1
|
Thayaparan D, Emoto T, Khan AB, Besla R, Hamidzada H, El-Maklizi M, Sivasubramaniyam T, Vohra S, Hagerman A, Nejat S, Needham-Robbins CE, Wang T, Lindquist M, Botts SR, Schroer SA, Taniguchi M, Inoue T, Yamanaka K, Cui H, Al-Chami E, Zhang H, Althagafi MG, Michalski A, McGrath JJC, Cass SP, Luong D, Suzuki Y, Li A, Abow A, Heo R, Pacheco S, Chen E, Chiu F, Byrne J, Furuyashiki T, Husain M, Libby P, Okada K, Howe KL, Heximer SP, Yamashita T, Wang B, Rubin BB, Cybulsky MI, Roy J, Williams JW, Crome SQ, Epelman S, Hirata KI, Stampfli MR, Robbins CS. Endothelial dysfunction drives atherosclerotic plaque macrophage-dependent abdominal aortic aneurysm formation. Nat Immunol 2025; 26:706-721. [PMID: 40263614 DOI: 10.1038/s41590-025-02132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Currently there is no effective pharmacotherapy to prevent the growth and rupture of abdominal aortic aneurysms. Using a mouse model that combines cigarette smoke exposure and hypercholesterolemia, we demonstrated that cigarette smoke exacerbated atherosclerosis, leading to elastin fragmentation, aneurysm formation, rupture and death. Arterial injury was driven by macrophages that accumulated within atherosclerotic plaques and exhibited tissue-degrading proteolytic activity in vivo (a process dependent on the endothelial cell-derived macrophage growth factor CSF-1). Single-nucleus RNA sequencing revealed that cigarette smoke-induced endothelial cell dysfunction promoted monocyte recruitment and inflammatory signaling and amplified vascular injury. Furthermore, single-cell transcriptomic analysis identified conserved macrophage responses across mouse and human abdominal aortic aneurysm, including TREM2+ macrophages, which were key mediators of arterial damage. These findings established atherosclerotic plaque macrophages as critical drivers of aneurysm pathology and provide key insights into the mechanisms underlying aneurysm progression and rupture.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Humans
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Endothelium, Vascular/pathology
- Endothelium, Vascular/metabolism
- Male
- Endothelial Cells/metabolism
- Atherosclerosis/pathology
Collapse
Affiliation(s)
- Danya Thayaparan
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Takuo Emoto
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Aniqa B Khan
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Rickvinder Besla
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Homaira Hamidzada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud El-Maklizi
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Shabana Vohra
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ash Hagerman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sara Nejat
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Tao Wang
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Moritz Lindquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Steven R Botts
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie A Schroer
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Masayuki Taniguchi
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taishi Inoue
- Department of Cardiovascular Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsuhiro Yamanaka
- Department of Cardiovascular Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Haotian Cui
- Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Edouard Al-Chami
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hangjun Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Marwan G Althagafi
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aja Michalski
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Joshua J C McGrath
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Steven P Cass
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - David Luong
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yuya Suzuki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Angela Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Amina Abow
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Heo
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Shaun Pacheco
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Emily Chen
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Felix Chiu
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - John Byrne
- Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mansoor Husain
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenji Okada
- Department of Cardiovascular Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kathryn L Howe
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Scott P Heximer
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Bo Wang
- Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | | | - Myron I Cybulsky
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Jesse W Williams
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sarah Q Crome
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Slava Epelman
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Martin R Stampfli
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute of Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, Ontario, Canada
| | - Clinton S Robbins
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Peter Munk Cardiac Centre, Toronto, Ontario, Canada.
- Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto Medical Discovery Tower, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Getz GS, Reardon CA. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int J Mol Sci 2024; 25:6375. [PMID: 38928086 PMCID: PMC11204064 DOI: 10.3390/ijms25126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
3
|
Li H, Cao X, Gu X, Dong M, Huang L, Mao C, Xia S, Yang H, Bao X, Yang Y, Xu Y. GM-CSF Promotes the Development of Dysfunctional Vascular Networks in Moyamoya Disease. Neurosci Bull 2024; 40:451-465. [PMID: 38113014 PMCID: PMC11003948 DOI: 10.1007/s12264-023-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 12/21/2023] Open
Abstract
Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease with the development of a network of abnormal vessels. Immune inflammation is associated with the occurrence and development of MMD. However, the mechanisms underlying the formation of the abnormal vascular network remain unclear. Twenty-eight patients with MMD, 26 ischemic stroke patients, and 26 unrelated healthy volunteers were enrolled in this study The data showed that the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) were higher in MMD patients than in healthy controls (P <0.01), and GM-CSF was mainly from Th1 and Th17 cells in MMD. We found that increased GM-CSF drove monocytes to secrete a series of cytokines associated with angiogenesis, inflammation, and chemotaxis. In summary, our findings demonstrate for the first time the important involvement of GM-CSF in MMD and that GM-CSF is an important factor in the formation of abnormal vascular networks in MMD.
Collapse
Affiliation(s)
- Huiqin Li
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiang Cao
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
- Nanjing Neurology Medical Center, Nanjing, 210008, China
| | - Xinya Gu
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Mengqi Dong
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Lili Huang
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Chenglu Mao
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yongbo Yang
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yun Xu
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China.
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
- Nanjing Neurology Medical Center, Nanjing, 210008, China.
| |
Collapse
|
4
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
6
|
Harber KJ, Nguyen TA, Schomakers BV, Heister DAF, de Vries HE, van Weeghel M, Van den Bossche J, de Winther MPJ. Adenine is an anti-inflammatory metabolite found to be more abundant in M-CSF over GM-CSF-differentiated human macrophages. Immunol Lett 2024; 265:23-30. [PMID: 38142781 DOI: 10.1016/j.imlet.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Immunometabolism has been unveiled in the last decade to play a major role in controlling macrophage metabolism and inflammation. There has been a constant effort to understand the immunomodulating properties of regulated metabolites during inflammation with the aim of controlling and re-wiring aberrant macrophages in inflammatory diseases. M-CSF and GM-CSF-differentiated macrophages play a key role in mounting successful innate immune responses. When a resolution phase is not achieved however, GM-CSF macrophages contribute substantially more towards an adverse inflammatory milieu than M-CSF macrophages, consequently driving disease progression. Whether there are specific immunometabolites that determine the homoeostatic or inflammatory nature of M-CSF and GM-CSF-differentiated macrophages is still unknown. As such, we performed metabolomics analysis on LPS and IL-4-stimulated M-CSF and GM-CSF-differentiated human macrophages to identify differentially accumulating metabolites. Adenine was distinguished as a metabolite significantly higher in M-CSF-differentiated macrophages after both LPS or IL-4 stimulation. Human macrophages treated with adenine before LPS stimulation showed a reduction in inflammatory gene expression, cytokine secretion and surface marker expression. Adenine caused macrophages to become more quiescent by lowering glycolysis and OXPHOS which resulted in reduced ATP production. Moreover, typical metabolite changes seen during LPS-induced macrophage metabolic reprogramming were absent in the presence of adenine. Phosphorylation of metabolic signalling proteins AMPK, p38 MAPK and AKT were not responsible for the suppressed metabolic activity of adenine-treated macrophages. Altogether, in this study we highlight the immunomodulating capacity of adenine in human macrophages and its function in driving cellular quiescence.
Collapse
Affiliation(s)
- Karl J Harber
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Thuc-Anh Nguyen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands
| | - Bauke V Schomakers
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands
| | - Daan A F Heister
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands; Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Michel van Weeghel
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands.
| | - Jan Van den Bossche
- Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam, UMC, Netherlands.
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands.
| |
Collapse
|
7
|
Scipione CA, Hyduk SJ, Polenz CK, Cybulsky MI. Unveiling the Hidden Landscape of Arterial Diseases at Single-Cell Resolution. Can J Cardiol 2023; 39:1781-1794. [PMID: 37716639 DOI: 10.1016/j.cjca.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
High-resolution single-cell technologies have shed light on the pathogenesis of cardiovascular diseases by enabling the discovery of novel cellular and transcriptomic signatures associated with various conditions, and uncovering new contributions of inflammatory processes, immunity, metabolic stress, and risk factors. We review the information obtained from studies using single-cell technologies in tissues with atherosclerosis and aortic aneurysms. Insights are provided on the biology of endothelial, smooth muscle, and immune cells in the arterial intima and media. In addition to cellular diversity, numerous examples of plasticity and phenotype switching are highlighted and presented in the context of normal cell functions.
Collapse
Affiliation(s)
- Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Ting KK, Yu P, Dow R, Floro E, Ibrahim H, Scipione CA, Hyduk SJ, Polenz CK, Zaslaver O, Karmaus PW, Fessler MB, Rӧst HL, Ohh M, Tsai S, Winer DA, Woo M, Rocheleau J, Jongstra-Bilen J, Cybulsky MI. Oxidized Low-Density Lipoprotein Accumulation Suppresses Glycolysis and Attenuates the Macrophage Inflammatory Response by Diverting Transcription from the HIF-1α to the Nrf2 Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1561-1577. [PMID: 37756544 PMCID: PMC10873122 DOI: 10.4049/jimmunol.2300293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.
