1
|
Akatsu C, Naito-Matsui Y, Abdu-Allah HHM, Imamura A, Long W, Ishida H, Takematsu H, Tsubata T. Neu5Gc-mediated high-affinity interaction is dispensable for CD22 cis-ligands to regulate B cell signaling. J Biol Chem 2024; 300:107630. [PMID: 39098526 PMCID: PMC11407986 DOI: 10.1016/j.jbc.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
CD22 (also known as Siglec-2) is an inhibitory receptor expressed in B cells. CD22 specifically recognizes α2,6 sialic acid and interacts with α2,6 sialylated membrane proteins expressed on the same cell (cis-ligands) and those derived from outside of the cell (trans-ligands). Previously, CD22 cis-ligands were shown to regulate the activity of CD22, thereby regulating both BCR ligation-induced signaling and low-level "tonic" signaling in the absence of BCR ligation that regulates the survival and differentiation of B cells. Mouse CD22 prefers Neu5Gc to Neu5Ac thereby binding to α2,6-linked Neu5Gc with high affinity. Although human CD22 binds to a distinct α2,6 sialylated glycan with high affinity, expression of high-affinity ligands is regulated in a conserved and stringent manner. However, how high- versus low-affinity CD22 ligands regulate B cells is poorly understood. Here we demonstrate that the interaction of CD22 with the endogenous ligands enhances BCR ligation-induced signaling but reduces tonic signaling in Cmah-/- mouse B cells deficient in Neu5Gc as well as wild-type B cells. Moreover, Cmah-/- B cells do not show alterations in the phenotypes correlated to tonic signaling. These results indicate that low-affinity interaction of the CD22 cis-ligands with CD22 is sufficient for the regulation of B cell signaling, and suggest that expression of high-affinity CD22 ligands might be involved in the regulation of B cells by competing for the binding of CD22 with exogenous trans-ligands of CD22.
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Naito-Matsui
- Department of Molecular Cell Biology, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Akihiro Imamura
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Wang Long
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
2
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Hildenbrand A, Cramer P, Bertolotti M, Kaiser NS, Kläsener K, Nickel CM, Reth M, Heim A, Hengel H, Burgert HG, Ruzsics Z. Inhibition of B cell receptor signaling induced by the human adenovirus species D E3/49K protein. Front Immunol 2024; 15:1432226. [PMID: 39139562 PMCID: PMC11321000 DOI: 10.3389/fimmu.2024.1432226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The early transcription unit 3 (E3) of human adenoviruses (HAdVs) encodes several immunoevasins, including the E3/49K protein, which is unique for species D of HAdVs. It is expressed as surface transmembrane protein and shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface receptor CD45, thereby modulating activation of T and NK cells. Methods Considering that E3/49K represents the most polymorphic viral protein among species D HAdVs, we demonstrate here that all tested E3/49K orthologs bind to the immunologically important regulator CD45. Thus, this feature is conserved regardless of the pathological associations of the respective HAdV types. Results It appeared that modulation of CD45 is a unique property restricted to HAdVs of species D. Moreover, E3/49K treatment inhibited B cell receptor (BCR) signaling and impaired BCR signal phenotypes. The latter were highly comparable to B cells having defects in the expression of CD45, suggesting E3/49K as a potential tool to investigate CD45 specific functions. Conclusion We identified B cells as new direct target of E3/49K-mediated immune modulation, representing a novel viral immunosubversive mechanism.
Collapse
Affiliation(s)
- Andreas Hildenbrand
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Precious Cramer
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Milena Bertolotti
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Nathalie Sophia Kaiser
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Kläsener
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clara Muriel Nickel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Heim
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Hughes K, Conaway E, Blackwell E, Rout E, Yoshimoto J, Burnett R, Avery A. Canine T zone lymphoma is a tumor of mature, previously activated αβ T cells. Vet Immunol Immunopathol 2024; 269:110725. [PMID: 38359755 DOI: 10.1016/j.vetimm.2024.110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
T cell lymphomas are a diverse group of tumors found in both dogs and humans, originating from various normal T cell types. Identifying the origin of neoplastic lymphocytes can offer valuable insights into the pathogenesis and clinical behavior of these tumors. T zone lymphoma (TZL) in dogs is characterized by the absence of CD45 expression, a strong breed predilection, and its association with adult-onset demodicosis-a condition believed to be linked to immunosuppression. In this study, our aim was to employ transcriptomic and functional data to determine the normal counterpart of TZL. Identifying the normal counterpart may help us understand both how these tumors arise and explain their clinical behavior. Gene expression profiling using NanoString and RNA seq was used to compare the transcriptome between neoplastic T zone cells, normal canine T cells and publicly available gene sets using Gene Set Enrichment Analysis. Mitogen, anti-CD3 stimulation and PMA/ionomycin stimulation were used to assess T cell proliferation in vitro, and intracellular cytokine production was measured by flow cytometry. Gene expression profiling revealed that TZL is most likely derived from an activated or memory alpha-beta T cell but the cells do not fall cleanly into an effector subtype. TZL cells express CD4-specific transcription factors GATA3 and THPOK, even though TZL cells more commonly express CD8, or neither CD4 nor CD8. TZL cells produce high levels of interferon gamma and tumor necrosis factor alpha when stimulated, further supporting the hypothesis that they are derived from an antigen experienced T cell. TZL cells do not proliferate when stimulated through the T cell receptor but will divide when the T cell receptor is bypassed with PMA and ionomycin. The observation that these cells are derived from a mature, previously activated T cell is the first step in understanding the genesis of this unique T cell tumor.
Collapse
Affiliation(s)
- Kelly Hughes
- Clinical Hematopathology Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO 80523, United States
| | - Evan Conaway
- Clinical Hematopathology Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO 80523, United States
| | - Emily Blackwell
- Clinical Hematopathology Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO 80523, United States
| | - Emily Rout
- Clinical Hematopathology Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO 80523, United States
| | - Janna Yoshimoto
- Clinical Hematopathology Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO 80523, United States
| | - Robert Burnett
- Clinical Hematopathology Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO 80523, United States
| | - Anne Avery
- Clinical Hematopathology Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
5
|
Meza Guzman LG, Hyland CD, Bidgood GM, Leong E, Shen Z, Goh W, Rautela J, Vince JE, Nicholson SE, Huntington ND. CD45 limits early Natural Killer cell development. Immunol Cell Biol 2024; 102:58-70. [PMID: 37855066 PMCID: PMC10952700 DOI: 10.1111/imcb.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
The clinical development of Natural Killer (NK) cell-mediated immunotherapy marks a milestone in the development of new cancer therapies and has gained traction due to the intrinsic ability of the NK cell to target and kill tumor cells. To fully harness the tumor killing ability of NK cells, we need to improve NK cell persistence and to overcome suppression of NK cell activation in the tumor microenvironment. The trans-membrane, protein tyrosine phosphatase CD45, regulates NK cell homeostasis, with the genetic loss of CD45 in mice resulting in increased numbers of mature NK cells. This suggests that CD45-deficient NK cells might display enhanced persistence following adoptive transfer. However, we demonstrate here that adoptive transfer of CD45-deficiency did not enhance NK cell persistence in mice, and instead, the homeostatic disturbance of NK cells in CD45-deficient mice stemmed from a developmental defect in the progenitor population. The enhanced maturation within the CD45-deficient NK cell compartment was intrinsic to the NK cell lineage, and independent of the developmental defect. CD45 is not a conventional immune checkpoint candidate, as systemic loss is detrimental to T and B cell development, compromising the adaptive immune system. Nonetheless, this study suggests that inhibition of CD45 in progenitor or stem cell populations may improve the yield of in vitro generated NK cells for adoptive therapy.
Collapse
Affiliation(s)
- Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Craig D Hyland
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Zihan Shen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Wilford Goh
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Jai Rautela
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
6
|
Tsubata T. The ligand interactions of B cell Siglecs are involved in the prevention of autoimmunity to sialylated self-antigens and in the quality control of signaling-competent B cells. Int Immunol 2023; 35:461-473. [PMID: 37504378 DOI: 10.1093/intimm/dxad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of membrane molecules that recognize sialic acid. Most of them are inhibitory receptors that inhibit immune-cell activation by recognizing sialic acid as a self-motif. Human B cells express CD22 (also known as Siglec-2), Siglec-5, Siglec-6 and Siglec-10 whereas mouse B cells express CD22 and Siglec-G (ortholog of human Siglec-10). Siglecs recognize both sialylated molecules expressed on the same cell (cis-ligands) and those expressed by other cells (trans-ligands). In Guillain-Barré syndrome (GBS), antibody production to gangliosides (which are sialic acid-containing glycolipids) expressed by neurons plays a pathogenic role. A Siglec-10 variant deficient in recognition of gangliosides is genetically associated with GBS, suggesting that Siglec-10 induces self-tolerance to gangliosides by recognizing gangliosides as trans-ligands. Recognition of the BCR as a cis-ligand by Siglec-G and CD22 suppresses BCR signaling in B-1 cells and conventional B cells, respectively. This signal suppression prevents excess expansion of B-1 cells and is involved in the quality control of signaling-competent B cells by setting a threshold for tonic signaling during B cell development. CD22 recognizes other cis-ligands including CD22 and β7 integrin. Interaction of CD22 with other CD22 molecules induces CD22 clustering that suppresses CD22-mediated signal inhibition upon BCR ligation, and interaction with β7 integrin maintains its function in the gut-homing of B cells. Taken together, interactions of B cell Siglecs with multiple trans- and cis-ligands play important roles in B cell homeostasis and immune responses.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
7
|
Cui G, Shimba A, Jin J, Hojo N, Asahi T, Abe S, Ejima A, Okada S, Ohira K, Kato R, Tani-ichi S, Yamada R, Ebihara T, Shiroguchi K, Ikuta K. CD45 alleviates airway inflammation and lung fibrosis by limiting expansion and activation of ILC2s. Proc Natl Acad Sci U S A 2023; 120:e2215941120. [PMID: 37639581 PMCID: PMC10483638 DOI: 10.1073/pnas.2215941120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are critical for the immune response against parasite infection and tissue homeostasis and involved in the pathogenesis of allergy and inflammatory diseases. Although multiple molecules positively regulating ILC2 development and activation have been extensively investigated, the factors limiting their population size and response remain poorly studied. Here, we found that CD45, a membrane-bound tyrosine phosphatase essential for T cell development, negatively regulated ILC2s in a cell-intrinsic manner. ILC2s in CD45-deficient mice exhibited enhanced proliferation and maturation in the bone marrow and hyperactivated phenotypes in the lung with high glycolytic capacity. Furthermore, CD45 signaling suppressed the type 2 inflammatory response by lung ILC2s and alleviated airway inflammation and pulmonary fibrosis. Finally, the interaction with galectin-9 influenced CD45 signaling in ILC2s. These results demonstrate that CD45 is a cell-intrinsic negative regulator of ILC2s and prevents lung inflammation and fibrosis via ILC2s.
