1
|
MacLean F, Tsegaye AT, Graham JB, Swarts JL, Vick SC, Potchen NB, Cruz Talavera I, Warrier L, Dubrulle J, Schroeder LK, Saito A, Mar C, Thomas KK, Mack M, Sabo MC, Chohan BH, Ngure K, Mugo NR, Lingappa JR, Lund JM, for the Kinga Study Team. Bacterial vaginosis associates with dysfunctional T cells and altered soluble immune factors in the cervicovaginal tract. J Clin Invest 2025; 135:e184609. [PMID: 40131862 PMCID: PMC12077898 DOI: 10.1172/jci184609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUNDBacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome that is prevalent among reproductive-age females worldwide. Adverse health outcomes associated with BV include an increased risk of sexually acquired HIV, yet the immunological mechanisms underlying this association are not well understood.METHODSTo investigate BV-driven changes to cervicovaginal tract (CVT) and circulating T cell phenotypes, Kinga Study participants with or without BV provided vaginal tract (VT) and ectocervical (CX) tissue biopsies and PBMC samples.RESULTSHigh-parameter flow cytometry revealed an increased frequency of cervical CD4+ conventional T (Tconv) cells expressing CCR5 in BR+ versus BR- women. However, we found no difference in the number of CD3+CD4+CCR5+ cells in the CX or VT of BV+ versus BV- individuals, suggesting that BV-driven increased HIV susceptibility may not be solely attributed to increased CVT HIV target cell abundance. Flow cytometry also revealed that individuals with BV had an increased frequency of dysfunctional CX and VT CD39+ Tconv and CX tissue-resident CD69+CD103+ Tconv cells, reported to be implicated in HIV acquisition risk and replication. Many soluble immune factor differences in the CVT further support that BV elicits diverse and complex CVT immune alterations.CONCLUSIONOur comprehensive analysis expands on potential immunological mechanisms that may underlie the adverse health outcomes associated with BV, including increased HIV susceptibility.TRIAL REGISTRATIONClinicalTrials.gov NCT03701802.FUNDINGThis work was supported by National Institutes of Health grants R01AI131914, R01AI141435, and R01AI129715.
Collapse
Affiliation(s)
- Finn MacLean
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sarah C. Vick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nicole B. Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Irene Cruz Talavera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lakshmi Warrier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center. Seattle, Washington, USA
| | - Lena K. Schroeder
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center. Seattle, Washington, USA
| | - Ayumi Saito
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Corinne Mar
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Katherine K. Thomas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Matthias Mack
- Department of Internal Medicine–Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Michelle C. Sabo
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Kenneth Ngure
- Department of Global Health, University of Washington, Seattle, Washington, USA
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Nelly Rwamba Mugo
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
2
|
Stacchiotti C, Mazzella di Regnella S, Cinotti M, Spalloni A, Volpe E. Neuroinflammation and Amyotrophic Lateral Sclerosis: Recent Advances in Anti-Inflammatory Cytokines as Therapeutic Strategies. Int J Mol Sci 2025; 26:3854. [PMID: 40332510 PMCID: PMC12028049 DOI: 10.3390/ijms26083854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Neuroinflammation is an inflammatory response occurring within the central nervous system (CNS). The process is marked by the production of pro-inflammatory cytokines, chemokines, small-molecule messengers, and reactive oxygen species. Microglia and astrocytes are primarily involved in this process, while endothelial cells and infiltrating blood cells contribute to neuroinflammation when the blood-brain barrier (BBB) is damaged. Neuroinflammation is increasingly recognized as a pathological hallmark of several neurological diseases, including amyotrophic lateral sclerosis (ALS), and is closely linked to neurodegeneration, another key feature of ALS. In fact, neurodegeneration is a pathological trigger for inflammation, and neuroinflammation, in turn, contributes to motor neuron (MN) degeneration through the induction of synaptic dysfunction, neuronal death, and inhibition of neurogenesis. Importantly, resolution of acute inflammation is crucial for avoiding chronic inflammation and tissue destruction. Inflammatory processes are mediated by soluble factors known as cytokines, which are involved in both promoting and inhibiting inflammation. Cytokines with anti-inflammatory properties may exert protective roles in neuroinflammatory diseases, including ALS. In particular, interleukin (IL)-10, transforming growth factor (TGF)-β, IL-4, IL-13, and IL-9 have been shown to exert an anti-inflammatory role in the CNS. Other recently emerging immune regulatory cytokines in the CNS include IL-35, IL-25, IL-37, and IL-27. This review describes the current understanding of neuroinflammation in ALS and highlights recent advances in the role of anti-inflammatory cytokines within CNS with a particular focus on their potential therapeutic applications in ALS. Furthermore, we discuss current therapeutic strategies aimed at enhancing the anti-inflammatory response to modulate neuroinflammation in this disease.
Collapse
Affiliation(s)
- Costanza Stacchiotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Mazzella di Regnella
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| | - Miriam Cinotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Santa Lucia Foundation, 00143 Rome, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| |
Collapse
|
3
|
Lee Y, Ishikawa T, Lee H, Lee B, Ryu C, Davila Mejia I, Kim M, Lu G, Hong Y, Feng M, Shin H, Meloche S, Locksley RM, Koltsova E, Grivennikov SI, Heiman M, Choi GB, Huh JR. Brain-wide mapping of immune receptors uncovers a neuromodulatory role of IL-17E and the receptor IL-17RB. Cell 2025; 188:2203-2217.e17. [PMID: 40199322 PMCID: PMC12063771 DOI: 10.1016/j.cell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/17/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Cytokines interact with their receptor complexes to orchestrate diverse processes-from immune responses to behavioral modulation. Interleukin-17A (IL-17A) mediates protective immune responses by binding to IL-17 receptor A (IL-17RA) and IL-17RC subunits. IL-17A also modulates social interaction, yet the role of cytokine receptors in this process and their expression in the brain remains poorly characterized. Here, we mapped the brain-region-specific expression of all major IL-17R subunits and found that in addition to IL-17RA, IL-17RB-but not IL-17RC-plays a role in social behaviors through its expression in the cortex. We further showed that IL-17E, expressed in cortical neurons, enhances social interaction by acting on IL-17RA- and IL-17RB-expressing neurons. These findings highlight an IL-17 circuit within the cortex that modulates social behaviors. Thus, characterizing spatially restricted cytokine receptor expression can be leveraged to elucidate how cytokines function as critical messengers mediating neuroimmune interactions to shape animal behaviors.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tomoe Ishikawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyeseung Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Byeongjun Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Changhyeon Ryu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Irene Davila Mejia
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Minjin Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Guangqing Lu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yujin Hong
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mengyang Feng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyeyoon Shin
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer (IRIC), Montreal, QC, Canada
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ekaterina Koltsova
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sergei I Grivennikov
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Myriam Heiman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gloria B Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan; Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA.
| |
Collapse
|
4
|
Vasilev G, Kokudeva M, Siliogka E, Padilla N, Shumnalieva R, Della-Morte D, Ricordi C, Mihova A, Infante M, Velikova T. T helper 17 cells and interleukin-17 immunity in type 1 diabetes: From pathophysiology to targeted immunotherapies. World J Diabetes 2025; 16:99936. [PMID: 40236846 PMCID: PMC11947927 DOI: 10.4239/wjd.v16.i4.99936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic organ-specific autoimmune disorder characterized by a progressive loss of the insulin-secreting pancreatic beta cells, which ultimately results in insulinopenia, hyperglycemia and lifelong need for exogenous insulin therapy. In the pathophysiological landscape of T1D, T helper 17 cells (Th17 cells) and their hallmark cytokine, interleukin (IL)-17, play pivotal roles from disease onset to disease progression. In this narrative mini-review, we discuss the dynamic interplay between Th17 cells and IL-17 in the context of T1D, providing insights into the underlying immunologic mechanisms contributing to the IL-17-immunity-mediated pancreatic beta-cell destruction. Furthermore, we summarized the main animal and clinical studies that investigated Th17- and IL-17-targeted interventions as promising immunotherapies able to alter the natural history of T1D.
