1
|
Li W, Terada Y, Bai YZ, Yokoyama Y, Shepherd HM, Amrute JM, Bery AI, Liu Z, Gauthier JM, Terekhova M, Bharat A, Ritter JH, Puri V, Hachem RR, Turnquist HR, Sage PT, Alessandrini A, Artyomov MN, Lavine KJ, Nava RG, Krupnick AS, Gelman AE, Kreisel D. Maintenance of graft tissue-resident Foxp3+ cells is necessary for lung transplant tolerance in mice. J Clin Invest 2025; 135:e178975. [PMID: 40100295 PMCID: PMC12077894 DOI: 10.1172/jci178975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Mechanisms that mediate allograft tolerance differ between organs. We have previously shown that Foxp3+ T cell-enriched bronchus-associated lymphoid tissue (BALT) is induced in tolerant murine lung allografts and that these Foxp3+ cells suppress alloimmune responses locally and systemically. Here, we demonstrated that Foxp3+ cells that reside in tolerant lung allografts differed phenotypically and transcriptionally from those in the periphery and were clonally expanded. Using a mouse lung retransplant model, we showed that recipient Foxp3+ cells were continuously recruited to the BALT within tolerant allografts. We identified distinguishing features of graft-resident and newly recruited Foxp3+ cells and showed that graft-infiltrating Foxp3+ cells acquired transcriptional profiles resembling those of graft-resident Foxp3+ cells over time. Allografts underwent combined antibody-mediated rejection and acute cellular rejection when recruitment of recipient Foxp3+ cells was prevented. Finally, we showed that local administration of IL-33 could expand and activate allograft-resident Foxp3+ cells, providing a platform for the design of tolerogenic therapies for lung transplant recipients. Our findings establish graft-resident Foxp3+ cells as critical orchestrators of lung transplant tolerance and highlight the need to develop lung-specific immunosuppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marina Terekhova
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Jon H. Ritter
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Hēth R. Turnquist
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Department of Medicine, and
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Andrew E. Gelman
- Department of Surgery
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Chu H, Li Y, Yang H, Liu Y, Zheng R, Zhang X, Wang X, Zhao J, Zhang Y, Wang Q, Ran Y, Guo L, Zhou S, Liu M, Song W, Wang B, Li L, Zhou L. Characterisation and Clinical Relevance of Tertiary Lymphoid Structures in Primary Biliary Cholangitis. Liver Int 2025; 45:e16157. [PMID: 39552515 DOI: 10.1111/liv.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/30/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND AND AIMS The pathological characteristics of lymphocyte infiltration in the hepatic portal tracts of patients with primary biliary cholangitis (PBC) remain unclear. Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues associated with the exacerbation of autoimmune reactions. Here, we evaluate the role of TLSs in PBC and investigate their potential therapeutic value. METHODS We recruited 75 patients with PBC and 53 control patients with liver biopsies who were followed more than 2 years. TLSs and their maturity were identified by the amount and spatial distribution of immune cells. Bulk RNA sequencing of liver was performed in PBC patients with different TLS maturity. The sphingosine-1-phosphate receptor (S1PRs) modulator FTY720 was administered to dnTGFβRII mice to assess the role of TLSs on cholangitis. RESULTS TLSs presented in 61.3% (46/75) of liver tissues from patients with PBC, including 26 patients with mature TLS (mTLS) and 20 patients with immature TLS (imTLS). The proportion of mTLS was higher in PBC compared with chronic hepatitis B and autoimmune hepatitis. PBC patients with mTLS exhibited the highest serum levels of biochemical indicators, immune globulin and proportions of liver cirrhosis. Gene sets for lymphocyte migration and chemokine signalling pathways were enriched in patients with PBC presenting with TLS. FTY720 inhibited TLS formation and relieved cholangitis and fibrosis in dnTGFβRII mice. CONCLUSION TLSs are characteristics of lymphocyte accumulation in the portal tracts of PBC, of which the maturity of TLSs correlates with the inflammation and fibrosis of PBC. Targeting TLSs formation is a potential treatment of PBC.
