1
|
Broxmeyer HE, Cooper SH, Ropa J. CXCL15/Lungkine has suppressive activity on proliferation and expansion of multi-potential, erythroid, granulocyte and macrophage progenitors in S-phase specific manner. Blood Cells Mol Dis 2021; 91:102594. [PMID: 34520986 PMCID: PMC9231597 DOI: 10.1016/j.bcmd.2021.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
Cytokines/chemokines regulate hematopoiesis, most having multiple cell actions. Numerous but not all chemokine family members act as negative regulators of hematopoietic progenitor cell (HPC) proliferation, but very little is known about such effects of the chemokine, CXCL15/Lungkine. We found that CXCL15/Lungkine-/- mice have greatly increased cycling of multi cytokine-stimulated bone marrow and spleen hematopoietic progenitor cells (HPCs: CFU-GM, BFU-E, and CFU-GEMM) and CXCL15 is expressed in many bone marrow progenitor and other cell types. This suggests that CXCL15/Lungkine acts as a negative regulator of the cell cycling of these HPCs in vivo. Recombinant murine CXCL15/Lungkine, decreased numbers of functional HPCs during cytokine-enhanced ex-vivo culture of lineage negative mouse bone marrow cells. Moreover, CXCL15/Lungkine, through S-Phase specific actions, was able to suppress in vitro colony formation of normal wildtype mouse bone marrow CFU-GM, CFU-G, CFU-M, BFU-E, and CFU-GEMM. This clearly identifies the negative regulatory activity of CXCL15/Lungkine on proliferation of multiple types of mouse HPCs.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | - Scott H Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA
| |
Collapse
|
2
|
Lapointe F, Turcotte S, Véronneau S, Rola-Pleszczynski M, Stankova J. Role of Protein Tyrosine Phosphatase Epsilon (PTP ε) in Leukotriene D 4-Induced CXCL8 Expression. J Pharmacol Exp Ther 2019; 369:270-281. [PMID: 30867226 DOI: 10.1124/jpet.118.255422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation on tyrosine residues is recognized as an important mechanism for connecting extracellular stimuli to cellular events and defines a variety of physiologic responses downstream of G protein-coupled receptor (GPCR) activation. To date, few protein tyrosine phosphatases (PTPs) have been shown to associate with GPCRs, and little is known about their role in GPCR signaling. To discover potential cysteinyl-leukotriene receptor (CysLT1R)-interacting proteins, we identified protein tyrosine phosphatase ε (PTPε) in a yeast two-hybrid assay. Since both proteins are closely linked to asthma, we further investigated their association. Using a human embryonic kidney cell line 293 (HEK-293) cell line stably transfected with the receptor (HEK-LT1), as well as human primary monocytes, we found that PTPε colocalized with CysLT1R in both resting and leukotriene D4 (LTD4)-stimulated cells. Cotransfection of HEK-LT1 with PTPε had no effect on CysLT1R expression or LTD4-induced internalization, but it inhibited LTD4-induced CXC chemokine 8 (CXCL8) promoter transactivation, protein expression, and secretion. Moreover, reduced phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), but not of p38 or c-Jun-N-terminal kinase 1 or 2 mitogen-activated protein kinases (MAPKs), was observed upon LTD4 stimulation of HEK-LT1 coexpressing cytosolic (cyt-) PTPε, but not receptor (R) PTPε The increased interaction of cyt-PTPε and ERK1/2 after LTD4 stimulation was shown by coimmunoprecipitation. In addition, enhanced ERK1/2 phosphorylation and CXCL8 secretion were found in LTD4-stimulated human monocytes transfected with PTPε-specific siRNAs, adding support to a regulatory/inhibitory role of PTPε in CysLT1R signaling. Given that the prevalence of severe asthma is increasing, the identification of PTPε as a new potential therapeutic target may be of interest.
Collapse
Affiliation(s)
- Fanny Lapointe
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sylvie Turcotte
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Steeve Véronneau
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marek Rola-Pleszczynski
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jana Stankova
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Pike KA, Tremblay ML. Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Front Immunol 2018; 9:2504. [PMID: 30429852 PMCID: PMC6220082 DOI: 10.3389/fimmu.2018.02504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play a critical role in co-ordinating the signaling networks that maintain lymphocyte homeostasis and direct lymphocyte activation. By dephosphorylating tyrosine residues, PTPs have been shown to modulate enzyme activity and both mediate and disrupt protein-protein interactions. Through these molecular mechanisms, PTPs ultimately impact lymphocyte responses to environmental cues such as inflammatory cytokines and chemokines, as well as antigenic stimulation. Mouse models of acute and chronic intestinal inflammation have been shown to be exacerbated in the absence of PTPs such as PTPN2 and PTPN22. This increase in disease severity is due in part to hyper-activation of lymphocytes in the absence of PTP activity. In accordance, human PTPs have been linked to intestinal inflammation. Genome wide association studies (GWAS) identified several PTPs within risk loci for inflammatory bowel disease (IBD). Therapeutically targeting PTP substrates and their associated signaling pathways, such as those implicated in CD4+ T cell responses, has demonstrated clinical efficacy. The current review focuses on the role of PTPs in controlling CD4+ T cell activity in the intestinal mucosa and how disruption of PTP activity in CD4+ T cells can contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Inception Sciences Canada, Montréal, QC, Canada
| | - Michel L Tremblay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Broxmeyer HE, Capitano M, Campbell TB, Hangoc G, Cooper S. Modulation of Hematopoietic Chemokine Effects In Vitro and In Vivo by DPP-4/CD26. Stem Cells Dev 2016; 25:575-85. [PMID: 26943017 DOI: 10.1089/scd.2016.0026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4)/CD26 truncates certain proteins, and this posttranslational modification can influence their activity. Truncated (T) colony-stimulating factors (CSFs) are decreased in potency for stimulating proliferation of hematopoietic progenitor cells (HPCs). T-CXCL12, a modified chemokine, is inactive as an HPC chemotactic, survival, and enhancing factor for replating or ex-vivo expansion of HPCs. Moreover, T-CSFs and T-CXCL12 specifically downmodulates the positively acting effects of their own full-length molecule. Other chemokines have DPP4 truncation sites. In the present study, we evaluated effects of DPP4 inhibition (by Diprotin A) or gene deletion of HPC on chemokine inhibition of multicytokine-stimulated HPC, and on chemokine-enhancing effects on single CSF-stimulated HPC proliferation, as well as effects of DPP4 treatment of a number of chemokines. Myelosuppressive effects of chemokines with, but not without, a DPP4 truncation site were greatly enhanced in inhibitory potency by pretreating target bone marrow (BM) cells with Diprotin A, or by assaying their activity on dpp4/cd26(-/-) BM cells. DPP4 treatment of myelosuppressive chemokines containing a DPP4 truncation site produced a nonmyelosuppressive molecule, but one which had the capacity to block suppression by that unmodified chemokine both in vitro and in vivo. Additionally, DPP4 treatment ablated the single cytokine-stimulated HPC-enhancing activity of CCL3/MIP-1α and CCL4/MIP-1β, and blocked the enhancing activity of each unmodified molecule, in vitro and in vivo. These results highlight the functional posttranslational modulating effects of DPP4 on chemokine activities, and information offering additional biological insight into chemokine regulation of hematopoiesis.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Maegan Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Timothy B Campbell
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Giao Hangoc
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
5
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015; 75:38-50. [PMID: 26187331 PMCID: PMC4546937 DOI: 10.1016/j.cyto.2015.05.023] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-4 and IL-13 were discovered approximately 30years ago and were immediately linked to allergy and atopic diseases. Since then, new roles for IL-4 and IL-13 and their receptors in normal gestation, fetal development and neurological function and in the pathogenesis of cancer and fibrosis have been appreciated. Studying IL-4/-13 and their receptors has revealed important clues about cytokine biology and led to the development of numerous experimental therapeutics. Here we aim to highlight new discoveries and consolidate concepts in the field of IL-4 and IL-13 structure, receptor regulation, signaling and experimental therapeutics.
Collapse
Affiliation(s)
- Sarah M McCormick
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
7
|
Shp1 signalling is required to establish the long-lived bone marrow plasma cell pool. Nat Commun 2014; 5:4273. [PMID: 24978161 PMCID: PMC4083441 DOI: 10.1038/ncomms5273] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/30/2014] [Indexed: 12/21/2022] Open
Abstract
Germline or B-cell-specific loss of Ptpn6 gene encoding the Shp1 protein tyrosine phosphatase leads to skewed B lymphopoiesis and systemic autoimmunity. Here, to study its role in B-cell terminal differentiation, we generated Ptpn6f/fAicdaCre/+ mice with Shp1 ablated only in activated B cells. We show that Ptpn6f/fAicdaCre/+ mice have normal B-cell development but exhibit defective class-switched primary and recalled antibody response to a T-cell-dependent antigen. Germinal centres are present but do not persist and memory B cells are not formed. Interestingly, Shp1-deficient plasma cells are generated in the spleen but do not contribute to the bone marrow long-lived pool. Plasma cells lacking Shp1 exhibit aberrant α4β1 integrin activation due to dysregulated Src- and PI3-kinase signalling and manifest attenuated migration in vitro and defective bone marrow homing when reconstituted in vivo. Interrupting α4β1–VCAM-1 interaction rectifies this defect. These data suggest that Shp1 signalling is required for the establishment of a life-long protective humoral immunity. SHP-1 signalling is required for the normal development of B lymphocytes but its role in the terminal differentiation of these cells has not been fully established. Here, the authors show that SHP-1 ablation impairs the establishment of long-lived bone marrow-resident plasma cells due to aberrant integrin activation.