Collapse
Affiliation(s)
- Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Jianshi Jin
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research, Osaka565-0874, Japan
| | - Nozomi Hojo
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research, Osaka565-0874, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Shinri Okada
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Keizo Ohira
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Ryoma Kato
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Shizue Tani-ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Ryo Yamada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Takashi Ebihara
- Department of Medical Biology, Graduate School of Medicine, Akita University, Akita010-8543, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research, Osaka565-0874, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| |
Collapse
|
8
|
Tsubata T. Siglec cis-ligands and their roles in the immune system. Glycobiology 2023; 33:532-544. [PMID: 37154567 DOI: 10.1093/glycob/cwad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins are a family of membrane molecules primarily expressed in immune cells. Most of them are inhibitory receptors containing immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. On the cell surface, sialic acid-binding immunoglobulin-like lectins are mostly bound by sialylated glycans on membrane molecules expressed in the same cell (cis-ligands). Although ligands of sialic acid-binding immunoglobulin-like lectins are not efficiently identified by conventional methods such as immunoprecipitation, in situ labeling including proximity labeling is useful in identifying both cis-ligands and the sialylated ligands expressed by other cells (trans-ligands) of sialic acid-binding immunoglobulin-like lectins. Interaction of the inhibitory sialic acid-binding immunoglobulin-like lectins with cis-ligands including both those with and without signaling function modulates the inhibitory activity of sialic acid-binding immunoglobulin-like lectins by multiple different ways. This interaction also modulates signaling function of the cis-ligands. So far, little is known about the role of the interaction between sialic acid-binding immunoglobulin-like lectins and the cis-ligands. Nonetheless, recent studies showed that the inhibitory activity of CD22 (also known as Siglec-2) is regulated by endogenous ligands, most likely cis-ligands, differentially in resting B cells and those in which B-cell antigen receptor is ligated. This differential regulation plays a role in quality control of signaling-competent B cells and also partial restoration of B-cell antigen receptor signaling in immunodeficient B cells.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Pathology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
9
|
Volkov DV, Stepanova VM, Rubtsov YP, Stepanov AV, Gabibov AG. Protein Tyrosine Phosphatase CD45 As an Immunity Regulator and a Potential Effector of CAR-T therapy. Acta Naturae 2023; 15:17-26. [PMID: 37908772 PMCID: PMC10615191 DOI: 10.32607/actanaturae.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
The leukocyte common antigen CD45 is a receptor tyrosine phosphatase and one of the most prevalent antigens found on the surface of blood cells. CD45 plays a crucial role in the initial stages of signal transmission from receptors of various immune cell types. Immunodeficiency, autoimmune disorders, and oncological diseases are frequently caused by gene expression disorders and imbalances in CD45 isoforms. Despite extensive research into the structure and functions of CD45, the molecular mechanisms behind its role in transmitting signals from T-cell receptors and chimeric antigen receptors remain not fully understood. It is of utmost importance to comprehend the structural features of CD45 and its function in regulating immune system cell activation to study oncological diseases and the impact of CD45 on lymphocytes and T cells modified by chimeric antigen receptors.
Collapse
Affiliation(s)
- D. V. Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - V. M. Stepanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - Y. P. Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. V. Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. G. Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
10
|
Palkina N, Aksenenko M, Zemtsov D, Lavrentev S, Zinchenko I, Belenyuk V, Kirichenko A, Savchenko A, Ruksha T. miR-204-5p in vivo inhibition cause diminished CD45RO cells rate in lungs of melanoma B16-bearing mice. Noncoding RNA Res 2022; 7:133-141. [PMID: 35756165 PMCID: PMC9188961 DOI: 10.1016/j.ncrna.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/25/2022] Open
|
11
|
Liu B, Jing Z, Zhang X, Chen Y, Mao S, Kaundal R, Zou Y, Wei G, Zang Y, Wang X, Lin W, Di M, Sun Y, Chen Q, Li Y, Xia J, Sun J, Lin CP, Huang X, Chi T. Large-scale multiplexed mosaic CRISPR perturbation in the whole organism. Cell 2022; 185:3008-3024.e16. [PMID: 35870449 DOI: 10.1016/j.cell.2022.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Here, we report inducible mosaic animal for perturbation (iMAP), a transgenic platform enabling in situ CRISPR targeting of at least 100 genes in parallel throughout the mouse body. iMAP combines Cre-loxP and CRISPR-Cas9 technologies and utilizes a germline-transmitted transgene carrying a large array of individually floxed, tandemly linked gRNA-coding units. Cre-mediated recombination triggers expression of all the gRNAs in the array but only one of them per cell, converting the mice to mosaic organisms suitable for phenotypic characterization and also for high-throughput derivation of conventional single-gene perturbation lines via breeding. Using gRNA representation as a readout, we mapped a miniature Perturb-Atlas cataloging the perturbations of 90 genes across 39 tissues, which yields rich insights into context-dependent gene functions and provides a glimpse of the potential of iMAP in genome decoding.
Collapse
Affiliation(s)
- Bo Liu
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhengyu Jing
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoming Zhang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuxin Chen
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shaoshuai Mao
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ravinder Kaundal
- Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | - Yan Zou
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ge Wei
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Zang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinxin Wang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenyang Lin
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minghui Di
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Sun
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qin Chen
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yongqin Li
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Xia
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianlong Sun
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Chi
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Tetraspanin CD53 controls T cell immunity through regulation of CD45RO stability, mobility, and function. Cell Rep 2022; 39:111006. [PMID: 35767951 DOI: 10.1016/j.celrep.2022.111006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
T cells depend on the phosphatase CD45 to initiate T cell receptor signaling. Although the critical role of CD45 in T cells is established, the mechanisms controlling function and localization in the membrane are not well understood. Moreover, the regulation of specific CD45 isoforms in T cell signaling remains unresolved. By using unbiased mass spectrometry, we identify the tetraspanin CD53 as a partner of CD45 and show that CD53 controls CD45 function and T cell activation. CD53-negative T cells (Cd53-/-) exhibit substantial proliferation defects, and Cd53-/- mice show impaired tumor rejection and reduced IFNγ-producing T cells compared with wild-type mice. Investigation into the mechanism reveals that CD53 is required for CD45RO expression and mobility. In addition, CD53 is shown to stabilize CD45 on the membrane and is required for optimal phosphatase activity and subsequent Lck activation. Together, our findings reveal CD53 as a regulator of CD45 activity required for T cell immunity.
Collapse
|
13
|
Akatsu C, Alborzian Deh Sheikh A, Matsubara N, Takematsu H, Schweizer A, Abdu-Allah HHM, Tedder TF, Nitschke L, Ishida H, Tsubata T. The inhibitory coreceptor CD22 restores B cell signaling by developmentally regulating Cd45-/- immunodeficient B cells. Sci Signal 2022; 15:eabf9570. [PMID: 35230871 DOI: 10.1126/scisignal.abf9570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The protein tyrosine phosphatase CD45 plays a crucial role in B cell antigen receptor (BCR) signaling by activating Src family kinases. Cd45-/- mice show altered B cell development and a phenotype likely due to reduced steady-state signaling; however, Cd45-/- B cells show relatively normal BCR ligation-induced signaling. In our investigation of how BCR signaling was restored in Cd45-/- cells, we found that the coreceptor CD22 switched from an inhibitory to a stimulatory function in these cells. We disrupted the ability of CD22 to interact with its ligands in Cd45-/- B cells by generating Cd45-/-St6galI-/- mice, which cannot synthesize the glycan ligand of CD22, or by treating Cd45-/- B cells in vitro with the sialoside GSC718, which inhibits ligand binding to CD22. BCR ligation-induced signaling was reduced by ST6GalI deficiency, but not by GSC718 treatment, suggesting that CD22 restored BCR ligation-induced signaling in Cd45-/- mature B cells by altering cellular phenotypes during development. CD22 was required for the increase in the surface amount of IgM-BCR on Cd45-/- B cells, which augmented signaling. Because B cell survival depends on steady-state BCR signaling, IgM-BCR abundance was likely increased by the selective survival of IgM-BCRhi Cd45-/- B cells because of CD22-mediated signaling under conditions of substantially reduced steady-state signaling. Because the amount of surface IgM-BCR is increased on B cells from patients with other BCR signaling deficiencies, including X-linked agammaglobulinemia, our findings suggest that CD22 may contribute to the partial restoration of B cell function in these patients.