Collapse
Affiliation(s)
- Hongyu Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yanni Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuhang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Rongrong Zheng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xue Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Quan Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Liping Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Simin Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wenjing Song
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Long Li
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
3
|
Ma ZM, Olstad KJ, Van Rompay KKA, Iyer SS, Miller CJ, Reader JR. Pulmonary lymphoid tissue induced after SARS-CoV-2 infection in rhesus macaques. Front Immunol 2025; 16:1533050. [PMID: 40145084 PMCID: PMC11937022 DOI: 10.3389/fimmu.2025.1533050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Lung diseases are widespread worldwide. Pulmonary immunity plays a vital role against lung pathogens, including SARS-CoV-2 infection. Understanding the pathogenesis, including the development of local immune responses to infection, is fundamental for developing interventions to control the viral infection. Methods Using immunohistochemistry, we investigated the distribution of immune cells in the lungs of rhesus macaques experimentally infected with SARS-CoV-2 and euthanized 11-14 days later. Results Tertiary lymphoid tissue was found in all SARS-CoV-2 infected animals. The number (13.9 vs 1.5 iPLT number/ lung cm2), size (25992 vs 13946 µm2) and total area (0.46 vs 0.02 mm2 iPLT/ lung cm2) of the lymphoid tissue aggregations were significantly higher in SARS-CoV-2 infected animals than that of normal controls. This induced pulmonary lymphoid tissues comprised B cells, T cells, CD169 macrophages, and follicular dendritic cells with evidence of lymphocyte priming and differentiation. Discussion The results suggest local immunity plays an important role in the SARS-CoV-2 infection. Further study of pulmonary immunity could lead to new interventions to develop vaccine strategies and discover new immune-regulatory biomarkers in monitoring and controlling SARS-CoV-2 infection and other lung diseases.
Collapse
Affiliation(s)
- Zhong-Min Ma
- California National Primate Research Center, University of California (UC) Davis, Davis, CA, United States
| | - Katherine J. Olstad
- California National Primate Research Center, University of California (UC) Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California (UC) Davis, Davis, CA, United States
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California (UC) Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California (UC) Davis, Davis, CA, United States
| | - Smita S. Iyer
- California National Primate Research Center, University of California (UC) Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California (UC) Davis, Davis, CA, United States
- Center for Immunology and Infectious Diseases, University of California (UC) Davis, Davis, CA, United States
| | - Christopher J. Miller
- California National Primate Research Center, University of California (UC) Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California (UC) Davis, Davis, CA, United States
- Center for Immunology and Infectious Diseases, University of California (UC) Davis, Davis, CA, United States
| | - J. Rachel Reader
- California National Primate Research Center, University of California (UC) Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California (UC) Davis, Davis, CA, United States
| |
Collapse
|
4
|
Ueno K, Nagamori A, Honkyu NO, Kwon-Chung KJ, Miyazaki Y. Lung-resident memory Th2 cells regulate pulmonary cryptococcosis by inducing type-II granuloma formation. Mucosal Immunol 2025:S1933-0219(25)00022-4. [PMID: 39984054 DOI: 10.1016/j.mucimm.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Lung-resident memory T cells (lung TRMs) settle in the lung and respond rapidly to external antigens, and are therefore considered to have great potential for development of respiratory vaccines. Here, we demonstrate that lung-resident memory Th2 cells (lung TRM2) protect against pulmonary mycosis caused by Cryptococcus gattii. We developed novel whole-cell intranasal vaccines using a heat-inactivated C.gattii capsule-deficient strain cap59Δ, which induced ST-2+ Gata-3+ lung TRM2 specifically responding to C.gattii whole-cell antigen. Lung fungal burden and survival rate were significantly improved in immunized mice after infection challenge. The immunosuppressive agent FTY720 did not impact vaccine effectiveness, and adoptive transfer of lung TRMs into Rag-1-deficient mice decreased the lung fungal burden. In IL-4/IL-13 double-knockout (DKO) mice, immunization did not efficiently induce eosinophil recruitment and granuloma formation, and the fungal burden was not decreased after infection challenge. Co-culture of lung TRM2 with myeloid lineages induced multinucleated giant cells (MGCs) in the presence of antigen, which phagocytosed live C.gattii cells without opsonization, whereas lung TRM2 from DKO mice did not induce MGCs. These findings provide a new model in which lung TRM2 suppress C.gattii infection via granuloma induction.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Akiko Nagamori