Collapse
Affiliation(s)
- Kenneth K.Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Pei Yu
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Riley Dow
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Eric Floro
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hisham Ibrahim
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Corey A. Scipione
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sharon J. Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Chanele K. Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Olga Zaslaver
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1
| | - Peer W.F. Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Hannes L. Rӧst
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2RS, Canada
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Minna Woo
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jonathan Rocheleau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jenny Jongstra-Bilen
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Myron I. Cybulsky
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
9
|
Nguyen TD, Rahman NT, Sessa WC, Lee MY. Endothelial nitric oxide synthase (eNOS) S1176 phosphorylation status governs atherosclerotic lesion formation. Front Cardiovasc Med 2023; 10:1279868. [PMID: 38034389 PMCID: PMC10683645 DOI: 10.3389/fcvm.2023.1279868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Objective We have previously demonstrated the in vivo importance of the Akt-eNOS substrate-kinase relationship, as defective postnatal angiogenesis characteristic of global Akt1-null mice is rescued when bred to 'gain-of-function' eNOS S1176D mutant mice. While multiple studies support the vascular protective role of endothelial NO generation, the causal role of Akt1-dependent eNOS S1176 phosphorylation during atherosclerotic plaque formation is not yet clear. Approach and results We herein bred congenic 'loss-of-function' eNOS S1176A and 'gain-of-function' eNOS S1176D mutant mice to the exacerbated atherogenic Akt1-/-; ApoE-/- double knockout mice to definitively test the importance of Akt-mediated eNOS S1176 phosphorylation during atherogenesis. We find that a single amino acid substitution at the eNOS S1176 phosphorylation site yields divergent effects on atherosclerotic plaque formation, as an eNOS phospho-mimic aspartate (D) substitution at S1176 leads to favorable lipid profiles and decreased indices of atherosclerosis, even when on a proatherogenic Akt1 global deletion background. Conversely, mice harboring an unphosphorylatable mutation to alanine (S1176A) result in increased plasma lipids, increased lesion formation and cellular apoptosis, phenocopying the physiological consequence of eNOS deletion and/or impaired enzyme function. Furthermore, gene expression analyses of whole aortas indicate a combinatorial detriment from NO deficiency and Western Diet challenge, as 'loss-of-function' eNOS S1176A mice on a Western Diet present a unique expression pattern indicative of augmented T-cell activity when compared to eNOS S1176D mice. Conclusions By using genetic epistasis approaches, we conclusively demonstrate that Akt-mediated eNOS S1176 phosphorylation and subsequent eNOS activation remains to be the most physiologically relevant method of NO production to promote athero-protective effects.
Collapse
Affiliation(s)
- Tung D. Nguyen
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago School of Medicine, Chicago, IL, United States
| | - Nur-Taz Rahman
- Bioinformatics Support Group, Yale University Cushing/Whitney Medical Library, New Haven, CT, United States
| | - William C. Sessa
- Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Monica Y. Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago School of Medicine, Chicago, IL, United States
| |
Collapse
|
10
|
Cimen I, Natarelli L, Abedi Kichi Z, Henderson JM, Farina FM, Briem E, Aslani M, Megens RTA, Jansen Y, Mann-Fallenbuchel E, Gencer S, Duchêne J, Nazari-Jahantigh M, van der Vorst EPC, Enard W, Döring Y, Schober A, Santovito D, Weber C. Targeting a cell-specific microRNA repressor of CXCR4 ameliorates atherosclerosis in mice. Sci Transl Med 2023; 15:eadf3357. [PMID: 37910599 DOI: 10.1126/scitranslmed.adf3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.
Collapse
Affiliation(s)
- Ismail Cimen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - James M Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Floriana M Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 85152 Planegg-Martinsried, Germany
| | - Maria Aslani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6200 MD Maastricht, Netherlands
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Elizabeth Mann-Fallenbuchel
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Johan Duchêne
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52062 Aachen, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 85152 Planegg-Martinsried, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Andreas Schober
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Institute of Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council (CNR), 20090 Milan, Italy
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 81337 Munich, Germany
| |
Collapse
|
11
|
Taylor JA, Hutchinson MA, Gearhart PJ, Maul RW. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun Ageing 2022; 19:59. [PMID: 36461105 PMCID: PMC9717479 DOI: 10.1186/s12979-022-00316-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
The sequestering of oxidation-modified low-density lipoprotein by macrophages results in the accumulation of fatty deposits within the walls of arteries. Necrosis of these cells causes a release of intercellular epitopes and the activation of the adaptive immune system, which we predict leads to robust autoantibody production. T cells produce cytokines that act in the plaque environment and further stimulate B cell antibody production. B cells in atherosclerosis meanwhile have a mixed role based on subclass. The current model is that B-1 cells produce protective IgM antibodies in response to oxidation-specific epitopes that work to control plaque formation, while follicular B-2 cells produce class-switched antibodies (IgG, IgA, and IgE) which exacerbate the disease. Over the course of this review, we discuss further the validation of these protective antibodies while evaluating the current dogma regarding class-switched antibodies in atherosclerosis. There are several contradictory findings regarding the involvement of class-switched antibodies in the disease. We hypothesize that this is due to antigen-specificity, and not simply isotype, being important, and that a closer evaluation of these antibodies' targets should be conducted. We propose that specific antibodies may have therapeutical potential in preventing and controlling plaque development within a clinical setting.
Collapse
Affiliation(s)
- Joshua A. Taylor
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark A. Hutchinson
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Patricia J. Gearhart
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Robert W. Maul
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| |
Collapse
|
12
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To highlight recent conceptual and technological advances that have positioned the field to interrogate the cellular and molecular mechanisms contributing to the initiation of atherosclerosis, including intimal lipid accumulation, inflammation, and lesion growth. RECENT FINDINGS Advances in the understanding of endothelial LDL transcytosis and rapid lipid uptake by intimal macrophages provide mechanistic insights into intimal LDL accumulation and the initiation of atherogenesis. Recent studies have used unbiased single-cell approaches, such as single-cell RNA sequencing and CyTOF, to characterize the cellular components of the normal intima and atherosclerotic lesions. In-vitro studies and high-resolution transcriptomic analysis of aortic intimal lipid-loaded versus lipid-poor myeloid populations in vivo suggest that lipid-loaded macrophages may not be the primary drivers of inflammation in atherosclerotic lesions. SUMMARY A new perspective on the complex cellular landscape of the aorta, specifically the atherosclerosis-prone regions, confirm that intimal accumulation of lipid, monocyte recruitment, and macrophage accumulation are key events in atherogenesis triggered by hypercholesterolemia. Targeting these early events may prove to be a promising strategy for the attenuation of lesion development; however, the specific details of how hypercholesterolemia acts to initiate early inflammatory events remain to be fully elucidated.
Collapse
Affiliation(s)
- Corey A. Scipione
- Toronto General Hospital Research Institute, University Health Network
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, University of Toronto
| | - Myron I. Cybulsky
- Toronto General Hospital Research Institute, University Health Network
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, University of Toronto
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| |
Collapse
|
14
|
Vurusaner B, Thevkar-Nages P, Kaur R, Giannarelli C, Garabedian MJ, Fisher EA. Loss of PRMT2 in myeloid cells in normoglycemic mice phenocopies impaired regression of atherosclerosis in diabetic mice. Sci Rep 2022; 12:12031. [PMID: 35835907 PMCID: PMC9283439 DOI: 10.1038/s41598-022-15349-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
The regression, or resolution, of inflammation in atherosclerotic plaques is impaired in diabetes. However, the factors mediating this effect remain incomplete. We identified protein arginine methyltransferase 2 (PRMT2) as a protein whose expression in macrophages is reduced in hyperglycemia and diabetes. PRMT2 catalyzes arginine methylation to target proteins to modulate gene expression. Because PRMT2 expression is reduced in cells in hyperglycemia, we wanted to determine whether PRMT2 plays a causal role in the impairment of atherosclerosis regression in diabetes. We, therefore, examined the consequence of deleting PRMT2 in myeloid cells during the regression of atherosclerosis in normal and diabetic mice. Remarkably, we found significant impairment of atherosclerosis regression under normoglycemic conditions in mice lacking PRMT2 (Prmt2-/-) in myeloid cells that mimic the decrease in regression of atherosclerosis in WT mice under diabetic conditions. This was associated with increased plaque macrophage retention, as well as increased apoptosis and necrosis. PRMT2-deficient plaque CD68+ cells under normoglycemic conditions showed increased expression of genes involved in cytokine signaling and inflammation compared to WT cells. Consistently, Prmt2-/- bone marrow-derived macrophages (BMDMs) showed an increased response of proinflammatory genes to LPS and a decreased response of inflammation resolving genes to IL-4. This increased response to LPS in Prmt2-/- BMDMs occurs via enhanced NF-kappa B activity. Thus, the loss of PRMT2 is causally linked to impaired atherosclerosis regression via a heightened inflammatory response in macrophages. That PRMT2 expression was lower in myeloid cells in plaques from human subjects with diabetes supports the relevance of our findings to human atherosclerosis.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA
| | - Prashanth Thevkar-Nages
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA.,Department of Microbiology, New York University Grossman School of Medicine, 450 E. 29th Street, Room 321, New York, NY, 10016, USA
| | - Ravneet Kaur
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA
| | - Chiara Giannarelli
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA
| | - Michael J Garabedian
- Department of Microbiology, New York University Grossman School of Medicine, 450 E. 29th Street, Room 321, New York, NY, 10016, USA.
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, 435 E. 30th Street, Room 705, New York, NY, 10016, USA. .,Department of Microbiology, New York University Grossman School of Medicine, 450 E. 29th Street, Room 321, New York, NY, 10016, USA. .,Marc and Ruti Bell Vascular Biology Program, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
15
|
Chowdhury RR, D’Addabbo J, Huang X, Veizades S, Sasagawa K, Louis DM, Cheng P, Sokol J, Jensen A, Tso A, Shankar V, Wendel BS, Bakerman I, Liang G, Koyano T, Fong R, Nau A, Ahmad H, Gopakumar JK, Wirka R, Lee A, Boyd J, Joseph Woo Y, Quertermous T, Gulati G, Jaiswal S, Chien YH, Chan C, Davis MM, Nguyen PK. Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circ Res 2022; 130:1510-1530. [PMID: 35430876 PMCID: PMC9286288 DOI: 10.1161/circresaha.121.320090] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS In addition to macrophages, we found a high proportion of αβ T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αβ T cells (CD4<CD8), exhibiting clonal expansion of specific TCRs. Interestingly, we found that these plaque T cells had TCRs specific for influenza, coronavirus, and other viral epitopes, which share sequence homologies to proteins found on smooth muscle cells and endothelial cells, suggesting potential autoimmune-mediated T-cell activation in the absence of active infection. To better understand the potential function of these activated plaque T cells, we then interrogated their transcriptome at the single-cell level. Of the 3 T-cell phenotypic clusters with the highest expression of the activation marker HLA-DRA, 2 clusters expressed a proinflammatory and cytolytic signature characteristic of CD8 cells, while the other expressed AREG (amphiregulin), which promotes smooth muscle cell proliferation and fibrosis, and, thus, contributes to plaque progression. CONCLUSIONS Taken together, these findings demonstrate that plaque T cells are clonally expanded potentially by antigen engagement, are potentially reactive to self-epitopes, and may interact with smooth muscle cells and macrophages in the plaque microenvironment.