Collapse
|
8
|
Inhibition of protein tyrosine phosphatases enhances cerebral collateral growth in rats. J Mol Med (Berl) 2014; 92:983-94. [PMID: 24858946 DOI: 10.1007/s00109-014-1164-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/13/2014] [Accepted: 05/07/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED Arteriogenesis involves the rapid proliferation of preexisting arterioles to fully functional arteries as a compensatory mechanism to overcome circulatory deficits. Stimulation of arteriogenesis has therefore been considered a treatment concept in arterial occlusive disease. Here, we investigated the impact of inhibition of protein tyrosine phosphatases (PTPs) on cerebral arteriogenesis in rats. Arteriogenesis was induced by occlusion of one carotid and both vertebral arteries (three-vessel occlusion (3-VO)). Collateral growth and functional vessel perfusion was assessed 3-35 days following 3-VO. Furthermore, animals underwent 3-VO surgery and were treated with the pan-PTP inhibitor BMOV, the SHP-1 inhibitor sodium stibogluconate (SSG), or the PTP1B inhibitor AS279. Cerebral vessel diameters and cerebrovascular reserve capacity (CVRC) were determined, together with immunohistochemistry analyses and proximity ligation assays (PLA) for determination of tissue proliferation and phosphorylation patterns after 7 days. The most significant changes in vessel diameter increase were present in the ipsilateral posterior cerebral artery (PCA), with proliferative markers (PCNA) being time-dependently increased. The CVRC was lost in the early phase after 3-VO and partially recovered after 21 days. PTP inhibition resulted in a significant increase in the ipsilateral PCA diameter in BMOV-treated animals and rats subjected to PTP1B inhibition. Furthermore, CVRC was significantly elevated in AS279-treated rats compared to control animals, along with hyperphosphorylation of the platelet-derived growth factor-β receptor in the vascular wall in vivo. In summary, our data indicate PTPs as hitherto unrecognized negative regulators in cerebral arteriogenesis. Further, PTP inhibition leading to enhanced collateral growth and blood perfusion suggests PTPs as novel targets in anti-ischemic treatment. KEY MESSAGES PTPs exhibit negative regulatory function in cerebral collateral growth in rats. Inhibition of pan-PTP/PTP1B increases vessel PDGF-β receptor phosphorylation. PTP1B inhibition enhances arteriogenesis and cerebrovascular reserve capacity.
Collapse
|
9
|
Johnson DJ, Pao LI, Dhanji S, Murakami K, Ohashi PS, Neel BG. Shp1 regulates T cell homeostasis by limiting IL-4 signals. ACTA ACUST UNITED AC 2013; 210:1419-31. [PMID: 23797092 PMCID: PMC3698519 DOI: 10.1084/jem.20122239] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Absence of the phosphatase Shp1 in T cells does not affect the TCR signaling threshold but results in IL-4 sensitivity and memory phenotype cells. The protein-tyrosine phosphatase Shp1 is expressed ubiquitously in hematopoietic cells and is generally viewed as a negative regulatory molecule. Mutations in Ptpn6, which encodes Shp1, result in widespread inflammation and premature death, known as the motheaten (me) phenotype. Previous studies identified Shp1 as a negative regulator of TCR signaling, but the severe systemic inflammation in me mice may have confounded our understanding of Shp1 function in T cell biology. To define the T cell–intrinsic role of Shp1, we characterized mice with a T cell–specific Shp1 deletion (Shp1fl/fl CD4-cre). Surprisingly, thymocyte selection and peripheral TCR sensitivity were unaltered in the absence of Shp1. Instead, Shp1fl/fl CD4-cre mice had increased frequencies of memory phenotype T cells that expressed elevated levels of CD44. Activation of Shp1-deficient CD4+ T cells also resulted in skewing to the Th2 lineage and increased IL-4 production. After IL-4 stimulation of Shp1-deficient T cells, Stat 6 activation was sustained, leading to enhanced Th2 skewing. Accordingly, we observed elevated serum IgE in the steady state. Blocking or genetic deletion of IL-4 in the absence of Shp1 resulted in a marked reduction of the CD44hi population. Therefore, Shp1 is an essential negative regulator of IL-4 signaling in T lymphocytes.
Collapse
Affiliation(s)
- Dylan J Johnson
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Wang J, Shiratori I, Uehori J, Ikawa M, Arase H. Neutrophil infiltration during inflammation is regulated by PILRα via modulation of integrin activation. Nat Immunol 2012; 14:34-40. [DOI: 10.1038/ni.2456] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/21/2012] [Indexed: 12/15/2022]
|
11
|
Broxmeyer HE, Franklin DS, Cooper S, Hangoc G, Mantel C. Cyclin dependent kinase inhibitors differentially modulate synergistic cytokine responsiveness of hematopoietic progenitor cells. Stem Cells Dev 2011; 21:1597-603. [PMID: 21936707 DOI: 10.1089/scd.2011.0476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclin dependent kinase inhibitors (CDKIs) influence proliferation of hematopoietic progenitor cells (HPCs), but little is known of how they influence proliferative responsiveness of HPCs to colony stimulating factors (CSFs), alone and in combination with other hematopoietically active factors, such as the potent co-stimulating cytokine stem cell factor (SCF), or inhibition by myelosuppressive chemokines. Using mice with deletions in p18(INK4c), p21(CIP1/WAF1), or p27(KIP1) genes, and in mice with double gene deletions for either p18/p21 or p18/p27, we determined effects of absence of these CDKIs and their interactions on functional HPC numbers in vivo, and HPC proliferative responsiveness in vitro. There is a decrease in bone marrow HPC proliferation in p18(-/-) mice commensurate with decreased numbers of HPC, suggesting a positive role for p18 on HPC in vivo, similar to that for p21. These positive effects of p18 dominate negative effects of p27 gene deletion. Moreover, the CDKIs differentially regulate responsiveness of granulocyte macrophage (GM) progenitors to synergistic cell proliferation in response to GM-CSF plus SCF, which is considered important for normal hematopoiesis. Responsiveness of HPCs to inhibition by myelosuppressive chemokines is directly related to the capacity of HPCs to respond to synergistic stimulation, and their cell cycle status. P18(INK4c) gene deletion rescued the loss of chemokine suppression of synergistic proliferation due to deletion of p21(CIP1/WAF1). These findings underscore the complex interplay of cell cycle regulators in HPC, and demonstrate that loss of one can sometimes be compensated by loss of another CDKI in both, a pro- or anti-proliferative context.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5181, USA.
| | | | | | | | | |
Collapse
|
12
|
Mittal Y, Pavlova Y, Garcia-Marcos M, Ghosh P. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. J Biol Chem 2011; 286:32404-15. [PMID: 21799016 PMCID: PMC3173146 DOI: 10.1074/jbc.m111.275685] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/26/2011] [Indexed: 12/12/2022] Open
Abstract
GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.
Collapse
Affiliation(s)
| | | | - Mikel Garcia-Marcos
- Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Pradipta Ghosh
- From the Departments of Medicine and
- Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
13
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
14
|
STAT3-dependent IL-21 production from T helper cells regulates hematopoietic progenitor cell homeostasis. Blood 2011; 117:6198-201. [PMID: 21505191 DOI: 10.1182/blood-2011-02-334367] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contribution of specific cell types to the production of cytokines that regulate hematopoiesis is still not well defined. We have previously identified T cell-dependent regulation of hematopoietic progenitor cell (HPC) numbers and cycling. In this report, we demonstrated that HPC activity is decreased in mice with STAT3-deficient T cells, a phenotype that is not because of decreased expression of IL-17 or RORγt. STAT3 expression in T cells was required for IL-21 production by multiple T helper subsets, and neutralization of IL-21 resulted in decreased HPC activity identical to that in mice with STAT3-deficient T cells. Importantly, injection of IL-21 rescued HPC activity in mice with STAT3-deficient T cells. Thus, STAT3-dependent IL-21 production in T cells is required for HPC homeostasis.
Collapse
|
15
|
Ramachandran IR, Song W, Lapteva N, Seethammagari M, Slawin KM, Spencer DM, Levitt JM. The phosphatase SRC homology region 2 domain-containing phosphatase-1 is an intrinsic central regulator of dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2011; 186:3934-45. [PMID: 21357539 DOI: 10.4049/jimmunol.1001675] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) initiate proinflammatory or regulatory T cell responses, depending on their activation state. Despite extensive knowledge of DC-activating signals, the understanding of DC inhibitory signals is relatively limited. We show that Src homology region 2 domain-containing phosphatase-1 (SHP-1) is an important inhibitor of DC signaling, targeting multiple activation pathways. Downstream of TLR4, SHP-1 showed increased interaction with several proteins including IL-1R-associated kinase-4, and modulated LPS signaling by inhibiting NF-κB, AP-1, ERK, and JNK activity, while enhancing p38 activity. In addition, SHP-1 inhibited prosurvival signaling through AKT activation. Furthermore, SHP-1 inhibited CCR7 protein expression. Inhibiting SHP-1 in DCs enhanced proinflammatory cytokines, IL-6, IL-12, and IL-1β production, promoted survival, and increased DC migration to draining lymph nodes. Administration of SHP-1-inhibited DCs in vivo induced expansion of Ag-specific cytotoxic T cells and inhibited Foxp3(+) regulatory T cell induction, resulting in an enhanced immune response against pre-established mouse melanoma and prostate tumors. Taken together, these data demonstrate that SHP-1 is an intrinsic global regulator of DC function, controlling many facets of T cell-mediated immune responses.
Collapse
Affiliation(s)
- Indu R Ramachandran
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Christophi GP, Massa PT. Central neuroinvasion and demyelination by inflammatory macrophages after peripheral virus infection is controlled by SHP-1. Viral Immunol 2010; 22:371-87. [PMID: 19951174 DOI: 10.1089/vim.2009.0052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SHP-1 is a protein tyrosine phosphatase that negatively regulates cytokine signaling and inflammatory gene expression. Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following intracranial inoculation with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Furthermore, SHP-1-deficient mice show a profound and predominant infiltration of blood-derived macrophages into the CNS following intracerebral injection of TMEV, and these macrophages are concentrated in areas of demyelination in brain and spinal cord. In the present study we investigated the role of SHP-1 in controlling CNS inflammatory demyelination following a peripheral instead of an intracerebral inoculation of TMEV. Surprisingly, we found that while wild-type mice were entirely refractory to intraperitoneal (IP) infection by TMEV, in agreement with previous studies, all SHP-1-deficient mice displayed profound macrophage neuroinvasion and macrophage-mediated inflammatory demyelination. Moreover, SHP-1 deficiency led to increased expression of inflammatory molecules in macrophages, serum, and CNS following IP infection with TMEV. Importantly, pharmacological depletion of peripheral macrophages significantly decreased both paralysis and CNS viral loads in SHP-1-deficient mice. In addition, peripheral MCP-1 neutralization attenuated disease severity, decreased macrophage infiltration into the CNS, and decreased monocyte numbers in the blood of SHP-1-deficient mice, implicating MCP-1 as an important mediator of monocyte migration between multiple tissues. These results demonstrate that peripheral TMEV infection results in a unique evolution of macrophage-mediated demyelination in SHP-1-deficient mice, implicating SHP-1 in the control of neuroinvasion of inflammatory macrophages and neurotropic viruses into the CNS.