Collapse
Affiliation(s)
- Georgi Vasilev
- Clinic of Neurology and Department of Emergency Medicine, UMHAT "Sv. Georgi", Plovdiv 4000, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Maria Kokudeva
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria
| | - Elina Siliogka
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens 11527, Attikí, Greece
| | - Nathalia Padilla
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Russka Shumnalieva
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Anna", Medical University-Sofia, Sofia 1612, Bulgaria
| | - David Della-Morte
- Department of Biomedicine and Prevention, Section of Clinical Nutrition and Nutrigenomics, University of Rome Tor Vergata, Rome 00133, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | | | - Marco Infante
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Rome 00131, Italy
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
5
|
Bai S, Su X, Kong D, Feng C, Zhang X, Pan Y, Zhao J, Sun J, Li W. Selective HDAC8 inhibition by PCI-34051 attenuates inflammation and airway remodeling in asthma via miR-381-3p-TGFβ3 axis. J Transl Int Med 2024; 12:592-601. [PMID: 39802447 PMCID: PMC11720934 DOI: 10.1515/jtim-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Background and Objectives Histone deacetylase (HDAC) families regulate various physical processes and the development of several diseases. The role of HDACs in asthma development and progression worths further investigation. This study aims to evaluate the effect of HDACs in a mouse model of asthma. Methods HDAC8 selective inhibitor PCI-34051 was administered to a mouse model of ovalbumin-sensitized and challenged asthma. Airway responsiveness, serum cytokines, histological changes of the airway, and expression levels of α-SMA, β-actin, VEGFR, VEGF, GAPDH, HDAC8, TGF-β3, CD 105, p-ERK 1/2, ERK 1/2, PI3K, p-AKT, AKT, and PDK1 were evaluated. The miR-381-3p level was also measured. Results All classic histologic and cellular changes of asthma in inflammation and airway remodeling were altered by HDAC8 inhibitor PCI-34051 via regulation of the miR-381-3p level and its downstream gene, TGF-β3. Inhibition of TGF-β3 further reduced the activation of ERK, PI3K, AKT, and PDK1. Conclusion In a mouse model, HDAC8 inhibitor PCI-34051 exhibits comprehensive control of asthmatic changes, including inflammation and airway remodeling.
Collapse
Affiliation(s)
- Shiyao Bai
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Xinming Su
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Delei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Chenye Feng
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Xiaochun Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Ying Pan
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jieyu Zhao
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jiamin Sun
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Wenyang Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| |
Collapse
|
6
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Vicovan AG, Petrescu DC, Constantinescu D, Iftimi E, Cernescu IT, Ancuta CM, Caratașu CC, Șorodoc L, Ceasovschih A, Solcan C, Ghiciuc CM. Experimental Insights on the Use of Secukinumab and Magnolol in Acute Respiratory Diseases in Mice. Biomedicines 2024; 12:1538. [PMID: 39062111 PMCID: PMC11275060 DOI: 10.3390/biomedicines12071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the combined treatment of secukinumab (SECU) and magnolol (MAGN) in a mouse model of LPS-induced ALI overlapped with allergic pulmonary inflammation, aiming to better understand the mechanism behind this pathology and to assess the therapeutic potential of this novel approach in addressing the severity of ALI. The combined treatment reveals intricate immunomodulatory effects. Both treatments inhibit IL-17 and promote M2 macrophage polarization, which enhances anti-inflammatory cytokine production such as IL-4, IL-5, IL-10, and IL-13, crucial for lung repair and inflammation resolution. However, the combination treatment exacerbates allergic responses and increases OVA-specific IgE, potentially worsening ALI outcomes. MAGN pretreatment alone demonstrates higher potency in reducing neutrophils and enhancing IFN-γ, suggesting its potential in mitigating severe asthma symptoms and modulating immune responses. The study highlights the need for careful consideration in therapeutic applications due to the combination treatment's inability to reduce IL-6 and its potential to exacerbate allergic inflammation. Elevated IL-6 levels correlate with worsened oxygenation and increased mortality in ALI patients, underscoring its critical role in disease severity. These findings offer valuable insights for the advancement of precision medicine within the realm of respiratory illnesses, emphasizing the importance of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Diana Cezarina Petrescu
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (D.C.); (E.I.)
| | - Elena Iftimi
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (D.C.); (E.I.)
| | - Irina Teodora Cernescu
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Codrina Mihaela Ancuta
- 2nd Rheumatology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Str., 700664 Iași, Romania;
- Rheumatology Department, University of Medicine and Pharmacy “Grigore T Popa”, 16 Universitatii Street, 700115 Iași, Romania
| | - Cezar-Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universității Street, 700115 Iași, Romania;
| | - Laurențiu Șorodoc
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Street, 700115 Iași, Romania; (L.Ș.); (A.C.)
| | - Alexandr Ceasovschih
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Street, 700115 Iași, Romania; (L.Ș.); (A.C.)
| | - Carmen Solcan
- Department IX—Discipline of Histology, Embryology and Molecular Biology, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Str., 700490 Iași, Romania;
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
- Pediatric Emergency Hospital Sf Maria, 700887 Iași, Romania
| |
Collapse
|
9
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
10
|
Kamiab Z, Khorramdelazad H, Kafi M, Jafarzadeh A, Mohammadi-Shahrokhi V, Bagheri-Hosseinabadi Z, Saeed Askari P, Abbasifard M. Role of Interleukin-17 family cytokines in disease severity of patients with knee osteoarthritis. Adv Rheumatol 2024; 64:11. [PMID: 38268022 DOI: 10.1186/s42358-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Interleukin-17 (IL-17) family plays a role in the pathogenesis of knee osteoarthritis (KOA) by contributing to the inflammatory and destructive processes in the affected joint. This study aimed to measure levels of IL-17 A and IL-25 (IL-17E) in serum of KOA patients and determine their roles in the disease severity of patients. METHODS In this, 34 patients with KOA and 30 age and sex-matched healthy subjects (HS) were enrolled. Patients were categorized based on their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS), and Body Mass Index (BMI) scores. The enzyme-linked immunosorbent assay (ELISA) technique was employed to measure serum levels of IL-17 A and IL-25. RESULTS Level of IL-25 was significantly higher (P < 0.0001) in the KOA subjects than HS. IL-17 A level was significantly higher in KOA cases with WOMAC < 40 (P < 0.0001) in comparison to HS. IL-25 level was significantly higher in the KOA cases with WOMAC < 40 (P < 0.0001) and with WOMAC ≥ 40 (P < 0.0001) compared to HS. IL-17 A concentration was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) compared to HS. IL-25 level was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) and with VAS ≥ 5 (P < 0.0001) in comparison to HS. KOA patients with BMI ≥ 30 had significantly higher IL-17 A and IL-25 concentration in comparison to HS. CONCLUSIONS The serum level of IL-25 in KOA patients is increased probably due to negative controlling feedback on inflammatory responses, which can be associated with obesity and disease activity.
Collapse
Affiliation(s)
- Zahra Kamiab
- Department of Community Medicine, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Mehdi Kafi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Tehran, Iran
| | - Vahid Mohammadi-Shahrokhi
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Pooya Saeed Askari
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Kerman, Iran
- Department of Internal Medicine,, Faculty of Medicine, Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran, Rafsanjan, Iran.
| |
Collapse
|
11
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
12
|
Yasuda M, Uzawa A, Ozawa Y, Kojima Y, Onishi Y, Akamine H, Kuwabara S. Serum cytokine profiles in myasthenia gravis with anti-muscle-specific kinase antibodies. J Neuroimmunol 2023; 384:578205. [PMID: 37774555 DOI: 10.1016/j.jneuroim.2023.578205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
This study measured the serum levels of of 15 cytokines in 15 patients with anti-muscle-specific kinase antibody-positive MG (MuSK-MG) using a multiplex suspension array system. Fifteen patients with non-inflammatory neurological diseases served as controls. Compared with controls, patients with MuSK-MG showed higher levels of Th1- (IFN-γ), Th2- (IL-25, IL-31, and IL-33), Th17- (IL-22), Treg-related cytokines (IL-10), and soluble CD40 ligand (sCD40L). Higher serum Th2-related cytokines (IL-25 and IL-31) levels were correlated with less MG Foundation of America (MGFA) class. These suggest that Th2-related cytokines have protective effects, whereas sCD40L and others may facilitate the disease.
Collapse
Affiliation(s)
- Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan.