Collapse
Affiliation(s)
- Roshni Roy Chowdhury
- Department of Microbiology and Immunology, Stanford University
- Department of Medicine (Section of Genetic Medicine), University of Chicago
| | - Jessica D’Addabbo
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Xianxi Huang
- The First Affiliated Hospital of Shantou University Medical College
- Stanford Cardiovascular Institute, Stanford University
| | - Stefan Veizades
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Edinburgh Medical School, United Kingdom
| | - Koki Sasagawa
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | | | - Paul Cheng
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Jan Sokol
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Annie Jensen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Alexandria Tso
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Vishnu Shankar
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Ben Shogo Wendel
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Isaac Bakerman
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Grace Liang
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University
| | - Allison Nau
- Department of Microbiology and Immunology, Stanford University
| | - Herra Ahmad
- Department of Pathology, Stanford University
| | | | - Robert Wirka
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Andrew Lee
- Stanford Cardiovascular Institute, Stanford University
- Department of Pathology, Stanford University
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Jack Boyd
- Department of Surgery, Stanford University
| | | | - Thomas Quertermous
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | | | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University
| | - Charles Chan
- Stanford Cardiovascular Institute, Stanford University
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University
- Edinburgh Medical School, United Kingdom
- Howard Hughes Medical Institute, Stanford University
| | - Patricia K. Nguyen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| |
Collapse
|
16
|
GM-CSF Protects Macrophages from DNA Damage by Inducing Differentiation. Cells 2022; 11:cells11060935. [PMID: 35326386 PMCID: PMC8946476 DOI: 10.3390/cells11060935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
At inflammatory loci, pro-inflammatory activation of macrophages produces large amounts of reactive oxygen species (ROS) that induce DNA breaks and apoptosis. Given that M-CSF and GM-CSF induce two different pathways in macrophages, one for proliferation and the other for survival, in this study we wanted to determine if these growth factors are able to protect against the DNA damage produced during macrophage activation. In macrophages treated with DNA-damaging agents we found that GM-CSF protects better against DNA damage than M-CSF. Treatment with GM-CSF resulted in faster recovery of DNA damage than treatment with M-CSF. The number of apoptotic cells induced after DNA damage was higher in the presence of M-CSF. Protection against DNA damage by GM-CSF is not related to its higher capacity to induce proliferation. GM-CSF induces differentiation markers such as CD11c and MHCII, as well as the pro-survival Bcl-2A1 protein, which make macrophages more resistant to DNA damage.
Collapse
|
17
|
Dotan I, Yang J, Ikeda J, Roth Z, Pollock-Tahiri E, Desai H, Sivasubramaniyam T, Rehal S, Rapps J, Li YZ, Le H, Farber G, Alchami E, Xiao C, Karim S, Gronda M, Saikali MF, Tirosh A, Wagner KU, Genest J, Schimmer AD, Gupta V, Minden MD, Cummins CL, Lewis GF, Robbins C, Jongstra-Bilen J, Cybulsky M, Woo M. Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux. Commun Biol 2022; 5:132. [PMID: 35169231 PMCID: PMC8847578 DOI: 10.1038/s42003-022-03078-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory condition in which macrophages play a major role. Janus kinase 2 (JAK2) is a pivotal molecule in inflammatory and metabolic signaling, and Jak2V617F activating mutation has recently been implicated with enhancing clonal hematopoiesis and atherosclerosis. To determine the essential in vivo role of macrophage (M)-Jak2 in atherosclerosis, we generate atherosclerosis-prone ApoE-null mice deficient in M-Jak2. Contrary to our expectation, these mice exhibit increased plaque burden with no differences in macrophage proliferation, recruitment or bone marrow clonal expansion. Notably, M-Jak2-deficient bone marrow derived macrophages show a significant defect in cholesterol efflux. Pharmacologic JAK2 inhibition with ruxolitinib also leads to defects in cholesterol efflux and accelerates atherosclerosis. Liver X receptor agonist abolishes the efflux defect and attenuates the accelerated atherosclerosis that occurs with M-Jak2 deficiency. Macrophages of individuals with the Jak2V617F mutation show increased efflux which is normalized when treated with a JAK2 inhibitor. Together, M-Jak2-deficiency leads to accelerated atherosclerosis primarily through defects in cholesterol efflux from macrophages.
Collapse
Affiliation(s)
- Idit Dotan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Institute of Endocrinology, Beilinson Campus, Rabin Medical Center, Petach Tikva, Israel
| | - Jiaqi Yang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Jiro Ikeda
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Ziv Roth
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Evan Pollock-Tahiri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Harsh Desai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | | | - Sonia Rehal
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Josh Rapps
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Helen Le
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Gedaliah Farber
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Edouard Alchami
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Changting Xiao
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Saraf Karim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Amit Tirosh
- Endocrine Cancer Genomics Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Gary F Lewis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Clinton Robbins
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada. .,Department of Immunology, University of Toronto, Toronto, Canada. .,Division of Endocrinology and Metabolism, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Park I, Goddard ME, Cole JE, Zanin N, Lyytikäinen LP, Lehtimäki T, Andreakos E, Feldmann M, Udalova I, Drozdov I, Monaco C. C-type lectin receptor CLEC4A2 promotes tissue adaptation of macrophages and protects against atherosclerosis. Nat Commun 2022; 13:215. [PMID: 35017526 PMCID: PMC8752790 DOI: 10.1038/s41467-021-27862-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Macrophages are integral to the pathogenesis of atherosclerosis, but the contribution of distinct macrophage subsets to disease remains poorly defined. Using single cell technologies and conditional ablation via a LysMCre+Clec4a2flox/DTR mouse strain, we demonstrate that the expression of the C-type lectin receptor CLEC4A2 is a distinguishing feature of vascular resident macrophages endowed with athero-protective properties. Through genetic deletion and competitive bone marrow chimera experiments, we identify CLEC4A2 as an intrinsic regulator of macrophage tissue adaptation by promoting a bias in monocyte-to-macrophage in situ differentiation towards colony stimulating factor 1 (CSF1) in vascular health and disease. During atherogenesis, CLEC4A2 deficiency results in loss of resident vascular macrophages and their homeostatic properties causing dysfunctional cholesterol metabolism and enhanced toll-like receptor triggering, exacerbating disease. Our study demonstrates that CLEC4A2 licenses monocytes to join the vascular resident macrophage pool, and that CLEC4A2-mediated macrophage homeostasis is critical to combat cardiovascular disease. The contribution of distinct subsets of macrophages to atherosclerosis is poorly understood. Here the authors describe a protective subset of vascular macrophages expressing the C-type lectin receptor CLEC4A2, which licenses monocytes to join the resident vascular macrophage pool and ensures vascular homeostasis.
Collapse
Affiliation(s)
- Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Michael E Goddard
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jennifer E Cole
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Natacha Zanin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Evangelos Andreakos
- Biomedical Research Foundation, Academy of Athens, Center for Clinical, Experimental Surgery and Translational Research, Athens, Greece
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Irina Udalova
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Roy V, Ross JP, Pépin R, Cortez Ghio S, Brodeur A, Touzel Deschênes L, Le-Bel G, Phillips DE, Milot G, Dion PA, Guérin S, Germain L, Berthod F, Auger FA, Rouleau GA, Dupré N, Gros-Louis F. Moyamoya Disease Susceptibility Gene RNF213 Regulates Endothelial Barrier Function. Stroke 2022; 53:1263-1275. [PMID: 34991336 DOI: 10.1161/strokeaha.120.032691] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Variants in the ring finger protein 213 (RNF213) gene are known to be associated with increased predisposition to cerebrovascular diseases development. Genomic studies have identified RNF213 as a major risk factor of Moyamoya disease in East Asian descendants. However, little is known about the RNF213 (ring finger protein 213) biological functions or its associated pathogenic mechanisms underlying Moyamoya disease. METHODS To investigate RNF213 loss-of-function effect in endothelial cell, stable RNF213-deficient human cerebral endothelial cells were generated using the CRISPR-Cas9 genome editing technology. RESULTS In vitro assays, using RNF213 knockout brain endothelial cells, showed clear morphological changes and increased blood-brain barrier permeability. Downregulation and delocalization of essential interendothelial junction proteins involved in the blood-brain barrier maintenance, such as PECAM-1 (platelet endothelial cell adhesion molecule-1), was also observed. Brain endothelial RNF213-deficient cells also showed an abnormal potential to transmigration of leukocytes and secreted high amounts of proinflammatory cytokines. CONCLUSIONS Taken together, these results indicate that RNF213 could be a key regulator of cerebral endothelium integrity, whose disruption could be an early pathological mechanism leading to Moyamoya disease. This study also further reinforces the importance of blood-brain barrier integrity in the development of Moyamoya disease and other RNF213-associated diseases.