Collapse
Affiliation(s)
- George P Christophi
- Department of Neurology, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | |
Collapse
|
17
|
Lee JH, Wang C, Kim CH. FoxP3+ regulatory T cells restrain splenic extramedullary myelopoiesis via suppression of hemopoietic cytokine-producing T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:6377-86. [PMID: 19890066 DOI: 10.4049/jimmunol.0901268] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extramedullary myelopoiesis occurs in peripheral organs such as spleen and produces many types of myeloid cells with diverse functions in response to inflammation and infection. It is increased during immune responses and chronic inflammation and is a significant factor in regulating inflammatory diseases and immunity. Increased myeloid cells are found in FoxP3-deficient mice but the mechanism has been unclear. We investigated the mechanism by which FoxP3(+) regulatory T cells regulate the extramedullary myelopoiesis. We found that Ab or genetic depletion of FoxP3(+) regulatory T cells greatly increased the number of the myeloid progenitors in spleen during immune responses. Consistently, the splenic myelopoiesis was effectively suppressed by increased numbers of natural or induced FoxP3(+) regulatory T cells. We demonstrated that myelopoiesis is positively regulated by splenic CD4(+) T cells that produce myelopoietic cytokines (GM-CSF and IL-3), and these effector CD4(+) T cells are induced from naive CD4(+) T cells in response to antigenic stimulation. FoxP3(+) regulatory T cells were able to effectively suppress the differentiation of naive T cells into myelopoietic cytokine-producing T cells. This suppression was found to be dependent on cell contact but independent of TGFbeta. Unlike splenic myelopoiesis, marrow myelopoiesis is not significantly affected by FoxP3(+) regulatory T cells. We conclude that FoxP3(+) T cells can negatively regulate splenic extramedullary myelopoiesis by suppressing the naive T cell differentiation into myelopoietic cytokine-producing CD4(+) T cells. Our results provide new insights into regulation of extramedullary myelopoiesis.
Collapse
Affiliation(s)
- Jee H Lee
- Department of Comparative Pathobiology, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
18
|
Christophi GP, Panos M, Hudson CA, Tsikkou C, Mihai C, Mejico LJ, Jubelt B, Massa PT. Interferon-beta treatment in multiple sclerosis attenuates inflammatory gene expression through inducible activity of the phosphatase SHP-1. Clin Immunol 2009; 133:27-44. [PMID: 19559654 PMCID: PMC2744840 DOI: 10.1016/j.clim.2009.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 12/23/2022]
Abstract
Interferon-beta is a current treatment for multiple sclerosis (MS). Interferon-beta is thought to exert its therapeutic effects on MS by down-modulating the immune response by multiple potential pathways. Here, we document that treatment of MS patients with interferon beta-1a (Rebif) results in a significant increase in the levels and function of the protein tyrosine phosphatase SHP-1 in PBMCs. SHP-1 is a crucial negative regulator of cytokine signaling, inflammatory gene expression, and CNS demyelination as evidenced in mice deficient in SHP-1. In order to examine the functional significance of SHP-1 induction in MS PBMCs, we analyzed the activity of proinflammatory signaling molecules STAT1, STAT6, and NF-kappaB, which are known SHP-1 targets. Interferon-beta treatment in vivo resulted in decreased NF-kappaB and STAT6 activation and increased STAT1 activation. Further analysis in vitro showed that cultured PBMCs of MS patients and normal subjects had a significant SHP-1 induction following interferon-beta treatment that correlated with decreased NF-kappaB and STAT6 activation. Most importantly, experimental depletion of SHP-1 in cultured PBMCs abolished the anti-inflammatory effects of interferon-beta treatment, indicating that SHP-1 is a predominant mediator of interferon-beta activity. In conclusion, interferon-beta treatment upregulates SHP-1 expression resulting in decreased transcription factor activation and inflammatory gene expression important in MS pathogenesis.
Collapse
Affiliation(s)
- George P. Christophi
- Department of Neurology, SUNY Upstate Medical University, Syracuse NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Michael Panos
- Department of Neurology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Chad A. Hudson
- Department of Neurology, SUNY Upstate Medical University, Syracuse NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Chriso Tsikkou
- Department of Neurology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Cornelia Mihai
- Department of Neurology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Luis J. Mejico
- Department of Neurology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Burk Jubelt
- Department of Neurology, SUNY Upstate Medical University, Syracuse NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Paul T. Massa
- Department of Neurology, SUNY Upstate Medical University, Syracuse NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| |
Collapse
|
19
|
Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH. CD26 expression on T cell lines increases SDF-1-alpha-mediated invasion. Br J Cancer 2009; 101:983-91. [PMID: 19654580 PMCID: PMC2743358 DOI: 10.1038/sj.bjc.6605236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND CD26 is a multifunctional membrane-bound glycoprotein that regulates tumour growth in addition to its other activities. Because disease aggressiveness is correlated with CD26 expression in several T-cell malignancies, we decided to investigate the invasiveness of cells expressing different levels of CD26. METHODS To assess CD26 involvement in cell invasion, we performed in vitro invasion assays with human T cell lines expressing different levels of CD26. These included the parental CD26-positive T-lymphoblast cell line HSB-2 and clones infected with a retrovirus expressing siRNA vectors that either targeted CD26 or encoded a missense siRNA, and the parental CD26-negative T-leukaemia cell line Jurkat and clones expressing CD26. CD26 expression in these cell lines was evaluated by flow cytometry and western immunoblotting. CXCR4 expression, phosphorylation of signalling kinases, and MMP-9 secretion were also evaluated by western immunoblotting, whereas MMP-9 activity and the effect of kinase and CD45 inhibitors on activity were measured by zymography of conditioned media. RESULTS The presence of CD26 enhanced stromal-cell-derived factor-1-alpha (SDF-1-alpha)-mediated invasion of T cell lines. This process was regulated in part by the PI-3K and MEK1 pathways, as indicated by increased phosphorylation of p44/42 MAP kinase and Akt in the presence of SDF-1-alpha and the effect of their respective inhibitors on MMP-9 secretion and in vitro invasion. In addition, CD26-associated enhancement of SDF-1-alpha-induced invasion was decreased when CD45 was inhibited. CONCLUSIONS Our results indicate that the expression of CD26 in T cell lines leads to increased SDF-1-alpha-mediated invasion in an in vitro system and that this is controlled in part by the PI-3K and MEK1 pathways. The data also suggest that CD26 enhancement of invasion may be mediated by CD45, however, more studies are required to confirm this involvement.
Collapse
Affiliation(s)
- P A Havre
- Division of Hematology/Oncology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
20
|
Christophi GP, Panos M, Hudson CA, Christophi RL, Gruber RC, Mersich AT, Blystone SD, Jubelt B, Massa PT. Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype. J Transl Med 2009; 89:742-59. [PMID: 19398961 PMCID: PMC2725397 DOI: 10.1038/labinvest.2009.32] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that may be important in controlling macrophage-mediated demyelination in MS.
Collapse
Affiliation(s)
- George P. Christophi
- Department of Neurology and Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Michael Panos
- Department of Neurology and Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Chad A. Hudson
- Department of Neurology and Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Rebecca L. Christophi
- Department of Neurology and Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Ross C. Gruber
- Department of Neurology and Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Akos T. Mersich
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Scott D. Blystone
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Burk Jubelt
- Department of Neurology and Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Paul T. Massa
- Department of Neurology and Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| |
Collapse
|
21
|
Masson K, Rönnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21:1717-26. [PMID: 19540337 DOI: 10.1016/j.cellsig.2009.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 01/01/2023]
Abstract
Signal transduction in response to growth factors is a strictly controlled process with networks of feedback systems, highly selective interactions and finely tuned on-and-off switches. In the context of cancer, detailed signaling studies have resulted in the development of some of the most frequently used means of therapy, with several well established examples such as the small molecule inhibitors imatinib and dasatinib in the treatment of chronic myeloid leukemia. Impaired function of receptor tyrosine kinases is implicated in various types of tumors, and much effort is put into mapping the many interactions and downstream pathways. Here we discuss the hematopoietic growth factor receptors c-Kit and Flt3 and their downstream signaling in normal as well as malignant cells. Both receptors are members of the same family of tyrosine kinases and crucial mediators of stem-and progenitor-cell proliferation and survival in response to ligand stimuli from the surrounding microenvironment. Gain-of-function mutations/alterations render the receptors constitutively and ligand-independently activated, resulting in aberrant signaling which is a crucial driving force in tumorigenesis. Frequently found mutations in c-Kit and Flt3 are point mutations of aspartic acid 816 and 835 respectively, in the activation loop of the kinase domains. Several other point mutations have been identified, but in the case of Flt3, the most common alterations are internal tandem duplications (ITDs) in the juxtamembrane region, reported in approximately 30% of patients with acute myeloid leukemia (AML). During the last couple of years, the increasing understanding of c-Kit and Flt3 signaling has also revealed the complexity of these receptor systems. The impact of gain-of-function mutations of c-Kit and Flt3 in different malignancies is well established and shown to be of clinical relevance in both prognosis and therapy. Many inhibitors of both c-Kit or Flt3 or of their downstream substrates are in clinical trials with encouraging results, and targeted therapy using a combination of such inhibitors is considered a promising approach for future treatments.