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, Japanese Red Cross Narita Hospital, Japan
| | - Yuta Kojima
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
13
|
Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol 2023; 20:1290-1299. [PMID: 37429945 PMCID: PMC10616183 DOI: 10.1038/s41423-023-01043-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023] Open
Abstract
Recent research in neuroimmunology has revolutionized our understanding of the intricate interactions between the immune system and the central nervous system (CNS). The CNS, an "immune-privileged organ", is now known to be intimately connected to the immune system through different cell types and cytokines. While type 2 immune responses have traditionally been associated with allergy and parasitic infections, emerging evidence suggests that these responses also play a crucial role in CNS homeostasis and disease pathogenesis. Type 2 immunity encompasses a delicate interplay among stroma, Th2 cells, innate lymphoid type 2 cells (ILC2s), mast cells, basophils, and the cytokines interleukin (IL)-4, IL-5, IL-13, IL-25, TSLP and IL-33. In this review, we discuss the beneficial and detrimental roles of type 2 immune cells and cytokines in CNS injury and homeostasis, cognition, and diseases such as tumors, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
14
|
Chiesa Fuxench ZC, Wan J, Wang S, Syed MN, Shin DB, Abuabara K, Gelfand JM. Risk of Inflammatory Bowel Disease in Patients With Atopic Dermatitis. JAMA Dermatol 2023; 159:1085-1092. [PMID: 37647058 PMCID: PMC10469290 DOI: 10.1001/jamadermatol.2023.2875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2023]
Abstract
Importance Data on the association between atopic dermatitis (AD) and inflammatory bowel disease (IBD) are inconsistent. Few studies have examined the association of AD or AD severity with risk of ulcerative colitis (UC) and Crohn disease (CD) separately. Objectives To examine the risk of new-onset IBD, UC, and CD in children and adults with AD. Design, Setting, and Participants This population-based cohort study assessed patients with AD matched with up to 5 controls on age, practice, and index date. Treatment exposure was used as a proxy for AD severity. Data were retrieved from The Health Improvement Network, a UK electronic medical record database, for January 1, 1994, to February 28, 2015. Data analysis was performed from January 8, 2020, to June 30, 2023. Main Outcomes and Measures Outcomes of interest were incident IBD, UC, and CD. Logistic regression was used to examine the risk for each outcome in children and adults with AD compared with controls. Results A total of 1 809 029 pediatric controls were matched to 409 431 children with AD (93.2% mild, 5.5% moderate, and 1.3% severe). The pediatric cohort ranged in median age from 4 to 5 years (overall range, 1-10 years), was predominantly male (936 750 [51.8%] controls, 196 996 [51.6%] with mild AD, 11 379 [50.7%] with moderate AD, and 2985 [56.1%] with severe AD), and with similar socioeconomic status. A total of 2 678 888 adult controls were matched to 625 083 adults with AD (65.7% mild, 31.4% moderate, and 2.9% severe). The adult cohort ranged in median age from 45 to 50 years (overall range, 30-68 years) and was predominantly female (1 445 589 [54.0%] controls, 256 071 [62.3%] with mild AD, 109 404 [55.8%] with moderate AD, and 10 736 [59.3%] with severe AD). In fully adjusted models, children with AD had a 44% increased risk of IBD (hazard ratio [HR], 1.44; 95% CI, 1.31-1.58) and a 74% increased risk of CD (HR, 1.74; 95% CI, 1.54-1.97), which increased with worsening AD; however, they did not have increased risk of UC (HR, 1.09; 95% CI, 0.94-1.27) except for those with severe AD (HR, 1.65; 95% CI, 1.02-2.67). Adults with AD had a 34% (HR, 1.34; 95% CI, 1.27-1.40) increased risk of IBD, a 36% (HR, 1.36; 95% CI, 1.26-1.47) increased risk of CB, and a 32% (HR, 1.32; 95% CI, 1.24-1.41) increased risk of UC, with risk increasing with worsening AD. Conclusion and Relevance In this cohort study, children and adults with AD had an increased risk of IBD, with risk varying by age, AD severity, and IBD subtype. These findings provide new insights into the association between AD and IBD. Clinicians should be aware of these risks, particularly when selecting systemic treatments for AD in patients who may have coincident gastrointestinal symptoms.
Collapse
Affiliation(s)
- Zelma C. Chiesa Fuxench
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Joy Wan
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Wang
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Maha N. Syed
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Daniel B. Shin
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco
| | - Joel M. Gelfand
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
15
|
Davydova A, Kurochkina Y, Goncharova V, Vorobyeva M, Korolev M. The Interleukine-17 Cytokine Family: Role in Development and Progression of Spondyloarthritis, Current and Potential Therapeutic Inhibitors. Biomedicines 2023; 11:1328. [PMID: 37238999 PMCID: PMC10216275 DOI: 10.3390/biomedicines11051328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Spondyloarthritis (SpA) encompasses a group of chronic inflammatory rheumatic diseases with a predilection for the spinal and sacroiliac joints, which include axial spondyloarthritis, psoriatic arthritis, reactive arthritis, arthritis associated with chronic inflammatory bowel disease, and undifferentiated spondyloarthritis. The prevalence of SpA in the population varies from 0.5 to 2%, most commonly affecting young people. Spondyloarthritis pathogenesis is related to the hyperproduction of proinflammatory cytokines (TNFα, IL-17A, IL-23, etc.). IL-17A plays a key role in the pathogenesis of spondyloarthritis (inflammation maintenance, syndesmophites formation and radiographic progression, enthesites and anterior uveitis development, etc.). Targeted anti-IL17 therapies have established themselves as the most efficient therapies in SpA treatment. The present review summarizes literature data on the role of the IL-17 family in the pathogenesis of SpA and analyzes existing therapeutic strategies for IL-17 suppression with monoclonal antibodies and Janus kinase inhibitors. We also consider alternative targeted strategies, such as the use of other small-molecule inhibitors, therapeutic nucleic acids, or affibodies. We discuss advantages and pitfalls of these approaches and the future prospects of each method.
Collapse
Affiliation(s)
- Anna Davydova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Yuliya Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Veronika Goncharova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Maksim Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| |
Collapse
|
16
|
Yuan Q, Peng N, Xiao F, Shi X, Zhu B, Rui K, Tian J, Lu L. New insights into the function of Interleukin-25 in disease pathogenesis. Biomark Res 2023; 11:36. [PMID: 37005677 PMCID: PMC10068183 DOI: 10.1186/s40364-023-00474-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a cytokine belonging to the IL-17 family. IL-25 is abundantly expressed by Th2 cells and various kinds of epithelial cells. IL-25 is an alarm signal generated upon cell injury or tissue damage to activate immune cells through the interaction with IL-17RA and IL-17RB receptors. The binding of IL-25 to IL-17RA/IL-17RB complex not only initiates and maintains type 2 immunity but also regulates other immune cells (e.g., macrophages and mast cells) via various signaling pathways. It has been well-documented that IL-25 is critically involved in the development of allergic disorders (e.g., asthma). However, the roles of IL-25 in the pathogenesis of other diseases and the underlying mechanisms are still unclear. This review presents current evidence on the roles of IL-25 in cancers, allergic disorders, and autoimmune diseases. Moreover, we discuss the unanswered key questions underlying IL-25-mediated disease pathology, which will provide new insights into the targeted therapy of this cytokine in clinical treatment.
Collapse
Affiliation(s)
- Qingfang Yuan
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Bo Zhu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Liwei Lu
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China.
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
17
|
Treatment with the Olive Secoiridoid Oleacein Protects against the Intestinal Alterations Associated with EAE. Int J Mol Sci 2023; 24:ijms24054977. [PMID: 36902407 PMCID: PMC10003427 DOI: 10.3390/ijms24054977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including "leaky gut" have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1β and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease.
