significantly associated with whether children were malnourished at 18 months of age or not. Biomarkers such as fecal MPO, serum EndoCab and sCD14 in children at an early age may be useful as a measure of cumulative burden of preceding enteric infections, which are predictive of subsequent malnutrition status and may be useful non-invasive biomarkers for EE.
Collapse
Affiliation(s)
| | | | - Shahidul Islam
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Aklima Akter
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | | | | | - Daniel T. Leung
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Firdausi Qadri
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- * E-mail: (FQ); (TRB)
| |
Collapse
|
32
|
Hirsch V, Blufstein A, Behm C, Andrukhov O. The Alterations in CD14 Expression in Periodontitis: A Systematic Review. APPLIED SCIENCES 2021; 11:2444. [DOI: 10.3390/app11052444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Objective: Cluster of differentiation (CD14) is an important protein involved in activating toll-like receptors by bacterial components. It exists as either a transmembrane or soluble protein, called mCD14 or sCD14, respectively. Several studies show that CD14 regulates the inflammatory response to periodontal pathogens, and its expression is altered in periodontitis, an inflammatory disease of tooth-supporting tissues. It is the intent of this review to investigate the levels of expression of mCD14 and sCD14 in peripheral blood monocytes, saliva, gingival crevicular fluid, and gingival tissue biopsies in periodontitis patients. Methods: PubMed, Scopus, Ovid/Medline, Embase, and the Cochrane Library were consulted for the online literature search. To ensure methodical quality, titles and abstracts were reviewed in accordance to the PRISMA guidelines. Data extraction and evaluation of the full texts were executed in agreement with the GRADE approach. Results: This systematic review shows that mCD14 levels are decreased in peripheral blood monocytes of periodontitis patients in comparison to healthy patients, while sCD14 levels in sera, gingival crevicular fluid (GCF), and biopsies of periodontitis patients have a tendency to be increased in comparison to healthy controls. The evaluation of CD14 in gingival biopsies and periodontal tissues elucidated the fact that interpretation of the data obtained with qPCR, ELISA, and flow cytometry is questionable.
Collapse
Affiliation(s)
- Vivian Hirsch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
33
|
Gradek-Kwinta E, Czyzycki M, Lopatkiewicz AM, Klimiec-Moskal E, Slowik A, Dziedzic T. Lipopolysaccharide binding protein and sCD14 as risk markers of stroke-associated pneumonia. J Neuroimmunol 2021; 354:577532. [PMID: 33676085 DOI: 10.1016/j.jneuroim.2021.577532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
To determine the utility of lipopolysaccharide binding protein (LBP) and soluble CD14 (sCD14) as risk markers of stroke-associated pneumonia (SAP). We included 331 stroke patients. The plasma levels of LBP (median: 19.4 vs 15.3 μg/mL, P < 0.01) and sCD14 (median: 1.5 vs 1.4 μg/mL, P = 0.04) were elevated in SAP. In multivariate analysis, a higher level of LBP (OR: 1.09, 95%CI: 1.05-1.13), but not sCD14 (OR: 2.16, 0.94-4.97), was associated with SAP. The addition of LBP or sCD14 to the clinical model did not improve its discriminatory ability. Our results suggest the modest value of studied biomarkers for SAP prediction.