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Amin Alborzian Deh Sheikh
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Naoko Matsubara
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiromu Takematsu
- Faculty of Medical Technology, Fujita Health University, Toyoake, Aichi, Japan
| | - Astrid Schweizer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | | | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
14
|
Kralova J, Pavliuchenko N, Fabisik M, Ilievova K, Spoutil F, Prochazka J, Pokorna J, Sedlacek R, Brdicka T. The receptor-type protein tyrosine phosphatase CD45 promotes onset and severity of IL-1β-mediated autoinflammatory osteomyelitis. J Biol Chem 2021; 297:101131. [PMID: 34461100 PMCID: PMC8455366 DOI: 10.1016/j.jbc.2021.101131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
A number of human autoinflammatory diseases manifest with severe inflammatory bone destruction. Mouse models of these diseases represent valuable tools that help us to understand molecular mechanisms triggering this bone autoinflammation. The Pstpip2cmo mouse strain is among the best characterized of these; it harbors a mutation resulting in the loss of adaptor protein PSTPIP2 and development of autoinflammatory osteomyelitis. In Pstpip2cmo mice, overproduction of interleukin-1β (IL-1β) and reactive oxygen species by neutrophil granulocytes leads to spontaneous inflammation of the bones and surrounding soft tissues. However, the upstream signaling events leading to this overproduction are poorly characterized. Here, we show that Pstpip2cmo mice deficient in major regulator of Src-family kinases (SFKs) receptor-type protein tyrosine phosphatase CD45 display delayed onset and lower severity of the disease, while the development of autoinflammation is not affected by deficiencies in Toll-like receptor signaling. Our data also show deregulation of pro-IL-1β production by Pstpip2cmo neutrophils that are attenuated by CD45 deficiency. These data suggest a role for SFKs in autoinflammation. Together with previously published work on the involvement of protein tyrosine kinase spleen tyrosine kinase, they point to the role of receptors containing immunoreceptor tyrosine-based activation motifs, which after phosphorylation by SFKs recruit spleen tyrosine kinase for further signal propagation. We propose that this class of receptors triggers the events resulting in increased pro-IL-1β synthesis and disease initiation and/or progression.
Collapse
Affiliation(s)
- Jarmila Kralova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nataliia Pavliuchenko
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Charles University, Faculty of Science, Prague, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Charles University, Faculty of Science, Prague, Czech Republic
| | - Kristyna Ilievova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
15
|
Alborzian Deh Sheikh A, Akatsu C, Abdu-Allah HHM, Suganuma Y, Imamura A, Ando H, Takematsu H, Ishida H, Tsubata T. The Protein Tyrosine Phosphatase SHP-1 (PTPN6) but Not CD45 (PTPRC) Is Essential for the Ligand-Mediated Regulation of CD22 in BCR-Ligated B Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:2544-2551. [PMID: 33990399 DOI: 10.4049/jimmunol.2100109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022]
Abstract
CD22 is an inhibitory B cell coreceptor that regulates B cell development and activation by downregulating BCR signaling through activation of SH2-containing protein tyrosine phosphatase-1 (SHP-1). CD22 recognizes α2,6 sialic acid as a specific ligand and interacts with α2,6 sialic acid-containing membrane molecules, such as CD45, IgM, and CD22, expressed on the same cell. Functional regulation of CD22 by these endogenous ligands enhances BCR ligation-induced signaling and is essential for normal B cell responses to Ags. In this study, we demonstrate that CD45 plays a crucial role in CD22-mediated inhibition of BCR ligation-induced signaling. However, disruption of ligand binding of CD22 enhances CD22 phosphorylation, a process required for CD22-mediated signal inhibition, upon BCR ligation in CD45-/- as well as wild-type mouse B cells but not in mouse B cells expressing a loss-of-function mutant of SHP-1. This result indicates that SHP-1 but not CD45 is required for ligand-mediated regulation of CD22. We further demonstrate that CD22 is a substrate of SHP-1, suggesting that SHP-1 recruited to CD22 dephosphorylates nearby CD22 as well as other substrates. CD22 dephosphorylation by SHP-1 appears to be augmented by homotypic CD22 clustering mediated by recognition of CD22 as a ligand of CD22 because CD22 clustering increases the number of nearby CD22. Our results suggest that CD22 but not CD45 is an endogenous ligand of CD22 that enhances BCR ligation-induced signaling through SHP-1-mediated dephosphorylation of CD22 in CD22 clusters.
Collapse
Affiliation(s)
- Amin Alborzian Deh Sheikh
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Yuki Suganuma
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Akihiro Imamura
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu, Japan.,Institute for Glyco-core Research, Gifu University, Gifu, Japan; and
| | - Hiromu Takematsu
- Faculty of Medical Technology, Fujita Health University, Toyoake, Aichi, Japan
| | - Hideharu Ishida
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan;
| |
Collapse
|
16
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
17
|
Hay IM, Fearnley GW, Rios P, Köhn M, Sharpe HJ, Deane JE. The receptor PTPRU is a redox sensitive pseudophosphatase. Nat Commun 2020; 11:3219. [PMID: 32591542 PMCID: PMC7320164 DOI: 10.1038/s41467-020-17076-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
The receptor-linked protein tyrosine phosphatases (RPTPs) are key regulators of cell-cell communication through the control of cellular phosphotyrosine levels. Most human RPTPs possess an extracellular receptor domain and tandem intracellular phosphatase domains: comprising an active membrane proximal (D1) domain and an inactive distal (D2) pseudophosphatase domain. Here we demonstrate that PTPRU is unique amongst the RPTPs in possessing two pseudophosphatase domains. The PTPRU-D1 displays no detectable catalytic activity against a range of phosphorylated substrates and we show that this is due to multiple structural rearrangements that destabilise the active site pocket and block the catalytic cysteine. Upon oxidation, this cysteine forms an intramolecular disulphide bond with a vicinal "backdoor" cysteine, a process thought to reversibly inactivate related phosphatases. Importantly, despite the absence of catalytic activity, PTPRU binds substrates of related phosphatases strongly suggesting that this pseudophosphatase functions in tyrosine phosphorylation by competing with active phosphatases for the binding of substrates.
Collapse
Affiliation(s)
- Iain M Hay
- Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Gareth W Fearnley
- Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Pablo Rios
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Schänzlestr. 18, Freiburg, D-79104, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Schänzlestr. 18, Freiburg, D-79104, Germany
| | - Hayley J Sharpe
- Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK.
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Janet E Deane
- Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
18
|
Shim YA, Campbell T, Weliwitigoda A, Dosanjh M, Johnson P. Regulation of CD71 +TER119 + erythroid progenitor cells by CD45. Exp Hematol 2020; 86:53-66.e1. [PMID: 32450207 DOI: 10.1016/j.exphem.2020.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/01/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022]
Abstract
Red blood cells are generated daily to replenish dying cells and maintain erythrocyte homeostasis. Erythropoiesis is driven by erythropoietin and supported by specialized red pulp macrophages that facilitate enucleation. Here we show that the leukocyte-specific tyrosine phosphatase CD45 is downregulated in late erythroid development, yet it regulates the CD71+TER119+ progenitor pool, which includes the Pro E, Ery A, and Ery B populations. The CD71+TER119+ progenitors are a major splenic population in neonates required for extramedullary erythropoiesis, to meet the high demand for red blood cells during growth. This population decreases as the mice mature, but this was not the case in CD45-deficient mice, which maintained a high level of these progenitors in the spleen into adulthood. Despite these increased erythroid progenitors, CD45-deficient mice had normal numbers of mature red blood cells. This was attributed to the increased proliferation of the Pro E and Ery A populations and the increased apoptosis of the CD71+TER119+ population, as well as an increased turnover of circulating red blood cells. The expansion of the CD71+TER119+ population in the absence of CD45 was attributed to increased numbers of red pulp macrophages producing erythropoietin in the spleen. Thus, CD45 regulates extramedullary erythropoiesis in the spleen.
Collapse
Affiliation(s)
- Yaein A Shim
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Campbell
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Asanga Weliwitigoda
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Núñez MF, Wisser K, Veatch SL. Synergistic factors control kinase-phosphatase organization in B-cells engaged with supported bilayers. Mol Biol Cell 2019; 31:667-682. [PMID: 31877064 PMCID: PMC7202075 DOI: 10.1091/mbc.e19-09-0507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
B-cells become activated by ligands with varying valency and mode of presentation to the B-cell receptor (BCR). We previously demonstrated that clustering the immunoglobulin M (IgM) isotype of BCR with an artificial soluble cross-linker stabilized an ordered phase-like domain that enriched kinases and depleted phosphatases to promote receptor tyrosine phosphorylation. BCR is also activated by ligands presented at surfaces, and here we activate B-cells via supported bilayers of phosphatidylcholine lipids, a natural ligand for the IgM BCR expressed in the CH27 cells used. Using superresolution fluorescence localization microscopy, along with a quantitative cross-correlation analysis, we find that BRCs engaged with bilayers sort minimal peptide markers of liquid-ordered and liquid-disordered phases, indicating that ordered-domain stabilization is a general feature of BCR clustering. The phosphatase CD45 is more strongly excluded from bilayer-engaged BRCs than a transmembrane peptide, indicating that mechanisms other than domain partitioning contribute to its organization. Experimental observations are assembled into a minimal model of receptor activation that incorporates both ordered domains and direct phosphatase exclusion mechanisms to produce a more sensitive response.