Collapse
|
18
|
Chen J, Wang Y, Shen L, Xiu Y, Wang B. Could IL-25 be a potential therapeutic target for intestinal inflammatory diseases? Cytokine Growth Factor Rev 2023; 69:43-50. [PMID: 35840510 DOI: 10.1016/j.cytogfr.2022.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
As a member of the IL-17 cytokine family, IL-25 (also called IL-17E) induces and sustains type 2 immunity. IL-25, which is mainly produced by intestinal epithelial cells, has been gradually investigated in recent years for its function in intestinal inflammation but is not yet fully understood. This review summarizes the expression and function of IL-25 in the intestine, especially the progression of its regulatory role on type 2 immunity-related cells. Finally, we discuss the dual role of IL-25 based on inflammatory bowel disease to inform research on targeting IL-25 for the treatment of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingshu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
19
|
Salnikov M, Prusinkiewicz MA, Lin S, Ghasemi F, Cecchini MJ, Mymryk JS. Tumor-Infiltrating T Cells in EBV-Associated Gastric Carcinomas Exhibit High Levels of Multiple Markers of Activation, Effector Gene Expression, and Exhaustion. Viruses 2023; 15:176. [PMID: 36680216 PMCID: PMC9860965 DOI: 10.3390/v15010176] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with 10% of all gastric cancers (GCs) and 1.5% of all human cancers. EBV-associated GCs (EBVaGCs) are pathologically and clinically distinct entities from EBV-negative GCs (EBVnGCs), with EBVaGCs exhibiting differential molecular pathology, treatment response, and patient prognosis. However, the tumor immune landscape of EBVaGC has not been well explored. In this study, a systemic and comprehensive analysis of gene expression and immune landscape features was performed for both EBVaGC and EBVnGC. EBVaGCs exhibited many aspects of a T cell-inflamed phenotype, with greater T and NK cell infiltration, increased expression of immune checkpoint markers (BTLA, CD96, CTLA4, LAG3, PD1, TIGIT, and TIM3), and multiple T cell effector molecules in comparison with EBVnGCs. EBVaGCs also displayed a higher expression of anti-tumor immunity factors (PDL1, CD155, CEACAM1, galectin-9, and IDO1). Six EBV-encoded miRNAs (miR-BARTs 8-3p, 9-5p, 10-3p, 22, 5-5p, and 14-3p) were strongly negatively correlated with the expression of immune checkpoint receptors and multiple markers of anti-tumor immunity. These profound differences in the tumor immune landscape between EBVaGCs and EBVnGCs may help explain some of the observed differences in pathological and clinical outcomes, with an EBV-positive status possibly being a potential biomarker for the application of immunotherapy in GC.
Collapse
Affiliation(s)
- Mikhail Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Sherman Lin
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Farhad Ghasemi
- Department of General Surgery, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
| |
Collapse
|
20
|
Akhter S, Tasnim FM, Islam MN, Rauf A, Mitra S, Emran TB, Alhumaydhi FA, Khalil AA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-immune Diseases. Curr Pharm Des 2023; 29:2078-2090. [PMID: 37670700 DOI: 10.2174/1381612829666230904150808] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The IL-17 (interleukin 17) family consists of six structurally related pro-inflammatory cytokines, namely IL-17A to IL-17F. These cytokines have garnered significant scientific interest due to their pivotal role in the pathogenesis of various diseases. Notably, a specific subset of T-cells expresses IL-17 family members, highlighting their importance in immune responses against microbial infections. INTRODUCTION IL-17 cytokines play a critical role in host defense mechanisms by inducing cytokines and chemokines, recruiting neutrophils, modifying T-cell differentiation, and stimulating the production of antimicrobial proteins. Maintaining an appropriate balance of IL-17 is vital for overall health. However, dysregulated production of IL-17A and other members can lead to the pathogenesis of numerous inflammatory and autoimmune diseases. METHOD This review provides a comprehensive overview of the IL-17 family and its involvement in several inflammatory and autoimmune diseases. Relevant literature and research studies were analyzed to compile the data presented in this review. RESULTS IL-17 cytokines, particularly IL-17A, have been implicated in the development of various inflammatory and autoimmune disorders, including multiple sclerosis, Hashimoto's thyroiditis, systemic lupus erythematosus, pyoderma gangrenosum, autoimmune hepatic disorders, rheumatoid arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, osteoarthritis, and graft-versus-host disease. Understanding the role of IL-17 in these diseases is crucial for developing targeted therapeutic strategies. CONCLUSION The significant involvement of IL-17 cytokines in inflammatory and autoimmune diseases underscores their potential as therapeutic targets. Current treatments utilizing antibodies against IL-17 cytokines and IL-17RA receptors have shown promise in managing these conditions. This review consolidates the understanding of IL-17 family members and their roles, providing valuable insights for the development of novel immunomodulators to effectively treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Farhin Muntaha Tasnim
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritionals Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
21
|
Boehncke WH, Brembilla NC. Pathogenesis-oriented therapy of psoriasis using biologics. Expert Opin Biol Ther 2022; 22:1463-1473. [PMID: 35815360 DOI: 10.1080/14712598.2022.2100219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Psoriasis is currently regarded an immune-mediated inflammatory disease. The central pathogenic axis comprises interleukin-23, TH17-lymphocytes differentiating under its influence, and interleukin-17A as a key effector cytokine of these T-lymphocytes. All of these can selectively be targeted using biological therapies, thus potentially increasing efficacy and reducing adverse events when compared to conventional systemic therapeutics. AREAS COVERED We review the current concept of psoriasis as an immune-mediated inflammatory disease, assessing the evidence for a role of elements of the innate and adaptive immune system. We then correlate the pharmacological effects of biologics in psoriasis in light of the known physiologic as well as pathophysiological role of the respective targets. This is done on the basis of an extensive literature search of publications since 2018 which describe the role of the above-mentioned elements in health and disease or the effects of blocking these as an attempt to treat psoriasis. EXPERT OPINION Biologics targeting the above-mentioned central pathogenic axis provide a particularly effective and safe way to treat psoriasis. Given the impact of comorbidities on therapeutic decision-making, and the efficacy of some biologics also on certain comorbidities, these drugs represent a first step toward personalized medicine in the management of psoriasis.
Collapse
Affiliation(s)
- Wolf-Henning Boehncke
- Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
22
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
23
|
Wu J, Zhang F, Tao H, Nawaz W, Chen D, Wu Z. The potential roles of interleukin-25 in infectious diseases. Front Immunol 2022; 13:986118. [PMID: 36119076 PMCID: PMC9478665 DOI: 10.3389/fimmu.2022.986118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a recently identified cytokine of the IL-17 family. Numerous studies illustrated that the expression of IL-25 is regulated by multiple pathogens, including parasitic, viral, and bacterial infections. IL-25 has a dual function in infectious diseases. On the one hand, IL-25 activates type 2 immunity via the relevant cytokines, including IL-4, IL-5, and IL-13, which are associated with the development of pathogenic infection-related allergic diseases. On the other hand, IL-25 involves in the recruitment of group 2 innate lymphoid cells (ILC2) to enhanced T helper 2 (Th2) cell differentiation, which are important to the clearance of pathogens. However, the precise roles of IL-25 in infectious diseases remain largely unknown. Thus, the current review will shed light on the pivotal roles of IL-25 in infectious diseases.
Collapse
Affiliation(s)
- Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongji Tao
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Waqas Nawaz
- Hôpital Maisonneuve-Rosemont, School of Medicine, University of Montreal, Montréal, Canada
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- *Correspondence: Deyan Chen, ; Zhiwei Wu,
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Deyan Chen, ; Zhiwei Wu,
| |
Collapse
|
24
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
25
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Moeinafshar A, Razi S, Rezaei N. Interleukin 17, the double-edged sword in atherosclerosis. Immunobiology 2022; 227:152220. [PMID: 35452921 DOI: 10.1016/j.imbio.2022.152220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022]
Abstract
Cardiovascular diseases, including atherosclerosis, are the number one cause of death worldwide. These diseases have taken the place of pneumonia and other infectious diseases in the epidemiological charts. Thus, their importance should not be underestimated. Atherosclerosis is an inflammatory disease. Therefore, immunological signaling molecules and immune cells carry out a central role in its etiology. One of these signaling molecules is interleukin (IL)-17. This relatively newly discovered signaling molecule might have a dual role as acting both pro-atherogenic and anti-atherogenic depending on the situation. The majority of articles have discussed IL-17 and its action in atherosclerosis, and it may be a new target for the treatment of patients with this disease. In this review, the immunological basis of atherosclerosis with an emphasis on the role of IL-17 and a brief explanation of the role of IL-17 on atherosclerogenic disorders will be discussed.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Robert M, Miossec P, Hot A. The Th17 Pathway in Vascular Inflammation: Culprit or Consort? Front Immunol 2022; 13:888763. [PMID: 35479069 PMCID: PMC9035791 DOI: 10.3389/fimmu.2022.888763] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The involvement of IL-17A in autoimmune and inflammatory diseases has prompted the development of therapeutic strategies to block the Th17 pathway. Promising results came from their use in psoriasis and in ankylosing spondylitis. IL-17A acts on various cell types and has both local and systemic effects. Considering the premature mortality observed during chronic inflammatory diseases, IL-17A action on vascular cells was studied. Both in vitro and in vivo results suggest that this cytokine favors inflammation, coagulation and thrombosis and promotes the occurrence of cardiovascular events. These observations led to study the role of IL-17A in diseases characterized by vascular inflammation, namely allograft rejection and vasculitis. Increased circulating levels of IL-17A and histological staining reveal that the Th17 pathway is involved in the pathogenesis of these diseases. Vasculitis treatment faces challenges while the use of steroids has many side effects. Regarding results obtained in giant cell arteritis with IL-6 inhibitors, a cytokine involved in Th17 differentiation, the use of anti-IL-17 is a promising strategy. However, lessons from rheumatoid arthritis and multiple sclerosis must be learnt before targeting IL-17 in vasculitis, which may be culprit, consort or both of them.