Collapse
Affiliation(s)
- Kristina Masson
- Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Malmö University Hospital, Lund University, 20502 Malmö, Sweden
| | | |
Collapse
|
22
|
Interplay between the heterotrimeric G-protein subunits Galphaq and Galphai2 sets the threshold for chemotaxis and TCR activation. BMC Immunol 2009; 10:27. [PMID: 19426503 PMCID: PMC2694176 DOI: 10.1186/1471-2172-10-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 05/08/2009] [Indexed: 12/19/2022] Open
Abstract
Background TCR and CXCR4-mediated signaling appears to be reciprocally regulated pathways. TCR activation dampens the chemotactic response towards the CXCR4 ligand CXCL12, while T cells exposed to CXCL12 are less prone to subsequent TCR-activation. The heterotrimeric G proteins Gαq and Gαi2 have been implicated in CXCR4-signaling and we have recently also reported the possible involvement of Gαq in TCR-dependent activation of Lck (Ngai et al., Eur. J. Immunol., 2008, 38: 32083218). Here we examined the role of Gαq in migration and TCR activation. Results Pre-treatment of T cells with CXCL12 led to significantly reduced Lck Y394 phosphorylation upon TCR triggering indicating heterologous desensitization. We show that knockdown of Gαq significantly enhanced basal migration in T cells and reduced CXCL12-induced SHP-1 phosphorylation whereas Gαi2 knockdown inhibited CXCL12-induced migration. Conclusion Our data suggest that Gαi2 confers migration signals in the presence of CXCL12 whereas Gαq exerts a tonic inhibition on both basal and stimulated migrational responses. This is compatible with the notion that the level of Gαq activation contributes to determining the commitment of the T cell either to migration or activation through the TCR.
Collapse
|
23
|
Abstract
Eosinophilic esophagitis (EoE) is a newly recognized disease and is an emerging entity throughout developing and developed countries, including the United States. Therefore, understanding the causes, natural history, diagnosis, and management is important for future therapeutic interventions. The pathogenesis of EoE is still not clear, but a growing body of evidence has established that this condition represents a T-cell-mediated immune response involving several proinflammatory mediators and chemoattractants known to regulate eosinophilic accumulation in the esophagus, such as IL-4, IL-5, IL-3 and eotaxin-1, -2, and -3. Determining the mechanism or mechanisms through which human esophageal-derived factors ultimately induce the functional abnormalities observed, and to which antigens patients who have EoE are sensitized that lead to the manifestation of symptoms, is of significant interest.
Collapse
Affiliation(s)
- Anil Mishra
- Department of Pediatrics, Division of Allergy and Immunology, 3333 Burnnet Avenue, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
24
|
Modulation of Bone Marrow-Derived Endothelial Progenitor Cell Activity by Protein Tyrosine Phosphatases. Trends Cardiovasc Med 2008; 18:180-6. [DOI: 10.1016/j.tcm.2008.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 12/21/2022]
|
25
|
Broxmeyer HE, Mejia JAH, Hangoc G, Barese C, Dinauer M, Cooper S. SDF-1/CXCL12 enhances in vitro replating capacity of murine and human multipotential and macrophage progenitor cells. Stem Cells Dev 2007; 16:589-96. [PMID: 17784832 DOI: 10.1089/scd.2007.0044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic progenitor cells (HPCs) manifest a limited self-renewal capacity, as determined by a surrogate assay involving replating capacity of single colonies in vitro with generation of secondary colonies. Stromal cell-derived factor-1 (SDF-1/CXCL12), has been implicated in regulation of hematopoiesis through its modulation of hematopoietic stem cell (HSC) and HPC migration, homing, mobilization, and survival. We used bone marrow cells from SDF-1/CXCL12 transgenic and littermate control mice, and culture of normal mouse bone marrow and human cord blood cells plated in the presence or absence of recombinant SDF-1/CXCL12 to evaluate a role for SDF-1/CXCL12 in the replating capability in vitro of multipotential [colony-forming units (CFU)-GEMM] and macrophage (CFU-M) progenitor cells. Competitive repopulating capacity of mouse HSCs was assessed in lethally irradiated mice. Transgenic or exogenous SDF-1/CXCL12 significantly enhanced numbers of secondary colonies formed from primary CFU-GEMM or CFU-M colonies. In the limited setting of our in vivo studies, the SDF-1/CXCL12 transgene did not influence HSC competitive repopulation. However, the results suggest that SDF-1/CXCL12 enhances in vitro replating/self-renewal of HPCs, which may contribute to myelopoiesis in vivo. This information may be of value to ex vivo expansion of HPCs/HSCs.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Patrussi L, Baldari CT. Intracellular mediators of CXCR4-dependent signaling in T cells. Immunol Lett 2007; 115:75-82. [PMID: 18054087 DOI: 10.1016/j.imlet.2007.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 01/03/2023]
Abstract
The signaling pathways induced in T lymphocytes by CXCR4-CXCL12 interaction, which lead to the cytoskeletal macro-rearrangements observable in migrating cells, are as yet largely uncharacterized. The aim of this review is to briefly summarize the current knowledge of the signaling machinery which controls the process of chemotaxis in CXCL12-stimulated T lymphocytes.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | | |
Collapse
|
27
|
Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 2007; 22:1251-67. [PMID: 17647198 PMCID: PMC2515712 DOI: 10.14670/hh-22.1251] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interest in the diverse biology of protein tyrosine phosphatases that are encoded by more than 100 genes in the human genome continues to grow at an accelerated pace. In particular, two cytoplasmic protein tyrosine phosphatases composed of two Src homology 2 (SH2) NH2-terminal domains and a C-terminal protein-tyrosine phosphatase domain referred to as SHP-1 and SHP-2 are known to govern a host of cellular functions. SHP-1 and SHP-2 modulate progenitor cell development, cellular growth, tissue inflammation, and cellular chemotaxis, but more recently the role of SHP-1 and SHP-2 to directly control cell survival involving oxidative stress pathways has come to light. SHP-1 and SHP-2 are fundamental for the function of several growth factor and metabolic pathways yielding far reaching implications for disease pathways and disorders such as diabetes, neurodegeneration, and cancer. Although SHP-1 and SHP-2 can employ similar or parallel cellular pathways, these proteins also clearly exert opposing effects upon downstream cellular cascades that affect early and late apoptotic programs. SHP-1 and SHP-2 modulate cellular signals that involve phosphatidylinositol 3-kinase, Akt, Janus kinase 2, signal transducer and activator of transcription proteins, mitogen-activating protein kinases, extracellular signal-related kinases, c-Jun-amino terminal kinases, and nuclear factor-kappaB. Our progressive understanding of the impact of SHP-1 and SHP-2 upon multiple cellular environments and organ systems should continue to facilitate the targeted development of treatments for a variety of disease entities.
Collapse
Affiliation(s)
- Z Z Chong
- Division of Cellular and Molecular Cerebral Ischemia, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
28
|
Liacouras CA, Bonis P, Putnam PE, Straumann A, Ruchelli E, Gupta SK, Lee JJ, Hogan SP, Wershil BK, Rothenberg ME, Ackerman SJ, Gomes I, Murch S, Mishra A, Furuta GT. Summary of the First International Gastrointestinal Eosinophil Research Symposium. J Pediatr Gastroenterol Nutr 2007; 45:370-91. [PMID: 17873754 DOI: 10.1097/mpg.0b013e318142b4f8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Hu X, Dai S, Wu WJ, Tan W, Zhu X, Mu J, Guo Y, Bolli R, Rokosh G. Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation 2007; 116:654-63. [PMID: 17646584 PMCID: PMC3640445 DOI: 10.1161/circulationaha.106.672451] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stromal cell-derived factor-1alpha (SDF-1alpha) binding to its cognate receptor, CXCR4, regulates a variety of cellular functions such as stem cell homing, trafficking, and differentiation. However, the role of the SDF-1alpha-CXCR4 axis in modulating myocardial ischemia/reperfusion injury is unknown. METHODS AND RESULTS In mice subjected to ischemic preconditioning, myocardial SDF-1alpha mRNA was found to be increased 3 hours later (P<0.05). Myocardial SDF-1alpha and CXCR4 mRNA and protein were found to be expressed in both cardiac myocytes and fibroblasts. SDF-1alpha production increased significantly after 1 or 4 hours of hypoxia and 18 hours of reoxygenation in cultured myocytes (P<0.05) but did not change in fibroblast cultures. In isolated myocytes, CXCR4 activation by SDF-1alpha resulted in increased phosphorylation of both ERK 1/2 and AKT and decreased phosphorylation of JNK and p38. Cultured myocytes pretreated with SDF-1alpha were resistant to hypoxia/reoxygenation damage, exhibiting less lactate dehydrogenase release, trypan blue uptake, and apoptotic cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) (P<0.05). This protective effect was blocked by the CXCR4 selective antagonist AMD3100. In vivo, administration of SDF-1alpha before 30 minutes of coronary occlusion followed by 4 hours of reperfusion decreased infarct size (P<0.05). The decrease in infarct size with SDF-1alpha administration also was blocked by AMD3100. CONCLUSIONS We conclude that SDF-1alpha and its receptor, CXCR4, constitute a paracrine or autocrine axis in cardiac myocytes that is activated in response to preconditioning and hypoxic stimuli, recruiting the antiapoptotic kinases ERK and AKT and promoting an antiapoptotic program that confers protection against ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Xiaofeng Hu
- Institute of Molecular Cardiology, Division of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Broxmeyer HE, Sehra S, Cooper S, Toney LM, Kusam S, Aloor JJ, Marchal CC, Dinauer MC, Dent AL. Aberrant regulation of hematopoiesis by T cells in BAZF-deficient mice. Mol Cell Biol 2007; 27:5275-85. [PMID: 17526724 PMCID: PMC1952080 DOI: 10.1128/mcb.01967-05] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BAZF (BCL-6b) protein is highly similar to the BCL-6 transcriptional repressor. While BCL-6 has been characterized extensively, relatively little is known about the normal function of BAZF. In order to understand the physiological role of BAZF, we created BAZF-deficient mice. Unlike BCL-6-deficient mice, BAZF-deficient mice are healthy and normal in size. However, BAZF-deficient mice have a hematopoietic progenitor phenotype that is almost identical to that of BCL-6-deficient mice. Compared to wild-type mice, both BAZF-deficient and BCL-6-deficient mice have greatly reduced numbers of cycling hematopoietic progenitor cells (HPC) in the BM and greatly increased numbers of cycling HPC in the spleen. In contrast to HPC from wild-type mice, HPC from BAZF-deficient and BCL-6-deficient mice are resistant to chemokine-induced myelosuppression and do not show a synergistic growth response to granulocyte-macrophage colony-stimulating factor plus stem cell factor. Depletion of CD8 T cells in BAZF-deficient mice reverses several of the hematopoietic defects in these mice. Since both BAZF- and BCL-6-deficient mice have defects in CD8 T-cell differentiation, we hypothesize that both BCL-6 and BAZF regulate HPC homeostasis by an indirect pathway involving CD8 T cells.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology and The Walther Oncology Center, 950 W. Walnut St. R2 302, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Trushin SA, Algeciras-Schimnich A, Vlahakis SR, Bren GD, Warren S, Schnepple DJ, Badley AD. Glycoprotein 120 binding to CXCR4 causes p38-dependent primary T cell death that is facilitated by, but does not require cell-associated CD4. THE JOURNAL OF IMMUNOLOGY 2007; 178:4846-53. [PMID: 17404265 DOI: 10.4049/jimmunol.178.8.4846] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HIV-1 infection causes the depletion of host CD4 T cells through direct and indirect (bystander) mechanisms. Although HIV Env has been implicated in apoptosis of uninfected CD4 T cells via gp120 binding to either CD4 and/or the chemokine receptor 4 (CXCR4), conflicting data exist concerning the molecular mechanisms involved. Using primary human CD4 T cells, we demonstrate that gp120 binding to CD4 T cells activates proapoptotic p38, but does not activate antiapoptotic Akt. Because ligation of the CD4 receptor alone or the CXCR4 receptor alone causes p38 activation and apoptosis, we used the soluble inhibitors, soluble CD4 (sCD4) or AMD3100, to delineate the role of CD4 and CXCR4 receptors, respectively, in gp120-induced p38 activation and death. sCD4 alone augments gp120-induced death, suggesting that CXCR4 signaling is principally responsible. Supporting that model, AMD3100 reduces death caused by gp120 or by gp120/sCD4. Finally, prevention of gp120-CXCR4 interaction with 12G5 Abs blocks p38 activation and apoptosis, whereas inhibition of CD4-gp120 interaction with Leu-3a has no effect. Consequently, we conclude that gp120 interaction with CXCR4 is required for gp120 apoptotic effects in primary human T cells.
