1
|
Umthong S, Dunn JR, Cheng HH. Depletion of CD8αβ + T Cells in Chickens Demonstrates Their Involvement in Protective Immunity towards Marek's Disease with Respect to Tumor Incidence and Vaccinal Protection. Vaccines (Basel) 2020; 8:E557. [PMID: 32987648 PMCID: PMC7712963 DOI: 10.3390/vaccines8040557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 01/12/2023] Open
Abstract
Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV), a highly oncogenic alphaherpesvirus. Since 1970, MD has been controlled through widespread vaccination of commercial flocks. However, repeated and unpredictable MD outbreaks continue to occur in vaccinated flocks, indicating the need for a better understanding of MDV pathogenesis to guide improved or alternative control measures. As MDV is an intracellular pathogen that infects and transforms CD4+ T cells, the host cell-mediated immune response is considered to be vital for controlling MDV replication and tumor formation. In this study, we addressed the role of CD8+ T cells in vaccinal protection by widely-used monovalent (SB-1 and HVT) and bivalent (SB-1+HVT) MD vaccines. We established a method to deplete CD8+ T cells in chickens and found that their depletion through injection of anti-CD8 monoclonal antibodies (mAb) increased tumor induction and MD pathology, and reduced vaccinal protection to MD, which supports the important role of CD8+ T cells for both MD and vaccinal protection.
Collapse
Affiliation(s)
- Supawadee Umthong
- Microbiology and Molecular Genetics Program, Michigan State University, East Lansing, MI 48823, USA;
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| | - John R. Dunn
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| | - Hans H. Cheng
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| |
Collapse
|
2
|
Audsley KM, McDonnell AM, Waithman J. Cross-Presenting XCR1 + Dendritic Cells as Targets for Cancer Immunotherapy. Cells 2020; 9:cells9030565. [PMID: 32121071 PMCID: PMC7140519 DOI: 10.3390/cells9030565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of dendritic cells (DCs) to generate effective anti-tumor T cell immunity has garnered much attention over the last thirty-plus years. Despite this, limited clinical benefit has been demonstrated thus far. There has been a revival of interest in DC-based treatment strategies following the remarkable patient responses observed with novel checkpoint blockade therapies, due to the potential for synergistic treatment. Cross-presenting DCs are recognized for their ability to prime CD8+ T cell responses to directly induce tumor death. Consequently, they are an attractive target for next-generation DC-based strategies. In this review, we define the universal classification system for cross-presenting DCs, and the vital role of this subset in mediating anti-tumor immunity. Furthermore, we will detail methods of targeting these DCs both ex vivo and in vivo to boost their function and drive effective anti-tumor responses.
Collapse
Affiliation(s)
- Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| | - Alison M. McDonnell
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- National Centre for Asbestos Related Diseases, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| |
Collapse
|
3
|
Malloy AMW, Ruckwardt TJ, Morabito KM, Lau-Kilby AW, Graham BS. Pulmonary Dendritic Cell Subsets Shape the Respiratory Syncytial Virus-Specific CD8+ T Cell Immunodominance Hierarchy in Neonates. THE JOURNAL OF IMMUNOLOGY 2016; 198:394-403. [PMID: 27895172 DOI: 10.4049/jimmunol.1600486] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/31/2016] [Indexed: 01/25/2023]
Abstract
Young infants are generally more susceptible to viral infections and experience more severe disease than do adults. CD8+ T cells are important for viral clearance, and although often ineffective in neonates they can be protective when adequately stimulated. Using a murine CB6F1/J hybrid model of respiratory syncytial virus (RSV) infection, we previously demonstrated that the CD8+ T cell immunodominance hierarchy to two RSV-derived epitopes, KdM282-90 and DbM187-195, was determined by the age at infection. To determine whether age-dependent RSV-specific CD8+ T cell responses could be modified through enhanced innate signaling, we used TLR4 or TLR9 agonist treatment at the time of infection, which remarkably changed the neonatal codominant response to an adult-like KdM282-90 CD8+ T cell immunodominant response. This shift was associated with an increase in the number of conventional dendritic cells, CD11b+ and CD103+ dendritic cells, in the lung-draining lymph node, as well as increased expression of the costimulatory molecule CD86. The magnitude of the KdM282-90 CD8+ T cell response in TLR agonist-treated neonates could be blocked with Abs against CD80 and CD86. These studies demonstrate the age-dependent function of conventional dendritic cells, their role in determining immunodominance hierarchy, and epitope-specific CD8+ T cell requirements for costimulation, all of which influence the immune response magnitude. The unique impact of TLR agonists on neonatal T cell responses is important to consider for RSV vaccines designed for young infants.
Collapse
Affiliation(s)
- Allison M W Malloy
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and .,Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tracy J Ruckwardt
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kaitlyn M Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Annie W Lau-Kilby
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Hilpert C, Sitte S, Matthies A, Voehringer D. Dendritic Cells Are Dispensable for T Cell Priming and Control of Acute Lymphocytic Choriomeningitis Virus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:2780-6. [PMID: 27549169 DOI: 10.4049/jimmunol.1502582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/22/2016] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are considered to be the major APCs with potent activity for priming of naive CD4 and CD8 T cells. However, T cell priming can also be achieved by other APCs including macrophages, B cells, or even nonhematopoietic cell types. Systemic low-dose infection of mice with lymphocytic choriomeningitis virus (LCMV) results in massive expansion of virus-specific CD4 and CD8 T cells. To determine the role of DCs as APCs and source of type I IFNs in this infection model, we used ΔDC mice in which DCs are constitutively ablated because of expression of the diphtheria toxin α subunit within developing DCs. ΔDC mice showed lower serum concentrations of IFN-β and IL-12p40, but normal IFN-α levels during the first days postinfection. No differences were found for proliferation of transferred TCR-transgenic cells during the early phase of infection, suggesting that T cell priming occurred with the same efficiency in wild-type and ΔDC mice. Expansion and cytokine expression of endogenous LCMV-specific T cells was comparable between wild-type and ΔDC mice during primary infection and upon rechallenge of memory mice. In both strains of infected mice the viral load was reduced below the limit of detection with the same kinetic. Further, germinal center formation and LCMV-specific Ab responses were not impaired in ΔDC mice. This indicates that DCs are dispensable as APCs for protective immunity against LCMV infection.
Collapse
Affiliation(s)
- Cornelia Hilpert
- Department of Infection Biology, University Hospital Erlangen and Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Selina Sitte
- Department of Infection Biology, University Hospital Erlangen and Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Alexander Matthies
- Department of Infection Biology, University Hospital Erlangen and Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Abstract
CD8 T lymphocytes are a major cell population of the adaptive immune system. A fundamental characteristic of the CD8 T lymphocyte pool is that it is composed of millions of clones; each with a unique T cell receptor capable of recognizing a limited number of peptides displayed at the cell surface bound to the grooves of major histocompatibility complex class I (MHC I) molecules. Naïve CD8 T lymphocytes are normally resting and circulate between the blood and secondary lymphoid organs in search of their cognate peptide–MHC complexes. During viral infections, bone marrow–derived professional antigen-presenting cells (pAPCs) in secondary lymphoid organs display viral peptides on their MHC I molecules. Specific CD8 T lymphocytes that recognize these peptide–MHC adducts become activated (primed), proliferate extensively, and develop into effectors capable of killing infected cells, identified by the presence at their surface of the pertinent viral peptide–MHC complexes. This article describes how the process of priming naïve CD8 T lymphocytes occurs.
Collapse
|
6
|
An optimized method for establishing high purity murine CD8+ T cell cultures. J Immunol Methods 2012; 387:173-80. [PMID: 23098837 DOI: 10.1016/j.jim.2012.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 09/19/2012] [Accepted: 10/16/2012] [Indexed: 02/06/2023]
Abstract
Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.