Collapse
Affiliation(s)
| | - Kathleen Wisser
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105
| |
Collapse
|
20
|
Ayala-Cuellar AP, Kim CW, Hwang KA, Kang JH, Lee G, Cho J, Choi KC. Characterization of canine adipose tissue-derived mesenchymal stem cells immortalized by SV40-T retrovirus for therapeutic use. J Cell Physiol 2019; 234:16630-16642. [PMID: 30779347 DOI: 10.1002/jcp.28338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Canine mesenchymal stem cells (cMSCs) are gaining popularity in the veterinary field as a regenerative therapy. But, their limited culture lifespan makes it an obstacle for preclinical investigation and therapeutic use. In this study, primary canine adipose tissue-derived MSCs (PCAT-MSCs) were isolated from adipose tissue and were transfected with the SV40-T retrovirus resulting in a life-extended immortalized canine adipose tissue-derived MSCs (ICAT-MSCs). A comparison was made through the characterization of both PCAT-MSCs and ICAT-MSCs. Both showed a fibroblastic morphology; ICAT-MSCs showed a higher potential of colony formation compared with PCAT-MSCs and a reduced population doubling time; stem cell markers SOX2 and NANOG were expressed in both cell lines; karyotyping analysis showed no abnormalities in both PCAT-MSCs and ICAT-MSCs; both cell lines were CD90+ , CD44 + , and CD45 - ; both generated chondrogenic pellet; in osteogenic differentiation both showed upregulation of Osterix, a master transcriptome of osteogenesis, but in PCAT-MSCs, an upregulation of SOX2 was also observed. In conclusion, ICAT-MSCs showed similar characteristics with PCAT-MSCs, thus established as an easy to access platform for studies on better understanding about cMSCs nature.
Collapse
Affiliation(s)
- Ana Patricia Ayala-Cuellar
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Houn Kang
- Laboratory of Veterinary Internal Medicine and Neuroendocrinology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,Institute of Life Science and Bioengineering, TheraCell Bio & Science, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
21
|
Inamdar VV, Kostyak JC, Badolia R, Dangelmaier CA, Manne BK, Patel A, Kim S, Kunapuli SP. Impaired Glycoprotein VI-Mediated Signaling and Platelet Functional Responses in CD45 Knockout Mice. Thromb Haemost 2019; 119:1321-1331. [PMID: 31226719 DOI: 10.1055/s-0039-1692422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE CD45 is a receptor protein tyrosine phosphatase present on the surface of all hematopoietic cells except for erythrocytes and platelets. Proteomics studies, however, have demonstrated the presence of a CD45 c-terminal catalytic peptide in platelets. Therefore, we investigated the functional role of this truncated isoform of CD45 in platelets, which contains the c-terminal catalytic domain but lacks the extracellular region. METHODS AND RESULTS We used an antibody specific to the c-terminus of CD45 to confirm the presence of a truncated CD45 isoform in platelets. We also examined ex vivo and in vivo platelet function using CD45 knockout (KO) mice. Aggregation and secretion mediated by the glycoprotein VI (GPVI) receptor was impaired in CD45 KO platelets. Consequently, CD45 KO mice had impaired hemostasis indicated by increased tail bleeding times. Also, using a model of pulmonary embolism we showed that CD45 KO mice had defective in vivo thrombus formation. Next, we investigated whether or not the truncated isoform of CD45 had a role in GPVI signaling. The full-length isoform of CD45 is known to regulate Src family kinase (SFK) activation in lymphocytes. We find a similar role for the truncated isoform of CD45 in platelets. SFK activation was impaired downstream of the GPVI receptor in the CD45 KO murine platelets. Consequently, Syk, PLCγ2, and pleckstrin phosphorylations were also impaired in CD45 KO murine platelets. CONCLUSION We conclude that the truncated CD45 isoform regulates GPVI-mediated signaling and platelet functional responses by regulating SFK activation.
Collapse
Affiliation(s)
- Vaishali V Inamdar
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - John C Kostyak
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Rachit Badolia
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Carol A Dangelmaier
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Bhanu Kanth Manne
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Soochong Kim
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
22
|
Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens 2018; 7:pathogens7030068. [PMID: 30104482 PMCID: PMC6161159 DOI: 10.3390/pathogens7030068] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic flavivirus, is an enveloped positive-strand RNA virus that can cause a spectrum of clinical manifestations, ranging from mild febrile illness to severe neuroinvasive disease. Today, several killed and live vaccines are available in different parts of the globe for use in humans to prevent JEV-induced diseases, yet no antivirals are available to treat JEV-associated diseases. Despite the progress made in vaccine research and development, JEV is still a major public health problem in southern, eastern, and southeastern Asia, as well as northern Oceania, with the potential to become an emerging global pathogen. In viral replication, the entry of JEV into the cell is the first step in a cascade of complex interactions between the virus and target cells that is required for the initiation, dissemination, and maintenance of infection. Because this step determines cell/tissue tropism and pathogenesis, it is a promising target for antiviral therapy. JEV entry is mediated by the viral glycoprotein E, which binds virions to the cell surface (attachment), delivers them to endosomes (endocytosis), and catalyzes the fusion between the viral and endosomal membranes (membrane fusion), followed by the release of the viral genome into the cytoplasm (uncoating). In this multistep process, a collection of host factors are involved. In this review, we summarize the current knowledge on the viral and cellular components involved in JEV entry into host cells, with an emphasis on the initial virus-host cell interactions on the cell surface.
Collapse
|
23
|
Perron M, Saragovi HU. Inhibition of CD45 Phosphatase Activity Induces Cell Cycle Arrest and Apoptosis of CD45 + Lymphoid Tumors Ex Vivo and In Vivo. Mol Pharmacol 2018; 93:575-580. [PMID: 29555821 DOI: 10.1124/mol.117.110908] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Src-family kinases (SFK) govern cellular proliferation of bone marrow-derived cells. SFKs are regulated by the protein tyrosine phosphatase enzymatic activity of CD45. All lymphoid cells express CD45, but only proliferating cells are dependent on CD45 activity. We postulated that compound 211 (2-[(4-acetylphenyl)amino]-3-chloronaphthoquinone), a selective inhibitor of CD45 phosphatase activity, could preferentially affect actively proliferating cells but spare resting lymphoid cells. Compound 211 inhibited CD45 and induced inappropriate SFK signaling, leading to a G2/M cell cycle arrest and apoptotic cell death. CD45+ cell lines were sensitive to compound 211 cytotoxicity at low micromolar LD50 while control CD45- cell lines and CD45+ resting primary T cells were spared any toxicity. In two syngeneic tumor models in vivo, compound 211 delayed the growth of established primary tumors and reduced tumor metastasis without causing depletion of resting T cells. This work validates targeting CD45 phosphatase enzymatic activity, which may be a druggable target for cancer therapy.
Collapse
Affiliation(s)
- Michael Perron
- Lady Davis Institute-Jewish General Hospital and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - H Uri Saragovi
- Lady Davis Institute-Jewish General Hospital and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Saint-Paul L, Nguyen CH, Buffière A, Pais de Barros JP, Hammann A, Landras-Guetta C, Filomenko R, Chrétien ML, Johnson P, Bastie JN, Delva L, Quéré R. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts. Oncotarget 2018; 7:64785-64797. [PMID: 27579617 PMCID: PMC5323116 DOI: 10.18632/oncotarget.11622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/20/2016] [Indexed: 01/19/2023] Open
Abstract
CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML.
Collapse
Affiliation(s)
- Laetitia Saint-Paul
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR9187-U1196, CNRS-Institut Curie, Inserm, Centre Universitaire, Orsay, France
| | - Anne Buffière
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Jean-Paul Pais de Barros
- LipSTIC Labex, Dijon, France.,Plateforme de lipidomique, Université Bourgogne-Franche-Comté, Dijon, France
| | - Arlette Hammann
- Plateforme de cytométrie, Université Bourgogne-Franche-Comté, Dijon, France
| | - Corinne Landras-Guetta
- Institut Curie, PSL Research University, UMR9187-U1196, CNRS-Institut Curie, Inserm, Centre Universitaire, Orsay, France
| | | | - Marie-Lorraine Chrétien
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Hôpital Universitaire François-Mitterrand, Service d'Hématologie Clinique, Dijon, France
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jean-Noël Bastie
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Hôpital Universitaire François-Mitterrand, Service d'Hématologie Clinique, Dijon, France
| | - Laurent Delva
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Ronan Quéré
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| |
Collapse
|
25
|
CD45 in human physiology and clinical medicine. Immunol Lett 2018; 196:22-32. [PMID: 29366662 DOI: 10.1016/j.imlet.2018.01.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
CD45 is an evolutionary highly conserved receptor protein tyrosine phosphatase exclusively expressed on all nucleated cells of the hematopoietic system. It is characterized by the expression of several isoforms, specific to a certain cell type and the developmental or activation status of the cell. CD45 is one of the key players in the initiation of T cell receptor signaling by controlling the activation of the Src family protein-tyrosine kinases Lck and Fyn. CD45 deficiency results in T- and B-lymphocyte dysfunction in the form of severe combined immune deficiency. It also plays a significant role in autoimmune diseases and cancer as well as in infectious diseases including fungal infections. The knowledge collected on CD45 biology is rather vast, but it remains unclear whether all findings in rodent immune cells also apply to human CD45. This review focuses on human CD45 expression and function and provides an overview on its ligands and role in human pathology.