Collapse
Affiliation(s)
- Marie Robert
- Department of Clinical Immunology and Rheumatology, and Immunogenomics and Inflammation Research Unit, University of Lyon, Hôpital Edouard Herriot, Lyon, France
- Department of Internal Medicine, University of Lyon, Hôpital Edouard Herriot, Lyon, France
- *Correspondence: Marie Robert,
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, and Immunogenomics and Inflammation Research Unit, University of Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Arnaud Hot
- Department of Internal Medicine, University of Lyon, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
28
|
Karpisheh V, Ahmadi M, Abbaszadeh-Goudarzi K, Mohammadpour Saray M, Barshidi A, Mohammadi H, Yousefi M, Jadidi-Niaragh F. The role of Th17 cells in the pathogenesis and treatment of breast cancer. Cancer Cell Int 2022; 22:108. [PMID: 35248028 PMCID: PMC8897940 DOI: 10.1186/s12935-022-02528-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a severe problem worldwide due to an increase in mortality and prevalence among women. Despite early diagnostic procedures as well as advanced therapies, more investigation is required to find new treatment targets. Various factors and mechanisms, such as inflammatory conditions, can play a crucial role in cancer progression. Among them, Th17 cells are identified as effective CD4+ T cells that play an essential role in autoimmune diseases and inflammation which may be associated with anti-tumor responses. In addition, Th17 cells are one of the main factors involved in cancer, especially breast cancer via the inflammatory process. In tumor immunity, the exact mechanism of Th17 cells is not entirely understood and seems to have a dual function in tumor development. Various studies have reported that cytokines secreted by Th17 cells are in close relation to cancer stem cells and tumor microenvironment. Therefore, they play a critical role in the growth, proliferation, and invasion of tumor cells. On the other hand, most studies have reported that T cells suppress the growth of tumor cells by the induction of immune responses. In patients with breast cancer compared to normal individuals, various studies have been reported that the Th17 population dramatically increases in peripheral blood which results in cancer progression. It seems that Th17 cells by creating inflammatory conditions through the secretion of cytokines, including IL-22, IL-17, TNF-α, IL-21, and IL-6, can significantly enhance breast cancer progression. Therefore, to identify the mechanisms and factors involved in the activation and development of Th17 cells, they can provide an essential role in preventing breast cancer progression. In the present review, the role of Th17 cells in breast cancer progression and its therapeutic potential was investigated.
Collapse
Affiliation(s)
- Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehran Mohammadpour Saray
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Ham J, Shin JW, Ko BC, Kim HY. Targeting the Epithelium-Derived Innate Cytokines: From Bench to Bedside. Immune Netw 2022; 22:e11. [PMID: 35291657 PMCID: PMC8901708 DOI: 10.4110/in.2022.22.e11] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
When epithelial cells are exposed to potentially threatening external stimuli such as allergens, bacteria, viruses, and helminths, they instantly produce "alarmin" cytokines, namely, IL-33, IL-25, and TSLP. These alarmins alert the immune system about these threats, thereby mobilizing host immune defense mechanisms. Specifically, the alarmins strongly stimulate type-2 immune cells, including eosinophils, mast cells, dendritic cells, type-2 helper T cells, and type-2 innate lymphoid cells. Given that the alarm-raising role of IL-33, IL-25, and TSLP was first detected in allergic and infectious diseases, most studies on alarmins focus on their role in these diseases. However, recent studies suggest that alarmins also have a broad range of effector functions in other pathological conditions, including psoriasis, multiple sclerosis, and cancer. Therefore, this review provides an update on the epithelium-derived cytokines in both allergic and non-allergic diseases. We also review the progress of clinical trials on biological agents that target the alarmins and discuss the therapeutic potential of these agents in non-allergic diseases.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Woo Shin
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Byeong Cheol Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
30
|
Hendel SK, Kellermann L, Hausmann A, Bindslev N, Jensen KB, Nielsen OH. Tuft Cells and Their Role in Intestinal Diseases. Front Immunol 2022; 13:822867. [PMID: 35237268 PMCID: PMC8884241 DOI: 10.3389/fimmu.2022.822867] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
The interests in intestinal epithelial tuft cells, their basic physiology, involvement in immune responses and relevance for gut diseases, have increased dramatically over the last fifteen years. A key discovery in 2016 of their close connection to helminthic and protozoan infection has further spurred the exploration of these rare chemosensory epithelial cells. Although very sparse in number, tuft cells are now known as important sentinels in the gastrointestinal tract as they monitor intestinal content using succinate as well as sweet and bitter taste receptors. Upon stimulation, tuft cells secrete a broad palette of effector molecules, including interleukin-25, prostaglandin E2 and D2, cysteinyl leukotriene C4, acetylcholine, thymic stromal lymphopoietin, and β-endorphins, some of which with immunomodulatory functions. Tuft cells have proven indispensable in anti-helminthic and anti-protozoan immunity. Most studies on tuft cells are based on murine experiments using double cortin-like kinase 1 (DCLK1) as a marker, while human intestinal tuft cells can be identified by their expression of the cyclooxygenase-1 enzyme. So far, only few studies have examined tuft cells in humans and their relation to gut disease. Here, we present an updated view on intestinal epithelial tuft cells, their physiology, immunological hub function, and their involvement in human disease. We close with a discussion on how tuft cells may have potential therapeutic value in a clinical context.
Collapse
Affiliation(s)
- Sebastian Kjærgaard Hendel
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
- *Correspondence: Sebastian Kjærgaard Hendel,
| | - Lauge Kellermann
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Annika Hausmann
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences , University of Copenhagen, Copenhagen, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
31
|
Ward SG. The Role of PI3K Isoforms in Autoimmune Disease. Curr Top Microbiol Immunol 2022; 436:337-347. [PMID: 36243851 DOI: 10.1007/978-3-031-06566-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aberrant overactivation of the immune system can give rise to chronic and persistent self-attack, culminating in autoimmune disease. This is currently managed therapeutically using potent immunosuppressive and anti-inflammatory drugs. Class I phosphoinositide-3-kinases (PI3Ks) have been identified as ideal therapeutic targets for autoimmune diseases given their wide-ranging roles in immunological processes. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval with many others in development, including several intended to suppress the immune response in autoimmune and inflammatory diseases. This chapter reviews the evidence for contribution of aberrant PI3K activity to a range of autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and type I diabetes) and possible therapeutic application of isoform-specific PI3K inhibitors as immunosuppressive drugs.
Collapse
Affiliation(s)
- Stephen G Ward
- Department of Pharmacy and Pharmacology and Bath Centre for Therapeutic Innovation, University of Bath, Claverton Down, Bath, B2 7AY, UK.
| |
Collapse
|
32
|
Trovato E, Rubegni P, Cinotti E. The Immunogenetics of Psoriasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:105-117. [DOI: 10.1007/978-3-030-92616-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Li N, Saghafi N, Ghaneifar Z, Rezaee SA, Rafatpanah H, Abdollahi E. Evaluation of the Effects of 1,25VitD3 on Inflammatory Responses and IL-25 Expression. Front Genet 2021; 12:779494. [PMID: 34956328 PMCID: PMC8693381 DOI: 10.3389/fgene.2021.779494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/01/2021] [Indexed: 01/12/2023] Open
Abstract
VitD3 may contribute to a successful pregnancy through modulation of immune responses, so VitD3 deficiency may have a role in the immunopathogenesis of unexplained recurrent spontaneous abortion (URSA). However, the mechanisms of immunomodulatory actions of VitD3 in decreasing the risk of recurrent spontaneous abortion have not been understood well. Objective: The purpose of this research was to investigate the influence of 1,25VitD3 on IL-25 and related cytokines of Th17 cells including IL-17A, IL-6, and IL-23 in peripheral blood mononuclear cells of healthy women as a control group and women with unexplained recurrent spontaneous abortion. Method: Isolation of peripheral blood mononuclear cells (PBMCs) was performed from peripheral blood of the subjects of the studied groups (20 women with URSA as a case group, and 20 control women). The effects of 1,25VitD3 (50 nM, for 24 h) on the studied parameters were evaluated and were compared to the positive and negative controls in vitro. Flow cytometry analysis was used to determine the percentages of regulatory T cells and Th17 cells. For gene expression measurement and cytokines assay, real-time PCR and ELISA were carried out. Results: The proportion of Th17 cells in women with URSA was considerably higher than in the control group. IL-25 mRNA and protein levels in cultured PBMCs from women with URSA were lower than the controls. 1,25VitD3 increased IL-25 expressions at both the protein and mRNA levels in PBMCs from women with URSA relative to the control group. Additionally, 1,25VitD3 treatment not only significantly decreased the percentage of Th17 cells frequency but also reduced expressions of IL-6, IL-17A, and IL-23 in PBMCs from women with URSA. Conclusion: 1,25VitD3 may diminish inflammatory responses cells via downregulation of IL-25 expression. It could be an interesting subject for future researches in the field of the immunopathology of URSA to identify molecular pathways in URSA treatment.