Collapse
Affiliation(s)
| | - Mateusz Czyzycki
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | | | | | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
34
|
Sarmikasoglou E, Faciola AP. Ruminal Lipopolysaccharides Analysis: Uncharted Waters with Promising Signs. Animals (Basel) 2021; 11:ani11010195. [PMID: 33467503 PMCID: PMC7831013 DOI: 10.3390/ani11010195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Lipopolysaccharide (LPS) is a component of the outer membranes of Gram-negative bacterial cell wall made of three covalently linked regions: the O-antigen, the core oligosaccharide, and the endotoxin lipid A moiety, which carries the endotoxic activity of LPS. Among Gram-negative bacteria there is significant structural diversity in the lipid A region. Specifically, the number of lipid A acyl chains directly correlates with the ability to induce cytokine production whereas the hexa-acylated forms usually are the most immunostimulant ones, contrary to penta- or tetra- acylated forms that result in weak inflammatory host responses. Ruminal bacteria are predominantly Gram-negative, and their respective LPS presence has been suggested to be associated with ruminal acidosis, a metabolic disorder of cattle with negative effects on health and production. In the rumen, the most predominant phylum is Bacteroidetes which exhibit weak host immunological response compared to widely used Escherichia coli LPS. This review aims to present accumulated knowledge regarding ruminal LPS, pointing out the differences in ruminal LPS compared to widely known LPS, and introduce hypotheses that could contribute to further understanding and planning strategies to tackle ruminal acidosis. Abstract The objective of this review is to present the need for the development of a comprehensive ruminal lipopolysaccharide (LPS) extraction, purification and analysis protocol and state hypotheses that could contribute to planning novel strategies against ruminal acidosis. Lipopolysaccharide is an immunostimulatory molecule of Gram-negative bacterial outer membranes and has been reported to contribute to ruminal acidosis in cattle. Bacterial death and lysis are normal processes, and thus LPS is normally present in ruminal fluid. However, ruminal LPS concentration is much greater during subacute ruminal acidosis (SARA). Contrary to the widely known LPSs, ruminal LPS seems to be composed of a variety of LPS chemotypes that may interact with each other resulting in an LPS “mixture”. Hypotheses regarding the influence of each specific ruminal bacterial specie to innate immunity during SARA, and the representativeness of the exclusive use of the Escherichia coli LPS to rumen epithelial tissue challenges, could expand our knowledge regarding SARA. In addition, possible correlation between the monomeric Toll-like Receptor 4 (TRL4) and the antagonistic penta-acylated lipid A of LPS could contribute to novel strategies to tackle this nutrition disorder.
Collapse
|
35
|
Di Ciaula A, Baj J, Garruti G, Celano G, De Angelis M, Wang HH, Di Palo DM, Bonfrate L, Wang DQH, Portincasa P. Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J Clin Med 2020; 9:2648. [PMID: 32823983 PMCID: PMC7465294 DOI: 10.3390/jcm9082648] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and parallels comorbidities such as obesity, metabolic syndrome, dyslipidemia, and diabetes. Recent studies describe the presence of NAFLD in non-obese individuals, with mechanisms partially independent from excessive caloric intake. Increasing evidences, in particular, point towards a close interaction between dietary and environmental factors (including food contaminants), gut, blood flow, and liver metabolism, with pathways involving intestinal permeability, the composition of gut microbiota, bacterial products, immunity, local, and systemic inflammation. These factors play a critical role in the maintenance of intestinal, liver, and metabolic homeostasis. An anomalous or imbalanced gut microbial composition may favor an increased intestinal permeability, predisposing to portal translocation of microorganisms, microbial products, and cell wall components. These components form microbial-associated molecular patterns (MAMPs) or pathogen-associated molecular patterns (PAMPs), with potentials to interact in the intestine lamina propria enriched in immune cells, and in the liver at the level of the immune cells, i.e., Kupffer cells and stellate cells. The resulting inflammatory environment ultimately leads to liver fibrosis with potentials to progression towards necrotic and fibrotic changes, cirrhosis. and hepatocellular carcinoma. By contrast, measures able to modulate the composition of gut microbiota and to preserve gut vascular barrier might prevent or reverse NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Domenica Maria Di Palo
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| |
Collapse
|
36
|
Toll-like Receptors and the Control of Immunity. Cell 2020; 180:1044-1066. [DOI: 10.1016/j.cell.2020.02.041] [Citation(s) in RCA: 1356] [Impact Index Per Article: 271.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
|
37
|
Kiyan Y, Tkachuk S, Kurselis K, Shushakova N, Stahl K, Dawodu D, Kiyan R, Chichkov B, Haller H. Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling. Sci Rep 2019; 9:13591. [PMID: 31537875 PMCID: PMC6753096 DOI: 10.1038/s41598-019-50068-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts. In vivo, expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.
Collapse
Affiliation(s)
- Yulia Kiyan
- Department of Nephrology, Hannover Medical School, Hannover, Germany.