Collapse
|
26
|
Abstract
Major histocompatibility complex (MHC) restriction is a unique feature of T cell antigen recognition. Mature T cells respond to antigenic nonself peptides bound to self-MHC molecules, but a sizeable fraction of peripheral T cells can also respond to nonself peptide-MHC (pMHC) complexes in the context of transplantation. MHC specificity of the T cell receptor (TCR) repertoire is shaped during thymic development. Two hypotheses have been proposed to explain MHC specificity of T cells. It has been suggested that MHC specificity is an intrinsic feature of TCR structure, mediated by the germline-encoded regions of the TCR sequence. In support of this model, an estimated 15% to 30% of preselection TCR repertoire is estimated to be MHC-specific. Moreover, structural studies have shown some degree of conserved binding topology for TCR-peptide MHC complexes. However, there is also evidence that MHC restriction can be imposed on the TCR repertoire during thymic development, and it has been proposed that the interaction of the Lck kinase with CD4 or CD8 coreceptors is critical for generation of MHC specificity. This review will discuss recent work on assessment of the preselection of TCR repertoire, molecular evidence for the germline encoded TCR bias for MHC, and for the coreceptor sequestration model in the context of alloreactivity and transplantation.
Collapse
|
27
|
Wiede F, Dudakov JA, Lu KH, Dodd GT, Butt T, Godfrey DI, Strasser A, Boyd RL, Tiganis T. PTPN2 regulates T cell lineage commitment and αβ versus γδ specification. J Exp Med 2017; 214:2733-2758. [PMID: 28798028 PMCID: PMC5584121 DOI: 10.1084/jem.20161903] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
During early thymocyte development, coordinated JAK/STAT5 and SFK/pre-TCR signaling is critical for T cell lineage commitment and αβ versus γδ specification. Wiede et al. show a role for the tyrosine phosphatase PTPN2 in attenuating SRC family kinase LCK and STAT5 signaling to regulate αβ and γδ T cell development. In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)–restricted αβ T cell receptor (TCR) T cells and non–MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR T cells remain unclear. Here, we show that the tyrosine phosphatase PTPN2 attenuates STAT5 (signal transducer and activator of transcription 5) signaling to regulate T cell lineage commitment and SRC family kinase LCK and STAT5 signaling to regulate αβ TCR versus γδ TCR T cell development. Our findings identify PTPN2 as an important regulator of critical checkpoints that dictate the commitment of multipotent precursors to the T cell lineage and their subsequent maturation into αβ TCR or γδ TCR T cells.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jarrod A Dudakov
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kun-Hui Lu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Garron T Dodd
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tariq Butt
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dale I Godfrey
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Strasser
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Courtney AH, Amacher JF, Kadlecek TA, Mollenauer MN, Au-Yeung BB, Kuriyan J, Weiss A. A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Mol Cell 2017; 67:498-511.e6. [PMID: 28735895 DOI: 10.1016/j.molcel.2017.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
The Src Family kinase Lck sets a critical threshold for T cell activation because it phosphorylates the TCR complex and the Zap70 kinase. How a T cell controls the abundance of active Lck molecules remains poorly understood. We have identified an unappreciated role for a phosphosite, Y192, within the Lck SH2 domain that profoundly affects the amount of active Lck in cells. Notably, mutation of Y192 blocks critical TCR-proximal signaling events and impairs thymocyte development in retrogenic mice. We determined that these defects are caused by hyperphosphorylation of the inhibitory C-terminal tail of Lck. Our findings reveal that modification of Y192 inhibits the ability of CD45 to associate with Lck in cells and dephosphorylate the C-terminal tail of Lck, which prevents its adoption of an active open conformation. These results suggest a negative feedback loop that responds to signaling events that tune active Lck amounts and TCR sensitivity.
Collapse
Affiliation(s)
- Adam H Courtney
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanine F Amacher
- Departments of Molecular and Cell Biology and Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theresa A Kadlecek
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA
| | - Marianne N Mollenauer
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA
| | - Byron B Au-Yeung
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Kuriyan
- Departments of Molecular and Cell Biology and Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; The Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA.
| |
Collapse
|
29
|
Fasbender F, Claus M, Wingert S, Sandusky M, Watzl C. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes. Front Immunol 2017; 8:789. [PMID: 28736554 PMCID: PMC5500614 DOI: 10.3389/fimmu.2017.00789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 01/10/2023] Open
Abstract
In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.
Collapse
Affiliation(s)
- Frank Fasbender
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Maren Claus
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Sabine Wingert
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Mina Sandusky
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| |
Collapse
|
30
|
Loss of CD45 cell surface expression in canine T-zone lymphoma results from reduced gene expression. Vet Immunol Immunopathol 2017; 187:14-19. [DOI: 10.1016/j.vetimm.2017.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
|
31
|
Thiel N, Keyser KA, Lemmermann NAW, Oduro JD, Wagner K, Elsner C, Halenius A, Lenac Roviš T, Brinkmann MM, Jonjić S, Cicin-Sain L, Messerle M. The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages. PLoS Pathog 2016; 12:e1006057. [PMID: 27926943 PMCID: PMC5142792 DOI: 10.1371/journal.ppat.1006057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/11/2016] [Indexed: 01/28/2023] Open
Abstract
The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tail-anchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction. Human cytomegalovirus (HCMV) is a tenacious pathogen, which can be life-threatening for immunocompromised patients and immunologically immature newborns. The pathogenicity of HCMV is owed to a plethora of immunomodulatory functions that interfere with host defense mechanisms. Such viral functions can teach us about viral pathogenesis mechanisms, and also about the functioning of immune cells. In this study we report that the mouse cytomegalovirus (MCMV)–a close relative of HCMV–influences surface expression of the cellular protein CD45 on macrophages and we identified the viral gene m42 mediating this effect. CD45 has long been known to be essential for the functioning of lymphocytes, however, its role in macrophages is less well understood. Growth analysis of a viral mutant indicated that the m42 gene confers a replication advantage to MCMV in vivo. We found that the m42 protein induces internalization of CD45 from the plasma membrane and degradation in lysosomes—most likely triggered by interaction of m42 with a ubiquitin ligase. In our study we detected a new element in the complex interaction of cytomegaloviruses with host cells, and further investigation into this mechanism may provide us with new insights into the functions of CD45 in myeloid cells.
Collapse
Affiliation(s)
- Nadine Thiel
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kirsten A Keyser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Niels A W Lemmermann
- Institute of Virology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Carina Elsner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tihana Lenac Roviš
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Melanie M Brinkmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Luka Cicin-Sain
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
CD45 regulates GM-CSF, retinoic acid and T-cell homing in intestinal inflammation. Mucosal Immunol 2016; 9:1514-1527. [PMID: 27007678 DOI: 10.1038/mi.2016.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/03/2016] [Indexed: 02/04/2023]
Abstract
CD45 is a leukocyte-specific tyrosine phosphatase important for T-cell development, and as a result, CD45-/- mice have substantially reduced numbers of T cells. Here we show that, upon dextran sodium sulfate (DSS)-induced colitis, CD45-/- mice have equivalent intestinal pathology and T-cell numbers in their colon as C57BL/6 mice and show enhanced weight loss. CD45-/- mice have a greater percentage of α4β7+ T cells prior to and after colitis and an increased percentage of T cells producing inflammatory cytokines in the inflamed colon, suggesting that CD45-/- effector T cells preferentially home to the intestine. In DSS-induced colitis in CD45RAG-/- mice lacking an adaptive immune system, CD45 was required for optimal granulocyte-macrophage colony-stimulating factor (GM-CSF) and retinoic acid (RA) production by innate immune cells. Addition of CD45+/+ T cells led to greater weight loss in the RAG-/- mice compared with CD45RAG-/- mice that correlated with reduced α4β7+ T cells and lower recruitment to the colon of CD45RAG-/- mice in DSS-induced colitis. Addition of exogenous GM-CSF to CD45RAG-/- mice rescued RA production, increased colonic T-cell numbers, and increased weight loss. This demonstrates opposing effects of CD45 in innate and adaptive immune cells in proinflammatory responses and the expression of the gut-homing molecule, α4β7.