Collapse
Affiliation(s)
- Vincent Roy
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Jay P Ross
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Rémy Pépin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Sergio Cortez Ghio
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Alyssa Brodeur
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lydia Touzel Deschênes
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Gaëtan Le-Bel
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Daniel E Phillips
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Geneviève Milot
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Patrick A Dion
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Sylvain Guérin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lucie Germain
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Berthod
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François A Auger
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Guy A Rouleau
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Nicolas Dupré
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Gros-Louis
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| |
Collapse
|
20
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Tomas L, Prica F, Schulz C. Trafficking of Mononuclear Phagocytes in Healthy Arteries and Atherosclerosis. Front Immunol 2021; 12:718432. [PMID: 34759917 PMCID: PMC8573388 DOI: 10.3389/fimmu.2021.718432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Monocytes and macrophages play essential roles in all stages of atherosclerosis – from early precursor lesions to advanced stages of the disease. Intima-resident macrophages are among the first cells to be confronted with the influx and retention of apolipoprotein B-containing lipoproteins at the onset of hypercholesterolemia and atherosclerosis development. In this review, we outline the trafficking of monocytes and macrophages in and out of the healthy aorta, as well as the adaptation of their migratory behaviour during hypercholesterolemia. Furthermore, we discuss the functional and ontogenetic composition of the aortic pool of mononuclear phagocytes and its link to the atherosclerotic disease process. The development of mouse models of atherosclerosis regression in recent years, has enabled scientists to investigate the behaviour of monocytes and macrophages during the resolution of atherosclerosis. Herein, we describe the dynamics of these mononuclear phagocytes upon cessation of hypercholesterolemia and how they contribute to the restoration of tissue homeostasis. The aim of this review is to provide an insight into the trafficking, fate and disease-relevant dynamics of monocytes and macrophages during atherosclerosis, and to highlight remaining questions. We focus on the results of rodent studies, as analysis of cellular fates requires experimental manipulations that cannot be performed in humans but point out findings that could be replicated in human tissues. Understanding of the biology of macrophages in atherosclerosis provides an important basis for the development of therapeutic strategies to limit lesion formation and promote plaque regression.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Filip Prica
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Macrophage accumulation within atherosclerotic plaque is a primary driver of disease progression. However, recent advances in both phenotypic and functional heterogeneity of these cells have allowed for improved insight into potential regulation of macrophage function within lesions. In this review, we will discuss recent insights on macrophage heterogeneity, lipid processing, metabolism, and proliferation in atherosclerosis. Furthermore, we will identify outstanding questions in the field that are pertinent to future studies. RECENT FINDINGS With the recent development of single-cell RNA sequencing, several studies have highlighted the diverse macrophage populations within plaques, including pro-inflammatory, anti-inflammatory, lipid loaded and tissue resident macrophages. Furthermore, new data has suggested that differential activation of metabolic pathways, including glycolysis and fatty acid oxidation, may play a key role in determining function. Recent works have highlighted that different populations retain varying capacity to undergo proliferation; regulating the proliferation pathway may be highly effective in reducing plaque in advanced lesions. SUMMARY Macrophage populations within atherosclerosis are highly heterogeneous; differences in cytokine production, lipid handling, metabolism, and proliferation are seen between subpopulations. Understanding the basic cellular mechanisms that drive this heterogeneity will allow for the development of highly specific disease modulating agents to combat atherosclerosis.
Collapse
Affiliation(s)
| | - Jesse W Williams
- Center for Immunology
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Assessment of medullary and extramedullary myelopoiesis in cardiovascular diseases. Pharmacol Res 2021; 169:105663. [PMID: 33979688 DOI: 10.1016/j.phrs.2021.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Recruitment of innate immune cells and their accumulation in the arterial wall and infarcted myocardium has been recognized as a central feature of atherosclerosis and cardiac ischemic injury, respectively. In both, steady state and under pathological conditions, majority of these cells have a finite life span and are continuously replenished from haematopoietic stem/progenitor cell pool residing in the bone marrow and extramedullary sites. While having a crucial role in the cardiovascular disease development, proliferation and differentiation of innate immune cells within haematopoietic compartments is greatly affected by the ongoing cardiovascular pathology. In the current review, we summarize key cells, processes and tissue compartments that are involved in myelopoiesis under the steady state, during atherosclerosis development and in myocardial infarction.
Collapse
|
24
|
Jongstra-Bilen J, Tai K, Althagafi MG, Siu A, Scipione CA, Karim S, Polenz CK, Ikeda J, Hyduk SJ, Cybulsky MI. Role of myeloid-derived chemokine CCL5/RANTES at an early stage of atherosclerosis. J Mol Cell Cardiol 2021; 156:69-78. [PMID: 33781821 DOI: 10.1016/j.yjmcc.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of atherosclerosis is ongoing accumulation of macrophages in the artery intima beginning at disease onset. Monocyte recruitment contributes to increasing macrophage abundance at early stages of atherosclerosis. Although the chemokine CCL5 (RANTES) has been studied in atherosclerosis, its role in the recruitment of monocytes to early lesions has not been elucidated. We show that expression of Ccl5 mRNA, as well as other ligands of the CCR5 receptor (Ccl3 and Ccl4), is induced in the aortic intima of Ldlr-/- mice 3 weeks after the initiation of cholesterol-rich diet (CRD)-induced hypercholesterolemia. En face immunostaining revealed that CCL5 protein expression is also upregulated at 3 weeks of CRD. Blockade of CCR5 significantly reduced monocyte recruitment to 3-week lesions, suggesting that chemokine signaling through CCR5 is critical. However, we observed that Ccl5-deficiency had no effect on early lesion formation and CCL5-blockade did not affect monocyte recruitment in Ldlr-/- mice. Immunostaining of the lesions in Ldlr-/- mice and reciprocal bone marrow transplantation (BMT) of Ccl5+/+ and Ccl5-/- mice revealed that CCL5 is expressed by both myeloid and endothelial cells. BMT experiments were carried out to determine if CCL5 produced by distinct cells has functions that may be concealed in Ccl5-/-Ldlr-/- mice. We found that hematopoietic cell-derived CCL5 regulates monocyte recruitment and the abundance of intimal macrophages in 3-week lesions of Ldlr-/- mice but plays a minor role in 6-week lesions. Our findings suggest that there is a short window in early lesion formation during which myeloid cell-derived CCL5 has a critical role in monocyte recruitment and macrophage abundance.
Collapse
Affiliation(s)
- Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Kelly Tai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Marwan G Althagafi
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Allan Siu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Saraf Karim
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Jiro Ikeda
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
25
|
Kaur R, Masisi K, Molaei M, Le K, Fischer G, Kobue-Lekalake R, Moghadasian MH. Anti-atherogenic properties of Kgengwe ( Citrullus lanatus) seed powder in low-density lipoprotein receptor knockout mice are mediated through beneficial alterations in inflammatory pathways. Appl Physiol Nutr Metab 2021; 46:169-177. [PMID: 32846097 DOI: 10.1139/apnm-2020-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kgengwe fruits are commonly consumed in sub-Saharan countries. Recent reports indicated low coronary artery disease rates in those regions. To investigate anti-atherogenic properties and potential mechanisms of action of Kgengwe seed powder (KSP), male low-density lipoprotein receptor knockout (LDL-r-KO) mice were fed with an atherogenic diet supplemented with (treated, n = 10) or without (controls, n = 10) 10% (w/w) KSP for 20 weeks. Proximate analysis revealed that KSP contained 38% fibre and 15% lipids. KSP supplementation was not associated with significant changes in body weight gain rate, food intake, and plasma lipid levels. However, the average atherosclerotic lesion size in the aortic roots in the KSP-treated group was 58% smaller than that in the control group (0.26 vs 0.11 mm2, p < 0.05). This strong anti-atherogenic effect was associated with significant increases in the average plasma levels of certain cytokines such as IL-10 (6 vs 13 pg/mL, p < 0.05), GM-CSF (0.1 vs 0.2 pg/mL, p < 0.05), and EPO (7 vs 16 pg/mL, p < 0.05) along with reductions in the average levels of plasma MCP-1 (19 vs 14 pg/mL, p < 0.05) and MIP-2 (28 vs 13 pg/mL, p < 0.05). Except for relatively high levels of saturated fatty acids, KSP possesses balanced nutrient compositions with strong anti-atherogenic properties, which may be mediated through alterations in inflammatory pathways. Additional studies warrant confirmation and mechanism(s) of action of such effects. Novelty: Kgengwe seeds prevent atherogenesis in LDL-r-KO mice. Kgengwe seeds increase circulating levels of IL-10 and EPO. No reduction in plasma total cholesterol levels.
Collapse
Affiliation(s)
- R Kaur
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - K Masisi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - M Molaei
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - K Le
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - G Fischer
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - R Kobue-Lekalake
- Department of Food Science and Technology, Botswana University of Agriculture and Natural Resources, Botswana
| | - M H Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
26
|
Functional Role of B Cells in Atherosclerosis. Cells 2021; 10:cells10020270. [PMID: 33572939 PMCID: PMC7911276 DOI: 10.3390/cells10020270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The well recognized plasticity and diversity, typical of monocytes and macrophages have recently been expanded by the knowledge that additional macrophage lineages originated directly from embryonic progenitors, populate and establish residency in all tissues examined so far. This review aims to summarize our current understanding on the diversity of monocyte/macrophage subtypes associated with the vasculature, their specific origins, and nature of their cross-talk with the endothelium. RECENT FINDINGS Taking stock of the many interactions between the endothelium and monocytes/macrophages reveals a far more intricate and ever-growing depth. In addition to circulating and surveilling the endothelium, monocytes can specifically be differentiated into patrolling cells that crawl on the surface of the endothelium and promote homeostasis. The conversion of classical to patrolling is endothelium-dependent uncovering an important functional link. In addition to patrolling cells, the endothelium also recruits and harbor an intimal-resident myeloid population that resides in the tunica intima in the absence of pathological insults. Moreover, the adventitia is populated with resident macrophages that support blood vessel integrity and prevent fibrosis. SUMMARY The last few years have witnessed a significant expansion in our knowledge of the many subtypes of monocytes and macrophages and their corresponding functional interactions with the vascular wall. In addition to surveying the endothelium for opportunities of diapedeses, monocyte and macrophages take residence in both the intima (as patrolling or resident) and in the adventitia. Their contributions to vascular function are broad and critical to homeostasis, regeneration, and expansion.