Collapse
|
7
|
Abstract
Dendritic cells (DCs) represent a unique collection of innate immune cells present throughout the body as distinct subpopulations generally sharing the functions of pathogen recognition, cytokine production, and antigen presentation. A large body of work in recent years has examined DC functions during infection with Listeria monocytogenes (Lm), particularly in the murine model. Here, I review several aspects of DC biology in this model, with particular emphasis on the role DCs play in the establishment of a productive Lm infection and the role of DCs as cytokine producers and antigen-presenting cells in this system.
Collapse
Affiliation(s)
- Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
CD8+ T-cell expansion and maintenance after recombinant adenovirus immunization rely upon cooperation between hematopoietic and nonhematopoietic antigen-presenting cells. Blood 2010; 117:1146-55. [PMID: 21088134 DOI: 10.1182/blood-2010-03-272336] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have recently reported that CD8(+) T-cell memory maintenance after immunization with recombinant human adenovirus type 5 (rHuAd5) is dependent upon persistent transgene expression beyond the peak of the response. In this report, we have further investigated the location and nature of the cell populations responsible for this sustained response. The draining lymph nodes were found to be important for primary expansion but not for memory maintenance, suggesting that antigen presentation through a nonlymphoid source was required. Using bone marrow chimeric mice, we determined that antigen presentation by nonhematopoietic antigen-presenting cells (APCs) was sufficient for maintenance of CD8(+) T-cell numbers. However, antigen presentation by this mechanism alone yielded a memory population that displayed alterations in phenotype, cytokine production and protective capacity, indicating that antigen presentation through both hematopoietic and nonhematopoietic APCs ultimately defines the memory CD8(+) T-cell response produced by rHuAd5. These results shed new light on the immunobiology of rHuAd5 vectors and provide evidence for a mechanism of CD8(+) T-cell expansion and memory maintenance that relies upon both hematopoietic and nonhematopoietic APCs.
Collapse
|
9
|
Alatery A, Tarrab E, Lamarre A, Basta S. The outcome of cross-priming during virus infection is not directly linked to the ability of the antigen to be cross-presented. Eur J Immunol 2010; 40:2190-9. [DOI: 10.1002/eji.200939973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Xu RH, Remakus S, Ma X, Roscoe F, Sigal LJ. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response. PLoS Pathog 2010; 6:e1000768. [PMID: 20169189 PMCID: PMC2820535 DOI: 10.1371/journal.ppat.1000768] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/13/2010] [Indexed: 01/21/2023] Open
Abstract
The extent to which direct- and cross-presentation (DP and CP) contribute to the priming of CD8+ T cell (TCD8+) responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral TCD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV), which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral TCD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines. Professional antigen presenting cells fragment viral proteins and display some of the resulting peptides bound to MHC molecules at the cell surface. When virus-specific CD8+ T cells recognize these viral peptides they become activated, proliferate, and kill virus-infected cells to help rid the body of the virus. Two pathways have been described for the origin of the peptides presented by professional antigen presenting cells. In cross-presentation, the antigen presenting cells acquire the proteins from other cells which, in the case of a viral infection, must be infected. In direct presentation, the antigen presenting cells synthesize the proteins themselves and, therefore, during responses to viruses must be infected. However, the participation of direct presentation in anti-viral responses has never been deliberately demonstrated experimentally. In this paper we demonstrate that direct presentation occurs and is the main pathway to induce CD8+ T cells during infection with vaccinia virus. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines.
Collapse
Affiliation(s)
- Ren-Huan Xu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Sanda Remakus
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Xueying Ma
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Felicia Roscoe
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Luis J. Sigal
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Lin A, Schildknecht A, Nguyen LT, Ohashi PS. Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 2010; 127:77-84. [DOI: 10.1016/j.imlet.2009.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/16/2022]
|
12
|
Reinicke AT, Omilusik KD, Basha G, Jefferies WA. Dendritic cell cross-priming is essential for immune responses to Listeria monocytogenes. PLoS One 2009; 4:e7210. [PMID: 19806187 PMCID: PMC2751817 DOI: 10.1371/journal.pone.0007210] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/09/2009] [Indexed: 11/19/2022] Open
Abstract
Cross-presentation is now recognized as a major mechanism for initiating CD8 T cell responses to virus and tumor antigens in vivo. It provides an elegant mechanism that allows relatively few Dendritic cells (DCs) to initiate primary immune responses while avoiding the consumptive nature of pathogenic infection. CD8 T cells play a major role in anti-bacterial immune responses; however, the contribution of cross-presentation for priming CD8 T cell responses to bacteria, in vivo, is not well established. Listeria monocytogenes (Listeria) is the causative agent of Listeriosis, an opportunistic food-borne bacterial infection that poses a significant public health risk. Here, we employ a transgenic mouse model in which cross-presentation is uniquely inactivated, to investigate cross-priming during primary Listeria infection. We show that cross-priming deficient mice are severely compromised in their ability to generate antigen-specific T cells to stimulate MHC I-restricted CTL responses following Listeria infection. The defect in generation of Listeria-elicited CD8 T cell responses is also apparent in vitro. However, in this setting, the endogenous route of processing Listeria-derived antigens is predominant. This reveals a new experimental dichotomy whereby functional sampling of Listeria-derived antigens in vivo but not in vitro is dependent on cross-presentation of exogenously derived antigen. Thus, under normal physiological circumstances, cross-presentation is demonstrated to play an essential role in priming CD8 T cell responses to bacteria.
Collapse
Affiliation(s)
- Anna T. Reinicke
- The Biomedical Research Centre, Michael Smith Laboratories, Departments of Medical Genetics, Microbiology and Immunology, and Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyla D. Omilusik
- The Biomedical Research Centre, Michael Smith Laboratories, Departments of Medical Genetics, Microbiology and Immunology, and Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Genc Basha
- The Biomedical Research Centre, Michael Smith Laboratories, Departments of Medical Genetics, Microbiology and Immunology, and Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wilfred A. Jefferies
- The Biomedical Research Centre, Michael Smith Laboratories, Departments of Medical Genetics, Microbiology and Immunology, and Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
13
|
The GTPase Rab3b/3c-positive recycling vesicles are involved in cross-presentation in dendritic cells. Proc Natl Acad Sci U S A 2009; 106:15801-6. [PMID: 19717423 DOI: 10.1073/pnas.0905684106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antigen cross-presentation in dendritic cells is a complex intracellular membrane transport process, but the underlying molecular mechanisms remain to be thoroughly investigated. In this study, we examined the effect of siRNA-mediated knockdown of 57 Rab GTPases, the key regulators of membrane trafficking, on antigen cross-presentation. Twelve Rab GTPases were identified to be associated with antigen cross-presentation, and Rab3b/3c was indicated to be colocalized with MHC class I molecules at perinuclear tubular structure. Tracing with fluorescence protein-tagged beta(2)-microglobulin demonstrated that the MHC class I molecules were internalized from the plasma membrane to Rab3b/3c-positive compartments, which were also colocalized with the internalized transferrin. Moreover, depletion of Rab3b/3c strongly reduced the fast phase recycling rate of transferrin receptors. Furthermore, the Rab3b/3c-positive compartments were colocalized with a fraction of Rab27a at a juxtaposition of phagosomes. Together, these data demonstrate that Rab3b/3c-positive recycling vesicles are involved in and may constitute one of the recycling compartments in exogenous antigen cross-presentation.