Collapse
Affiliation(s)
- Nana Li
- Department of Obstetrics, Jinan Maternal and Child Care Health Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nafiseh Saghafi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Ghaneifar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdorahim Rezaee
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture, and Research (ACECR), Mashhad Branch, Mashhad, Iran.,Inflammation and Inflammatory Diseases Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture, and Research (ACECR), Mashhad Branch, Mashhad, Iran.,Inflammation and Inflammatory Diseases Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Abstract
Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor β1 (TGF-β1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A-IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.
Collapse
Affiliation(s)
- Na Li
- Shanghai University of Medicine & Health Sciences, Shanghai, P.R. China.,Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Gen Yamamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Hiroaki Fuji
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
35
|
Wang R, Maksymowych WP. Targeting the Interleukin-23/Interleukin-17 Inflammatory Pathway: Successes and Failures in the Treatment of Axial Spondyloarthritis. Front Immunol 2021; 12:715510. [PMID: 34539646 PMCID: PMC8446672 DOI: 10.3389/fimmu.2021.715510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
The IL-23/IL-17 pathway has been implicated in the etiopathogenesis of axial spondyloarthritis through studies of genetic polymorphisms associated with disease, an animal model with over-expression of IL-23 that resembles human disease, and observations that cytokines in this pathway can be found at the site of disease in both humans and animal models. However, the most direct evidence has emerged from clinical trials of agents targeting cytokines in this pathway. Monoclonal antibodies targeting IL-17A have been shown to ameliorate signs and symptoms, as well as MRI inflammation in the spine and sacroiliac joints, in patients with radiographic and non-radiographic axial spondyloarthritis. This was evident in patients refractory to non-steroidal anti-inflammatory agents as well as patients failing treatment with tumor necrosis factor inhibitor therapies. Treatment with a bispecific antibody targeting both IL-17A and IL-17F was also effective in a phase II study. Post-hoc analyses have even suggested a potential disease-modifying effect in reducing development of spinal ankylosis. However, benefits for extra-articular manifestations were limited to psoriasis and did not extend to colitis and uveitis. Conversely, trials of therapies targeting IL-23 did not demonstrate any significant impact on signs, symptoms, and MRI inflammation in axial spondyloarthritis. These developments coincide with recent observations that expression of these cytokines is evident in many different cell types with roles in innate as well as adaptive immunity. Moreover, evidence has emerged for the existence of both IL-23-dependent and IL-23-independent pathways regulating expression of IL-17, potentially associated with different roles in intestinal and axial skeletal inflammation.
Collapse
Affiliation(s)
- Runsheng Wang
- Division of Rheumatology, Columbia University Irving Medical Center, New York, NY, United States
- Garden State Rheumatology Consultants, Union, NJ, United States
| | - Walter P. Maksymowych
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- CARE Arthritis, Edmonton, AB, Canada
| |
Collapse
|
36
|
Gowhari Shabgah A, Amir A, Gardanova ZR, Olegovna Zekiy A, Thangavelu L, Ebrahimi Nik M, Ahmadi M, Gholizadeh Navashenaq J. Interleukin-25: New perspective and state-of-the-art in cancer prognosis and treatment approaches. Cancer Med 2021; 10:5191-5202. [PMID: 34128588 PMCID: PMC8335817 DOI: 10.1002/cam4.4060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death which imposes a substantial financial burden. Among the several mechanisms involved in cancer progression, imbalance of immune cell-derived factors such as cytokines and chemokines plays a central role. IL-25, as a member of the IL-17 cytokine subfamily, exerts a paradoxical role in cancer, including tumor supportive and tumor suppressive. Hence, we have tried to clarify the role of IL-25 and its receptor in tumor progression and cancer prognosis. It has been confirmed that IL-25 exerts a tumor-suppressive role through inducing infiltration of eosinophils and B cells into the tumor microenvironment and activating the apoptotic pathways. In contrast, the tumor-supportive function has been implemented by activating inflammatory cascades, promoting cell cycle, and inducing type-2 immune responses. Since IL-25 has been dysregulated in tumor tissues and this dysregulation is involved in cancer development, its examination can be used as a tumor diagnostic and prognostic biomarker. Moreover, IL-25-based therapeutic approaches have shown promising results in cancer inhibition. In cancers in which IL-25 has a tumor-suppressive function, employing IL-25-enhancing approaches, such as Virulizin® and dihydrobenzofuran administration, has potentially inhibited tumor cell growth. On the other hand, in the case of IL-25-dependent tumor progression, using IL-25 blocking methods, including anti-IL-25 antibodies, might be a complementary approach to the other anticancer agent. Collectively, it is hoped, IL-25 might be a promising target in cancer treatment.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- School of MedicineBam University of Medical SciencesBamIran
- Student Research CommitteeBam University of Medical SciencesBamIran
| | - Azwar Amir
- Wahidin Sudirohusodo Hospital MakassarMakassarTamalanreaIndonesia
| | - Zhanna R. Gardanova
- Department of PsychotherapyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic DentistrySechenov First Moscow State Medical UniversityMoscowRussia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of medical and Technical SciencesSaveetha UniversityChennaiIndia
| | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Majid Ahmadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
37
|
Das UN. Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids Health Dis 2021; 20:83. [PMID: 34334139 PMCID: PMC8327432 DOI: 10.1186/s12944-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
38
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
39
|
Deng C, Peng N, Tang Y, Yu N, Wang C, Cai X, Zhang L, Hu D, Ciccia F, Lu L. Roles of IL-25 in Type 2 Inflammation and Autoimmune Pathogenesis. Front Immunol 2021; 12:691559. [PMID: 34122457 PMCID: PMC8194343 DOI: 10.3389/fimmu.2021.691559] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17E (IL-25) is a member of the IL-17 cytokine family that includes IL-17A to IL-17F. IL-17 family cytokines play a key role in host defense responses and inflammatory diseases. Compared with other IL-17 cytokine family members, IL-25 has relatively low sequence similarity to IL-17A and exhibits a distinct function from other IL-17 cytokines. IL-25 binds to its receptor composed of IL-17 receptor A (IL-17RA) and IL-17 receptor B (IL-17RB) for signal transduction. IL-25 has been implicated as a type 2 cytokine and can induce the production of IL-4, IL-5 and IL-13, which in turn inhibits the differentiation of T helper (Th) 17. In addition to its anti-inflammatory properties, IL-25 also exhibits a pro-inflammatory effect in the pathogenesis of Th17-dominated diseases. Here, we review recent advances in the roles of IL-25 in the pathogenesis of inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Yu
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lijun Zhang
- Department of Rheumatology, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Removal of CD276 + cells from haploidentical memory T-cell grafts significantly lowers the risk of GVHD. Bone Marrow Transplant 2021; 56:2336-2354. [PMID: 33976380 PMCID: PMC8486669 DOI: 10.1038/s41409-021-01307-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
Detrimental graft-versus-host disease (GVHD) still remains a major cause of death in hematopoietic stem cell transplantation (HSCT). The recently explored depletion of naive cells from mobilized grafts (CD45RA depletion) has shown considerable promise, yet is unable to eliminate the incidence of GVHD. Analysis of CD45RA-depleted haploidentical mixed lymphocytes culture (haplo-MLC) revealed insufficient suppression of alloresponses in the CD4+ compartment and identified CD276 as a marker for alloreactive memory Th1 T cells. Conclusively, depleting CD276+ cells from CD45RA-depleted haplo-MLC significantly attenuated alloreactivity to recipient cells while increasing antiviral reactivity and maintaining anti-third party reactivity in vitro. To evaluate these findings in vivo, bulk, CD45RA-depleted, or CD45RA/CD276-depleted CD4+ T cells from HLA-DR4negative healthy humans were transplanted into NSG-Ab°DR4 mice, a sensitive human allo-GVHD model. Compellingly, CD45RA/CD276-depleted grafts from HLA-DR4negative donors or in vivo depletion of CD276+ cells after transplant of HLA-DR4negative memory CD4 T cells significantly delay the onset of GVHD symptoms and significantly alleviate its severity in NSG-Ab°DR4 mice. The clinical courses correlated with diminished Th1-cytokine secretion and downregulated CXCR6 expression of engrafted peripheral T cells. Collectively, mismatched HLA-mediated GVHD can be controlled by depleting recipient-specific CD276+ alloreacting T cells from the graft, highlighting its application in haplo-HSCT.