Collapse
|
28
|
Ikeda J, Scipione CA, Hyduk SJ, Althagafi MG, Atif J, Dick SA, Rajora M, Jang E, Emoto T, Murakami J, Ikeda N, Ibrahim HM, Polenz CK, Gao X, Tai K, Jongstra-Bilen J, Nakashima R, Epelman S, Robbins CS, Zheng G, Lee WL, MacParland SA, Cybulsky MI. Radiation Impacts Early Atherosclerosis by Suppressing Intimal LDL Accumulation. Circ Res 2021; 128:530-543. [PMID: 33397122 DOI: 10.1161/circresaha.119.316539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RATIONALE Bone marrow transplantation (BMT) is used frequently to study the role of hematopoietic cells in atherosclerosis, but aortic arch lesions are smaller in mice after BMT. OBJECTIVE To identify the earliest stage of atherosclerosis inhibited by BMT and elucidate potential mechanisms. METHODS AND RESULTS Ldlr-/- mice underwent total body γ-irradiation, bone marrow reconstitution, and 6-week recovery. Atherosclerosis was studied in the ascending aortic arch and compared with mice without BMT. In BMT mice, neutral lipid and myeloid cell topography were lower in lesions after feeding a cholesterol-rich diet for 3, 6, and 12 weeks. Lesion coalescence and height were suppressed dramatically in mice post-BMT, whereas lateral growth was inhibited minimally. Targeted radiation to the upper thorax alone reproduced the BMT phenotype. Classical monocyte recruitment, intimal myeloid cell proliferation, and apoptosis did not account for the post-BMT phenotype. Neutral lipid accumulation was reduced in 5-day lesions, thus we developed quantitative assays for LDL (low-density lipoprotein) accumulation and paracellular leakage using DiI-labeled human LDL and rhodamine B-labeled 70 kD dextran. LDL accumulation was dramatically higher in the intima of Ldlr-/- relative to Ldlr+/+ mice, and was inhibited by injection of HDL mimics, suggesting a regulated process. LDL, but not dextran, accumulation was lower in mice post-BMT both at baseline and in 5-day lesions. Since the transcript abundance of molecules implicated in LDL transcytosis was not significantly different in the post-BMT intima, transcriptomics from whole aortic arch intima, and at single-cell resolution, was performed to give insights into pathways modulated by BMT. CONCLUSIONS Radiation exposure inhibits LDL entry into the aortic intima at baseline and the earliest stages of atherosclerosis. Single-cell transcriptomic analysis suggests that LDL uptake by endothelial cells is diverted to lysosomal degradation and reverse cholesterol transport pathways. This reduces intimal accumulation of lipid and impacts lesion initiation and growth.
Collapse
Affiliation(s)
- Jiro Ikeda
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto
| | - Corey A Scipione
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada
| | - Marwan G Althagafi
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto
| | - Jawairia Atif
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Ajmera Family Transplant Centre, Toronto General Hospital Research Institute (J.A., S.A.M.), University Health Network, Toronto, Canada.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Sarah A Dick
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Ajmera Family Transplant Centre, Toronto General Hospital Research Institute (J.A., S.A.M.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program (S.A.D., S.E.)
| | - Maneesha Rajora
- Princess Margaret Cancer Centre (M.R., R.N., G.Z.), University Health Network, Toronto, Canada
| | - Erika Jang
- Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Keenan Research Centre, Unity Health (E.J., W.L.L.)
| | - Takuo Emoto
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada
| | - Junichi Murakami
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories (J.M.), University Health Network, Toronto, Canada
| | - Noriko Ikeda
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada
| | - Hisham M Ibrahim
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto
| | - Chanele K Polenz
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto
| | - Xiaotang Gao
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada
| | - Kelly Tai
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Ryota Nakashima
- Princess Margaret Cancer Centre (M.R., R.N., G.Z.), University Health Network, Toronto, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Peter Munk Cardiac Centre (S.E., C.S.R., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program (S.A.D., S.E.)
| | - Clinton S Robbins
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Peter Munk Cardiac Centre (S.E., C.S.R., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Gang Zheng
- Princess Margaret Cancer Centre (M.R., R.N., G.Z.), University Health Network, Toronto, Canada
| | - Warren L Lee
- Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Medicine (W.L.L.), University of Toronto.,Keenan Research Centre, Unity Health (E.J., W.L.L.)
| | - Sonya A MacParland
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Peter Munk Cardiac Centre (S.E., C.S.R., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| |
Collapse
|
29
|
Sinha SK, Miikeda A, Fouladian Z, Mehrabian M, Edillor C, Shih D, Zhou Z, Paul MK, Charugundla S, Davis RC, Rajavashisth TB, Lusis AJ. Local M-CSF (Macrophage Colony-Stimulating Factor) Expression Regulates Macrophage Proliferation and Apoptosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:220-233. [PMID: 33086870 PMCID: PMC7769919 DOI: 10.1161/atvbaha.120.315255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Previous studies have shown that deficiency of M-CSF (macrophage colony-stimulating factor; or CSF1 [colony stimulating factor 1]) dramatically reduces atherosclerosis in hyperlipidemic mice. We characterize the underlying mechanism and investigate the relevant sources of CSF1 in lesions. Approach and Results: We quantitatively assessed the effects of CSF1 deficiency on macrophage proliferation and apoptosis in atherosclerotic lesions. Staining of aortic lesions with markers of proliferation, Ki-67 and bromodeoxyuridine, revealed around 40% reduction in CSF1 heterozygous (Csf1+/-) as compared with WT (wild type; Csf1+/+) mice. Similarly, staining with a marker of apoptosis, activated caspase-3, revealed a 3-fold increase in apoptotic cells in Csf1+/- mice. Next, we determined the cellular sources of CSF1 contributing to lesion development. Cell-specific deletions of Csf1 in smooth muscle cells using SM22α-Cre (smooth muscle protein 22-alpha-Cre) reduced lesions by about 40%, and in endothelial cells, deletions with Cdh5-Cre (VE-cadherin-Cre) reduced lesions by about 30%. Macrophage-specific deletion with LysM-Cre (lysozyme M-Cre), on the other hand, did not significantly reduce lesions size. Transplantation of Csf1 null (Csf1-/-) mice bone marrow into Csf1+/+ mice reduced lesions by about 35%, suggesting that CSF1 from hematopoietic cells other than macrophages contributes to atherosclerosis. None of the cell-specific knockouts affected circulating CSF1 levels, and only the smooth muscle cell deletions had any effect on the percentage monocytes in the circulation. Also, Csf1+/- mice did not exhibit significant differences in Ly6Chigh/Ly6Clow monocytes as compared with Csf1+/+. CONCLUSIONS CSF1 contributes to both macrophage proliferation and survival in lesions. Local CSF1 production by smooth muscle cell and endothelial cell rather than circulating CSF1 is the primary driver of macrophage expansion in atherosclerosis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Aorta/metabolism
- Aorta/pathology
- Apoptosis
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cadherins/genetics
- Cadherins/metabolism
- Cell Proliferation
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Macrophage Colony-Stimulating Factor/deficiency
- Macrophage Colony-Stimulating Factor/genetics
- Macrophage Colony-Stimulating Factor/metabolism
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
- Department of Internal Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059
| | - Aika Miikeda
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Zachary Fouladian
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Margarete Mehrabian
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Chantle Edillor
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Diana Shih
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Zhiqiang Zhou
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Manash K Paul
- Pulmonary and Critical Care Medicine, University of California, Los Angeles, CA 90095
| | - Sarada Charugundla
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Richard C. Davis
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Tripathi B. Rajavashisth
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
- Department of Internal Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Aldons J. Lusis
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| |
Collapse
|
30
|
Williams JW, Zaitsev K, Kim KW, Ivanov S, Saunders BT, Schrank PR, Kim K, Elvington A, Kim SH, Tucker CG, Wohltmann M, Fife BT, Epelman S, Artyomov MN, Lavine KJ, Zinselmeyer BH, Choi JH, Randolph GJ. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat Immunol 2020; 21:1194-1204. [PMID: 32895539 PMCID: PMC7502558 DOI: 10.1038/s41590-020-0768-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Early atherosclerosis depends upon responses by immune cells resident in the intimal aortic wall. Specifically, the healthy intima is thought to be populated by vascular dendritic cells (DCs) that, during hypercholesterolemia, initiate atherosclerosis by being the first to accumulate cholesterol. Whether these cells remain key players in later stages of disease is unknown. Using murine lineage-tracing models and gene expression profiling, we reveal that myeloid cells present in the intima of the aortic arch are not DCs but instead specialized aortic intima resident macrophages (MacAIR) that depend upon colony-stimulating factor 1 and are sustained by local proliferation. Although MacAIR comprise the earliest foam cells in plaques, their proliferation during plaque progression is limited. After months of hypercholesterolemia, their presence in plaques is overtaken by recruited monocytes, which induce MacAIR-defining genes. These data redefine the lineage of intimal phagocytes and suggest that proliferation is insufficient to sustain generations of macrophages during plaque progression.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Konstantin Zaitsev
- Computer Technologies Department, ITMO University, Saint Petersburg, Russia
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Stoyan Ivanov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Brian T Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Patricia R Schrank
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kyeongdae Kim
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Christopher G Tucker
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mary Wohltmann
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian T Fife
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Slava Epelman
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cardiovascular Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
31
|
Jeon S, Kim TK, Jeong SJ, Jung IH, Kim N, Lee MN, Sonn SK, Seo S, Jin J, Kweon HY, Kim S, Shim D, Park YM, Lee SH, Kim KW, Cybulsky MI, Shim H, Roh TY, Park WY, Lee HO, Choi JH, Park SH, Oh GT. Anti-Inflammatory Actions of Soluble Ninjurin-1 Ameliorate Atherosclerosis. Circulation 2020; 142:1736-1751. [PMID: 32883094 DOI: 10.1161/circulationaha.120.046907] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.