Collapse
Affiliation(s)
- Sergey A Trushin
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Sathish JG, Dolton G, Leroy FG, Matthews RJ. Loss of Src homology region 2 domain-containing protein tyrosine phosphatase-1 increases CD8+ T cell-APC conjugate formation and is associated with enhanced in vivo CTL function. THE JOURNAL OF IMMUNOLOGY 2007; 178:330-7. [PMID: 17182570 DOI: 10.4049/jimmunol.178.1.330] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extensive evidence has been accumulated to implicate the intracellular protein tyrosine phosphatase, Src homology region 2 domain-containing protein tyrosine phosphatase-1 (SHP-1), as a negative regulator of TCR-signaling thresholds. Specifically, T cells from the SHP-1-deficient mouse, motheaten, exhibit a hyperproliferative phenotype when activated by cognate peptide-pulsed APCs. However, the cellular basis for this phenotype has not been fully explained. Using the intracellular fluorescent dye, CFSE, we show that a greater proportion of motheaten vs control naive CD8(+) T cells undergo cell division when activated by peptide-pulsed APCs. Furthermore, there is a greater likelihood of TCRs on SHP-1-deficient vs control T cells binding to peptide/MHC ligands on APCs when using TCR down-regulation as an indirect measure of TCR engagement. In addition, T cell-APC conjugate assays provide direct evidence that a greater proportion of SHP-1-deficient T cells are capable of forming stable conjugates with APCs and this may explain, at least in part, their hyperproliferative response to TCR-triggered stimulation. The physiological relevance of the combined in vitro observations is demonstrated by the significantly enhanced in vivo expansion and CTL capacity generated in mice receiving adoptively transferred SHP-1-deficient naive CD8(+) T cells when compared with control T cells.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- Cell Adhesion/genetics
- Cell Division/genetics
- Coculture Techniques
- Down-Regulation
- Fibronectins/immunology
- Intercellular Adhesion Molecule-1/drug effects
- Intercellular Adhesion Molecule-1/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Function-Associated Antigen-1/drug effects
- Lymphocyte Function-Associated Antigen-1/immunology
- Mice
- Mice, Mutant Strains
- Peptides/pharmacology
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/physiology
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- src Homology Domains
Collapse
Affiliation(s)
- Jean G Sathish
- Section of Infection and Immunity, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
33
|
Munitz A, Levi-Schaffer F. Inhibitory receptors on eosinophils: a direct hit to a possible Achilles heel? J Allergy Clin Immunol 2007; 119:1382-7. [PMID: 17337299 DOI: 10.1016/j.jaci.2007.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 01/10/2007] [Accepted: 01/12/2007] [Indexed: 01/21/2023]
Abstract
Since their discovery, much data have been accumulated on eosinophil differentiation, morphology, trafficking, and anatomical location(s) in health and disease. Although "classic" activation pathways (such as cytokines, chemokines, proinflammatory components, and adhesion molecules) regulating eosinophil activation have been widely explored, the presence of other activation molecules that might be disease specific is limited. Furthermore, the expression and function of inhibitory receptors on eosinophils have received scant attention. The need to identify new pathways that regulate eosinophil activation is a crucial goal as it can expand our knowledge on this peculiar cell and provide insights into important queries regarding the physiologic function of eosinophils. Over the past several years, it has become increasingly apparent that eosinophils express several receptors belonging to the immunoglobulin superfamily. In this review, we summarize the current knowledge on the expression and function of new pathways that govern eosinophil activation. In addition, we will propose some hypotheses regarding the ability to use these pathways as a future therapeutic approach. In conclusion, we assume that targeting inhibitory receptors on eosinophils may provide opportunities for immunoregulatory therapy in the near future.
Collapse
Affiliation(s)
- Ariel Munitz
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
34
|
Kang SG, Piniecki RJ, Hogenesch H, Lim HW, Wiebke E, Braun SE, Matsumoto S, Kim CH. Identification of a chemokine network that recruits FoxP3(+) regulatory T cells into chronically inflamed intestine. Gastroenterology 2007; 132:966-81. [PMID: 17324406 DOI: 10.1053/j.gastro.2007.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 12/07/2006] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS It has been unclear which chemokine network is involved in migration of T-cell subsets to chronically inflamed lesions of the intestine. SAMP1/YP mice develop a spontaneous chronic transmural intestinal lesion specifically in the ileum. Using these mice, we investigated the gut chemokine network involved in specific migration of T-cell subsets to the inflamed lesion of the intestine. METHODS We performed expression analyses of chemokines and their receptors, chemokine receptor blocking studies, and migration studies in vitro and in vivo to identify the gut chemokine network induced in intestinal inflammation and to determine its role in migration of conventional and FoxP3(+) suppressor T cells to the inflamed intestine. RESULTS The expression of homeostatic chemokines was largely unchanged in the inflamed lesion of SAMP1/YP mice compared with control mice. However, an additional chemokine axis (CCL5-CCR5) was up-regulated in the inflamed intestine of SAMP1/YP mice compared with control mice. Activated T cells of SAMP1/YP mice compared with control mice were hyperresponsive to CCL5 in chemotaxis. CCR5(+) T cells preferentially migrated to the inflamed lesion, which can be blocked by a CCR5 antagonist. Importantly, the FoxP3(+) regulatory T cells of the inflamed lesion of SAMP1/YP mice highly expressed CCR5. CCR5 blockade suppressed the migration of FoxP3(+) T cells into the inflamed intestine and significantly exacerbated the intestinal inflammation. CONCLUSIONS The CCL5-CCR5 chemokine axis is involved in preferential recruitment of FoxP3(+) regulatory T cells, which prevents further exacerbation of chronic inflammation in the intestine.