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nahoko Oniyama Honkyu
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Building 10, Bethesda, MD 20892, United States
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
5
|
Liu X, Lv W, Huang D, Cui H. The predictive role of tertiary lymphoid structures in the prognosis and response to immunotherapy of lung cancer patients: a systematic review and meta-analysis. BMC Cancer 2025; 25:87. [PMID: 39815237 PMCID: PMC11734324 DOI: 10.1186/s12885-025-13484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND There is still no consensus regarding the correlation between TLS and the prognosis of lung cancer patients. This meta-analysis aimed to investigate the association between TLS and prognosis in patients with lung cancer. In addition, the prognostic value of TLS for the efficacy of immunotherapy was also studied. METHODS We systematically searched the PubMed, Embase, Cochrane Library, and Web of Science databases from database inception to November 1, 2023. The hazard ratio (HR) and corresponding 95% confidence interval (CI) for overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), progression-free survival (PFS) and disease-specific survival (DSS) were extracted and merged with STATA 14.0. The study protocol was registered with PROSPERO (CRD42024502483). RESULTS A total of 17 studies comprising 4291 patients were included in this meta-analysis. The pooled results revealed that high TLS/TLS + patients had better OS (HR = 0.66, 95% CI: 0.50-0.88), DFS (HR = 0.46, 95% CI: 0.33-0.64), DSS (HR = 0.48, 95% CI: 0.39-0.60) and RFS (HR = 0.43, 95% CI: 0.33-0.57). High TLS/TLS + patients tended to have longer PFS than low TLS/TLS + patients (HR = 0.68, 95% CI: 0.35-1.35). Interestingly, in the Asia subgroup, the association between TLS and survival was especially significant, whereas there was no significant difference in Europe. In addition, in patients who received neoadjuvant chemoimmunotherapy, high TLS/TLS + was associated with prolonged DFS (HR = 0.21, 95%CI: 0.05-0.93). CONCLUSION High TLS/TLS + was associated with improved survival and an improved response to neoadjuvant chemoimmunotherapy in lung cancer patients, suggesting that TLS may be a prognostic biomarker and may also be a promising predictive marker for the response to neoadjuvant chemoimmunotherapy. However, additional original studies are needed to further confirm these findings.
Collapse
Affiliation(s)
- Xin Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wu Lv
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongxia Cui
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| |
Collapse
|
6
|
Houel A, Riffard C. Comparative Automated Quantification of Tertiary Lymphoid Structures in Two Distinct Mouse Models of Inflammation. Methods Mol Biol 2025; 2864:141-157. [PMID: 39527221 DOI: 10.1007/978-1-0716-4184-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) have been reported to form within nonlymphoid tissues upon various inflammatory conditions, such as tumors or bacterial infections. In particular, the lungs of patients with NSCLC or bacterial infections (such as tuberculosis or aspergillosis) are the sites of TLS neogenesis. An increasing number of preclinical models have been used over the years to recapitulate as accurately as possible the mechanisms and kinetics of TLS formation that are continuously reported in the clinic.We used herein two distinct murine models of pulmonary inflammation, relying on orthotopic lung tumor implantation, or intranasal administration of bacterial products, to generate TLS formation within mouse lung tissue. This review compares different workflows aiming at the detection and quantification of TLS using automated image analysis and artificial intelligence-assisted tissue classification. We also describe different methods for partitioning serial sections, depending on the tissue morphology and the experimental goal.
Collapse
Affiliation(s)
- Ana Houel
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Faculty of Health, Center of Immunology and Microbial Infections (CIMI), Paris, France.
- Transgene, Illkirch-Graffenstaden, France.