Collapse
Affiliation(s)
- Sejin Jeon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Tae Kyeong Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (S.-J.J., I.-H.J.)
| | - In-Hyuk Jung
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (S.-J.J., I.-H.J.)
| | - Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Seong-Keun Sonn
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Seungwoon Seo
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Jing Jin
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Sinai Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Dahee Shim
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea (D.S., J.-H.C.)
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, Korea (Y.M.P.)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (S.-H.L.)
| | - Kyu-Won Kim
- College of Pharmacy, Seoul National University, Seoul, Korea (K.-W.K.)
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada (M.I.C.)
| | - Hyunbo Shim
- Departments of Bioinspired Science and Life Science (H.S.), Ewha Womans University, Seoul, Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea (T.-Y.R.)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea (D.S., J.-H.C.)
| | - Sung Ho Park
- School of Life Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, Korea (S.H.P.)
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| |
Collapse
|
32
|
Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, Robbins CS, Monaco C, Park I, McNamara CA, Binder CJ, Cybulsky MI, Scipione CA, Hedrick CC, Galkina EV, Kyaw T, Ghosheh Y, Dinh HQ, Ley K. Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circ Res 2020; 127:402-426. [PMID: 32673538 PMCID: PMC7371244 DOI: 10.1161/circresaha.120.316903] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diverse leukocyte infiltrate in atherosclerotic mouse aortas was recently analyzed in 9 single-cell RNA sequencing and 2 mass cytometry studies. In a comprehensive meta-analysis, we confirm 4 known macrophage subsets-resident, inflammatory, interferon-inducible cell, and Trem2 (triggering receptor expressed on myeloid cells-2) foamy macrophages-and identify a new macrophage subset resembling cavity macrophages. We also find that monocytes, neutrophils, dendritic cells, natural killer cells, innate lymphoid cells-2, and CD (cluster of differentiation)-8 T cells form prominent and separate immune cell populations in atherosclerotic aortas. Many CD4 T cells express IL (interleukin)-17 and the chemokine receptor CXCR (C-X-C chemokine receptor)-6. A small number of regulatory T cells and T helper 1 cells is also identified. Immature and naive T cells are present in both healthy and atherosclerotic aortas. Our meta-analysis overcomes limitations of individual studies that, because of their experimental approach, over- or underrepresent certain cell populations. Mass cytometry studies demonstrate that cell surface phenotype provides valuable information beyond the cell transcriptomes. The present analysis helps resolve some long-standing controversies in the field. First, Trem2+ foamy macrophages are not proinflammatory but interferon-inducible cell and inflammatory macrophages are. Second, about half of all foam cells are smooth muscle cell-derived, retaining smooth muscle cell transcripts rather than transdifferentiating to macrophages. Third, Pf4, which had been considered specific for platelets and megakaryocytes, is also prominently expressed in the main population of resident vascular macrophages. Fourth, a new type of resident macrophage shares transcripts with cavity macrophages. Finally, the discovery of a prominent innate lymphoid cell-2 cluster links the single-cell RNA sequencing work to recent flow cytometry data suggesting a strong atheroprotective role of innate lymphoid cells-2. This resolves apparent discrepancies regarding the role of T helper 2 cells in atherosclerosis based on studies that predated the discovery of innate lymphoid cells-2 cells.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Holger Winkels
- Heart Center, University Hospital Cologne, Cologne, Germany
- Clinic III for Internal Medicine, Department of Cardiology, University of Cologne, Cologne, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Wüzburg, Germany
| | - Jesse W. Williams
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Klinikum LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden
| | - Clint S. Robbins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S1A1, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, Toronto, ON M5G1L7, Canada
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, USA
- Division of Cardioascular Medicine, University of Virginia School of Medicine, Charlottesville, USA
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Myron I. Cybulsky
- Toronto General Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Corey A. Scipione
- Toronto General Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Elena V. Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA USA
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Huy Q. Dinh
- La Jolla Institute for Immunology, La Jolla, CA USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA USA
- Department of Bioengineering, University of California San Diego, CA, USA
| |
Collapse
|
33
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
34
|
Yang Y, Ma L, Wang C, Song M, Li C, Chen M, Zhou J, Mei C. Matrix metalloproteinase-7 in platelet-activated macrophages accounts for cardiac remodeling in uremic mice. Basic Res Cardiol 2020; 115:30. [DOI: 10.1007/s00395-020-0789-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
|
35
|
Frid MG, McKeon BA, Thurman JM, Maron BA, Li M, Zhang H, Kumar S, Sullivan T, Laskowsky J, Fini MA, Hu S, Tuder RM, Gandjeva A, Wilkins MR, Rhodes CJ, Ghataorhe P, Leopold JA, Wang RS, Holers VM, Stenmark KR. Immunoglobulin-driven Complement Activation Regulates Proinflammatory Remodeling in Pulmonary Hypertension. Am J Respir Crit Care Med 2020; 201:224-239. [PMID: 31545648 PMCID: PMC6961733 DOI: 10.1164/rccm.201903-0591oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/20/2019] [Indexed: 01/18/2023] Open
Abstract
Rationale: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder in which inflammation and immunity have emerged as critical early pathogenic elements. Although proinflammatory processes in PH and pulmonary arterial hypertension (PAH) are the focus of extensive investigation, the initiating mechanisms remain elusive.Objectives: We tested whether activation of the complement cascade is critical in regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and can serve as a prognostic biomarker of outcome in human PAH.Methods: We used immunostaining of lung tissues from experimental PH models and patients with PAH, analyses of genetic murine models lacking specific complement components or circulating immunoglobulins, cultured human pulmonary adventitial fibroblasts, and network medicine analysis of a biomarker risk panel from plasma of patients with PAH.Measurements and Main Results: Pulmonary perivascular-specific activation of the complement cascade was identified as a consistent critical determinant of PH and PAH in experimental animal models and humans. In experimental hypoxic PH, proinflammatory and pro-proliferative responses were dependent on complement (alternative pathway and component 5), and immunoglobulins, particularly IgG, were critical for activation of the complement cascade. We identified Csf2/GM-CSF as a primary complement-dependent inflammatory mediator. Furthermore, using network medicine analysis of a biomarker risk panel from plasma of patients with PAH, we demonstrated that complement signaling can serve as a prognostic factor for clinical outcome in PAH.Conclusions: This study establishes immunoglobulin-driven dysregulated complement activation as a critical pathobiological mechanism regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and demonstrates complement signaling as a critical determinant of clinical outcome in PAH.
Collapse
Affiliation(s)
- Maria G. Frid
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| | - B. Alexandre McKeon
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| | | | - Bradley A. Maron
- Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Min Li
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| | - Hui Zhang
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| | - Sushil Kumar
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| | - Timothy Sullivan
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| | | | - Mehdi A. Fini
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| | - Samantha Hu
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| | - Rubin M. Tuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Aneta Gandjeva
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Martin R. Wilkins
- Department of Medicine and National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Christopher J. Rhodes
- Department of Medicine and National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Pavandeep Ghataorhe
- Department of Medicine and National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Jane A. Leopold
- Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Department of Medicine, School of Medicine, Brigham Health Brigham and Women’s Hospital, Boston, Massachusetts
| | - V. Michael Holers
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R. Stenmark
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine
| |
Collapse
|
36
|
Trus E, Basta S, Gee K. Who's in charge here? Macrophage colony stimulating factor and granulocyte macrophage colony stimulating factor: Competing factors in macrophage polarization. Cytokine 2019; 127:154939. [PMID: 31786501 DOI: 10.1016/j.cyto.2019.154939] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022]
Abstract
Macrophages make up a crucial aspect of the immune system, carrying out a variety of functions ranging from clearing cellular debris to their well-recognized roles as innate immune cells. These cells exist along a spectrum of phenotypes but can be generally divided into proinflammatory (M1) and anti-inflammatory (M2) groups, representing different states of polarization. Due to their diverse functions, macrophages are implicated in a variety of diseases such as atherosclerosis, lupus nephritis, or infection with HIV. Throughout their lifetime, macrophages can be influenced by a wide variety of signals that influence their polarization states, which can affect their function and influence their effects on disease progression. This review seeks to provide a summary of how GM-CSF and M-CSF influence macrophage activity during disease, and provide examples of in vitro research that indicate competition between the two cytokines in governing macrophage polarization. Gaining a greater understanding of the relationship between GM-CSF and M-CSF, along with how these cytokines fit into the larger context of diseases, will inform their use as treatments or targets for treatment in various diseases.
Collapse
Affiliation(s)
- Evan Trus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
37
|
Singhal A, Subramanian M. Colony stimulating factors (CSFs): Complex roles in atherosclerosis. Cytokine 2019; 122:154190. [DOI: 10.1016/j.cyto.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
|
38
|
CD69 Targeting Enhances Anti-vaccinia Virus Immunity. J Virol 2019; 93:JVI.00553-19. [PMID: 31315995 DOI: 10.1128/jvi.00553-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/07/2019] [Indexed: 12/30/2022] Open
Abstract
CD69 is highly expressed on the leukocyte surface upon viral infection, and its regulatory role in the vaccinia virus (VACV) immune response has been recently demonstrated using CD69-/- mice. Here, we show augmented control of VACV infection using the anti-human CD69 monoclonal antibody (MAb) 2.8 as both preventive and therapeutic treatment for mice expressing human CD69. This control was related to increased natural killer (NK) cell reactivity and increased numbers of cytokine-producing T and NK cells in the periphery. Moreover, similarly increased immunity and protection against VACV were reproduced over both long and short periods in anti-mouse CD69 MAb 2.2-treated immunocompetent wild-type (WT) mice and immunodeficient Rag2-/- CD69+/+ mice. This result was not due to synergy between infection and anti-CD69 treatment since, in the absence of infection, anti-human CD69 targeting induced immune activation, which was characterized by mobilization, proliferation, and enhanced survival of immune cells as well as marked production of several innate proinflammatory cytokines by immune cells. Additionally, we showed that the rapid leukocyte effect induced by anti-CD69 MAb treatment was dependent on mTOR signaling. These properties suggest the potential of CD69-targeted therapy as an antiviral adjuvant to prevent derived infections.IMPORTANCE In this study, we demonstrate the influence of human and mouse anti-CD69 therapies on the immune response to VACV infection. We report that targeting CD69 increases the leukocyte numbers in the secondary lymphoid organs during infection and improves the capacity to clear the viral infection. Targeting CD69 increases the numbers of gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing NK and T cells. In mice expressing human CD69, treatment with an anti-CD69 MAb produces increases in cytokine production, survival, and proliferation mediated in part by mTOR signaling. These results, together with the fact that we have mainly worked with a human-CD69 transgenic model, reveal CD69 as a treatment target to enhance vaccine protectiveness.