| | - Sergey Tkachuk
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Kestutis Kurselis
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | | | - Klaus Stahl
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Damilola Dawodu
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Roman Kiyan
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Boris Chichkov
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
The Influence of TLR4, CD14, OPG, and RANKL Polymorphisms in Periodontitis: A Case-Control Study. Mediators Inflamm 2019; 2019:4029217. [PMID: 31281226 PMCID: PMC6590594 DOI: 10.1155/2019/4029217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of periodontitis involves a complex interaction between the microbial challenge and the host immune response. The individual immunoinflammatory response has a great contribution in the pathogenesis of the disease and becomes a trigger in the process of bone remodeling which is a characteristic of the disease. Thus, the aim of this study was to evaluate the influence of the TLR4 A896G (rs4986790), TLR4 C1196T (rs4986791), CD14 C-260T (rs2569190), RANKL (TNFSF11, rs2277438), and OPG (TNFSF11B C163T, rs3102735) polymorphisms in periodontitis. A case-control study was conducted on patients with periodontitis (N = 203) and controls (N = 213) over 30 years of age, without diabetes mellitus, acute infections, and osteoarthritis, and patients without aggressive periodontitis, i.e., stage IV and C degree of periodontitis, and any periodontal treatment performed in the last 6 months. Genotypes were determined by the PCR-RFLP and sequencing method. The frequency comparisons between case and controls were performed using the chi-square test and logistic regression (OpenEpi and SNPStats software). The risk (OR) was evaluated for values of P < 0.05. Differences in TLR4, CD14, RANKL, and OPG genotype and allele frequency distributions were not observed between patients and controls. However, some variants were a risk factor for the development of periodontitis when considering gender and smoking habits. The TLR4 896 A/G genotype was a risk factor for periodontitis in males (OR = 2.86), and the TLR4 1196C/C genotype was a risk factor for nonsmoking males (OR = 1.85) when compared to women. The RANKL A/A and the OPG T/C genotype was associated with the risk of the disease in nonsmoking men compared to nonsmoking women with the same genotype (OR = 1.96 and OR = 2.9, respectively). In conclusion, TLR4, CD14, RANKL, and OPG variants were not associated with periodontitis. However, TLR4, RANKL, and OPG polymorphisms could be a risk for periodontitis in males regardless of smoking habits.
Collapse
|
39
|
Puhm F, Afonyushkin T, Resch U, Obermayer G, Rohde M, Penz T, Schuster M, Wagner G, Rendeiro AF, Melki I, Kaun C, Wojta J, Bock C, Jilma B, Mackman N, Boilard E, Binder CJ. Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells. Circ Res 2019; 125:43-52. [PMID: 31219742 DOI: 10.1161/circresaha.118.314601] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Extracellular vesicles, including microvesicles, are increasingly recognized as important mediators in cardiovascular disease. The cargo and surface proteins they carry are considered to define their biological activity, including their inflammatory properties. Monocyte to endothelial cell signaling is a prerequisite for the propagation of inflammatory responses. However, the contribution of microvesicles in this process is poorly understood. OBJECTIVE To elucidate the mechanisms by which microvesicles derived from activated monocytic cells exert inflammatory effects on endothelial cells. METHODS AND RESULTS LPS (lipopolysaccharide)-stimulated monocytic cells release free mitochondria and microvesicles with mitochondrial content as demonstrated by flow cytometry, quantitative polymerase chain reaction, Western Blot, and transmission electron microscopy. Using RNAseq analysis and quantitative reverse transcription-polymerase chain reaction, we demonstrated that both mitochondria directly isolated from and microvesicles released by LPS-activated monocytic cells, as well as circulating microvesicles isolated from volunteers receiving low-dose LPS-injections, induce type I IFN (interferon), and TNF (tumor necrosis factor) responses in endothelial cells. Depletion of free mitochondria significantly reduced the ability of these microvesicles to induce type I IFN and TNF-dependent genes. We identified mitochondria-associated TNFα and RNA from stressed mitochondria as major inducers of these responses. Finally, we demonstrated that the proinflammatory potential of microvesicles and directly isolated mitochondria were drastically reduced when they were derived from monocytic cells with nonrespiring mitochondria or monocytic cells cultured in the presence of pyruvate or the mitochondrial reactive oxygen species scavenger MitoTEMPO. CONCLUSIONS Mitochondria and mitochondria embedded in microvesicles constitute a major subset of extracellular vesicles released by activated monocytes, and their proinflammatory activity on endothelial cells is determined by the activation status of their parental cells. Thus, mitochondria may represent critical intercellular mediators in cardiovascular disease and other inflammatory settings associated with type I IFN and TNF signaling.