Collapse
|
14
|
Abstract
The orchestrated movement of cells of the immune system is essential to generation of productive responses leading to protective memory development. Recent advances have allowed the direct microscopic visualization of lymphocyte and antigen-presenting cell migration and interaction during immune response initiation and progression. These studies have defined important characteristics of the microanatomy of lymphocyte movement, particularly in the lymph node. Moreover, the ability to track endogenous antigen-specific T cells has revealed a coordinated pathway of CD8 T cell movement in the spleen following primary and secondary infection. As a consequence, the local anatomy of secondary lymphoid tissues during infection has emerged as a critical regulator of immunity. While some of the factors responsible for the migratory cues instructing immune cell movement have been identified, much remains to be learned. Here, we provide a brief overview of studies examining CD8 T cell localization during the immune response to infection in the context of our current understanding of immune system structure.
Collapse
Affiliation(s)
- Kamal M Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030-1319, USA
| | | |
Collapse
|
15
|
Plitas G, Burt BM, Stableford JA, Nguyen HM, Welles AP, DeMatteo RP. Dendritic cells are required for effective cross-presentation in the murine liver. Hepatology 2008; 47:1343-51. [PMID: 18213574 DOI: 10.1002/hep.22167] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED The liver harbors a diversity of cell types that have been reported to stimulate T cells. Although most hepatic dendritic cells are immature, a small population of CD11c(high) conventional dendritic cells (cDCs) exists that expresses high levels of costimulatory molecules. We sought to determine the relative contribution of cDCs to cross-presentation by the liver. In vitro, liver nonparenchymal cells (NPCs) depleted of cDCs induced only minimal proliferation and activation of antigen-specific CD8(+) T cells when loaded with soluble protein antigen. Using a transgenic mouse with the CD11c promoter driving expression of the human diphtheria toxin receptor, we found that selective depletion of cDCs in vivo reduced the number and activation of antigen-specific CD8(+) T cells in the liver after intravenous administration of soluble protein antigen. Adoptive transfer of DCs, but not CD40 stimulation, restored the hepatic T-cell response. CONCLUSION Our findings indicate that the ability of the liver to effectively cross-present soluble protein to antigen-specific CD8(+) T cells depends primarily on cDCs. Despite costimulation, other resident liver antigen-presenting cells cannot compensate for the absence of cDCs.
Collapse
Affiliation(s)
- George Plitas
- Hepatobiliary Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
16
|
Dzierszinski FS, Hunter CA. Advances in the use of genetically engineered parasites to study immunity to Toxoplasma gondii. Parasite Immunol 2008; 30:235-44. [PMID: 18194347 DOI: 10.1111/j.1365-3024.2007.01016.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studying in vivo biology and the host immune response to Toxoplasma gondii has yielded many insights into the pathogenesis of this parasitic organism. It is recognized that this infection in immune competent hosts elicits a strong Th1-type response, which is characterized by the generation of parasite-specific CD4(+) and CD8(+) T cells that produce IFN-gamma and provide protective immunity. One of the problems associated with studying resistance to Toxoplasma has been the lack of reagents to track parasite-specific T cell responses with a high degree of specificity. To overcome this difficulty, it is possible to use a combination of transgenic parasites that are engineered to express well-characterized heterologous reporters or antigens, and T cell hybridomas or naïve T cells that express a T cell receptor specific for the processed peptide. These approaches have provided new insights into parasite dissemination, antigen presentation, as well as immune regulation.
Collapse
Affiliation(s)
- F S Dzierszinski
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Canada.
| | | |
Collapse
|
17
|
Khan ANH, Magner WJ, Tomasi TB. An epigenetic vaccine model active in the prevention and treatment of melanoma. J Transl Med 2007; 5:64. [PMID: 18070359 PMCID: PMC2231344 DOI: 10.1186/1479-5876-5-64] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/10/2007] [Indexed: 01/08/2023] Open
Abstract
Background Numerous immune genes are epigenetically silenced in tumor cells and agents such as histone deacetylase inhibitors (HDACi), which reverse these effects, could potentially be used to develop therapeutic vaccines. The conversion of cancer cells to antigen presenting cells (APCs) by HDACi treatment could potentially provide an additional pathway, together with cross-presentation of tumor antigens by host APCs, to establish tumor immunity. Methods HDACi-treated B16 melanoma cells were used in a murine vaccine model, lymphocyte subset depletion, ELISpot and Cytotoxicity assays were employed to evaluate immunity. Antigen presentation assays, vaccination with isolated apoptotic preparations and tumorigenesis in MHC-deficient mice and radiation chimeras were performed to elucidate the mechanisms of vaccine-induced immunity. Results HDACi treatment enhanced the expression of MHC class II, CD40 and B7-1/2 on B16 cells and vaccination with HDACi-treated melanoma cells elicited tumor specific immunity in both prevention and treatment models. Cytotoxic and IFN-γ-producing cells were identified in splenocytes and CD4+, CD8+ T cells and NK cells were all involved in the induction of immunity. Apoptotic cells derived from HDACi treatments, but not H2O2, significantly enhanced the effectiveness of the vaccine. HDACi-treated B16 cells become APCs in vitro and studies in chimeras defective in cross presentation demonstrate direct presentation in vivo and short-term but not memory responses and long-term immunity. Conclusion The efficacy of this vaccine derives mainly from cross-presentation which is enhanced by HDACi-induced apoptosis. Additionally, epigenetic activation of immune genes may contribute to direct antigen presentation by tumor cells. Epigenetically altered cancer cells should be further explored as a vaccine strategy.
Collapse
Affiliation(s)
- A Nazmul H Khan
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | | | | |
Collapse
|
18
|
Belz GT, Wilson NS, Kupresanin F, Mount AM, Smith CM. Shaping Naive and Memory Cd8+ T Cell Responses in Pathogen Infections Through Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 590:31-42. [PMID: 17191375 DOI: 10.1007/978-0-387-34814-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3050 Australia.
| | | | | | | | | |
Collapse
|
19
|
Yang TC, Millar JB, Grinshtein N, Bassett J, Finn J, Bramson JL. T-cell immunity generated by recombinant adenovirus vaccines. Expert Rev Vaccines 2007; 6:347-56. [PMID: 17542750 DOI: 10.1586/14760584.6.3.347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recombinant adenovirus vaccines show great promise for generating protective immunity against infectious agents and tumors. Our studies have identified several interesting biological features of the adenovirus vector that influence the T-cell response. Notably, we have demonstrated that following immunization with adenovirus vaccines, the transgene antigen remains available to the system for a longer period than would be expected, resulting in a T-cell population with a sustained effector phenotype. The implications of these observations with regards to the utility of adenovirus vaccines are discussed.