Collapse
|
39
|
Mindur JE, Swirski FK. Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1275-1287. [PMID: 31092009 DOI: 10.1161/atvbaha.119.311994] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth factors, such as CSFs (colony-stimulating factors), EGFs (epidermal growth factors), and FGFs (fibroblast growth factors), are signaling proteins that control a wide range of cellular functions. Although growth factor networks are critical for intercellular communication and tissue homeostasis, their abnormal production or regulation occurs in various pathologies. Clinical strategies that target growth factors or their receptors are used to treat a variety of conditions but have yet to be adopted for cardiovascular disease. In this review, we focus on M-CSF (macrophage-CSF), GM-CSF (granulocyte-M-CSF), IL (interleukin)-3, EGFR (epidermal growth factor receptor), and FGF21 (fibroblast growth factor 21). We first discuss the efficacy of targeting these growth factors in other disease contexts (ie, inflammatory/autoimmune diseases, cancer, or metabolic disorders) and then consider arguments for or against targeting them to treat cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- John E Mindur
- From the Graduate Program in Immunology (J.E.M.), Massachusetts General Hospital and Harvard Medical School, Boston.,Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
40
|
Mentrup T, Theodorou K, Cabrera-Cabrera F, Helbig AO, Happ K, Gijbels M, Gradtke AC, Rabe B, Fukumori A, Steiner H, Tholey A, Fluhrer R, Donners M, Schröder B. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med 2019; 216:807-830. [PMID: 30819724 PMCID: PMC6446863 DOI: 10.1084/jem.20171438] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/21/2018] [Accepted: 10/17/2018] [Indexed: 11/27/2022] Open
Abstract
The intramembrane proteases SPPL2a/b control pro-atherogenic signaling of membrane-bound proteolytic fragments derived from the oxLDL receptor LOX-1. In mice deficient for these proteases, plaque development and fibrosis is enhanced. This highlights SPPL2a/b as crucial players of a novel athero-protective mechanism, which is conserved in humans. The lectin-like oxidized LDL receptor 1 (LOX-1) is a key player in the development of atherosclerosis. LOX-1 promotes endothelial activation and dysfunction by mediating uptake of oxidized LDL and inducing pro-atherogenic signaling. However, little is known about modulators of LOX-1–mediated responses. Here, we show that the function of LOX-1 is controlled proteolytically. Ectodomain shedding by the metalloprotease ADAM10 and lysosomal degradation generate membrane-bound N-terminal fragments (NTFs), which we identified as novel substrates of the intramembrane proteases signal peptide peptidase–like 2a and b (SPPL2a/b). SPPL2a/b control cellular LOX-1 NTF levels which, following self-association via their transmembrane domain, can activate MAP kinases in a ligand-independent manner. This leads to an up-regulation of several pro-atherogenic and pro-fibrotic targets including ICAM-1 and the connective tissue growth factor CTGF. Consequently, SPPL2a/b-deficient mice, which accumulate LOX-1 NTFs, develop larger and more advanced atherosclerotic plaques than controls. This identifies intramembrane proteolysis by SPPL2a/b as a novel atheroprotective mechanism via negative regulation of LOX-1 signaling.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kosta Theodorou
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Florencia Cabrera-Cabrera
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Andreas O Helbig
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kathrin Happ
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands.,Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Björn Rabe
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Akio Fukumori
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center, Metabolic Biochemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center, Metabolic Biochemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Marjo Donners
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany .,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
41
|
Innate Immune Modulation by GM-CSF and IL-3 in Health and Disease. Int J Mol Sci 2019; 20:ijms20040834. [PMID: 30769926 PMCID: PMC6412223 DOI: 10.3390/ijms20040834] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and inteleukin-3 (IL-3) have long been known as mediators of emergency myelopoiesis, but recent evidence has highlighted their critical role in modulating innate immune effector functions in mice and humans. This new wealth of knowledge has uncovered novel aspects of the pathogenesis of a range of disorders, including infectious, neoplastic, autoimmune, allergic and cardiovascular diseases. Consequently, GM-CSF and IL-3 are now being investigated as therapeutic targets for some of these disorders, and some phase I/II clinical trials are already showing promising results. There is also pre-clinical and clinical evidence that GM-CSF can be an effective immunostimulatory agent when being combined with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) in patients with metastatic melanoma as well as in novel cancer immunotherapy approaches. Finally, GM-CSF and to a lesser extent IL-3 play a critical role in experimental models of trained immunity by acting not only on bone marrow precursors but also directly on mature myeloid cells. Altogether, characterizing GM-CSF and IL-3 as central mediators of innate immune activation is poised to open new therapeutic avenues for several immune-mediated disorders and define their potential in the context of immunotherapies.
Collapse
|
42
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
43
|
Weinstock A, Fisher EA. Methods to Study Monocyte and Macrophage Trafficking in Atherosclerosis Progression and Resolution. Methods Mol Biol 2019; 1951:153-165. [PMID: 30825151 DOI: 10.1007/978-1-4939-9130-3_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Monocytes are circulating cells imperative to the response against pathogens. Upon infection, they are quickly recruited to the affected tissue where they can differentiate into specialized phagocytes and antigen-presenting cells. Additionally, monocytes play a vital role in chronic inflammation, where they can promote and enhance inflammation or induce its resolution. There are two major subsets of monocytes, "inflammatory" and "nonclassical," which are believed to have distinct functions. In atherosclerosis, both types of monocytes are constantly recruited to lesions, where they contribute to plaque formation and atherosclerosis progression. Surprisingly, these cells can also be recruited to lesions and promote resolution of atherosclerosis. Tracking these cells in various disease stages may inform about the dynamic changes occurring in the inflamed and resolving tissues. In this chapter we will discuss methods for differential labeling of the two monocyte subsets in order to examine their dynamics in inflammation.
Collapse
Affiliation(s)
- Ada Weinstock
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Ma S, Wang S, Li M, Zhang Y, Zhu P. The effects of pigment epithelium-derived factor on atherosclerosis: putative mechanisms of the process. Lipids Health Dis 2018; 17:240. [PMID: 30326915 PMCID: PMC6192115 DOI: 10.1186/s12944-018-0889-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Atherosclerosis is believed to be the major cause of CVD, characterized by atherosclerotic lesion formation and plaque disruption. Although remarkable advances in understanding the mechanisms of atherosclerosis have been made, the application of these theories is still limited in the prevention and treatment of atherosclerosis. Therefore, novel and effective strategies to treat high-risk patients with atherosclerosis require further development. Pigment epithelium-derived factor (PEDF), a glycoprotein with anti-inflammatory, anti-oxidant, anti-angiogenic, anti-thrombotic and anti-tumorigenic properties, is of considerable interest in the prevention of atherosclerosis. Accumulating research has suggested that PEDF exerts beneficial effects on atherosclerotic lesions and CVD patients. Our group, along with colleagues, has demonstrated that PEDF may be associated with acute coronary syndrome (ACS), and that the polymorphisms of rs8075977 of PEDF are correlated with coronary artery disease (CAD). Moreover, we have explored the anti-atherosclerosis mechanisms of PEDF, showing that oxidized-low density lipoprotein (ox-LDL) reduced PEDF concentrations through the upregulation of reactive oxygen species (ROS), and that D-4F can protect endothelial cells against ox-LDL-induced injury by preventing the downregulation of PEDF. Additionally, PEDF might alleviate endothelial injury by inhibiting the Wnt/β-catenin pathway. These data suggest that PEDF may be a novel therapeutic target for the treatment of atherosclerosis. In this review, we will summarize the role of PEDF in the development of atherosclerosis, focusing on endothelial dysfunction, inflammation, oxidative stress, angiogenesis and cell proliferation. We will also discuss its promising therapeutic implications for atherosclerosis.
Collapse
Affiliation(s)
- Shouyuan Ma
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuxia Wang
- Department of Cadre Clinic, Chinese PLA General Hospital, Beijing, 100853, China
| | - Man Li
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Zhu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
45
|
Plubell DL, Fenton AM, Wilmarth PA, Bergstrom P, Zhao Y, Minnier J, Heinecke JW, Yang X, Pamir N. GM-CSF driven myeloid cells in adipose tissue link weight gain and insulin resistance via formation of 2-aminoadipate. Sci Rep 2018; 8:11485. [PMID: 30065264 PMCID: PMC6068153 DOI: 10.1038/s41598-018-29250-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
In a GM-CSF driven myeloid cell deficient mouse model (Csf2−/−) that has preserved insulin sensitivity despite increased adiposity, we used unbiased three-dimensional integration of proteome profiles, metabolic profiles, and gene regulatory networks to understand adipose tissue proteome-wide changes and their metabolic implications. Multi-dimensional liquid chromatography mass spectrometry and extended multiplex mass labeling was used to analyze proteomes of epididymal adipose tissues isolated from Csf2+/+ and Csf2−/− mice that were fed low fat, high fat, or high fat plus cholesterol diets for 8 weeks. The metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, phospholipids, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet for both genotypes, while mice lacking Csf2 were protected from insulin resistance. Regardless of diet, 30 mostly mitochondrial, branch chain amino acids (BCAA), and lysine metabolism proteins were altered between Csf2−/− and Csf2+/+ mice (FDR < 0.05). Lack of GM-CSF driven myeloid cells lead to reduced adipose tissue 2-oxoglutarate dehydrogenase complex (DHTKD1) levels and subsequent increase in plasma 2-aminoadipate (2-AA) levels, both of which are reported to correlate with insulin resistance. Tissue DHTKD1 levels were >4-fold upregulated and plasma 2-AA levels were >2 fold reduced in Csf2−/− mice (p < 0.05). GM-CSF driven myeloid cells link peripheral insulin sensitivity to adiposity via lysine metabolism involving DHTKD1/2-AA axis in a diet independent manner.