Collapse
Affiliation(s)
- Florian Puhm
- From the Department of Laboratory Medicine (F.P., T.A., G.O., G.W., C.B., C.J.B.).,Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna (F.P., T.A., G.O., T.P., M.S., A.F.R., C.B., C.J.B.)
| | - Taras Afonyushkin
- From the Department of Laboratory Medicine (F.P., T.A., G.O., G.W., C.B., C.J.B.).,Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna (F.P., T.A., G.O., T.P., M.S., A.F.R., C.B., C.J.B.)
| | | | - Georg Obermayer
- From the Department of Laboratory Medicine (F.P., T.A., G.O., G.W., C.B., C.J.B.).,Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna (F.P., T.A., G.O., T.P., M.S., A.F.R., C.B., C.J.B.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany (M.R.)
| | - Thomas Penz
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna (F.P., T.A., G.O., T.P., M.S., A.F.R., C.B., C.J.B.)
| | - Michael Schuster
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna (F.P., T.A., G.O., T.P., M.S., A.F.R., C.B., C.J.B.)
| | - Gabriel Wagner
- From the Department of Laboratory Medicine (F.P., T.A., G.O., G.W., C.B., C.J.B.)
| | - Andre F Rendeiro
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna (F.P., T.A., G.O., T.P., M.S., A.F.R., C.B., C.J.B.)
| | - Imene Melki
- Department of Infectious Diseases and Immunity, Faculty of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, Canada (I.M., E.B.)
| | | | - Johann Wojta
- Department of Internal Medicine II (C.K., J.W.).,Core Facilities (J.W.).,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria (J.W.)
| | - Christoph Bock
- From the Department of Laboratory Medicine (F.P., T.A., G.O., G.W., C.B., C.J.B.).,Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna (F.P., T.A., G.O., T.P., M.S., A.F.R., C.B., C.J.B.)
| | - Bernd Jilma
- Department of Clinical Pharmacology (B.J.), Medical University of Vienna, Austria
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Faculty of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, Canada (I.M., E.B.)
| | - Christoph J Binder
- From the Department of Laboratory Medicine (F.P., T.A., G.O., G.W., C.B., C.J.B.).,Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna (F.P., T.A., G.O., T.P., M.S., A.F.R., C.B., C.J.B.)
| |
Collapse
|
40
|
Oliveira PVSD, Garcia-Rosa S, Sachetto ATA, Moretti AIS, Debbas V, De Bessa TC, Silva NT, Pereira ADC, Martins-de-Souza D, Santoro ML, Laurindo FRM. Protein disulfide isomerase plasma levels in healthy humans reveal proteomic signatures involved in contrasting endothelial phenotypes. Redox Biol 2019; 22:101142. [PMID: 30870787 PMCID: PMC6430080 DOI: 10.1016/j.redox.2019.101142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Redox-related plasma proteins are candidate reporters of protein signatures associated with endothelial structure/function. Thiol-proteins from protein disulfide isomerase (PDI) family are unexplored in this context. Here, we investigate the occurrence and physiological significance of a circulating pool of PDI in healthy humans. We validated an assay for detecting PDI in plasma of healthy individuals. Our results indicate high inter-individual (median = 330 pg/mL) but low intra-individual variability over time and repeated measurements. Remarkably, plasma PDI levels could discriminate between distinct plasma proteome signatures, with PDI-rich (>median) plasma differentially expressing proteins related to cell differentiation, protein processing, housekeeping functions and others, while PDI-poor plasma differentially displayed proteins associated with coagulation, inflammatory responses and immunoactivation. Platelet function was similar among individuals with PDI-rich vs. PDI-poor plasma. Remarkably, such protein signatures closely correlated with endothelial function and phenotype, since cultured endothelial cells incubated with PDI-poor or PDI-rich plasma recapitulated gene expression and secretome patterns in line with their corresponding plasma signatures. Furthermore, such signatures translated into functional responses, with PDI-poor plasma promoting impairment of endothelial adhesion to fibronectin and a disturbed pattern of wound-associated migration and recovery area. Patients with cardiovascular events had lower PDI levels vs. healthy individuals. This is the first study describing PDI levels as reporters of specific plasma proteome signatures directly promoting contrasting endothelial phenotypes and functional responses.