Collapse
Affiliation(s)
- Teng Chih Yang
- Center for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Neuenhahn M, Busch DH. Unique functions of splenic CD8alpha+ dendritic cells during infection with intracellular pathogens. Immunol Lett 2007; 114:66-72. [PMID: 17964665 DOI: 10.1016/j.imlet.2007.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/04/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
Deciphering the prerequisites for the induction of protective cytotoxic T cell responses is essential for future development of more effective CD8(+) T cell-based vaccines against infectious diseases and cancer. Since crucial events for CD8(+) T cell priming and differentiation occur during the first contacts of naïve T cells with distinct antigen-presenting cells (APCs), the identification and therapeutic targeting of these 'master' APCs has become a major quest in the field. A decade ago, dendritic cells (DCs) were discovered as potent APCs, as they combine all major features for the initiation of T cell responses: (1) naïve DCs demonstrate high endocytic activity and scan continuously their environment in strategic positions throughout the whole body; (2) after activation (e.g. during pathogen invasion), DCs migrate into T cell zones of their draining lymphatic compartments, meanwhile processing captured antigen and maturing in order to stimulate encountered antigen-specific T cells. During the last years, different subsets of DCs that can be distinguished by specific surface marker expression and effector functions have been identified in mice. Their distinct functional capabilities have led to the concept of work-sharing; "migrating" DCs primarily transport antigens to the lymph node, where a specialized subset of "resident" DCs, defined by the expression of the CD8alphaalpha homodimer (CD8alpha(+) DCs), primes CD8(+) T cells upon antigen cross-presentation. Accordingly, CD8alpha(+) DCs have been found to prime CD8(+) T cells against different viruses as well as intracellular bacteria such as Listeria monocytogenes (L.m.). Recently, L.m. was found to survive specifically in splenic CD8alpha(+) DCs shortly after intravenous infection. Further experiments revealed a more generalized sampling activity of CD8alpha(+) DCs for blood-borne particles. These findings indicate that splenic CD8alpha(+) DCs might unite efficacious antigen-trapping with the licence to prime CD8(+) T cells. This new aspect of DC function could have evolved to guarantee a more rapid antigen-specific response against generalized infections.
Collapse
Affiliation(s)
- Michael Neuenhahn
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University Munich, Trogerstr. 30, 81675 Munich, Germany
| | | |
Collapse
|
21
|
Dzierszinski F, Pepper M, Stumhofer JS, LaRosa DF, Wilson EH, Turka LA, Halonen SK, Hunter CA, Roos DS. Presentation of Toxoplasma gondii antigens via the endogenous major histocompatibility complex class I pathway in nonprofessional and professional antigen-presenting cells. Infect Immun 2007; 75:5200-9. [PMID: 17846116 PMCID: PMC2168266 DOI: 10.1128/iai.00954-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Challenge with the intracellular protozoan parasite Toxoplasma gondii induces a potent CD8+ T-cell response that is required for resistance to infection, but many questions remain about the factors that regulate the presentation of major histocompatibility complex class I (MHC-I)-restricted parasite antigens and about the role of professional and nonprofessional accessory cells. In order to address these issues, transgenic parasites expressing ovalbumin (OVA), reagents that track OVA/MHC-I presentation, and OVA-specific CD8+ T cells were exploited to compare the abilities of different infected cell types to stimulate CD8+ T cells and to define the factors that contribute to antigen processing. These studies reveal that a variety of infected cell types, including hematopoietic and nonhematopoietic cells, are capable of activating an OVA-specific CD8+ T-cell hybridoma, and that this phenomenon is dependent on the transporter associated with antigen processing and requires live T. gondii. Several experimental approaches indicate that T-cell activation is a consequence of direct presentation by infected host cells rather than cross-presentation. Surprisingly, nonprofessional antigen-presenting cells (APCs) were at least as efficient as dendritic cells at activating this MHC-I-restricted response. Studies to assess whether these cells are involved in initiation of the CD8+ T-cell response to T. gondii in vivo show that chimeric mice expressing MHC-I only in nonhematopoietic compartments are able to activate OVA-specific CD8+ T cells upon challenge. These findings associate nonprofessional APCs with the initial activation of CD8+ T cells during toxoplasmosis.
Collapse
Affiliation(s)
- Florence Dzierszinski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gasteiger G, Kastenmuller W, Ljapoci R, Sutter G, Drexler I. Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines. J Virol 2007; 81:11925-36. [PMID: 17699574 PMCID: PMC2168793 DOI: 10.1128/jvi.00903-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recombinant vaccines based on modified vaccinia virus Ankara (MVA) have an excellent record concerning safety and immunogenicity and are currently being evaluated in numerous clinical studies for immunotherapy of infectious diseases and cancer. However, knowledge about the biological properties of target antigens to efficiently induce MVA vaccine-mediated immunity in vivo is sparse. Here, we examined distinct antigen presentation pathways and different antigen formulations contained in MVA vaccines for their capability to induce cytotoxic CD8(+) T-cell (CTL) responses. Strikingly, we found that CTL responses against MVA-produced antigens were dominated by cross-priming in vivo, despite the ability of the virus to efficiently infect professional antigen-presenting cells such as dendritic cells. Moreover, stable mature protein was preferred to preprocessed antigen as the substrate for cross-priming. Our data are essential for improved MVA vaccine design, as they demonstrate the need for optimal adjustment of the target antigen properties to the intrinsic requirements of the delivering vector system.
Collapse
Affiliation(s)
- Georg Gasteiger
- GSF-Institute for Molecular Virology, Schneckenburgerstrasse 8, D-81675 Munich, Germany
| | | | | | | | | |
Collapse
|
23
|
Hagymasi AT, Slaiby AM, Mihalyo MA, Qui HZ, Zammit DJ, Lefrançois L, Adler AJ. Steady state dendritic cells present parenchymal self-antigen and contribute to, but are not essential for, tolerization of naive and Th1 effector CD4 cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:1524-31. [PMID: 17641018 PMCID: PMC2846358 DOI: 10.4049/jimmunol.179.3.1524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone marrow-derived APC are critical for both priming effector/memory T cell responses to pathogens and inducing peripheral tolerance in self-reactive T cells. In particular, dendritic cells (DC) can acquire peripheral self-Ags under steady state conditions and are thought to present them to cognate T cells in a default tolerogenic manner, whereas exposure to pathogen-associated inflammatory mediators during the acquisition of pathogen-derived Ags appears to reprogram DCs to prime effector and memory T cell function. Recent studies have confirmed the critical role of DCs in priming CD8 cell effector responses to certain pathogens, although the necessity of steady state DCs in programming T cell tolerance to peripheral self-Ags has not been directly tested. In the current study, the role of steady state DCs in programming self-reactive CD4 cell peripheral tolerance was assessed by combining the CD11c-diphtheria toxin receptor transgenic system, in which DC can be depleted via treatment with diphtheria toxin, with a TCR-transgenic adoptive transfer system in which either naive or Th1 effector CD4 cells are induced to undergo tolerization after exposure to cognate parenchymally derived self-Ag. Although steady state DCs present parenchymal self-Ag and contribute to the tolerization of cognate naive and Th1 effector CD4 cells, they are not essential, indicating the involvement of a non-DC tolerogenic APC population(s). Tolerogenic APCs, however, do not require the cooperation of CD4(+)CD25(+) regulatory T cells. Similarly, DC were required for maximal priming of naive CD4 cells to vaccinia viral-Ag, but priming could still occur in the absence of DC.
Collapse
Affiliation(s)
- Adam T. Hagymasi
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center, Farmington, CT 06030
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Aaron M. Slaiby
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center, Farmington, CT 06030
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Marianne A. Mihalyo
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center, Farmington, CT 06030
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Harry Z. Qui
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center, Farmington, CT 06030
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - David J. Zammit
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Leo Lefrançois
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Adam J. Adler
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center, Farmington, CT 06030
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
24
|
Abstract
Technological advances in recent years have allowed for an ever-expanding ability to analyze and quantify in vivo immune responses. MHC tetramers, intracellular cytokine staining, an increasing repertoire of transgenic and "knockout" mice, and the detailed characterization of a variety of infectious models have all facilitated more precise and definitive analyses of the generation and function of cytotoxic T lymphocytes (CTL). Understanding the mechanisms behind the differentiation of effector and memory CTL is of increasing importance to develop vaccination strategies against a variety of established and emerging infectious diseases. This review focuses on recent advances in our understanding of how effector and memory CTL differentiate and survive in vivo in response to viral or bacterial infection.