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Faculty of Health, Center of Immunology and Microbial Infections (CIMI), Paris, France.
| |
Collapse
|
7
|
Mattiuz R, Boumelha J, Hamon P, Le Berichel J, Vaidya A, Soong BY, Halasz L, Radkevich E, Kim HM, Park MD, Donne R, Troncoso L, D’Souza D, Kaiza ME, MacFawn IP, Belabed M, Mestrallet G, Humblin E, Merand R, Hennequin C, Ioannou G, Ozbey S, Figueiredo I, Hegde S, Tepper A, Merarda H, Nemeth E, Goldstein S, Reid AM, Noureddine M, Tabachnikova A, Ahmed J, Polydorides AD, Bhardwaj N, Lujambio A, Chen Z, Kozlova EG, Kim-Schulze S, Brody JD, Schotsaert M, Moussion C, Gnjatic S, Sautès-Fridman C, Fridman WH, Roudko V, Brown BD, Marron TU, Cyster JG, Salmon H, Bruno TC, Joshi NS, Kamphorst AO, Merad M. Dendritic cells type 1 control the formation, maintenance, and function of tertiary lymphoid structures in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.628014. [PMID: 39763802 PMCID: PMC11703156 DOI: 10.1101/2024.12.27.628014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tertiary lymphoid structures (TLS) are organized immune cell aggregates that arise in chronic inflammatory conditions. In cancer, TLS are associated with better prognosis and enhanced response to immunotherapy, making these structures attractive therapeutic targets. However, the mechanisms regulating TLS formation and maintenance in cancer are incompletely understood. Using spatial transcriptomics and multiplex imaging across various human tumors, we found an enrichment of mature dendritic cells (DC) expressing high levels of CCR7 in TLS, prompting us to investigate the role of DC in the formation and maintenance of TLS in solid tumors. To address this, we developed a novel murine model of non-small cell lung cancer (NSCLC) that forms mature TLS, containing B cell follicles with germinal centers and T cell zones with T follicular helper cells (TFH) and TCF1+PD-1+ progenitor exhausted CD8+ T cells (Tpex). Here we show that, during the early stages of tumor development, TLS formation relies on IFNγ-driven maturation of the conventional DC type 1 (cDC1) subset, their migration to tumor-draining lymph nodes (tdLN), and recruitment of activated T cells to the tumor site. As tumors progress, TLS maintenance becomes independent of T cell egress from tdLN, coinciding with a significant reduction of cDC1 migration to tdLN. Instead, mature cDC1 accumulate within intratumoral CCR7 ligand-enriched stromal hubs. Notably, timed depletion of cDC1 or disruption of their migration to these stromal hubs after TLS are formed alters TLS maintenance. Importantly, we found that cDC1-mediated antigen presentation to both CD4+ and CD8+ T cells and intact CD40 signaling, is critical for the maintenance of TLS, the preservation of the TFH cell pool, the formation of germinal center and the production of tumor-specific IgG antibodies. These findings underscore the key role of mature cDC1 in establishing and maintaining functional TLS within tumor lesions and highlight the potential for cDC1-targeting therapies as a promising strategy to enhance TLS function and improve anti-tumor immunity in patients with cancer.