Collapse
Affiliation(s)
- Percíllia Victória Santos de Oliveira
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sheila Garcia-Rosa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | | | - Ana Iochabel Soares Moretti
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Victor Debbas
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie De Bessa
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nathalia Tenguan Silva
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | | | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
41
|
Lattanzi B, Baroncelli S, De Santis A, Galluzzo CM, Mennini G, Michelini Z, Lupo M, Ginanni Corradini S, Rossi M, Palmisano L, Merli M. Microbial translocation and T cell activation are modified by direct-acting antiviral therapy in HCV-infected patients. Aliment Pharmacol Ther 2018; 48:1146-1155. [PMID: 30294870 DOI: 10.1111/apt.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Microbial translocation from the gut lumen has been involved in the pathogenesis of liver damage in hepatitis C virus (HCV) infection. AIM To investigate the impact of direct-acting antiviral treatment on microbial translocation and T-cell activation, in patients with hepatitis C-related liver disease. METHODS We enrolled two groups of HCV-infected patients undergoing direct-acting antiviral treatment: patients with fibrosis ≥F3 according to Metavir (Group ≥F3); patients with hepatitis C recurrence after liver transplantation and Metavir ≥F2 (Group Liver Transplantation + ≥F2). All patients were treated with direct-acting antivirals based on ongoing guidelines. Surrogate biomarkers of microbial translocation (plasma concentrations of soluble-CD14, lipopolysaccharide-binding protein and intestinal fatty acid-binding protein) were evaluated at baseline, at first month, at the end of treatment and 3 months later. T-cell activation was measured by expression of CD38+ HLA-DR at the same time points, only in Group ≥F3. RESULTS There were 32 patients in Group ≥F3 and 13 in Group LT + ≥F2. At baseline, levels of soluble-CD14 and lipopolysaccharide-binding protein were significantly higher in both groups vs healthy controls. Baseline soluble-CD14 correlated with glutamic-oxalacetic transaminase (r = 0.384, P = 0.009) and glutamic-pyruvic transaminase (r = 0.293, P = 0.05). A significant decrease in plasma levels of surrogate microbial translocation biomarkers was observed during and after treatment in the two groups although values were not normalised. In Group ≥F3, CD38+ HLADR+ T-cell expression was significantly decreased by direct-acting antiviral treatment. Relapsers (9%) showed higher soluble-CD14 levels at baseline. CONCLUSION Surrogate microbial translocation markers and T cell activation are increased in HCV-infected patients with liver fibrosis and decrease during direct-acting antiviral treatment.
Collapse
Affiliation(s)
- Barbara Lattanzi
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Baroncelli
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Adriano De Santis
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Gianluca Mennini
- Hepato-biliopancreatic and Liver Transplant Unit, Department of Surgery, Sapienza University of Rome, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marinella Lupo
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Ginanni Corradini
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Rossi
- Hepato-biliopancreatic and Liver Transplant Unit, Department of Surgery, Sapienza University of Rome, Rome, Italy
| | - Lucia Palmisano
- National Center for Preclinical and Clinical Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Merli
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol 2018; 12:641-656. [PMID: 29806487 DOI: 10.1080/17474124.2018.1481747] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
The gut liver axis is an operative unit that works to protect the human body against potentially harmful substances and microorganisms, maintaining the homeostasis of the immune system. Liver cirrhosis profoundly alters this complex system. The intestine becomes more permeable allowing the translocation of bacteria, bacterial products and fragments into the portal circulation, triggering an abnormal local and systemic inflammatory response and a condition of perpetual immunologic alarm. This immune-inflammatory disorder related to dysbiosis is involved in the development of liver damage and liver cirrhosis complications and increases intestinal permeability in a vicious circle. Areas covered: The most relevant studies on bacterial translocation, the mechanism of intestinal barrier dysfunction and its consequences in patients with liver cirrhosis have been revised through a PubMed search. Data have been discussed with particular regard to their significance in clinical practice. Expert commentary: The assessment of bacterial translocation and intestinal permeability is not currently used in clinical practice but may be useful to stratify patients' prognosis.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Maria Assunta Zocco
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Lucia Cerrito
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Antonio Gasbarrini
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Maurizio Pompili
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| |
Collapse
|
43
|
Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. J Mol Biol 2018; 430:2641-2660. [PMID: 29949751 DOI: 10.1016/j.jmb.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.
Collapse
|
44
|
CD81 Receptor Regions outside the Large Extracellular Loop Determine Hepatitis C Virus Entry into Hepatoma Cells. Viruses 2018; 10:v10040207. [PMID: 29677132 PMCID: PMC5923501 DOI: 10.3390/v10040207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) enters human hepatocytes using four essential entry factors, one of which is human CD81 (hCD81). The tetraspanin hCD81 contains a large extracellular loop (LEL), which interacts with the E2 glycoprotein of HCV. The role of the non-LEL regions of hCD81 (intracellular tails, four transmembrane domains, small extracellular loop and intracellular loop) is poorly understood. Here, we studied the contribution of these domains to HCV susceptibility of hepatoma cells by generating chimeras of related tetraspanins with the hCD81 LEL. Our results show that non-LEL regions in addition to the LEL determine susceptibility of cells to HCV. While closely related tetraspanins (X. tropicalis CD81 and D. rerio CD81) functionally complement hCD81 non-LEL regions, distantly related tetraspanins (C. elegans TSP9 amd D. melanogaster TSP96F) do not and tetraspanins with intermediate homology (hCD9) show an intermediate phenotype. Tetraspanin homology and susceptibility to HCV correlate positively. For some chimeras, infectivity correlates with surface expression. In contrast, the hCD9 chimera is fully surface expressed, binds HCV E2 glycoprotein but is impaired in HCV receptor function. We demonstrate that a cholesterol-coordinating glutamate residue in CD81, which hCD9 lacks, promotes HCV infection. This work highlights the hCD81 non-LEL regions as additional HCV susceptibility-determining factors.