Collapse
MESH Headings
- Amides/pharmacology
- Animals
- CCR5 Receptor Antagonists
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Chemokine CCL5
- Chemokines/biosynthesis
- Chemokines, CC/biosynthesis
- Chemokines, CXC/biosynthesis
- Chemotaxis, Leukocyte/drug effects
- Chronic Disease
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Forkhead Transcription Factors/metabolism
- Ileitis/immunology
- Ileitis/metabolism
- Ileitis/pathology
- Ileitis/physiopathology
- Lymphocyte Activation
- Mice
- Mice, Inbred AKR
- Mice, SCID
- Quaternary Ammonium Compounds/pharmacology
- Receptors, CCR5/biosynthesis
- Severity of Illness Index
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- Seung G Kang
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Cancer Center, Purdue University Life Science Program, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chin AC, Parkos CA. Pathobiology of Neutrophil Transepithelial Migration: Implications in Mediating Epithelial Injury. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 2:111-43. [DOI: 10.1146/annurev.pathol.2.010506.091944] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alex C. Chin
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322; ,
| | - Charles A. Parkos
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322; ,
| |
Collapse
|
36
|
Broxmeyer HE, Pelus LM, Kim CH, Hangoc G, Cooper S, Hromas R. Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with Ara-C. Exp Hematol 2006; 34:1069-77. [PMID: 16863913 DOI: 10.1016/j.exphem.2006.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Selected chemokines suppress proliferation of hematopoietic progenitor cells (HPCs) in vitro; some of these have demonstrated inhibition of myelopoiesis in vivo. Because myelosuppressive chemokines synergize in vitro with other myelosuppressive chemokines, we sought to determine whether additional chemokines active in vitro were myelosuppressive in vivo and whether combinations of myelosuppressive chemokines synergized in vivo to dampen myelopoiesis. We also evaluated three chemokines in vivo for myeloprotection against Ara-C-induced decreases in HPCs. METHODS C3H/HeJ mice were used for analysis of in vivo influence of chemokines, with the end points being effects on absolute numbers and cycling status of HPCs. RESULTS When used alone, CCL2, CCL3, CCL19, CCL20, CXCL4, CXCL5, CXCL8, CXCL9, and XCL1 caused dose-dependent significant decreases in absolute numbers and cycling status of HPCs in vivo. The following combinations of two chemokines resulted in in vivo myelosuppression at concentrations much lower than that induced by each chemokine alone: CCL3 plus either CXCL8 or CXCL4, CXCL8 plus CXCL4, CCL2 plus either CCL20 or CXCL9, CCL20 plus CXCL9, CXCL5 plus either XCL1 or CCL19, XCL1 plus CCL19, and CCL3 plus CCL19. Also, mice injected with CXCL8, CXCL4, or the chimeric CXCL8/CXCL4 protein CXCL8M1 manifested accelerated recovery of absolute numbers of HPCs in response to the toxic effects of Ara-C administration. CONCLUSIONS A number of chemokines shown previously to manifest inhibitory effects in vitro for proliferation of HPCs are now demonstrated to also induce myelosuppression in vivo. Moreover, combinations of low dosages of two myelosuppressive chemokines when administered together demonstrate synergistic suppression in vivo. Additionally, chemokines, including a CXCL8M1 chimeric protein previously shown to manifest enhanced suppression of HPC proliferation in vitro and in vivo, accelerate HPC recovery after treatment of mice with Ara-C. These results may be of use for future clinical utility of chemokines in a myelosuppressive/myeloprotective setting.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Departments of Microbiology and Immunology, and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Broxmeyer HE, Cooper S, Hangoc G, Chang CH. Class II transactivator-mediated regulation of major histocompatibility complex class II antigen expression is important for hematopoietic progenitor cell suppression by chemokines and iron-binding proteins. Exp Hematol 2006; 34:1078-84. [PMID: 16863914 DOI: 10.1016/j.exphem.2006.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Iron-binding proteins H-ferritin (HF) and lactoferrin (LF), as well as chemokines, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma suppress hematopoietic progenitor cell (HPC) proliferation. Major histocompatibility complex (MHC) class II antigens have been associated with suppressive effects of HF and LF. Because the transcription factor class II transactivator (CIITA) regulates expression of MHC class II antigens, we evaluated influences of CIITA and MHC class II antigens on suppression of colony formation by murine bone marrow HPC in response to HF, LF, CC, and CXC chemokines, TNF-alpha, and IFN-gamma. We also evaluated hematopoiesis in mice deficient in both CIITA and MHC class II antigens (CIITA -/-), in mice deficient in MHC class II antigens but not in CIITA (MHC class II -/-), and in mice deficient in CIITA but not in MHC class II antigens (CIITA-IE). MATERIALS AND METHODS HF, LF, CCL3/MIP-1alpha, CXCL5/ENA-78, CXCL8/IL-8, CCL5/RANTES, TNF-alpha, and IFN-gamma were assessed for effects on colony formation by bone marrow HPC (colony-forming unit granulocyte-macrophage, burst-forming unit erythroid, and colony-forming unit multipotential) stimulated in vitro by combinations of growth factors including erythropoietin, stem cell factor, pokeweed mitogen mouse spleen cell conditioned medium, and hemin. Bone marrow cells were from CIITA -/-, MHC class II antigen -/-, CIITA-IE, and littermate control mice. We also evaluated cycling status (percent cells in S-phase) and absolute numbers of marrow and spleen HPC in these mice. RESULTS Multiple growth factor-stimulated colony formation by control bone marrow HPC was significantly suppressed by HF, LF, CCL3, CXCL5, CXCL8, TNF-alpha, and IFN-gamma, but not by CCL5. However, HPC from CIITA -/- and MHC class II antigen -/- mouse marrow was insensitive to inhibition by HF, LF, CCL3, CXCL5, CXCL8, and CCL5; these HPC were inhibited by TNF-alpha and IFN-gamma. Restoration of MHC class II expression in CIITA -/- (CIITA-IE) mice restored responsiveness of HPC to inhibition by HF, LF, CCL3, CXCL5, and CXCL8. Increased cycling of splenic HPC in CIITA -/- and MHC class II antigen -/-, compared to control and CIITA-IE, mice was noted. CONCLUSIONS Myelosuppressive effects of iron-binding proteins HF and LF and chemokines CCL3, CXCL5, and CXCL8 on mouse bone marrow HPC require expression of MHC class II antigens, and CIITA is involved in this responsiveness through its regulation of expression of MHC class II antigens.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Departments of Microbiology and Immunology, and the Walther Oncology Center, Indiana University School of Medicine, and the Walther Cancer Institute, Indianapolis, IN 46202-5181, USA.
| | | | | | | |
Collapse
|
38
|
Seo DW, Li H, Qu CK, Oh J, Kim YS, Diaz T, Wei B, Han JW, Stetler-Stevenson WG. Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem 2006; 281:3711-21. [PMID: 16326706 PMCID: PMC1361361 DOI: 10.1074/jbc.m509932200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tissue inhibitors of metalloproteinases (TIMPs) regulate matrix metalloproteinase activity required for cell migration/invasion associated with cancer progression and angiogenesis. TIMPs also modulate cell proliferation in vitro and angiogenesis in vivo independent of their matrix metalloproteinase inhibitory activity. Here, we show that TIMP-2 mediates G1 growth arrest in human endothelial cells through de novo synthesis of the cyclin-dependent kinase inhibitor p27Kip1. TIMP-2-mediated inhibition of Cdk4 and Cdk2 activity is associated with increased binding of p27Kip1 to these complexes in vivo. Protein-tyrosine phosphatase inhibitors or expression of a dominant negative Shp-1 mutant ablates TIMP-2 induction of p27Kip1. Finally, angiogenic responses to fibroblast growth factor-2 and vascular endothelial growth factor-A in "motheaten viable" Shp-1-deficient mice are resistant to TIMP-2 inhibition, demonstrating that Shp-1 is an important negative regulator of angiogenesis in vivo.
Collapse
Key Words
- timp-2, tissue inhibitor of metalloproteinase-2
- mmp, matrix metalloproteinase
- shp-1, sh2-containing protein tyrosine phosphatase-1
- ptp, protein tyrosine phosphatase
- hmvecs, human microvascular endothelial cells
- cdks, cyclin-dependent kinases
- ecm, extracellular matrix
- fgf-2, fibroblast growth factor
- pdgf, platelet derived growth factor
- egf, epidermal growth factor
- vegf-a, vascular endothelial growth factor-a
- ink4, inhibitors of cdk4
- pbs, phosphate-buffered saline
- prb, retinoblastoma protein
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Cells, Cultured
- Cyclin-Dependent Kinase 2/metabolism
- Cyclin-Dependent Kinase 4/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Endothelium, Vascular/cytology
- G1 Phase
- Gene Expression Regulation
- Genes, Dominant
- Humans
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/physiology
- Mice
- Mice, Transgenic
- Microcirculation/enzymology
- Microscopy, Fluorescence
- Models, Biological
- Mutation
- Neovascularization, Physiologic
- Phosphorylation
- Polymerase Chain Reaction
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- RNA, Small Interfering/metabolism
- Subcellular Fractions/metabolism
- Tissue Inhibitor of Metalloproteinase-2/biosynthesis
- Transfection
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Dong-Wan Seo
- From the Cell and Cancer Biology Branch, CCR, NCI, NIH, Bethesda, Maryland 20892-1500, USA
| | - Hongmei Li
- From the Cell and Cancer Biology Branch, CCR, NCI, NIH, Bethesda, Maryland 20892-1500, USA
| | - Cheng-Kui Qu
- Department of Pathology, University of Maryland School of Medicine, Rockville, Maryland 20855
| | - Junseo Oh
- From the Cell and Cancer Biology Branch, CCR, NCI, NIH, Bethesda, Maryland 20892-1500, USA
| | - Young-Sik Kim
- From the Cell and Cancer Biology Branch, CCR, NCI, NIH, Bethesda, Maryland 20892-1500, USA
| | - Tere Diaz
- From the Cell and Cancer Biology Branch, CCR, NCI, NIH, Bethesda, Maryland 20892-1500, USA
| | - Beiyang Wei
- From the Cell and Cancer Biology Branch, CCR, NCI, NIH, Bethesda, Maryland 20892-1500, USA
| | - Jeung-Whan Han
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | | |
Collapse
|
39
|
Abstract
Since the discovery that integrins at the surface of lymphocytes undergo dynamic changes in their adhesive activity after stimulation through the T-cell receptor or stimulation with chemokines, intensive research has been carried out in an attempt to clarify the signalling events that lead to the activation of integrins. Whereas structural studies have provided us with a vivid picture of the conformational flexibility of integrins, the signalling pathways that regulate these conformational changes (known as inside-out signalling) have been elusive. However, as I discuss here, recent studies have provided new insight into the pathways that control the regulation of integrin activity and the coordination of complex cellular functions, such as the homing of lymphocytes and the formation of an immunological synapse.