Collapse
Affiliation(s)
- Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesse Boumelha
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Contributed equally
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Contributed equally
| | - Jessica Le Berichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Contributed equally
| | - Abishek Vaidya
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Y. Soong
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laszlo Halasz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emir Radkevich
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hye Mi Kim
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew D. Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Donne
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Tisch Cancer Institute, New York, New York, USA
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D’Souza
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Medard Ernest Kaiza
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian P. MacFawn
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guillaume Mestrallet
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, New York, New York, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Humblin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Merand
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clotilde Hennequin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sinem Ozbey
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Igor Figueiredo
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Tepper
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hajer Merarda
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erika Nemeth
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simon Goldstein
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda M. Reid
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Graduate School of Biomedical Sciences, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Tabachnikova
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jalal Ahmed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, and Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, New York, New York, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amaia Lujambio
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Tisch Cancer Institute, New York, New York, USA
| | - Zhihong Chen
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgar Gonzalez Kozlova
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua D. Brody
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Global Health and Emerging Pathogens Institute and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sacha Gnjatic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine Sautès-Fridman
- Department of Immunology, Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, Sorbonne Universite, INSERM, Université Paris Cité, 75006, Paris, France
| | - Wolf Herman Fridman
- Department of Immunology, Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, Sorbonne Universite, INSERM, Université Paris Cité, 75006, Paris, France
| | - Vladimir Roudko
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D. Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas U. Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tullia C. Bruno
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikhil S. Joshi
- Yale University School of Medicine, Department of Immunobiology, New Haven, CT, USA
| | - Alice O. Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Di Gioacchino M, Santilli F, Pession A. Is There a Role for Immunostimulant Bacterial Lysates in the Management of Respiratory Tract Infection? Biomolecules 2024; 14:1249. [PMID: 39456182 PMCID: PMC11505618 DOI: 10.3390/biom14101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial Lysates are immunostimulants clinically prescribed for the prevention of respiratory tract infections (RTIs). It has been shown that Bacterial Lysates upregulate the immune system, acting both on innate and adaptive reactions. In fact, there are demonstrations of their efficacy in restoring the integrity and immune function of epithelial barriers, activating ILC3 and dendritic cells with an enhanced Th1 response, and producing serum IgG and serum and salivary IgA specific to the administered bacterial antigens. The activated immune system also protects against other bacteria and viruses due to a trained immunity effect. Most studies show that the number of RTIs and their severity decrease in Bacterial Lysates-pretreated patients, without relevant side effects. The Bacterial Lysates treatment, in addition to reducing the number of RTIs, also prevents the deterioration of the underlying disease (i.e., COPD) induced by repeated infections. Despite these positive data, the most recent meta-analyses evidence the weakness of the studies performed, which are of low quality and have an inadequate number of patients, some of which were non-randomized while others were without a control group or were performed contemporarily in different clinical conditions or with different ages. The high heterogeneity of the studies does not allow us to state Bacterial Lysates' effectiveness in preventing RTIs with sufficient certainty. To completely define their indications, double-blind, placebo-controlled, multicenter, randomized clinical trials should be performed for each product and for each indication. The study population should be adequate for each indication. For this purpose, an adequate run-in phase will be necessary.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Francesca Santilli
- Center for Advanced Science and Technology (CAST), G. d’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Science of Aging, G. d’Annunzio University, 66100 Chieti, Italy
| | - Andrea Pession
- Department of Medicine and Surgery, “Alma Mater Studiorum”-University of Bologna, 40100 Bologna, Italy;
| |
Collapse
|
9
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Seefeld ML, Templeton EL, Lehtinen JM, Sinclair N, Yadav D, Hartwell BL. Harnessing the potential of the NALT and BALT as targets for immunomodulation using engineering strategies to enhance mucosal uptake. Front Immunol 2024; 15:1419527. [PMID: 39286244 PMCID: PMC11403286 DOI: 10.3389/fimmu.2024.1419527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Mucosal barrier tissues and their mucosal associated lymphoid tissues (MALT) are attractive targets for vaccines and immunotherapies due to their roles in both priming and regulating adaptive immune responses. The upper and lower respiratory mucosae, in particular, possess unique properties: a vast surface area responsible for frontline protection against inhaled pathogens but also simultaneous tight regulation of homeostasis against a continuous backdrop of non-pathogenic antigen exposure. Within the upper and lower respiratory tract, the nasal and bronchial associated lymphoid tissues (NALT and BALT, respectively) are key sites where antigen-specific immune responses are orchestrated against inhaled antigens, serving as critical training grounds for adaptive immunity. Many infectious diseases are transmitted via respiratory mucosal sites, highlighting the need for vaccines that can activate resident frontline immune protection in these tissues to block infection. While traditional parenteral vaccines that are injected tend to elicit weak immunity in mucosal tissues, mucosal vaccines (i.e., that are administered intranasally) are capable of eliciting both systemic and mucosal immunity in tandem by initiating immune responses in the MALT. In contrast, administering antigen to mucosal tissues in the absence of adjuvant or costimulatory signals can instead induce antigen-specific tolerance by exploiting regulatory mechanisms inherent to MALT, holding potential for mucosal immunotherapies to treat autoimmunity. Yet despite being well motivated by mucosal biology, development of both mucosal subunit vaccines and immunotherapies has historically been plagued by poor drug delivery across mucosal barriers, resulting in weak efficacy, short-lived responses, and to-date a lack of clinical translation. Development of engineering strategies that can overcome barriers to mucosal delivery are thus critical for translation of mucosal subunit vaccines and immunotherapies. This review covers engineering strategies to enhance mucosal uptake via active targeting and passive transport mechanisms, with a parallel focus on mechanisms of immune activation and regulation in the respiratory mucosa. By combining engineering strategies for enhanced mucosal delivery with a better understanding of immune mechanisms in the NALT and BALT, we hope to illustrate the potential of these mucosal sites as targets for immunomodulation.