Collapse
|
45
|
Weber C, Stummvoll H, Passon S, Falkenhagen D. Monocyte Activation and Humoral Immune Response to Endotoxins in Patients Receiving On-Line Hemodiafiltration Therapy. Int J Artif Organs 2018. [DOI: 10.1177/039139889802100610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the on-line preparation of substitution fluid, an easy-to-operate and cost-effective alter-native to conventional hemodiafiltration (HDF) has been realized. The continuous filtration of dialysis fluid, furthermore, allows high volumes of exchange. Microbial contamination and subsequently endotoxins, however, may be present in dialysis fluid, and thus the microbiological safety has become a pivotal issue. In this clinical study we evaluated the safety of the Fresenius Medical Care on-line HDF system which is based on a two-stage filtration of dialysis fluid with upstream DIASAFE® and downstream on-line HDF filter. During the three-month study period we failed to detect germs or endotoxins in the substitution fluid. Augmented plasma interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) concentrations were found neither during the intradialytic period nor when pre-session values at study begin and study end were compared. In addition, changes in the anti-endotoxin core antibody levels and soluble CD14 (sCD14) concentration, or pyrogenic episodes were not observed. On-line HDF with DIASAFE® and on-line HDF filter thus represents a safe treatment modality by effectively depleting dialysis fluid of cytokine-inducing substances.
Collapse
Affiliation(s)
- C. Weber
- Centre for Biomedical Technology, Danube University Krems, Krems
| | | | - S. Passon
- Fresenius Medical Care, Bad Homburg - Germany
| | - D. Falkenhagen
- Centre for Biomedical Technology, Danube University Krems, Krems
| |
Collapse
|
46
|
Rainer F, Horvath A, Sandahl TD, Leber B, Schmerboeck B, Blesl A, Groselj-Strele A, Stauber RE, Fickert P, Stiegler P, Møller HJ, Grønbæk H, Stadlbauer V. Soluble CD163 and soluble mannose receptor predict survival and decompensation in patients with liver cirrhosis, and correlate with gut permeability and bacterial translocation. Aliment Pharmacol Ther 2018; 47:657-664. [PMID: 29266346 PMCID: PMC6333289 DOI: 10.1111/apt.14474] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Activated hepatic macrophages play a key role in inflammation and fibrosis progression in chronic liver disease. AIM To assess the prognostic value of soluble (s)CD163 and mannose receptor (sMR) in cirrhotic patients and explore associations with markers of intestinal permeability (lactulose-mannitol ratio, diamine oxidase), bacterial translocation (endotoxin, lipopolysaccharide-binding protein) and markers of systemic immune activation (interleukin-6, interleukin-8, sCD14). METHODS We prospectively investigated 101 cirrhotic patients (Child-Pugh class A: n = 72, Child-Pugh classes B and C: n = 29) and 31 healthy controls. Patients were observed for a median follow-up of 37 months. RESULTS Median plasma levels of sCD163 and soluble mannose receptor were significantly elevated in cirrhotic patients (P < .001) and increased with disease severity (sCD163 in healthy controls = 1.3, Child-Pugh class A = 4.2, Child-Pugh classes B and C = 8.4 mg/L; sMR in healthy controls = 15.8, Child-Pugh class A = 36.5, Child-Pugh classes B and C = 66.3 μg/dL). A total of 21 patients died during the observation period. Patients with sCD163 levels above 5.9 mg/L showed significantly reduced survival (survival rate after 36 months: 71% versus 98%, P < .001). Patients with soluble mannose receptor levels above 45.5 μg/dL developed significantly more complications of cirrhosis within 12 months (73% versus 9%, P < .001). Furthermore, both variables correlated with the lactulose-mannitol ratio, diamine oxidase, lipopolysaccharide and interleukin-8. CONCLUSION Our data demonstrate the prognostic value of sCD163 in predicting long-term survival in patients with liver cirrhosis and identify soluble mannose receptor as a prognostic marker for occurrence of cirrhosis-associated complications. The correlation between gut barrier dysfunction and activation of macrophages points towards a link between them.