Collapse
Affiliation(s)
- Tatsuo Kinashi
- Department of Molecular Genetics, Graduate School of Medicine, Institute of Liver Research, Kansai Medical School, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan.
| |
Collapse
|
40
|
Zhang H, Meng F, Chu CL, Takai T, Lowell CA. The Src family kinases Hck and Fgr negatively regulate neutrophil and dendritic cell chemokine signaling via PIR-B. Immunity 2005; 22:235-46. [PMID: 15723811 DOI: 10.1016/j.immuni.2005.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 12/17/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
In classical descriptions of leukocyte chemokine signaling, Src family kinases are thought to function in a positive fashion by coupling receptor associated Galpha subunits to downstream mitogen activated protein (MAP) kinase activation. However, neutrophils derived from hck-/-fgr-/- mice and dendritic cells (DCs) from fgr-/- animals manifested significantly higher intracellular signaling (Ca2+ flux, MAP kinase activation, actin polymerization) and functional responses (chemotaxis in vitro and migration in vivo) to a number of different chemokines. These kinases may mediate their effect through the inhibitory receptor PIR-B since neutrophils and DCs from pir-b-/- mice were also hyperresponsive to chemokine stimulation. In wild-type (wt) cells dephosphorylation of PIR-B was associated with maximal chemokine signaling, whereas in hck-/-fgr-/- cells PIR-B was unphosphorylated. These data support a model in which the Src family kinases Hck and Fgr function as negative regulators of myeloid cell chemokine signaling by maintaining the tonic phosphorylation of PIR-B.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Laboratory Medicine , University of California, San Francisco , San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
41
|
Yu WM, Wang S, Keegan AD, Williams MS, Qu CK. Abnormal Th1 cell differentiation and IFN-gamma production in T lymphocytes from motheaten viable mice mutant for Src homology 2 domain-containing protein tyrosine phosphatase-1. THE JOURNAL OF IMMUNOLOGY 2005; 174:1013-9. [PMID: 15634925 DOI: 10.4049/jimmunol.174.2.1013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) plays an important role in T and B lymphocyte signaling; however, the function of SHP-1 in Th cell differentiation, in particular, the Th1 response, has not been defined. In this study, we provide evidence that SHP-1 phosphatase negatively regulates Th1 cell development and IFN-gamma production. Compared with the wild-type control, anti-CD3-activated mouse T lymphocytes carrying the motheaten viable mutation in the SHP-1 gene produced a significantly increased amount of IFN-gamma in the presence of IL-12. This increase was also seen at the basal level without IL-12 addition. Similarly, Th1 cell differentiation and proliferation of anti-CD3-activated SHP-1 mutant lymph node cells in the presence or absence of IL-12 were markedly enhanced, indicating a negative role for SHP-1 phosphatase in such lymphocyte activities. Interestingly, IL-12-induced activation of Jak2 and STAT4, critical components for IL-12-mediated cellular responses, was shortened or attenuated in mutant T cells. Together these results suggest that SHP-1 negatively regulates Th1 cell development and functions through a mechanism that is not directly related to IL-12 signaling.
Collapse
Affiliation(s)
- Wen-Mei Yu
- Department of Hematopoiesis, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | |
Collapse
|
42
|
Yu RYL, Wang X, Pixley FJ, Yu JJ, Dent AL, Broxmeyer HE, Stanley ER, Ye BH. BCL-6 negatively regulates macrophage proliferation by suppressing autocrine IL-6 production. Blood 2004; 105:1777-84. [PMID: 15507530 DOI: 10.1182/blood-2004-08-3171] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The transcription repressor BCL-6 is known to play critical roles in B-cell lymphomagenesis, germinal center formation, and balanced Th1/Th2 differentiation. In macrophages, although BCL-6 has also been shown to regulate the expression of several chemokine genes, its function in other aspects of macrophage biology has not been studied. In addition, the precise role of BCL-6 in cell proliferation is poorly understood in general. Here we report that BCL-6(-/-) macrophages hyperproliferate due to an accelerated G(1)/S transition accompanied by increased cyclin D2 and c-myc and decreased expression of p27. Crucial to this enhanced proliferation is spontaneous interleukin 6 (IL-6) production and signal transducer and activator of transcription 3 (STAT3) activation in BCL-6(-/-) macrophages. In colony-forming assays, BCL- 6(-/-) bone marrow progenitor cells form spontaneous macrophage colonies that can be inhibited by anti-IL-6 antibodies. Gene expression studies demonstrate that BCL-6 binds to several sequence motifs scattered in the IL-6 locus and can repress IL-6 transcription both in 293T cells and in macrophages. In conclusion, our results indicate that BCL-6 negatively regulates proliferation of the monocytic/macrophage lineage by suppressing an autocrine IL-6/STAT3-mediated gene expression program. Our work also suggests that BCL-6 prevents abnormal Th2 differentiation by suppressing basal level IL-6 production in antigen-presenting cells (APCs).
Collapse
Affiliation(s)
- Raymond Yick-Loi Yu
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pribila JT, Shimizu Y. Signal transduction events regulating integrin function and T cell migration: new functions and complexity. Immunol Res 2003; 27:107-28. [PMID: 12637771 DOI: 10.1385/ir:27:1:107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Integrin receptors facilitate T cell function by mediating adhesive events critical for T cell trafficking and recognition of foreign antigen, including interactions with vascular endothelium, extracellular matrix components, and antigen-presenting cells. Consequently, the functional activity of integrin receptors is acutely regulated by various intracellular signals delivered by other cell surface receptors, resulting in rapid changes in T cell adhesion and migration. This review highlights recent insights into our understanding of the signaling events by which the CD3/T cell receptor complex and chemokine receptors regulate integrin function and T cell migration. These studies highlight novel functions for several signaling molecules, including the tyrosine kinases Itk and ZAP-70, and the adapter protein SLAP-130/Fyb. In addition, analysis of the regulation of integrin function and chemokine-mediated migration has highlighted the critical role that spatial localization of signaling molecules plays in signal transduction, and the importance of the actin cytoskeleton in T cell function.
Collapse
Affiliation(s)
- Jonathan T Pribila
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
44
|
Inngjerdingen M, Rolstad B, Ryan JC. Activating and inhibitory Ly49 receptors modulate NK cell chemotaxis to CXC chemokine ligand (CXCL) 10 and CXCL12. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2889-95. [PMID: 12960311 DOI: 10.4049/jimmunol.171.6.2889] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NK cells can migrate into sites of inflammatory responses or malignancies in response to chemokines. Target killing by rodent NK cells is restricted by opposing signals from inhibitory and activating Ly49 receptors. The rat NK leukemic cell line RNK16 constitutively expresses functional receptors for the inflammatory chemokine CXC chemokine ligand (CXCL)10 (CXCR3) and the homeostatic chemokine CXCL12 (CXCR4). RNK-16 cells transfected with either the activating Ly49D receptor or the inhibitory Ly49A receptor were used to examine the effects of NK receptor ligation on CXCL10- and CXCL12-mediated chemotaxis. Ligation of Ly49A, either with Abs or its MHC class I ligand H2-D(d), led to a decrease in chemotactic responses to either CXCL10 or CXCL12. In contrast, Ly49D ligation with Abs or H2-D(d) led to an increase in migration toward CXCL10, but a decrease in chemotaxis toward CXCL12. Ly49-dependent effects on RNK-16 chemotaxis were not the result of surface modulation of CXCR3 or CXCR4 as demonstrated by flow cytometry. A mutation of the Src homology phosphatase-1 binding motif in Ly49A completely abrogated Ly49-dependent effects on both CXCL10 and CXCL12 chemotaxis, suggesting a role for Src homology phosphatase-1 in Ly49A/chemokine receptor cross-talk. Ly49D-transfected cells were pretreated with the Syk kinase inhibitor Piceatannol before ligation, which abrogated the previously observed changes in migration toward CXCL10 and CXCL12. Piceatannol also abrogated Ly49A-dependent inhibition of chemotaxis toward CXCL10, but not CXCL12. Collectively, these data suggest that Ly49 receptors can influence NK cell chemotaxis within sites of inflammation or tumor growth upon interaction with target cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Amino Acid Motifs/physiology
- Animals
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Antigens, Ly/physiology
- Cell Line
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Migration Inhibition
- Chemokine CXCL10
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemokines, CXC/physiology
- Chemotaxis, Leukocyte/immunology
- Cross-Linking Reagents/metabolism
- Enzyme Precursors/physiology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Humans
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/cytology
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Ligands
- Lymphocyte Activation/immunology
- Protein-Tyrosine Kinases/physiology
- Rats
- Receptors, CXCR3
- Receptors, CXCR4/biosynthesis
- Receptors, Chemokine/biosynthesis
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, NK Cell Lectin-Like
- Syk Kinase
- Tyrosine/metabolism
- Tyrosine/physiology
Collapse
Affiliation(s)
- Marit Inngjerdingen
- Department of Arthritis and Immunology, Veterans Affairs Medical Center, Northern California Institute for Research and Education, and University of California, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
45
|
Pereira S, Lowell C. The Lyn tyrosine kinase negatively regulates neutrophil integrin signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1319-27. [PMID: 12874221 DOI: 10.4049/jimmunol.171.3.1319] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Src family kinase Lyn has been shown to play both stimulatory and inhibitory roles within several hemopoietic cell types. In this study, we investigated the role played by Lyn in neutrophil integrin signaling. Loss of Lyn resulted in a hyperresponsive phenotype on engagement of surface integrins at low valency. Lyn(-/-) neutrophils displayed enhanced respiratory burst, secondary granule release, and a hyperadhesive phenotype when adherent to surfaces coated with either cellular counterreceptors or extracellular matrix proteins. In contrast, Lyn-deficient and wild-type cells expressed similar levels of surface integrins and responded equivalently to activating agents in suspension, indicating that the enhanced responses of lyn(-/-) cells was specific to the integrin signaling pathways. Lyn-deficient macrophages also displayed a hyperadhesive phenotype. Biochemical analysis of macrophages from lyn(-/-) mice revealed that Lyn plays an essential role in the adhesion-dependent phosphorylation of the immunoreceptor tyrosine-based inhibitory motif of the inhibitory receptors SIRP1alpha and PIR-B, which in turn recruit the phosphatase SHP-1. These observations suggest that reduced mobilization of SHP-1 to the membrane in lyn(-/-) neutrophils results in a hyperadhesive and hyperactive phenotype. This hypothesis is further supported by the fact that neutrophils from me(v)/me(v) mice, which have significantly reduced SHP-1 activity, are also hyperresponsive following integrin engagement. This is the first direct evidence using primary leukocytes from lyn(-/-) mice that this kinase functions as a negative regulator in integrin signaling.