Collapse
|
33
|
Krzywinska E, Cornillon A, Allende-Vega N, Vo DN, Rene C, Lu ZY, Pasero C, Olive D, Fegueux N, Ceballos P, Hicheri Y, Sobecki M, Rossi JF, Cartron G, Villalba M. CD45 Isoform Profile Identifies Natural Killer (NK) Subsets with Differential Activity. PLoS One 2016; 11:e0150434. [PMID: 27100180 PMCID: PMC4839597 DOI: 10.1371/journal.pone.0150434] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/13/2016] [Indexed: 01/30/2023] Open
Abstract
The leucocyte-specific phosphatase CD45 is present in two main isoforms: the large CD45RA and the short CD45RO. We have recently shown that distinctive expression of these isoforms distinguishes natural killer (NK) populations. For example, co-expression of both isoforms identifies in vivo the anti tumor NK cells in hematological cancer patients. Here we show that low CD45 expression associates with less mature, CD56bright, NK cells. Most NK cells in healthy human donors are CD45RA+CD45RO-. The CD45RA-RO+ phenotype, CD45RO cells, is extremely uncommon in B or NK cells, in contrast to T cells. However, healthy donors possess CD45RAdimRO- (CD45RAdim cells), which show immature markers and are largely expanded in hematopoietic stem cell transplant patients. Blood borne cancer patients also have more CD45RAdim cells that carry several features of immature NK cells. However, and in opposition to their association to NK cell progenitors, they do not proliferate and show low expression of the transferrin receptor protein 1/CD71, suggesting low metabolic activity. Moreover, CD45RAdim cells properly respond to in vitro encounter with target cells by degranulating or gaining CD69 expression. In summary, they are quiescent NK cells, with low metabolic status that can, however, respond after encounter with target cells.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Amelie Cornillon
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Nerea Allende-Vega
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Dang-Nghiem Vo
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Celine Rene
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Zhao-Yang Lu
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Christine Pasero
- Centre de Cancérologie de Marseille, Plateforme d'Immunomonitoring en Cancérologie, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Daniel Olive
- Centre de Cancérologie de Marseille, Plateforme d'Immunomonitoring en Cancérologie, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Nathalie Fegueux
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Patrick Ceballos
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Yosr Hicheri
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Michal Sobecki
- Institute for Integrative Biology of the Cell (I2BC), Genome Biology Department CNRS - UMR9198, Gif-sur-Yvette, France
| | - Jean-François Rossi
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
- CNRS UMR5235, Université de Montpellier, Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, 34295, France
- * E-mail:
| |
Collapse
|
34
|
Abstract
The receptor-like tyrosine phosphatase CD45 regulates antigen receptor signaling by dephosphorylating the C-terminal inhibitory tyrosine of the src family kinases. However, despite its abundance, the function of the large, alternatively spliced extracellular domain of CD45 has remained elusive. We used normally spliced CD45 transgenes either incorporating a phosphatase-inactivating point mutation or lacking the cytoplasmic domain to uncouple the enzymatic and noncatalytic functions of CD45 in lymphocytes. Although these transgenes did not alter T-cell signaling or development irrespective of endogenous CD45 expression, both partially rescued the phenotype of CD45-deficient B cells. We identify a noncatalytic role for CD45 in regulating tonic, but not antigen-mediated, B-cell antigen receptor (BCR) signaling through modulation of the function of the inhibitory coreceptor CD22. This finding has important implications for understanding how naïve B cells maintain tonic BCR signaling while restraining inappropriate antigen-dependent activation to preserve clonal "ignorance."
Collapse
|
35
|
Krzywinska E, Allende-Vega N, Cornillon A, Vo DN, Cayrefourcq L, Panabieres C, Vilches C, Déchanet-Merville J, Hicheri Y, Rossi JF, Cartron G, Villalba M. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers. EBioMedicine 2015; 2:1364-76. [PMID: 26629531 PMCID: PMC4634619 DOI: 10.1016/j.ebiom.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56dimCD16+ NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA+RO+ phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA+RO− phenotype similar to naïve T cells. In summary, we show that CD45RA+RO+ cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias. Expression of both CD45 isoforms RA and RO identifies anti-leukemia NK cells. Anti-leukemia NK cells proliferate, degranulate and perform trogocytosis in vivo. The presence of CD45RARO population identifies hematological cancer patients.
NK cells are thought to have an intrinsic anti-tumor activity. However, the presence of anti-leukemia NK cells in patients is unknown. We present a relatively simple protocol to identify and characterize them. This is based on differential protein expression and on the fact that they gain tumor cell proteins by the process of trogocytosis. These phenotypic differences should be taken into account in analysis to identify different NK cell subpopulations. Hence, NK cells are actively recognizing tumor cells in leukemia patients; but this seems to be insufficient to eradicate disease. Future efforts should enhance the antitumor activity of this population.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Nerea Allende-Vega
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Amelie Cornillon
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Dang-Nghiem Vo
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France ; EA2415 - Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research, Montpellier University, Montpellier, France
| | - Catherine Panabieres
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France ; EA2415 - Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research, Montpellier University, Montpellier, France
| | - Carlos Vilches
- Inmunogenética-HLA, Hospital Univ. Puerta de Hierro, Manuel de Falla 1, 28220 Majadahonda, Madrid, Spain
| | | | - Yosr Hicheri
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Jean-François Rossi
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France ; Institut for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier 34295, France
| |
Collapse
|
36
|
Comparison of predicted and actual consequences of missense mutations. Proc Natl Acad Sci U S A 2015; 112:E5189-98. [PMID: 26269570 DOI: 10.1073/pnas.1511585112] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.
Collapse
|
37
|
Viral interference with functions of the cellular receptor tyrosine phosphatase CD45. Viruses 2015; 7:1540-57. [PMID: 25807057 PMCID: PMC4379584 DOI: 10.3390/v7031540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/24/2022] Open
Abstract
The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal role of CD45 in the immune system, it is probably not surprising that viruses interfere with the activity of CD45 in lymphocytes to dampen the immune response and that they also utilize this molecule to accomplish their replication cycle. Here we report what is known about the interaction of viral proteins with CD45. Moreover, we debate putative interactions of viruses with CD45 in myeloid cells and the resulting consequences-subjects that remain to be investigated. Finally, we summarize the evidence that pathogens were the driving force for the evolution of CD45.
Collapse
|
38
|
Ballek O, Valečka J, Manning J, Filipp D. The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model. Immunol Cell Biol 2014; 93:384-95. [PMID: 25420722 DOI: 10.1038/icb.2014.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022]
Abstract
The initiation of T-cell receptor (TCR) signaling, based on the cobinding of TCR and CD4-Lck heterodimer to a peptide-major histocompatibility complex II on antigen presenting cells, represents a classical model of T-cell signaling. What is less clear however, is the mechanism which translates TCR engagement to the phosphorylation of immunoreceptor tyrosine-based activation motifs on CD3 chains and how this event is coupled to the delivery of Lck function. Recently proposed 'standby model of Lck' posits that resting T-cells contain an abundant pool of constitutively active Lck (pY394(Lck)) required for TCR triggering, and this amount, upon TCR engagement, remains constant. Here, we show that although maintenance of the limited pool of pY394(Lck) is necessary for the generation of TCR proximal signals in a time-restricted fashion, the total amount of this pool, ~2%, is much smaller than previously reported (~40%). We provide evidence that this dramatic discrepancy in the content of pY394(Lck)is likely the consequence of spontaneous phosphorylation of Lck that occurred after cell solubilization. Additional discrepancies can be accounted for by the sensitivity of different pY394(Lck)-specific antibodies and the type of detergents used. These data suggest that reagents and conditions used for the quantification of signaling parameters must be carefully validated and interpreted. Thus, the limited size of pY394(Lck) pool in primary T-cells invites a discussion regarding the adjustment of the quantitative parameters of the standby model of Lck and reevaluation of the mechanism by which this pool contributes to the generation of proximal TCR signaling.
Collapse
Affiliation(s)
- Ondřej Ballek
- 1] Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic [2] Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Valečka
- 1] Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic [2] Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| |
Collapse
|
39
|
Saunders AE, Shim YA, Johnson P. Innate immune cell CD45 regulates lymphopenia-induced T cell proliferation. THE JOURNAL OF IMMUNOLOGY 2014; 193:2831-42. [PMID: 25114101 DOI: 10.4049/jimmunol.1302681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The leukocyte-specific tyrosine phosphatase, CD45, severely impacts T cell development and activation by modulating TCR signaling. CD45-deficient (CD45KO) mice have reduced peripheral T cell numbers where CD8 T cells are underrepresented. In this article, we show that CD45KO mice are unable to support efficient homeostatic proliferation, affecting CD8 T cells more than CD4 T cells. Using CD45-RAG1 double-deficient (45RAGKO) mice, we show that lymphopenia-induced proliferation (LIP) of CD45-sufficient T cells is defective in a host environment lacking CD45 on innate immune cells. We identify two deficiencies in the 45RAGKO mice that affect LIP. One involves CD11c(+) cells and the second the production of IL-7 by lymphoid stromal cells. CD45KO dendritic cells were not defective in foreign Ag-induced T cell proliferation, yet CD45KO CD11c(+) cells were unable to rescue the spontaneous LIP in the 45RAGKO mice. This was in contrast with the CD45-sufficient CD11c(+) cells that partially rescued this spontaneous proliferation and did so without affecting IL-7 levels. The absence of CD45 also led to reduced IL-7 production by lymphoid stromal cells, suggesting an indirect effect of CD45 on innate immune cells in influencing IL-7 production by lymphoid stromal cells. These findings demonstrate a novel role for CD45 on innate immune cells in promoting lymphopenia-induced T cell proliferation and suggest that innate immune cells may communicate with stromal cells to regulate IL-7 production.