Collapse
Affiliation(s)
- F. Rainer
- Department of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | - A. Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, Austria,Department of Transplantation Surgery, Medical University of Graz, Austria,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - T. D. Sandahl
- Departments of Hepatology and Gastroenterology, and Clinical Biochemistry, Denmark
| | - B. Leber
- Department of Transplantation Surgery, Medical University of Graz, Austria,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - B. Schmerboeck
- Department of Transplantation Surgery, Medical University of Graz, Austria,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - A. Blesl
- Department of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | - A. Groselj-Strele
- Core Facility Computational Bioanalytics, Medical University of Graz, Austria
| | - R. E. Stauber
- Department of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | - P. Fickert
- Department of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | - P. Stiegler
- Department of Transplantation Surgery, Medical University of Graz, Austria
| | - H. J. Møller
- Departments of Hepatology and Gastroenterology, and Clinical Biochemistry, Denmark
| | - H. Grønbæk
- Departments of Hepatology and Gastroenterology, and Clinical Biochemistry, Denmark
| | - V. Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, Austria
| |
Collapse
|
47
|
Soluble CD14 as a Diagnostic Biomarker for Smear-Negative HIV-Associated Tuberculosis. Pathogens 2018; 7:pathogens7010026. [PMID: 29495442 PMCID: PMC5874752 DOI: 10.3390/pathogens7010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
Sputum smear-negative HIV-associated active tuberculosis (TB) is challenging to diagnose. CD14 is a pattern recognition receptor that is known to mediate monocyte activation. Prior studies have shown increased levels of soluble CD14 (sCD14) as a potential biomarker for TB, but little is known about its value in detecting smear-negative HIV-associated TB. We optimized a sandwich ELISA for the detection of sCD14, and tested sera from 56 smear-negative South African (39 culture-positive and 17 culture-negative) HIV-infected pulmonary TB patients and 24 South African and 43 US (21 positive and 22 negative for tuberculin skin test, respectively) HIV-infected controls. SCD14 concentrations were significantly elevated in smear-negative HIV-associated TB compared with the HIV-infected controls (p < 0.0001), who had similar concentrations, irrespective of the country of origin or the presence or absence of latent M. tuberculosis infection (p = 0.19). The culture-confirmed TB group had a median sCD14 level of 2199 ng/mL (interquartile range 1927-2719 ng/mL), versus 1148 ng/mL (interquartile range 1053-1412 ng/mL) for the South African controls. At a specificity of 96%, sCD14 had a sensitivity of 95% for culture-confirmed smear-negative TB. These data indicate that sCD14 could be a highly accurate biomarker for the detection of HIV-associated TB.
Collapse
|
48
|
Nakai M, Ogawa K, Takeda R, Ohara M, Kawagishi N, Izumi T, Umemura M, Ito J, Sho T, Suda G, Morikawa K, Sakamoto N. Increased serum C-reactive protein and decreased urinary aquaporin 2 levels are predictive of the efficacy of tolvaptan in patients with liver cirrhosis. Hepatol Res 2018; 48:E311-E319. [PMID: 28984014 DOI: 10.1111/hepr.12988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 02/08/2023]
Abstract
AIM Water retention, hepatic ascites, and peripheral edema are significant problems in patients with liver cirrhosis (LC). Although furosemide and spironolactone are commonly used as treatment, they are often insufficient to treat hyponatremia and renal insufficiency in patients with LC. Tolvaptan (TVP) could provide an effective treatment alternative. However, predictive factors of a therapeutic response to TVP are unclear. Our aim was to examine clinical predictors of the response to TVP in patients with LC and water retention. METHODS Fifty-two patients were treated with TVP, with therapeutic effects judged by a decrease in body weight (≥2 kg) and increase in urinary volume (≥500 mL) within 7 days. Blood biochemical tests were carried out at baseline and post-treatment, including serum soluble CD14 (sCD14) and urinary aquaporin 2 (AQP2) levels. Clinical and laboratory predictive factors of a TVP response were evaluated by univariate and multivariate analyses. RESULTS The overall response to TVP was 55.8%. On univariate analyses, serum C-reactive protein (CRP) level, the neutrophil-to-lymphocyte ratio, urinary blood urea nitrogen, and urinary AQP2 were predictors of the TVP response, with only serum CRP retained on multivariate analysis. A higher serum sCD14 level was strongly associated with a non-response to TVP. A decrease in urinary AQP2 to undetectable level was associated with a response. CONCLUSION Tolvaptan provides a rapid and strong effect to improve water retention in patients with LC. Baseline serum sCD14 and CRP levels are useful predictors of a response to TVP, with a decrease in urinary AQP2 during treatment indicating an early response.