Collapse
Affiliation(s)
- Matthew A Williams
- Howard Hughes Medical Institute, Department of Immunology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
25
|
Rutigliano JA, Ruckwardt TJ, Martin JE, Graham BS. Relative dominance of epitope-specific CD8+ T cell responses in an F1 hybrid mouse model of respiratory syncytial virus infection. Virology 2007; 362:314-9. [PMID: 17275872 PMCID: PMC1950131 DOI: 10.1016/j.virol.2006.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/17/2006] [Accepted: 12/07/2006] [Indexed: 11/21/2022]
Abstract
CD8+ cytotoxic T lymphocytes are key effectors of adaptive immunity for the control of virus infections. Epitope-specific responses are hierarchical and the rules for dominance are not well defined. Here we show that the H2-Kd-restricted RSV M2(82-90) (KdM2(82-90)) epitope dominates the H2-Db-restricted RSV M187-195 (DbM187-195) epitope and influences epitope-specific effector function in the acute and memory phases of the immune response to primary RSV infection in H-2b/d hybrid mice. The hybrid mouse model provides a system to define rules of epitope hierarchy and better understand how antigen presentation and epitope competition affect the phenotype of effector and memory T cells.
Collapse
Affiliation(s)
| | | | - Julie E. Martin
- Vaccine Research Center/National Institutes of Health, Bldg. 40, Room 2502, 40 Convent Dr., Bethesda, MD, 20892–3017
| | - Barney S. Graham
- Vaccine Research Center/National Institutes of Health, Bldg. 40, Room 2502, 40 Convent Dr., Bethesda, MD, 20892–3017
| |
Collapse
|
26
|
Thomas S, Kolumam GA, Murali-Krishna K. Antigen Presentation by Nonhemopoietic Cells Amplifies Clonal Expansion of Effector CD8 T Cells in a Pathogen-Specific Manner. THE JOURNAL OF IMMUNOLOGY 2007; 178:5802-11. [PMID: 17442964 DOI: 10.4049/jimmunol.178.9.5802] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Professional APCs of hemopoietic-origin prime pathogen-specific naive CD8 T cells. The primed CD8 T cells can encounter Ag on infected nonhemopoietic cell types. Whether these nonhemopoietic interactions perpetuate effector T cell expansion remains unknown. We addressed this question in vivo, using four viral and bacterial pathogens, by comparing expansion of effector CD8 T cells in bone marrow chimeric mice expressing restricting MHC on all cell types vs mice that specifically lack restricting MHC on nonhemopoietic cell types or radiation-sensitive hemopoietic cell types. Absence of Ag presentation by nonhemopoietic cell types allowed priming of naive CD8 T cells in all four infection models tested, but diminished their sustained expansion by approximately 10-fold during lymphocytic choriomeningitis virus and by < or =2-fold during vaccinia virus, vesicular stomatitis virus, or Listeria monocytogenes infections. Absence of Ag presentation by a majority (>99%) of hemopoietic cells surprisingly also allowed initial priming of naive CD8 T cells in all the four infection models, albeit with delayed kinetics, but the sustained expansion of these primed CD8 T cells was markedly evident only during lymphocytic choriomeningitis virus, but not during vaccinia virus, vesicular stomatitis virus, or L. monocytogenes. Thus, infected nonhemopoietic cells can amplify effector CD8 T cell expansion during infection, but the extent to which they can amplify is determined by the pathogen. Further understanding of mechanisms by which pathogens differentially affect the ability of nonhemopoietic cell types to contribute to T cell expansion, how these processes alter during acute vs chronic phase of infections, and how these processes influence the quality and quantity of memory cells will have implications for rational vaccine design.
Collapse
Affiliation(s)
- Sunil Thomas
- Department of Immunology and Washington National Primate Center, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | | | | |
Collapse
|
27
|
Belz GT, Wilson NS, Smith CM, Mount AM, Carbone FR, Heath WR. Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin. Eur J Immunol 2006; 36:327-35. [PMID: 16402408 DOI: 10.1002/eji.200535432] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While naive CD8(+) T cells have been shown to require bone marrow-derived dendritic cells (DC) to initiate immunity, such a requirement for memory CD8(+) T cells has had limited assessment. By generating bone marrow chimeras that express the appropriate antigen-presenting molecules on either radiation-sensitive bone marrow-derived or radiation-resistant non-bone marrow-derived compartments, we showed that both primary and secondary immune responses to influenza virus infection of the lung were initiated in the draining LN. This required cells of bone marrow origin, most likely DC, for optimal expansion within the secondary lymphoid compartment. This was similarly the case with HSV-1 infection of the skin. As Langerhans cells are radioresistant, unlike other DC populations, these studies also demonstrate that the radiosensitive DC responsible for secondary expansion of HSV-specific memory are not Langerhans cells.
Collapse
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
It was originally thought that a cell's major histocompatibility complex (MHC) class I molecules presented peptides derived exclusively from proteins synthesized by the cell itself. However, in some circumstances, antigens from the extracellular environment can be presented on MHC class I molecules and stimulate CD8(+) T-cell immunity, a process termed cross-presentation. Cross-presentation was originally discovered as an obscure phenomenon in transplantation immunity. However, it is now clear that it is a major mechanism by which the immune system monitors tissues and phagocytes for the presence of foreign antigen. Cross-presentation is the only pathway by which the immune system can detect and respond to viral infections or mutations that exclusively occur in parenchymal cells rather than in bone marrow-derived antigen-presenting cells (APCs). Professional APCs, such as dendritic cells, are the principal cells endowed with the capacity to cross-present antigens. In this process, the APCs acquire proteins from other tissue cells through endocytic mechanisms, especially phagocytosis or macropinocytosis. The internalized antigen can then be processed through at least two different mechanisms. In one pathway, the antigen is transferred from the phagosome into the cytosol, where it is hydrolyzed by proteasomes into oligopeptides that are then transported by the transporter associated with antigen processing to MHC class I molecules in the endoplasmic reticulum or phagosomes. In a second pathway, the antigen is cleaved into peptides by endosomal proteases, particularly cathepsin S, and bound by class I molecules probably in the endocytic compartment itself. Depending on the nature of the antigen, one or both of these pathways can contribute to cross-presentation in vivo. The outcome of cross-presentation can be either tolerance or immunity. Which of these outcomes occurs is thought to depend on whether antigens are acquired by themselves alone, leading to tolerance, or with immunostimulatory signals, leading to immunity. One source of such signals is from dying cells that release immunostimulatory 'danger' signals that promote the generation of immunity to their cellular antigens. In addition to the critical role of cross-presentation in normal immune physiology, this pathway has considerable potential for being exploited for developing subunit vaccines that elicit both CD4(+) and CD8(+) T-cell immunity.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
29
|
Estcourt MJ, Létourneau S, McMichael AJ, Hanke T. Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. Eur J Immunol 2005; 35:2532-40. [PMID: 16144036 DOI: 10.1002/eji.200535184] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of primary CD8+ T cell responses following administration of modified virus Ankara (MVA)- and DNA-vectored vaccines was investigated in a mouse model. To overcome the low frequency of naive antigen-specific precursors and follow the early expansion events, naive CFSE-labelled T cell receptor-transgenic F5 lymphocytes were transferred into syngeneic non-transgenic recipients prior to vaccination. Using the i.d., i.v. and i.m. routes and increasing recombinant MVA (rMVA) vaccine doses, the primary response was analysed on a divisional basis at local and distant lymphoid organs at various times after vaccination. The results indicated that F5 cell divisions were initiated in the local draining lymph nodes and cells only after five to six divisions appeared at more distant sites. The rMVA dose affected frequencies of cells entering division and at the peak response. When priming induced by rMVA and plasmid DNA was compared, dramatic differences in the cycling patterns were observed with plasmid DNA inducing a response slower and more sustained over the first 2 wk than rMVA. Both rMVA and DNA induced comparable IFN-gamma production, which increased with cell divisions. Taken together, the vaccine type, dose and route have a strong influence on the spatial and temporal patterns of initial T cell responses.