Collapse
Affiliation(s)
- Madison L Seefeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Erin L Templeton
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Justin M Lehtinen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Noah Sinclair
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Daman Yadav
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Brittany L Hartwell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
12
|
Park H, Song J, Jeong HW, Grönloh MLB, Koh BI, Bovay E, Kim KP, Klotz L, Thistlethwaite PA, van Buul JD, Sorokin L, Adams RH. Apelin modulates inflammation and leukocyte recruitment in experimental autoimmune encephalomyelitis. Nat Commun 2024; 15:6282. [PMID: 39060233 PMCID: PMC11282314 DOI: 10.1038/s41467-024-50540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Demyelination due to autoreactive T cells and inflammation in the central nervous system are principal features of multiple sclerosis (MS), a chronic and highly disabling human disease affecting brain and spinal cord. Here, we show that treatment with apelin, a secreted peptide ligand for the G protein-coupled receptor APJ/Aplnr, is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Apelin reduces immune cell entry into the brain, delays the onset and reduces the severity of EAE. Apelin affects the trafficking of leukocytes through the lung by modulating the expression of cell adhesion molecules that mediate leukocyte recruitment. In addition, apelin induces the internalization and desensitization of its receptor in endothelial cells (ECs). Accordingly, protection against EAE major outcomes of apelin treatment are phenocopied by loss of APJ/Aplnr function, achieved by EC-specific gene inactivation in mice or knockdown experiments in cultured primary endothelial cells. Our findings highlight the importance of the lung-brain axis in neuroinflammation and indicate that apelin targets the transendothelial migration of immune cells into the lung during acute inflammation.
Collapse
Affiliation(s)
- Hongryeol Park
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Max L B Grönloh
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Bong Ihn Koh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Esther Bovay
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Kee-Pyo Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Luisa Klotz
- Department of Neurology, University of Münster, Münster, Germany
| | | | - Jaap D van Buul
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| |
Collapse
|
13
|
Ferrell KC, Stewart EL, Counoupas C, Triccas JA. Colony morphotype governs innate and adaptive pulmonary immune responses to Mycobacterium abscessus infection in C3HeB/FeJ mice. Eur J Immunol 2024; 54:e2350610. [PMID: 38576227 DOI: 10.1002/eji.202350610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Mycobacterium abscessus is an emerging pathogen that causes chronic pulmonary infection. Treatment is challenging owing in part to our incomplete understanding of M. abscessus virulence mechanisms that enable pathogen persistence, such as the differing pathogenicity of M. abscessus smooth (S) and rough (R) colony morphotype. While R M. abscessus is associated with chronic infection and worse patient outcomes, it is unknown how immune responses to S and R M. abscessus differ in an acute pulmonary infection setting. In this study, immunological outcomes of M. abscessus infection with S and R morphotypes were examined in an immune-competent C3HeB/FeJ murine model. R M. abscessus infection was associated with the rapid production of inflammatory chemokines and recruitment of activated, MHC-II+ Ly6C+ macrophages to lungs and mediastinal LN (mLN). While both S and R M. abscessus increased T helper 1 (Th1) phenotype T cells in the lung, this was markedly delayed in mice infected with S M. abscessus. However, histopathological involvement and bacterial clearance were similar regardless of colony morphotype. These results demonstrate the importance of M. abscessus colony morphotype in shaping the development of pulmonary immune responses to M. abscessus, which further informs our understanding of M. abscessus host-pathogen interactions.