Collapse
Affiliation(s)
- Amy E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yaein A Shim
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
40
|
Chan CML, Au TCC, Chan ATC, Ma BBY, Tsui NBY, Ng SSM, Hui EP, Chan LWC, Ho WS, Yung BYM, Wong SCC. Advanced technologies for studying circulating tumor cells at the protein level. Expert Rev Proteomics 2014; 10:579-89. [PMID: 24206230 DOI: 10.1586/14789450.2013.858021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metastasis is the main cause of cancer death. As the tumor progresses, cells from the primary tumor site are shed into the bloodstream as circulating tumor cells (CTCs). Eventually, these cells colonize other organs and form distant metastases. It is therefore imperative that we gain a better understanding of the biological characteristics of CTCs for development of novel treatment modalities to minimize metastasis-associated cancer deaths. In recent years, rapid developments in technologies for the study of CTCs have taken place. We now have a variety of tools for the isolation and examination of CTCs which were not available before. This review introduces some commonly used protein markers in CTC investigations and summarizes a few advanced technologies which have been successfully applied for studying CTC biology at the protein level.
Collapse
Affiliation(s)
- Charles Ming Lok Chan
- Department of Clinical Oncology, State Key Laboratory in Oncology in South China, Sir Y K Pao Centre for Cancer, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Differentially-expressed genes identified by suppression subtractive hybridization in the bone marrow hematopoietic stem cells of patients with psoriasis. Mol Med Rep 2014; 10:479-85. [PMID: 24807678 DOI: 10.3892/mmr.2014.2203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/24/2014] [Indexed: 11/05/2022] Open
Abstract
Psoriasis is a T cell-mediated, chronic, relapsing and inflammatory cutaneous disorder. The dysfunctional activity of T cells in patients with psoriasis is attributed to bone marrow hematopoietic stem cells (BMHSCs). To understand the pathogenic roles of BMHSCs in psoriasis, a differential gene expression analysis was performed using suppression subtractive hybridization of the BMHSCs from a patient with psoriasis and a healthy control. Using a cDNA array dot blot screening to screen 600 genes from forward- and reverse-subtracted cDNA libraries, 17 differentially-expressed sequence tags (ESTs) were identified. The genes within the ESTs were observed to be the homologs of genes that are involved in various cellular processes, including hormone signaling, RNA catabolism, protein ADP DNA base melting, transcriptional regulation, cell cycle regulation and metabolism. CD45, which was overexpressed in the psoriatic BMHSCs, was further analyzed using relative quantitative polymerase chain reaction. In addition, the levels of CD45 in the peripheral blood cells (PBCs) of the patients with psoriasis were markedly increased and closely associated with disease severity. An abnormality of hematopoietic progenitor cells, e.g., CD45 overexpression, may be transferred to PBCs via hematopoiesis, and may account for the psoriasis-inducing properties of activated T cells.
Collapse
|
42
|
Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, Xiang Y, Wang P, Cheng G. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog 2014; 10:e1003931. [PMID: 24550728 PMCID: PMC3923773 DOI: 10.1371/journal.ppat.1003931] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/31/2013] [Indexed: 12/29/2022] Open
Abstract
C-type lectins are a family of proteins with carbohydrate-binding activity. Several C-type lectins in mammals or arthropods are employed as receptors or attachment factors to facilitate flavivirus invasion. We previously identified a C-type lectin in Aedes aegypti, designated as mosquito galactose specific C-type lectin-1 (mosGCTL-1), facilitating the attachment of West Nile virus (WNV) on the cell membrane. Here, we first identified that 9 A. aegypti mosGCTL genes were key susceptibility factors facilitating DENV-2 infection, of which mosGCTL-3 exhibited the most significant effect. We found that mosGCTL-3 was induced in mosquito tissues with DENV-2 infection, and that the protein interacted with DENV-2 surface envelop (E) protein and virions in vitro and in vivo. In addition, the other identified mosGCTLs interacted with the DENV-2 E protein, indicating that DENV may employ multiple mosGCTLs as ligands to promote the infection of vectors. The vectorial susceptibility factors that facilitate pathogen invasion may potentially be explored as a target to disrupt the acquisition of microbes from the vertebrate host. Indeed, membrane blood feeding of antisera against mosGCTLs dramatically reduced mosquito infective ratio. Hence, the immunization against mosGCTLs is a feasible approach for preventing dengue infection. Our study provides a future avenue for developing a transmission-blocking vaccine that interrupts the life cycle of dengue virus and reduces disease burden. Dengue virus (DENV), a mosquito-borne flavivirus, is currently the most significant arbovirus afflicting tropical and sub-tropical countries worldwide. No vaccine or therapeutics are available, and dengue has rapidly spread over the last decade. Therefore, additional strategies to combat dengue are urgently needed. In this study, we characterized multiple C-type lectins as susceptibility factors for dengue infection in A. aegypti. These mosGCTLs directly interacted with dengue virus in vitro and in vivo. The combination of antisera against multiple mosGCTLs efficiently reduced DENV-2 infection after a blood meal, suggesting that it is feasible to develop a mosGCTL-based transmission-blocking vaccine to interrupt the life cycle of dengue virus and control disease burden in nature. This study substantially extends our understanding of dengue replication in vectors and provides a research avenue by which the development of therapeutics for preventing the dissemination of mosquito-borne viral diseases can be pursued in the future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Fuchun Zhang
- Guangzhou 8th People's Hospital, Guangzhou, People's Republic of China
| | - Jianying Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaoping Xiao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Siyin Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Ye Xiang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Penghua Wang
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gong Cheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
43
|
Tan YX, Zikherman J, Weiss A. Novel tools to dissect the dynamic regulation of TCR signaling by the kinase Csk and the phosphatase CD45. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 78:131-139. [PMID: 24100586 DOI: 10.1101/sqb.2013.78.020347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Although the biochemical events induced by T-cell receptor (TCR) triggering have been well studied, both the mediators and function of basal signaling in T cells remain poorly understood. Furthermore, the precise mechanisms by which MHC-peptide interaction with the TCR disrupt the basal equilibrium to induce downstream signaling are also unclear. Here we describe novel approaches to understand the basal state of T cells and the mechanisms of TCR triggering by perturbing regulation of the Src family kinases (SFKs). The SFKs are critical proximal mediators of TCR signaling that are in turn tightly regulated by the tyrosine kinase Csk and the receptor-like tyrosine phosphatase CD45. We have developed a small-molecule analog-sensitive allele of Csk and an allelic series of mice in which expression of CD45 is varied across a broad range. Our studies have unmasked contributions of Csk and CD45 to maintain the basal state of T cells and also suggest that dynamic regulation of Csk may be involved in TCR triggering.
Collapse
Affiliation(s)
- Ying Xim Tan
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA.,Howard Hughes Medical Institute, UCSF, San Francisco, CA, 94143, USA
| |
Collapse
|
44
|
Chen X, Yang Z, Lu Y, Xu Q, Wang Q, Chen L. Clinical features and factors associated with outcomes of patients infected with a Novel Influenza A (H7N9) virus: a preliminary study. PLoS One 2013; 8:e73362. [PMID: 24069191 PMCID: PMC3775774 DOI: 10.1371/journal.pone.0073362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The present study aimed to analyze clinical features and factors associated with treatment outcomes of H7N9 influenza A virus infection. METHODS The clinical progress in 18 H7N9-infected patients was monitored and recorded. The clinical features of H7N9 infection were noted and factors associated with treatment outcomes were analyzed by univariate analyses. RESULTS The average ages of patients in recovered and critical conditions were 67.0±10.83 years and 72.75±12.0 years, respectively. Renal insufficiency developed more frequently in critically ill patients (P = 0.023). The duration of traditional Chinese medicine (TCM) therapy was longer in recovered patients than in critically ill patients (P = 0.01). Laboratory tests showed that levels of C-reactive protein, serum creatinine, and myoglobin were significantly higher in critically ill patients than in recovered patients (P = 0.011, 0.04, and 0.016, respectively). Meanwhile, levels of all T cell subsets examined including total CD3(+), CD4(+), CD8(+), and CD45(+) T cells were lower in critically ill patients than in recovered patients (P = 0.033, 0.059, 0.015, and 0.039, respectively). Logistic regression analysis demonstrated that C-reactive protein level, myoglobin level and TCM therapy duration were likely associated with treatment outcomes of H7N9 infection (P = 0.032, 0.041 and 0.017, respectively). CONCLUSION Elderly people may have increased risk for H7N9 virus infection. T cell-mediated responses play an important role in defense against the H7N9 virus. C-reactive protein level, myoglobin level and TCM duration may be associated with treatment outcomes of H7N9 infection.