Collapse
Affiliation(s)
- Marie J Estcourt
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, United Kingdom
| | | | | | | |
Collapse
|
30
|
Belz GT, Shortman K, Bevan MJ, Heath WR. CD8alpha+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:196-200. [PMID: 15972648 PMCID: PMC2778481 DOI: 10.4049/jimmunol.175.1.196] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD8alpha(+) dendritic cells (DCs) have been shown to be the principal DC subset involved in priming MHC class I-restricted CTL immunity to a variety of cytolytic viruses, including HSV type 1, influenza, and vaccinia virus. Whether priming of CTLs by CD8alpha(+) DCs is limited to cytolytic viruses, which may provide dead cellular material for this DC subset, or whether these DCs selectively present intracellular Ags, is unknown. To address this question, we examined Ag presentation to a noncytolytic virus, lymphocytic choriomeningitis virus, and to an intracellular bacterium, Listeria monocytogenes. We show that regardless of the type of intracellular infection, CD8alpha(+) DCs are the principal DC subset that initiate CD8(+) T cell immunity.
Collapse
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology and Cooperative Research Centre for Vaccine Technology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
31
|
Cusi MG, Del Vecchio MT, Terrosi C, Savellini GG, Di Genova G, La Placa M, Fallarino F, Moser C, Cardone C, Giorgi G, Francini G, Correale P. Immune-reconstituted influenza virosome containing CD40L gene enhances the immunological and protective activity of a carcinoembryonic antigen anticancer vaccine. THE JOURNAL OF IMMUNOLOGY 2005; 174:7210-6. [PMID: 15905566 DOI: 10.4049/jimmunol.174.11.7210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The correct interaction of a costimulatory molecule such as CD40L with its contrareceptor CD40 expressed on the membrane of professional APCs, provides transmembrane signaling that leads to APC activation. This process can be exploited to significantly improve the efficacy of cancer vaccines and the outcome of a possible cancer vaccine-induced, Ag-specific CTL response. Therefore, we investigated whether a novel intranasal delivery of immune-reconstituted influenza virosomes (IRIV), assembled with the CD40L gene (CD40L/IRIV), could be used to improve protective immunity and the Ag-specific CTL response against carcinoembryonic Ag (CEA) generated with a novel vaccine constituted of IRIV assembled with the CEA gene (CEA/IRIV). Our results suggest that CD40L/IRIV was able to augment CEA-specific CTL activity and CEA-specific protective immunity induced by CEA/IRIV most likely through the induction of a CTL response associated with a Th1 phenotype. In conclusion, we provide evidence that CD40L/IRIV, by acting through the CD40L/CD40 signaling pathway, acts as an immune-adjuvant that could increase the efficacy of a CEA-specific cancer vaccine, which could provide an efficacious new strategy for cancer therapy.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemical synthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/physiology
- B7-1 Antigen/biosynthesis
- B7-1 Antigen/physiology
- B7-2 Antigen
- CD40 Ligand/genetics
- CD40 Ligand/immunology
- CD40 Ligand/therapeutic use
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carcinoembryonic Antigen/immunology
- Carcinoembryonic Antigen/therapeutic use
- Cell Line, Tumor
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/therapeutic use
- Female
- Influenza Vaccines/chemical synthesis
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- T-Lymphocytes, Cytotoxic/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Transfection
- Vaccines, Combined/chemical synthesis
- Vaccines, Combined/genetics
- Vaccines, Combined/immunology
- Vaccines, Combined/therapeutic use
- Vaccines, Virosome/chemical synthesis
- Vaccines, Virosome/genetics
- Vaccines, Virosome/immunology
- Vaccines, Virosome/therapeutic use
Collapse
Affiliation(s)
- Maria Grazia Cusi
- Virology Section, Department of Molecular Biology, Siena University School of Medicine, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wan Y, Wu Y, Zhou J, Zou L, Liang Y, Zhao J, Jia Z, Engberg J, Bian J, Zhou W. Cross-presentation of phage particle antigen in MHC class II and endoplasmic reticulum marker-positive compartments. Eur J Immunol 2005; 35:2041-50. [PMID: 15940671 DOI: 10.1002/eji.200425322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been shown that exogenous antigens can access the MHC class I pathway of professional antigen-processing cells. However, details as to how the MHC class I-peptide complex forms in the presentation pathway are still poorly understood. Here we used MHC class I-peptide-specific antibodies to investigate the formation and intracellular location of class I-peptide complexes in macrophages. We observed that the formation of class I-peptide complexes occurs within a few hours and lasts for another few hours on the cell surface of macrophages following loading with filamentous phage particles. The class I-peptide complexes in the process were co-localized with MHC class II molecules and endocytic system markers. Moreover, endosomal compartments containing class I-peptide complexes were found within intracellular organelles stained by DiOC6 and calnexin. In addition, the cross-presentation of phage particles was transporter associated with antigen processing (TAP)-dependent and sensitive to proteasome inhibitors and NH(4)Cl. These data suggest that endocytosed phage particles may be processed and cross-presented in organelles positive for phagosome and endoplasmic reticulum (ER) markers via a classical ER MHC class I loading mechanism.
Collapse
Affiliation(s)
- Ying Wan
- The Institute of Immunology, PLA, The Third Military Medical University, Shapingba District, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yewdell JW, Haeryfar SMM. Understanding presentation of viral antigens to CD8+ T cells in vivo: the key to rational vaccine design. Annu Rev Immunol 2005; 23:651-82. [PMID: 15771583 DOI: 10.1146/annurev.immunol.23.021704.115702] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD8+ T cells play a critical role in antiviral immunity by exerting direct antiviral activity against infected cells. Because of their ability to recognize all types of viral proteins, they offer the promise of providing broad immunity to viruses that evade humoral immunity by varying their surface proteins. Consequently, there is considerable interest in developing vaccines that elicit effective antiviral T(CD8+) responses. Generating optimal vaccines ultimately requires rational design based on detailed knowledge of how T(CD8+) are activated in vivo under natural circumstances. Here we review recent progress obtained largely by in vivo studies in mice to understand the mechanistic basis for activation of naive T(CD8+) in virus infections. These studies point the way to detailed understanding and provide some key information for vaccine development, although much remains to be learned to enable truly rational vaccine design.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0440, USA.
| | | |
Collapse
|
34
|
Probst HC, van den Broek M. Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:3920-4. [PMID: 15778347 DOI: 10.4049/jimmunol.174.7.3920] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Appropriate activation of naive CD8(+) T cells depends on the coordinated interaction of these cells with professional APC that present antigenic peptides in the context of MHC class I molecules. It is accepted that dendritic cells (DC) are efficient in activating naive T cells and are unique in their capacity to prime CD8(+) T cell responses against exogenous cell-associated Ags. Nevertheless, it is unclear whether epitopes, derived from endogenously synthesized proteins and presented by MHC class I molecules on the surface of other APC including B cells and macrophages, can activate naive CD8(+) T cells in vivo. By infecting transgenic CD11c-DTR/GFP mice that allow conditional depletion of DC with lymphocytic choriomeningitis virus (LCMV), which infects all types of APC and elicits a vigorous CTL response, we unambiguously show that priming of LCMV-specific CD8(+) T cells is crucially dependent on DC, despite ample presence of LCMV-infected macrophages and B cells in secondary lymphoid organs.