Collapse
|
41
|
Naderi N, Farshidi N, Farshidi H, Montazerghaem H, Rahimzadeh M. Lack of association between serum IL-25 levels and acute coronary syndrome: a preliminary study. ACTA ACUST UNITED AC 2021; 61:60-65. [PMID: 33998410 DOI: 10.18087/cardio.2021.4.n1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Purpose Here, for the first time, the possible association between IL-25 and the risk of acute coronary syndrome (ACS) in Iranian patients was investigated.Material and methods In this study, serum IL-25 concentrations were measured with an enzyme-linked immunosorbent assay in 88 ACS patients, 40 stable angina pectoris (SAP) patients, and 50 healthy control subjects.Results No significant differences in IL-25 concentrations were observed between SAP (340±168 ng / l), ACS (330±151 ng / l), and control (302±135 ng / l) groups (p=0.5), nor was there a difference among patients with 1, 2, or 3 vessel disease in the SAP and ACS groups. Linear regression analyses revealed that IL-25 was not correlated with coronary artery disease risk factors. Biochemical and demographic variables did not differ significantly among IL-25 quartiles.Conclusion Despite previous murine and human studies showing a protective role of IL-25 in atherosclerosis, our results revealed that IL-25 does not have potential implications for atherosclerosis development and management in humans.
Collapse
Affiliation(s)
- Nadereh Naderi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Narges Farshidi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahsa Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
42
|
The expression of IL17RA on sputum macrophages in asthma patients. Cytokine 2021; 143:155518. [PMID: 33840588 DOI: 10.1016/j.cyto.2021.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022]
Abstract
IL-17A and IL-25 (IL-17 cytokines family) play an important role in the development of asthma, and allergy. Both cytokines act by binding to heterodimeric receptors with IL17RA as a common subunit. This receptor is found on macrophages, and some other cell types. The aim of the study was to determine the expression of IL17RA on asthmatic and control macrophages from induced sputum (IS) with the regard to IL-17/IL-25 background and relation to clinical features of the disease. We found an elevated expression of IL17RA on sputum macrophages in asthma patients vs controls. A characteristic sputum profile of atopic asthmatic was as follows: high CD206 + IL17RA + macrophage percentage, elevated IL-25 level and low CD206 + IL17RA- macrophage percentage. Based on the above results, it seems that CD206 + sputum macrophages are the effector cells that express common subunit of the receptor for IL-17A and IL-25 in asthma. This may be related to the Th2-dependent environment in asthma and increased concentrations of IL-25 and IL-13 as well as eosinophils in the airways. To our knowledge, our study provides the first data on a possible link between immunological reaction orchestrating CD206 + expressing sputum macrophages and IL-25 via IL17RA pathway in the asthmatic airways.
Collapse
|
43
|
Abstract
There is a growing body of evidence supporting the association between immune processes and psychopathology, including major depressive disorder (MDD). However, lack of diagnostic specificity has given rise to a search for specific symptom types, as opposed to more heterogeneous categorical diagnoses, linked to increased inflammation. One such symptom could be anhedonia, which is not only a key feature of MDD, but also a pervasive and persistent transdiagnostic symptom. To evaluate the specific role of anhedonia as well as categorical MDD diagnoses, we examined endotoxin-evoked immune responses in vitro in relation to current levels of anhedonia and history of recurrent MDD (rMDD) in a sample of adults recruited from the community. A total of 39 participants either had a history of rMDD (n = 20) or no lifetime history of any MDD episodes (n = 19). The average age of participants was 36.81 years and the majority were women (87.2%) and Caucasian (76.3%). We found that higher levels of current anhedonia, but not history of rMDD, were associated with increased lipopolysaccharide-stimulated levels of inflammatory markers even after we statistically adjusted for the potential influence of participants’ demographic (age, sex, ethnicity, income) and physiological (body temperature, BMI) characteristics, current symptoms of depression and anxiety, and the time of day of the sample collection. These findings highlight the relation of anhedonia specifically, rather than rMDD more generally, with inflammatory processes and identify endotoxin-stimulated cytokine production as a plausible biological marker of current anhedonia.
Collapse
|
44
|
Wen X, Song G, Hu C, Pan J, Wu Z, Li L, Liu C, Tian X, Zhang F, Qian J, Zhu H, Li Y. Identification of Novel Serological Autoantibodies in Takayasu Arteritis Patients Using HuProt Arrays. Mol Cell Proteomics 2021; 20:100036. [PMID: 33545363 PMCID: PMC7995655 DOI: 10.1074/mcp.ra120.002119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/27/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
To identify novel autoantibodies of Takayasu arteritis (TAK) using HuProt array-based approach, a two-phase approach was adopted. In Phase I, serum samples collected from 40 TAK patients, 15 autoimmune disease patients, and 20 healthy subjects were screened to identify TAK-specific autoantibodies using human protein (HuProt) arrays. In phase II, the identified candidate autoantibodies were validated with TAK-focused arrays using an additional cohort comprised of 109 TAK patients, 110 autoimmune disease patients, and 96 healthy subjects. Subsequently, the TAK-specific autoantibodies validated in phase II were further confirmed using western blot analysis. We identified and validated eight autoantibodies as potential TAK-specific diagnostic biomarkers, including anti-SPATA7, -QDPR, -SLC25A2, -PRH2, -DIXDC1, -IL17RB, -ZFAND4, and -NOLC1 antibodies, with AUC of 0.803, 0.801, 0.780, 0.696, 0.695, 0.678, 0.635, and 0.613, respectively. SPATA7 could distinguish TAK from healthy and disease controls with 73.4% sensitivity at 85.4% specificity, while QDPR showed 71.6% sensitivity at 86.4% specificity. SLC25A22 showed the highest sensitivity of 80.7%, but at lower specificity of 67.0%. In addition, PRH2, IL17RB, and NOLC1 showed good specificities of 88.3%, 85.9%, and 86.9%, respectively, but at lower sensitivities (<50%). Finally, DIXDC1 and ZFAND4 showed moderate performance as compared with the other autoantibodies. Using a decision tree model, we could reach a specificity of 94.2% with AUC of 0.843, a significantly improved performance as compared with that by each individual biomarker. The performances of three autoantibodies, namely anti-SPATA7, -QDPR, and -PRH2, were successfully confirmed with western blot analysis. Using this two-phase strategy, we identified and validated eight novel autoantibodies as TAK-specific biomarker candidates, three of which could be readily adopted in a clinical setting.