Collapse
Affiliation(s)
- Masato Nakai
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Rei Takeda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takaaki Izumi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Machiko Umemura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Jun Ito
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
49
|
Exploring the link between innate immune activation and thymic function by measuring sCD14 and TRECs in HIV patients living in Belgium. PLoS One 2017; 12:e0185761. [PMID: 29049344 PMCID: PMC5648129 DOI: 10.1371/journal.pone.0185761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
Microbial translocation is now viewed as a central event in the pathogenesis of chronic inflammation during HIV infection. Thymic function failure is another crucial factor involved in HIV disease progression. The goal of this study was to explore the hypothesis of potential links between microbial translocation and thymic function in HIV-1 patients living in Belgium. The extent of microbial translocation was assessed through the measurement of soluble CD14 (sCD14). T-cell receptor excision circles (sjTRECs and dβTRECs) were used as a measure of thymic function. Data were collected from 75 HIV-infected patients. Simple and complex linear regressions were done to analyze the link between these two processes. We found a statistically relevant negative correlation between thymopoiesis (sjTREC) and sCD14 level (p = 0.004). These results suggest a link between thymic function failure, microbial translocation and innate immune activation.
Collapse
|
50
|
Li J, Wang Q, Chen F, Wang H, Chen J, Wang Z, Huo J, Cai Y. SNPs of CD14 change the mastitis morbidity of Chinese Holstein. Mol Med Rep 2017; 16:9102-9110. [PMID: 28990093 DOI: 10.3892/mmr.2017.7727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/16/2017] [Indexed: 11/05/2022] Open
Abstract
Gram‑negative (GN) bacterial infection is a main cause of bovine mastitis. The cluster of differentiation (CD) 14 gene serves an essential role in GN bacterium‑induced innate immune response. CD14 works as a bacterial lipopolysaccharide (LPS) receptor, combines with LPS‑liposaccharide binding protein complex, and causes cellular activation. However, the effects of CD14 single nucleotide polymorphisms (SNPs) on morbidity of clinical mastitis remain unclear. In the present study, To investigate the polymorphisms of CD14 gene and its effects on cows' susceptibility to mastitis, polymerase chain reaction‑single‑strand conformation polymorphism (PCR‑SSCP) assay was used to detect SNPs of CD14 gene in 134 Chinese Holsteins. SNPs were identified in PCR products amplified with 3 sets of primers in CD14 exon 2. A total of three SNPs were located in that exon: g.528 A→C (147Ser→Arg) in allele B; g.612 A→G (175Asn→Asp) in allele D; and g.1022 A→G in allele F (synonymous mutation). The SNPs in alleles B and D affected the secondary structure of CD14. A 3‑dimensional (3D) structural analysis predicted three potential protein forms with a similar structure and indicated that the changes of the above‑mentioned alleles were on the concave surface of the protein. In more detail, 147 Ser→Arg induced a protein kinase C phosphorylation site to move forward, as assessed by the motif analysis. The morbidity rate of AB (mixed type g.528 A/C) and CD (mixed type g.612 A/G) was the highest among all genotypes presented in the current study, and via of tumor necrosis factor‑α and interleukin‑6 mRNA levels were upregulated in animals of this genotype compared with others. Taken together, the CD14 SNPs identified in the present study, may be closely associated with the morbidity of mastitis.
Collapse
Affiliation(s)
- Jun Li
- Institute of Dairy Science, Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qiang Wang
- Department of Bioscience, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, P.R. China
| | - Fanghui Chen
- Institute of Dairy Science, Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Haosen Wang
- Department of Science and Education, The Fourth Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Jie Chen
- Department of Bioscience, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, P.R. China
| | - Zhao Wang
- Department of Bioscience, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, P.R. China
| | - Jiayan Huo
- Department of Bioscience, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, P.R. China
| | - Yafei Cai
- Institute of Dairy Science, Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|