Collapse
|
35
|
Kursar M, Höpken UE, Koch M, Köhler A, Lipp M, Kaufmann SHE, Mittrücker HW. Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection. ACTA ACUST UNITED AC 2005; 201:1447-57. [PMID: 15851484 PMCID: PMC2213180 DOI: 10.1084/jem.20041204] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effective priming of T cell responses depends on cognate interactions between naive T cells and professional antigen-presenting cells (APCs). This contact is the result of highly coordinated migration processes, in which the chemokine receptor CCR7 and its ligands, CCL19 and CCL21, play a central role. We used the murine Listeria monocytogenes infection model to characterize the role of the CCR7/CCR7 ligand system in the generation of T cell responses during bacterial infection. We demonstrate that efficient priming of naive major histocompatibility complex (MHC) class Ia–restricted CD8+ T cells requires CCR7. In contrast, MHC class Ib–restricted CD8+ T cells and MHC class II–restricted CD4+ T cells seem to be less dependent on CCR7; memory T cell responses are independent of CCR7. Infection experiments with bone marrow chimeras or mice reconstituted with purified T cell populations indicate that CCR7 has to be expressed on CD8+ T cells and professional APCs to promote efficient MHC class Ia–restricted T cell priming. Thus, different T cell subtypes and maturation stages have discrete requirements for CCR7.
Collapse
Affiliation(s)
- Mischo Kursar
- Department of Immunology, Max-Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Kerksiek KM, Niedergang F, Chavrier P, Busch DH, Brocker T. Selective Rac1 inhibition in dendritic cells diminishes apoptotic cell uptake and cross-presentation in vivo. Blood 2005; 105:742-9. [PMID: 15383465 DOI: 10.1182/blood-2004-05-1891] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractTo better understand the influence of cytoskeletal regulation on dendritic cell (DC) function in vivo, the Rho guanosine triphosphatase (GTPase) Rac1 was selectively inhibited in DCs in transgenic (Tg) mice. Although transgene expression did not interfere with the migratory capacities of DC in vivo, a decreased uptake of fluorescent probes was observed. Interestingly, the absence of full Rac1 function most strongly affected the development and function of CD8+ DCs. Apoptotic cell uptake was severely reduced in Tg mice, impairing subsequent DC-mediated cross-presentation and priming of bacteria-specific T-cell responses. These findings highlight a special role for Rac1 in the capacity of CD8+ DCs to endocytose apoptotic cells and prime T cells via cross-presentation.
Collapse
Affiliation(s)
- Kristen M Kerksiek
- Institute for Immunology, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
37
|
Steele LN, Balsara ZR, Starnbach MN. Hematopoietic cells are required to initiate a Chlamydia trachomatis-specific CD8+ T cell response. THE JOURNAL OF IMMUNOLOGY 2004; 173:6327-37. [PMID: 15528372 DOI: 10.4049/jimmunol.173.10.6327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis is a global human pathogen causing diseases ranging from blinding trachoma to pelvic inflammatory disease. To explore how innate and adaptive immune responses cooperate to protect against systemic infection with C. trachomatis L2, we investigated the role of macrophages (Mphi) and dendritic cells (DCs) in the stimulation of C. trachomatis-specific CD8(+) T cells. We found that C. trachomatis infection of Mphi and DCs is far less productive than infection of nonprofessional APCs, the typical targets of infection. However, despite the limited replication of C. trachomatis within Mphi and DCs, infected Mphi and DCs process and present C. trachomatis CD8(+) T cell Ag in a proteasome-dependent manner. These findings suggest that although C. trachomatis is a vacuolar pathogen, some Ags expressed in infected Mphi and DCs are processed in the host cell cytosol for presentation to CD8(+) T cells. We also show that even though C. trachomatis replicates efficiently within nonprofessional APCs both in vitro and in vivo, Ag presentation by hematopoietic cells is essential for initial stimulation of C. trachomatis-specific CD8(+) T cells. However, when DCs infected with C. trachomatis ex vivo were adoptively transferred into naive mice, they failed to prime C. trachomatis-specific CD8(+) T cells. We propose a model for priming C. trachomatis-specific CD8(+) T cells whereby DCs acquire C. trachomatis Ag by engulfing productively infected nonprofessional APCs and then present the Ag to T cells via a mechanism of cross-presentation.
Collapse
Affiliation(s)
- Lisa N Steele
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos JA. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199:9-26. [PMID: 15233723 DOI: 10.1111/j.0105-2896.2004.00142.x] [Citation(s) in RCA: 527] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-presentation involves the uptake and processing of exogenous antigens within the major histocompatibility complex (MHC) class I pathway. This process is primarily performed by dendritic cells (DCs), which are not a single cell type but may be divided into several distinct subsets. Those expressing CD8alpha together with CD205, found primarily in the T-cell areas of the spleen and lymph nodes, are the major subset responsible for cross-presenting cellular antigens. This ability is likely to be important for the generation of cytotoxic T-cell immunity to a variety of antigens, particularly those associated with viral infection, tumorigenesis, and DNA vaccination. At present, it is unclear whether the CD8alpha-expressing DC subset captures antigen directly from target cells or obtains it indirectly from intermediary DCs that traffic from peripheral sites. In this review, we examine the molecular basis for cross-presentation, discuss the role of DC subsets, and examine the contribution of this process to immunity, with some emphasis on DNA vaccination.
Collapse
Affiliation(s)
- William R Heath
- Department of Immunology and The Cooperative Research Center for Vaccine Technology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Listeria monocytogenes is a Gram-positive bacterium that is often used to study the mammalian immune response to infection because it is easy to culture, is relatively safe to work with and causes a highly predictable infection in laboratory mice. The broad application of this mouse model has resulted in a torrent of studies characterizing the contributions of different cytokines, receptors, adaptors and effector molecules to resistance against infection with Listeria monocytogenes. These studies, which are yielding one of the most comprehensive pictures of the 'battle' between host and microorganism, are reviewed here.
Collapse
Affiliation(s)
- Eric G Pamer
- Infectious Disease Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Immunology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Maria C Ramirez
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
41
|
Serna A, Ramirez MC, Soukhanova A, Sigal LJ. Cutting edge: efficient MHC class I cross-presentation during early vaccinia infection requires the transfer of proteasomal intermediates between antigen donor and presenting cells. THE JOURNAL OF IMMUNOLOGY 2004; 171:5668-72. [PMID: 14634072 DOI: 10.4049/jimmunol.171.11.5668] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Priming of CD8(+) T cells requires presentation of short peptides bound to MHC class I molecules of professional APCs. Cross-presentation is a mechanism whereby professional APC present on their own MHC class I molecules peptides derived from degradation of Ags synthesized by other Ag "donor cells." The mechanism of cross-presentation is poorly understood, and the nature of the transferred Ag is unknown. In this report, we demonstrate that the bulk of a cross-presented Ag transferred from donor cells recently infected with vaccinia virus are proteasomal products that are susceptible to peptidases within the donor cell cytosol and not full-length proteins or mature epitopes either free or bound to chaperones.
Collapse
Affiliation(s)
- Amparo Serna
- Virology Working Group, Basic Science Division, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
42
|
Abstract
CD8 T cells respond to viral infections but also participate in defense against bacterial and protozoal infections. In the last few years, as new methods to accurately quantify and characterize pathogen-specific CD8 T cells have become available, our understanding of in vivo T cell responses has increased dramatically. Pathogen-specific T cells, once thought to be quite rare following infection, are now known to be present at very high frequencies, particularly in peripheral, nonlymphoid tissues. With the ability to visualize in vivo CD8 T cell responses has come the recognition that T cell expansion is programmed and, to a great extent, independent of antigen concentrations. Comparison of CD8 T cell responses to different pathogens also highlights the intricate relationship between microbially induced innate inflammatory responses and the kinetics, magnitude, and character of long-term T cell responses. This review describes recent progress in some of the major murine models of CD8 T cell-mediated immunity to viral, bacterial, and protozoal infection.