Collapse
Affiliation(s)
- Xiaoting Wen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jianbo Pan
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ziyan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Liubing Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chenxi Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
45
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
46
|
Lütfioğlu M, Sakallıoğlu U, Sakallıoğlu EE, Özden FO, Ürkmez SS, Bilgici B. Effects of smoking on the gingival crevicular fluid levels of interleukin-17A, interleukin-17E, and oxidative stress following periodontal treatment process. J Periodontal Res 2021; 56:388-396. [PMID: 33458831 DOI: 10.1111/jre.12831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE AND BACKGROUND How smoking affects periodontal inflammation and healing still needs to be revealed with all its mechanisms. In this study, the gingival crevicular fluid (GCF) levels of: (a) interleukin-17A (IL-17A) and interleukin-17E(IL-17E) with their ratios and (b) oxidative stress by means of total oxidative stress (TOS), total anti-oxidant capacity (TAOC), and their ratios as the oxidative stress index (OSI) were evaluated and compared for smoking and non-smoking periodontitis patients after a periodontitis management process including both the non-surgical and surgical treatments. MATERIALS AND METHODS Fifteen smoker and 15 non-smoker generalized periodontitis patients as 2 distinct groups participated in the study. Conventional clinical and radiographical examinations were utilized for the periodontitis diagnosis. The clinical data and GCF samples were collected at baseline, 4 week after non-surgical periodontal treatment (NSPT), and 4 weeks after surgical periodontal treatment (SPT). IL-17A, IL-17E, TOS, and TAOC were determined by ELISA and Rel Assay. RESULTS Clinical parameters in both smokers and non-smokers improved following periodontal treatment (P < .001) and their clinical data were similar for all the examination times (baseline, NSPT, and SPT) (P > .05). Following the treatment phases, the IL-17A concentration decreased and the IL-17E concentration increased in both the smokers and non-smokers (P < .01). The total amount of IL-17A decreased while the total amount of IL-17E increased in smokers throughout NSPT and SPT (P < .01). Such an alteration was seen only at SPT compared to NSPT and baseline in non-smokers (P < .01). The concentration and total amount of IL-17A were higher at baseline, and the concentration and total amount of IL-17E were lower at all examination time points in non-smokers as compared to smokers (P < .01). The 17A/E ratio decreased in both groups following the treatment phases and was higher in smokers at all the examination times (P < .01). TOS were higher and TAOC were lower in smokers versus non-smokers at all the time points, but the differences were significant only for TOS levels (P < .01). Throughout the treatment phases, the concentration and total amount of TOS decreased in smokers(P < .01) and only the total amount of TOS decreased in non-smokers (P < .01). The concentration and total amounts of TAOC increased throughout the treatments in both smokers and non-smokers without significant changes (P > .05). The baseline OSI was higher in smokers, and it decreased only in smokers following the treatment phases (P < .01). CONCLUSIONS Smoking and periodontal inflammation were found to alter IL-17A, IL-17E, and oxidant/anti-oxidant statuses in periodontitis patients. The intra-group assessments in smokers demonstrated more apparent alterations in the oxidant/anti-oxidant statuses and IL-17A and IL-17E levels after periodontitis management.
Collapse
Affiliation(s)
- Muge Lütfioğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Umur Sakallıoğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Eser Elif Sakallıoğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Feyza O Özden
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Sebati Sinan Ürkmez
- Department of Biochemistry, Ondokuz Mayis University Medical Faculty, Samsun, Turkey
| | - Birsen Bilgici
- Department of Biochemistry, Ondokuz Mayis University Medical Faculty, Samsun, Turkey
| |
Collapse
|
47
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
48
|
Álvarez-Izquierdo M, Pérez-Crespo M, Esteban JG, Muñoz-Antoli C, Toledo R. Interleukin-25-mediated resistance against intestinal trematodes does not depend on the generation of Th2 responses. Parasit Vectors 2020; 13:608. [PMID: 33276813 PMCID: PMC7716497 DOI: 10.1186/s13071-020-04467-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background The cytokine interleukin-25 (IL-25) is recognized as the most relevant initiator of protective T helper 2 (Th2) responses in intestinal helminth infections. This cytokine induces resistance against several species of intestinal helminths, including the trematode Echinostoma caproni. E. caproni has been extensively used as an experimental model to study the factors determining resistance to intestinal infections. In the study reported here, we assessed the role of IL-25 in the generation of resistance in mice infected with E. caproni. Methods The factors that determine the production of IL-25 in mice experimentally infected with E. caproni were determined, as were the consequences of IL-25 production in terms of polarization of the immune response and resistance to infection. Results Our results show that the role of IL-25 in the polarization of the immune response differs between the primary and secondary immune responses. IL-25 is required for the development of a Th2 phenotype in primary E. caproni infections, but it can also promote the differentiation to Th2 memory cell subsets that enhance type-2 immunity in memory responses. However, the development of Th2 responses does not induce resistance to infection. The Th2 phenotype does not elicit resistance, and IL-25 is responsible for the resistance regardless of its type-2 cytokine activity and activation of signal transducer and activator of transcription (STAT6). Alternative activation of macrophages induced by IL-25 can be implicated in the resistance to infection. Conclusions In contrast to primary infection, secondary infection elicits a type-2 immune response even in the absence of IL-25 expression. Despite the development of a type-2 response, mice are susceptible to secondary infection associated with the lack of IL-25. Resistance to infection is due to the production of IL-25, which acts autonomously from Th2 response in terms of parasite clearance.![]()
Collapse
Affiliation(s)
- María Álvarez-Izquierdo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Miguel Pérez-Crespo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
49
|
Gutierrez B, Gallardo I, Ruiz L, Alvarez Y, Cachofeiro V, Margolles A, Hernandez M, Nieto ML. Oleanolic acid ameliorates intestinal alterations associated with EAE. J Neuroinflammation 2020; 17:363. [PMID: 33246492 PMCID: PMC7697371 DOI: 10.1186/s12974-020-02042-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease affecting the CNS. Recent studies have indicated that intestinal alterations play key pathogenic roles in the development of autoimmune diseases, including MS. The triterpene oleanolic acid (OA), due to its anti-inflammatory properties, has shown to beneficially influence the severity of the experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS. We herein investigate EAE-associated gut intestinal dysfunction and the effect of OA treatment. Methods Mice with MOG35–55-induced EAE were treated with OA or vehicle from immunization day and were daily analyzed for clinical deficit. We performed molecular and histological analysis in serum and intestinal tissues to measure oxidative and inflammatory responses. We used Caco-2 and HT29-MTX-E12 cells to elucidate OA in vitro effects. Results We found that OA protected from EAE-induced changes in intestinal permeability and preserved the mucin-containing goblet cells along the intestinal tract. Serum levels of the markers for intestinal barrier damage iFABP and monocyte activation sCD14 were consistently and significantly reduced in OA-treated EAE mice. Beneficial OA effects also included a decrease of pro-inflammatory mediators both in serum and colonic tissue of treated-EAE mice. Moreover, the levels of some immunoregulatory cytokines, the neurotrophic factor GDNF, and the gastrointestinal hormone motilin were preserved in OA-treated EAE mice. Regarding oxidative stress, OA treatment prevented lipid peroxidation and superoxide anion accumulation in intestinal tissue, while inducing the expression of the ROS scavenger Sestrin-3. Furthermore, short-chain fatty acids (SCFA) quantification in the cecal content showed that OA reduced the high iso-valeric acid concentrations detected in EAE-mice. Lastly, using in vitro cell models which mimic the intestinal epithelium, we verified that OA protected against intestinal barrier dysfunction induced by injurious agents produced in both EAE and MS. Conclusion These findings reveal that OA ameliorates the gut dysfunction found in EAE mice. OA normalizes the levels of gut mucosal dysfunction markers, as well as the pro- and anti-inflammatory immune bias during EAE, thus reinforcing the idea that OA is a beneficial compound for treating EAE and suggesting that OA may be an interesting candidate to be explored for the treatment of human MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02042-6.
Collapse
Affiliation(s)
- Beatriz Gutierrez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain
| | - Isabel Gallardo
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain
| | - Lorena Ruiz
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Yolanda Alvarez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Marita Hernandez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain
| | - Maria Luisa Nieto
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), Valladolid, Spain.
| |
Collapse
|
50
|
Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M, Bellone M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front Immunol 2020; 11:565470. [PMID: 33244315 PMCID: PMC7683804 DOI: 10.3389/fimmu.2020.565470] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The interleukin-(IL-)17 family of cytokines is composed of six members named IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. IL-17A is the prototype of this family, and it was the first to be discovered and targeted in the clinic. IL-17A is essential for modulating the interplay between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae), and yet, for protecting us from microbial invaders, thus preserving mucosal and skin integrity. Interactions between the microbiota and cells producing IL-17A have also been implicated in the pathogenesis of immune mediated inflammatory diseases and cancer. While interactions between microbiota and IL-17B-to-F have only partially been investigated, they are by no means less relevant. The cellular source of IL-17B-to-F, their main targets, and their function in homeostasis and disease distinguish IL-17B-to-F from IL-17A. Here, we intentionally overlook IL-17A, and we focus instead on the role of the other cytokines of the IL-17 family in the interplay between microbiota and epithelial cells that may contribute to cancer pathogenesis and immune surveillance. We also underscore differences and similarities between IL-17A and IL-17B-to-F in the microbiota-immunity-cancer axis, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in diseases.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy.,Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Grazia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Desirée Masciovecchio
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Daniela Impellizzieri
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Lucrezia Lacanfora
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| |
Collapse
|