Collapse
Affiliation(s)
- Deanna L Plubell
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexandra M Fenton
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Paige Bergstrom
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jessica Minnier
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
46
|
Chistiakov DA, Grechko AV, Myasoedova VA, Melnichenko AA, Orekhov AN. The role of monocytosis and neutrophilia in atherosclerosis. J Cell Mol Med 2018; 22:1366-1382. [PMID: 29364567 PMCID: PMC5824421 DOI: 10.1111/jcmm.13462] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro-inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR-dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cell Differentiation
- Cell Proliferation
- Cholesterol/immunology
- Disease Models, Animal
- Gene Expression Regulation
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/immunology
- Hypercholesterolemia/pathology
- Liver X Receptors/genetics
- Liver X Receptors/immunology
- Mice
- Monocytes/immunology
- Monocytes/pathology
- Multipotent Stem Cells/immunology
- Multipotent Stem Cells/pathology
- Neutrophils/immunology
- Neutrophils/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of NeurochemistryDivision of Basic and Applied NeurobiologySerbsky Federal Medical Research Center of Psychiatry and NarcologyMoscowRussia
| | - Andrey V. Grechko
- Federal Scientific Clinical Center for Resuscitation and RehabilitationMoscowRussia
| | - Veronika A. Myasoedova
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexandra A. Melnichenko
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexander N. Orekhov
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| |
Collapse
|
47
|
Abstract
The transcriptional signature of Kupffer cells & Alveolar macrophages are enriched for lipid metabolism genes. Lipid metabolism may control macrophage phenotype. Dysregulated lipid metabolism in macrophages contributes to disease pathology.
Distinct macrophage populations throughout the body display highly heterogeneous transcriptional and epigenetic programs. Recent research has highlighted that these profiles enable the different macrophage populations to perform distinct functions as required in their tissue of residence, in addition to the prototypical macrophage functions such as in innate immunity. These ‘extra’ tissue-specific functions have been termed accessory functions. One such putative accessory function is lipid metabolism, with macrophages in the lung and liver in particular being associated with this function. As it is now appreciated that cell metabolism not only provides energy but also greatly influences the phenotype and function of the cell, here we review how lipid metabolism affects macrophage phenotype and function and the specific roles played by macrophages in the pathogenesis of lipid-related diseases. In addition, we highlight the current questions limiting our understanding of the role of macrophages in lipid metabolism.
Collapse
Affiliation(s)
- Anneleen Remmerie
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
48
|
Manthey H, Zernecke A. Dendritic cells in atherosclerosis: Functions in immune regulation and beyond. Thromb Haemost 2017; 106:772-8. [DOI: 10.1160/th11-05-0296] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/02/2011] [Indexed: 12/15/2022]
Abstract
SummaryChronic inflammation drives the development of atherosclerosis. Dendritic cells (DCs) are known as central mediators of adaptive immune responses and the development of immunological memory and tolerance. DCs are present in non-diseased arteries, and accumulate within atherosclerotic lesions where they can be localised in close vicinity to T cells. Recent work has revealed important functions of DCs in regulating immune mechanisms in atherogenesis, and vaccination strategies using DCs have been explored for treatment of disease. However, in line with a phenotypical and functional overlap with plaque macrophages vascular DCs were also identified to engulf lipids, thus contributing to lipid burden in the vessel wall and initiation of lesion growth. Furthermore, a function of DCs in regulating cholesterol homeostasis has been revealed. Finally, phenotypically distinct plasmacytoid dendritic cells (pDCs) have been identified within atherosclerotic lesions. This review will dissect the multifaceted contribution of DCs and pDCs to the initiation and progression of atherosclerosis and the experimental approaches utilising DCs in therapeutic vaccination strategies.
Collapse
|
49
|
Marcovecchio PM, Thomas GD, Mikulski Z, Ehinger E, Mueller KAL, Blatchley A, Wu R, Miller YI, Nguyen AT, Taylor AM, McNamara CA, Ley K, Hedrick CC. Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arterioscler Thromb Vasc Biol 2017; 37:2043-2052. [PMID: 28935758 DOI: 10.1161/atvbaha.117.309123] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nonclassical monocytes (NCM) function to maintain vascular homeostasis by crawling or patrolling along the vessel wall. This subset of monocytes responds to viruses, tumor cells, and other pathogens to aid in protection of the host. In this study, we wished to determine how early atherogenesis impacts NCM patrolling in the vasculature. APPROACH AND RESULTS To study the role of NCM in early atherogenesis, we quantified the patrolling behaviors of NCM in ApoE-/- (apolipoprotein E) and C57BL/6J mice fed a Western diet. Using intravital imaging, we found that NCM from Western diet-fed mice display a 4-fold increase in patrolling activity within large peripheral blood vessels. Both human and mouse NCM preferentially engulfed OxLDL (oxidized low-density lipoprotein) in the vasculature, and we observed that OxLDL selectively induced NCM patrolling in vivo. Induction of patrolling during early atherogenesis required scavenger receptor CD36, as CD36-/- mice revealed a significant reduction in patrolling activity along the femoral vasculature. Mechanistically, we found that CD36-regulated patrolling was mediated by a SFK (src family kinase) through DAP12 (DNAX activating protein of 12KDa) adaptor protein. CONCLUSIONS Our studies show a novel pathway for induction of NCM patrolling along the vascular wall during early atherogenesis. Mice fed a Western diet showed increased NCM patrolling activity with a concurrent increase in SFK phosphorylation. This patrolling activity was lost in the absence of either CD36 or DAP12. These data suggest that NCM function in an atheroprotective manner through sensing and responding to oxidized lipoprotein moieties via scavenger receptor engagement during early atherogenesis.
Collapse
Affiliation(s)
- Paola M Marcovecchio
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Graham D Thomas
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Zbigniew Mikulski
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Erik Ehinger
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Karin A L Mueller
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Amy Blatchley
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Runpei Wu
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Yury I Miller
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Anh Tram Nguyen
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Angela M Taylor
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Coleen A McNamara
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Klaus Ley
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Catherine C Hedrick
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.).
| |
Collapse
|
50
|
Li Q, Park K, Xia Y, Matsumoto M, Qi W, Fu J, Yokomizo H, Khamaisi M, Wang X, Rask-Madsen C, King GL. Regulation of Macrophage Apoptosis and Atherosclerosis by Lipid-Induced PKCδ Isoform Activation. Circ Res 2017; 121:1153-1167. [PMID: 28855204 DOI: 10.1161/circresaha.117.311606] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 01/13/2023]
Abstract
RATIONALE Activation of monocytes/macrophages by hyperlipidemia associated with diabetes mellitus and obesity contributes to the development of atherosclerosis. PKCδ (protein kinase C δ) expression and activity in monocytes were increased by hyperlipidemia and diabetes mellitus with unknown consequences to atherosclerosis. OBJECTIVE To investigate the effect of PKCδ activation in macrophages on the severity of atherosclerosis. METHODS AND RESULTS PKCδ expression and activity were increased in Zucker diabetic rats. Mice with selective deletion of PKCδ in macrophages were generated by breeding PKCδ flox/flox mice with LyzM-Cre and ApoE-/- mice (MPKCδKO/ApoE-/- mice) and studied in atherogenic (AD) and high-fat diet (HFD). Mice fed AD and HFD exhibited hyperlipidemia, but only HFD-fed mice had insulin resistance and mild diabetes mellitus. Surprisingly, MPKCδKO/ApoE-/- mice exhibited accelerated aortic atherosclerotic lesions by 2-fold versus ApoE-/- mice on AD or HFD. Splenomegaly was observed in MPKCδKO/ApoE-/- mice on AD and HFD but not on regular chow. Both the AD or HFD increased macrophage number in aortic plaques and spleen by 1.7- and 2-fold, respectively, in MPKCδKO/ApoE-/- versus ApoE-/- mice because of decreased apoptosis (62%) and increased proliferation (1.9-fold), and not because of uptake, with parallel increased expressions of inflammatory cytokines. Mechanisms for the increased macrophages in MPKCδKO/ApoE-/- were associated with elevated phosphorylation levels of prosurvival cell-signaling proteins, Akt and FoxO3a, with reduction of proapoptotic protein Bim associated with PKCδ induced inhibition of P85/PI3K. CONCLUSIONS Accelerated development of atherosclerosis induced by insulin resistance and hyperlipidemia may be partially limited by PKCδ isoform activation in the monocytes, which decreased its number and inflammatory responses in the arterial wall.
Collapse
Affiliation(s)
- Qian Li
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Kyoungmin Park
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Yu Xia
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Motonobu Matsumoto
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Weier Qi
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Jialin Fu
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Hisashi Yokomizo
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Mogher Khamaisi
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Xuanchun Wang
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - Christian Rask-Madsen
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.)
| | - George L King
- From the Section of Vascular Cell Biology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA (Q.L., K.P., Y.X., W.Q., J.F., H.Y., M.K., X.W., C.R.-M., G.L.K.); Department of Research and Development, SunStar, Inc, Osaka, Japan (M.M.); and Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden (W.Q.).
| |
Collapse
|