Collapse
Affiliation(s)
- Shalini Pereira
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
46
|
Kaplan MH, Chang HC, Cooper S, Lee Y, Broxmeyer HE. Distinct requirements for Stat4 and Stat6 in hematopoietic progenitor cell responses to growth factors and chemokines. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2003; 12:401-8. [PMID: 12965077 DOI: 10.1089/152581603322286033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hematopoietic progenitor cell (HPC) homeostasis is critical in maintaining innate immunity and healing processes. Recently, we demonstrated that Th1 cells regulate HPC homeostasis, partly based on altered homeostasis in Stat4- and Stat6-deficient mice. To explore changes in HPC responsiveness in altered T helper cell environments, we directly examined growth factor-stimulated colony formation and chemokine-induced myelosuppression of HPC in Stat4- and Stat6-deficient bone marrow cells. Stat6-deficient cells have increased responses to the synergy between granulocyte-macrophage colony-stimulating factor (GM-CSF) and steel factor (SLF), compared to wild-type and Stat4-deficient cells. Increased responses are eliminated by in vivo depletion of CD4 cells. Whereas Stat6-deficient bone marrow cells respond to chemokine-mediated myelosuppression, Stat4-deficient bone marrow cells are refractory to the suppressive effects of chemokines. Thus, T helper cell development affects HPC homeostasis through several mechanisms, including the sensitivity to growth factor stimulation and chemokine suppression of HPC colony formation. Since Stat4 and Stat6 regulate opposing programs of T helper differentiation, there are distinct requirements for Stat4 and Stat6 in regulation of growth factor and chemokine responses of HPC.
Collapse
Affiliation(s)
- Mark H Kaplan
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
47
|
Fernandis AZ, Cherla RP, Ganju RK. Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem 2003; 278:9536-43. [PMID: 12519755 DOI: 10.1074/jbc.m211803200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells. We observed a significant reduction in CXCL12-induced chemotaxis in the CD45-negative Jurkat cell line (J45.01) as compared with the CD45-positive control (JE6.1) cells. Expression of a chimeric protein containing the intracellular phosphatase domain of CD45 was able to partially restore CXCL12-induced chemotaxis in the J45.01 cells. However, reconstitution of CD45 into the J45.01 cells restored the CXCL12-induced chemotaxis to about 90%. CD45 had no significant effect on CXCL12 or human immunodeficiency virus gp120-induced internalization of the CXCR4 receptor. Furthermore, J45.01 cells showed a slight enhancement in CXCL12-induced MAP kinase activity as compared with the JE6.1 cells. We also observed that CXCL12 treatment enhanced the tyrosine phosphorylation of CD45 and induced its association with the CXCR4 receptor. Pretreatment of T-cells with the lipid raft inhibitor, methyl-beta-cyclodextrin, blocked the association between CXCR4 and CD45 and markedly abolished CXCL12-induced chemotaxis. Comparisons of signaling pathways induced by CXCL12 in JE6.1 and J45.01 cells revealed that CD45 might moderately regulate the tyrosine phosphorylation of the focal adhesion components the related adhesion focal tyrosine kinase/Pyk2, focal adhesion kinase, p130Cas, and paxillin. CD45 has also been shown to regulate CXCR4-mediated activation and phosphorylation of T-cell receptor downstream effectors Lck, ZAP-70, and SLP-76. Our results show that CD45 differentially regulates CXCR4-mediated chemotactic activity and MAPK activation by modulating the activities of focal adhesion components and the downstream effectors of the T-cell receptor.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cell Line
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis
- Dose-Response Relationship, Drug
- Enzyme Activation
- Flow Cytometry
- Gene Expression Regulation
- Humans
- Jurkat Cells
- Leukocyte Common Antigens/metabolism
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocytes/metabolism
- MAP Kinase Signaling System
- Microscopy, Confocal
- Microscopy, Fluorescence
- Phosphoproteins/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/metabolism
- Signal Transduction
- T-Lymphocytes/metabolism
- Time Factors
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Aaron Z Fernandis
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
48
|
Zannettino ACW, Roubelakis M, Welldon KJ, Jackson DE, Simmons PJ, Bendall LJ, Henniker A, Harrison KL, Niutta S, Bradstock KF, Watt SM. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: identification, molecular cloning and effects on cell migration. Biochem J 2003; 370:537-49. [PMID: 12410637 PMCID: PMC1223174 DOI: 10.1042/bj20020935] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 10/28/2002] [Accepted: 11/01/2002] [Indexed: 11/17/2022]
Abstract
SHP-2 (Src homology phosphatase type-2) is essential for haematopoietic skeletal and vascular development. Thus the identification of its binding partners is critically important. In the present study, we describe a unique monoclonal antibody, WM78, which interacts with PZR, a SHP-2 binding partner. Furthermore, we identify two novel isoforms of PZR, PZRa and PZRb, derived by differential splicing from a single gene transcription unit on human chromosome 1q24. All are type 1 transmembrane glycoproteins with identical extracellular and transmembrane domains, but differ in their cytoplasmic tails. The PZR intracellular domain contains two SHP-2 binding immunoreceptor tyrosine-based inhibitory motifs (VIY(246)AQL and VVY(263)ADI) which are not present in PZRa and PZRb. Using the WM78 monoclonal antibody, which recognizes the common extracellular domain of the PZR isoforms, we demonstrate that the PZR molecules are expressed on mesenchymal and haematopoietic cells, being present on the majority of CD34(+)CD38(+) and early clonogenic progenitors, and at lower levels on CD34(+)CD38(-) cells and the hierarchically more primitive pre-colony forming units. Interestingly, we show by reverse transcriptase-PCR that the PZR isoforms are differentially expressed in haematopoietic, endothelial and mesenchymal cells. Both PZR and PZRb are present in CD133(+) precursors and endothelial cells, PZRb predominates in mesenchymal and committed myelomonocytic progenitor cells, and all three isoforms occur in erythroid precursor cell lines. Importantly, using SHP-2 mutant (Delta 46-110) and SHP-2 rescue of embryonic fibroblasts stably expressing the PZR isoforms, we demonstrate for the first time that PZR, but not PZRa or PZRb, facilitates fibronectin- dependent migration of cells expressing a competent SHP-2 molecule. These observations will be instrumental in determining the mechanisms whereby PZR isoforms regulate cell motility.
Collapse
Affiliation(s)
- Andrew C W Zannettino
- Myeloma and Mesenchymal Research Group, Matthew Roberts Laboratory, Hanson Centre for Cancer Research, I.M.V.S., Adelaide 5000, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T, Akahori H, Kato T, Inagaki K, Okazawa H, Hayashi Y, Matozaki T, Takeda K, Akira S, Kasuga M. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem 2002; 277:39833-9. [PMID: 12167615 DOI: 10.1074/jbc.m203287200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHPS-1 is a receptor-type glycoprotein that binds and activates the protein-tyrosine phosphatases SHP-1 and SHP-2, and thereby negatively modulates intracellular signaling initiated by various cell surface receptors coupled to tyrosine kinases. SHPS-1 also regulates intercellular communication in the neural and immune systems through its association with CD47 (integrin-associated protein) on adjacent cells. Furthermore, recent studies with fibroblasts derived from mice expressing an SHPS-1 mutant that lacks most of the cytoplasmic region suggested that the intact protein contributes to cytoskeletal function. Mice homozygous for this SHPS-1 mutation have now been shown to manifest thrombocytopenia. These animals did not exhibit a defect in megakaryocytopoiesis or in platelet production. However, platelets were cleared from the bloodstream more rapidly in the mutant mice than in wild-type animals. Furthermore, peritoneal macrophages from the mutant mice phagocytosed red blood cells more effectively than did those from wild-type mice; in addition, they exhibited an increase both in the rate of cell spreading and in the formation of filopodia-like structures at the cell periphery. These results indicate that SHPS-1 both contributes to the survival of circulating platelets and down-regulates the macrophage phagocytic response.
Collapse
Affiliation(s)
- Takuji Yamao
- Division of Diabetes, Digestive, and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Eklund EA, Goldenberg I, Lu Y, Andrejic J, Kakar R. SHP1 protein-tyrosine phosphatase regulates HoxA10 DNA binding and transcriptional repression activity in undifferentiated myeloid cells. J Biol Chem 2002; 277:36878-88. [PMID: 12145285 DOI: 10.1074/jbc.m203917200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The homeodomain protein HoxA10 interacts with negative cis elements to repress gene transcription in undifferentiated myeloid cells. The CYBB and NCF2 genes, which encode the gp91(PHOX) and p67(PHOX) proteins, are two such HoxA10 target genes. During interferon gamma-induced myeloid differentiation, tyrosine phosphorylation decreases HoxA10 DNA binding affinity and transcriptional repression. Therefore, decreased HoxA10 repression contributes to increased CYBB and NCF2 transcription in differentiating myeloid cells. The current studies investigate modulation of HoxA10 repression activity during myelopoiesis. We determine that phosphorylation of tyrosine residues in the conserved homeodomain decreases HoxA10-DNA binding. We also determine that interaction of the homeodomain phosphotyrosine residues with an adjacent domain in the HoxA10 protein is necessary for decreased DNA binding affinity. Since SHP1 protein-tyrosine phosphatase antagonizes myeloid differentiation and decreases CYBB and NCF2 transcription, we investigated the influence of SHP1-protein-tyrosine phosphatase (PTP) on HoxA10 tyrosine phosphorylation. We find that SHP1-PTP activity increases HoxA10 target gene repression in undifferentiated myeloid cells. Consistent with this, SHP1-PTP interacts with HoxA10 and decreases homeodomain-tyrosine phosphorylation. These investigations suggest that SHP1-PTP activity, in undifferentiated myeloid cells, influences HoxA10 repression of myeloid-specific genes. Therefore, increased HoxA10 repression of myeloid gene transcription is a molecular mechanism for SHP1 inhibition of myeloid differentiation.
Collapse
Affiliation(s)
- Elizabeth A Eklund
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|