Collapse
Affiliation(s)
- Xiaorong Chen
- Department of Traditional Chinese Medicine, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
- Key Laboratory of Infectious Diseases of State Administration of Traditional Chinese Medicine (Clinical base), Shanghai, China
| | - Zongguo Yang
- Department of Traditional Chinese Medicine, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
- Key Laboratory of Infectious Diseases of State Administration of Traditional Chinese Medicine (Clinical base), Shanghai, China
| | - Yunfei Lu
- Department of Traditional Chinese Medicine, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
- Key Laboratory of Infectious Diseases of State Administration of Traditional Chinese Medicine (Clinical base), Shanghai, China
| | - Qingnian Xu
- Department of Traditional Chinese Medicine, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
- Key Laboratory of Infectious Diseases of State Administration of Traditional Chinese Medicine (Clinical base), Shanghai, China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
| | - Liang Chen
- Department of Hepatitis, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
45
|
Caignard G, Leiva-Torres GA, Leney-Greene M, Charbonneau B, Dumaine A, Fodil-Cornu N, Pyzik M, Cingolani P, Schwartzentruber J, Dupaul-Chicoine J, Guo H, Saleh M, Veillette A, Lathrop M, Blanchette M, Majewski J, Pearson A, Vidal SM. Genome-wide mouse mutagenesis reveals CD45-mediated T cell function as critical in protective immunity to HSV-1. PLoS Pathog 2013; 9:e1003637. [PMID: 24068938 PMCID: PMC3771889 DOI: 10.1371/journal.ppat.1003637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/24/2013] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex encephalitis (HSE) is a lethal neurological disease resulting from infection with Herpes Simplex Virus 1 (HSV-1). Loss-of-function mutations in the UNC93B1, TLR3, TRIF, TRAF3, and TBK1 genes have been associated with a human genetic predisposition to HSE, demonstrating the UNC93B-TLR3-type I IFN pathway as critical in protective immunity to HSV-1. However, the TLR3, UNC93B1, and TRIF mutations exhibit incomplete penetrance and represent only a minority of HSE cases, perhaps reflecting the effects of additional host genetic factors. In order to identify new host genes, proteins and signaling pathways involved in HSV-1 and HSE susceptibility, we have implemented the first genome-wide mutagenesis screen in an in vivo HSV-1 infectious model. One pedigree (named P43) segregated a susceptible trait with a fully penetrant phenotype. Genetic mapping and whole exome sequencing led to the identification of the causative nonsense mutation L3X in the Receptor-type tyrosine-protein phosphatase C gene (Ptprc(L3X)), which encodes for the tyrosine phosphatase CD45. Expression of MCP1, IL-6, MMP3, MMP8, and the ICP4 viral gene were significantly increased in the brain stems of infected Ptprc(L3X) mice accounting for hyper-inflammation and pathological damages caused by viral replication. Ptprc(L3X) mutation drastically affects the early stages of thymocytes development but also the final stage of B cell maturation. Transfer of total splenocytes from heterozygous littermates into Ptprc(L3X) mice resulted in a complete HSV-1 protective effect. Furthermore, T cells were the only cell population to fully restore resistance to HSV-1 in the mutants, an effect that required both the CD4⁺ and CD8⁺ T cells and could be attributed to function of CD4⁺ T helper 1 (Th1) cells in CD8⁺ T cell recruitment to the site of infection. Altogether, these results revealed the CD45-mediated T cell function as potentially critical for infection and viral spread to the brain, and also for subsequent HSE development.
Collapse
Affiliation(s)
- Grégory Caignard
- Departments of Human Genetics and Medicine, McGill University, Montréal, Quebec, Canada
| | | | - Michael Leney-Greene
- Departments of Human Genetics and Medicine, McGill University, Montréal, Quebec, Canada
| | - Benoit Charbonneau
- Departments of Human Genetics and Medicine, McGill University, Montréal, Quebec, Canada
| | - Anne Dumaine
- Departments of Human Genetics and Medicine, McGill University, Montréal, Quebec, Canada
| | - Nassima Fodil-Cornu
- Departments of Human Genetics and Medicine, McGill University, Montréal, Quebec, Canada
| | - Michal Pyzik
- Departments of Human Genetics and Medicine, McGill University, Montréal, Quebec, Canada
| | - Pablo Cingolani
- School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montréal, Quebec, Canada
| | | | | | - Huaijian Guo
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Quebec, Canada
| | - Maya Saleh
- Departments of Biochemistry and Medicine, McGill University, Montréal, Quebec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Quebec, Canada
| | - Marc Lathrop
- McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Mathieu Blanchette
- School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montréal, Quebec, Canada
| | - Jacek Majewski
- McGill University and Genome Québec Innovation Centre, Montréal, Quebec, Canada
| | - Angela Pearson
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Silvia M. Vidal
- Departments of Human Genetics and Medicine, McGill University, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
46
|
Basu S, Ray A, Dittel BN. Differential representation of B cell subsets in mixed bone marrow chimera mice due to expression of allelic variants of CD45 (CD45.1/CD45.2). J Immunol Methods 2013; 396:163-7. [PMID: 23928494 DOI: 10.1016/j.jim.2013.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/08/2023]
Abstract
The CD45 congenic marker system is a highly utilized technique to track hematopoietic cells following bone marrow transplantation (BMT), with CD45.1 and CD45.2 being efficiently distinguished by flow cytometry. During the analysis of control mixed BM chimera mice in which lethally irradiated recipients were transplanted with an equal number of BM cells from WT CD45.1 and WT CD45.2 mice, we observed an unequal reconstitution of specific B cell subsets in the bone marrow (BM), lymph node (LN) and spleen. Specifically, in the BM and LN, there was an increase in the percentage of CD45.2 mature B cells. In the spleen, an increase in the percentage of CD45.2 transitional (T) 1 and T2 cells was observed. In contrast, the percentage of splenic CD45.1 marginal zone (MZ) B cells was significantly increased. When we compared the percentage of B cell subsets in unmanipulated WT CD45.1 and WT CD45.2 mice, we found that WT CD45.2 mice had significantly more LN B cells while WT CD45.1 mice exhibited an increase in MZ B cells. These data indicate that the alteration in the ratio of CD45.1 and CD45.2 B cell subsets in mixed chimera mice is a cell-intrinsic effect. Thus whenever the CD45 congenic system is used to track two genetically distinct populations of immune cells WT chimeras must be generated to allow normalization of the experimental data to avoid the reporting of unintentionally skewed data.
Collapse
Affiliation(s)
- Sreemanti Basu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
47
|
St-Pierre J, Ostergaard HL. A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of paxillin degradation. PLoS One 2013; 8:e71531. [PMID: 23936270 PMCID: PMC3729947 DOI: 10.1371/journal.pone.0071531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Hanne L. Ostergaard
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
48
|
Liu QC, Guo TT, Zhang L, Yu Y, Wang P, Yang JF, Li YX. Synthesis and biological evaluation of oleanolic acid derivatives as PTP1B inhibitors. Eur J Med Chem 2013; 63:511-22. [DOI: 10.1016/j.ejmech.2013.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022]
|
49
|
Dimitriu PA, Boyce G, Samarakoon A, Hartmann M, Johnson P, Mohn WW. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:200-10. [PMID: 23584963 DOI: 10.1111/j.1758-2229.2012.00393.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 05/20/2023]
Abstract
Gut microbial community properties of mammals are thought to be partly shaped by a combination of host immunity and environmental factors, but their relative importance is not firmly established. To address this gap, we first characterized the faecal bacteria of mice with a functioning immune system (wild-type, WT), mice with defective immune responses (CD45), mice lacking an adaptive immune system (RAG), and mice with both immune dysfunctions (45RAG). Using fingerprinting of 16S rRNA genes, we observed significant differences in gut microbiota composition across all mouse strains (P < 0.001) and identified several mouse strain-specific genera via pyrosequencing, including Turicibacter sp. (in WT mice) and Allobaculum sp. (in CD45-deficient animals). To define the role of the host immune system in constraining gut microbiota stability after perturbation, we cohoused CD45-deficient and WT mice and monitored gut bacterial community dynamics during 8 weeks. Cohousing caused the WT bacterial communities to become indistinguishable from those of CD45 mice (P > 0.05). Time-series analysis indicated that the communities of cohoused mice changed directionally as opposed to the relatively stable communities of non-cohoused controls. When we considered only taxonomic membership, it was the communities of CD45 non-cohoused mice that experienced the highest rate of change. Rather than be governed by fluctuations in the relative abundance of taxa, we suggest that CD45-regulated immune responses either are stimulated by the presence of bacteria per se or promote temporal stability by selecting for the occurrence of specific taxa.
Collapse
Affiliation(s)
- Pedro A Dimitriu
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Zikherman J, Parameswaran R, Hermiston M, Weiss A. The structural wedge domain of the receptor-like tyrosine phosphatase CD45 enforces B cell tolerance by regulating substrate specificity. THE JOURNAL OF IMMUNOLOGY 2013; 190:2527-35. [PMID: 23396948 DOI: 10.4049/jimmunol.1202928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD45 is a receptor-like tyrosine phosphatase that positively regulates BCR signaling by dephosphorylating the inhibitory tyrosine of the Src family kinases. We showed previously that a single point mutation, E613R, introduced into the cytoplasmic membrane-proximal "wedge" domain of CD45 is sufficient to drive a lupus-like autoimmune disease on a susceptible genetic background. To clarify the molecular mechanism of this disease, we took advantage of a unique allelic series of mice in which the expression of CD45 is varied across a broad range. Although both E613R B cells and those with supraphysiologic CD45 expression exhibited hyperresponsive BCR signaling, they did so by opposite regulation of the Src family kinase Lyn. We demonstrated that the E613R allele of CD45 does not function as a hyper- or hypomorphic allele but rather alters the substrate specificity of CD45 for Lyn. Despite similarly enhancing BCR signaling, only B cells with supraphysiologic CD45 expression became anergic, whereas only mice harboring the E613R mutation developed frank autoimmunity on a susceptible genetic background. We showed that selective impairment of a Lyn-dependent negative-regulatory circuit in E613R B cells drove autoimmunity in E613R mice. This demonstrates that relaxing negative regulation of BCR signaling, rather than enhancing positive regulation, is critical for driving autoimmunity in this system.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, Department of Medicine, Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|