Collapse
Affiliation(s)
- Phillip Wong
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
43
|
Abstract
Dendritic cells orchestrate the adaptive immune response. As well as presenting MHC-restricted antigen for T-cell activation, they provide all the co-receptor signals required for full T-cell priming. As a consequence, they play a central role in the immune response to infections caused by many pathogenic agents, including viruses. In recent times, it has become apparent that dendritic cells represent a particularly heterogeneous population with individual subsets playing specialized roles in response to infection.
Collapse
Affiliation(s)
- Francis R Carbone
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
44
|
Larsson M, Fonteneau JF, Bhardwaj N. Cross-presentation of cell-associated antigens by dendritic cells. Curr Top Microbiol Immunol 2003; 276:261-75. [PMID: 12797452 DOI: 10.1007/978-3-662-06508-2_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a strict requirement for professional antigen-presenting cells (APCs) in the generation of immunity toward most viruses. Exogenous pathways of MHC class I-restricted antigen presentation play an important role in the generation of antiviral immunity, particularly in the immune surveillance of virus-infected tissues of nonhematopoietic origin, and to bypass the detrimental effects of direct virus infection on professional APCs. The mechanisms underlying generation of antiviral immunity under these circumstances are discussed.
Collapse
Affiliation(s)
- M Larsson
- The Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
45
|
Schüler T, Blankenstein T. Cutting edge: CD8+ effector T cells reject tumors by direct antigen recognition but indirect action on host cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4427-31. [PMID: 12707316 DOI: 10.4049/jimmunol.170.9.4427] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) effector T cells recognize malignant cells by monitoring their surface for the presence of tumor-derived peptides bound to MHC class I molecules. In addition, tumor-derived Ags can be cross-presented to CD8(+) effector T cells by APCs. IFN-gamma production by CD8(+) T cells is often critical for tumor rejection. However, it remained unclear whether 1) CD8(+) T cells secrete IFN-gamma in response to Ag recognition on tumor cells or APCs and 2) whether IFN-gamma mediates its antitumor effect by acting on host or tumor cells. We show in this study that CD8(+) effector T cells can reject tumors in bone marrow-chimeric mice incapable of cross-presenting Ag by bone marrow-derived APCs and that tumor rejection required host cells to express IFN-gammaR. Together, CD8(+) effector T cells recognize Ag directly on tumor cells, and this recognition is sufficient to reject tumors by IFN-gamma acting on host cells.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Graft Rejection/immunology
- Interferon-gamma/metabolism
- Interferon-gamma/physiology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasm Transplantation
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Receptors, Interferon/biosynthesis
- Receptors, Interferon/physiology
- Tumor Cells, Cultured
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Thomas Schüler
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|
46
|
Huang CT, Huso DL, Lu Z, Wang T, Zhou G, Kennedy EP, Drake CG, Morgan DJ, Sherman LA, Higgins AD, Pardoll DM, Adler AJ. CD4+ T cells pass through an effector phase during the process of in vivo tolerance induction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3945-53. [PMID: 12682221 DOI: 10.4049/jimmunol.170.8.3945] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An important process in the generation of tolerance to peripheral self-Ags is the induction of unresponsiveness in mature specific T cells. Although the end stage of this process, termed anergy, is well defined, the pathway by which naive T cells become anergic remains to be elucidated. Using an in vivo self-tolerance model, we demonstrate that CD4(+) T cells pass through a significant effector stage on their way to an anergic state. This stage is characterized by production of effector cytokines, provision of help for CD8(+) T cells, and induction of in vivo pathology within organs that express cognate Ag. These results suggest that the initial activation stage in T cell tolerance is similar to that seen in memory induction. They also suggest that autoimmune pathology can result during the natural process of tolerance induction rather than requiring that tolerance be broken.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Autoantigens/biosynthesis
- Autoimmune Diseases/genetics
- Autoimmune Diseases/mortality
- Autoimmune Diseases/pathology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/transplantation
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clonal Anergy/genetics
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Immune Tolerance/genetics
- Lung Diseases/genetics
- Lung Diseases/immunology
- Lung Diseases/mortality
- Lung Diseases/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Models, Immunological
- Rats
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Self Tolerance/genetics
- Self Tolerance/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Ching-Tai Huang
- Oncology Center and Division of Comparative Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
MHC class I-restricted antigen presentation is an essential step in the priming of CD8 T lymphocytes during immune responses to infection. While microbial growth and clearance have been accurately measured in mammalian hosts, the duration of functional antigen presentation during infection remains undefined in vivo. Herein we characterize the activation of naive and memory T cells at different times during bacterial infection. Surprisingly, the host's ability to prime T cells is of much shorter duration than bacterial infection, inversely correlating with the development of pathogen-specific cytolytic T lymphocytes. Our studies demonstrate a feedback mechanism that limits the duration of effective in vivo antigen presentation, thereby modulating T cell responses by temporally restricting recruitment of naive T cells into the immune response.
Collapse
Affiliation(s)
- Phillip Wong
- Infectious Diseases Service, Department of Medicine, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
48
|
Zanetti M, Castiglioni P, Schoenberger S, Gerloni M. The role of relB in regulating the adaptive immune response. Ann N Y Acad Sci 2003; 987:249-57. [PMID: 12727647 DOI: 10.1111/j.1749-6632.2003.tb06056.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dendritic cells (DCs), which represent a key type of antigen-presenting cell (APC), are important for the development of innate and adaptive immunity. DCs are involved in T cell activation in at least two main ways: priming via direct processing/presentation of soluble antigen taken up from the microenvironment (conventional priming), and processing/presentation of antigen released from other cells (cross-priming). relB, a component of the NF-kappaB complex of transcription factors, is a critical regulator of the differentiation of DCs. In mice, lack of relB impairs DCs derived from bone marrow both in number and function. Here relB (-/-) bone marrow chimera mice is used to study the APC function of residual DCs in presentation of soluble antigen and cross-priming. It is found that the DCs in these mice are profoundly deficient in their ability to both prime and cross-prime T cell responses. It was concluded that the relB gene is involved in regulating the APC function of DCs in vivo.
Collapse
Affiliation(s)
- Maurizio Zanetti
- Department of Medicine and the Cancer Center, University of California, San Diego, La Jolla, California 92093-0837, USA.
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Christopher C Norbury
- Department of Microbiology and Immunology, H107, Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | | |
Collapse
|
50
|
Ramirez MC, Sigal LJ. Macrophages and dendritic cells use the cytosolic pathway to rapidly cross-present antigen from live, vaccinia-infected cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6733-42. [PMID: 12471104 DOI: 10.4049/jimmunol.169.12.6733] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Professional APCs (pAPC) can process and present on their own MHC class I molecules Ags acquired from Ag donor cells (ADC). This phenomenon of cross-presentation is essential in the induction of CD8(+) T cell responses to viruses that do not infect pAPC and possibly contributes to the induction of CD8(+) responses to many other viruses. However, little is known about the mechanisms underlying this process. In this study, we show that dendritic cells and macrophages cross-present a model Ag supplied by vaccinia virus-infected ADC via the cytosolic route. Strikingly, we also found that cross-presentation of Ags provided by vaccinia-infected cells occurs within a couple of hours of pAPC/ADC interaction, that the duration of cross-presentation lasts for only 16 h, and that cross-presentation can occur at early times of infection when the ADC are still alive.
Collapse
|