Collapse
Affiliation(s)
- Kia C Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Erica L Stewart
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Cully MD, Nolte JE, Patel A, Vaughan AE, May MJ. Loss of Lymphatic IKKα Disrupts Lung Immune Homeostasis, Drives BALT Formation, and Protects against Influenza. Immunohorizons 2024; 8:478-491. [PMID: 39007717 PMCID: PMC11294277 DOI: 10.4049/immunohorizons.2400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
IκB kinase (IKK)α controls noncanonical NF-κB signaling required for lymphoid organ development. We showed previously that lymph node formation is ablated in IkkαLyve-1 mice constitutively lacking IKKα in lymphatic endothelial cells (LECs). We now reveal that loss of IKKα in LECs leads to the formation of BALT in the lung. Tertiary lymphoid structures appear only in the lungs of IkkαLyve-1 mice and are not present in any other tissues, and these highly organized BALT structures form after birth and in the absence of inflammation. Additionally, we show that IkkαLyve-1 mice challenged with influenza A virus (IAV) exhibit markedly improved survival and reduced weight loss compared with littermate controls. Importantly, we determine that the improved morbidity and mortality of IkkαLyve-1 mice is independent of viral load and rate of clearance because both mice control and clear IAV infection similarly. Instead, we show that IFN-γ levels are decreased, and infiltration of CD8 T cells and monocytes into IkkαLyve-1 lungs is reduced. We conclude that ablating IKKα in LECs promotes BALT formation and reduces the susceptibility of IkkαLyve-1 mice to IAV infection through a decrease in proinflammatory stimuli.
Collapse
Affiliation(s)
- Michelle D. Cully
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Julianne E. Nolte
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Athena Patel
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Andrew E. Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Michael J. May
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| |
Collapse
|
15
|
Riffard C, Letaïef L, Azar S, Casrouge A, Brunet I, Teillaud JL, Dieu-Nosjean MC. Absence of sympathetic innervation hampers the generation of tertiary lymphoid structures upon acute lung inflammation. Sci Rep 2024; 14:11749. [PMID: 38782985 PMCID: PMC11116507 DOI: 10.1038/s41598-024-62673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are lymphoid organs present in inflammatory non-lymphoid tissues. Studies have linked TLS to favorable outcomes for patients with cancers or infectious diseases, but the mechanisms underlying their formation are not fully understood. In particular, secondary lymphoid organs innervation raises the question of sympathetic nerve fibers involvement in TLS organogenesis. We established a model of pulmonary inflammation based on 5 daily intranasal instillations of lipopolysaccharide (LPS) in immunocompetent mice. In this setting, lung lymphoid aggregates formed transiently, evolving toward mature TLS and disappearing when inflammation resolved. Sympathetic nerve fibers were then depleted using 6-hydroxydopamine. TLS quantification by immunohistochemistry showed a decrease in LPS-induced TLS number and surface in denervated mouse lungs. Although a reduction in alveolar space was observed, it did not impair overall pulmonary content of transcripts encoding TNF-α, IL-1β and IFN-γ inflammation molecules whose expression was induced by LPS instillations. Immunofluorescence analysis of immune infiltrates in lungs of LPS-treated mice showed a drop in the proportion of CD23+ naive cells among CD19+ B220+ B cells in denervated mice whereas the proportion of other cell subsets remained unchanged. These data support the existence of neuroimmune crosstalk impacting lung TLS neogenesis and local naive B cell pool.
Collapse
Affiliation(s)
- Clémence Riffard
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France.
- Inserm U1135, 75013, Paris, France.
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France.
| | - Laïla Letaïef
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France
- Inserm U1135, 75013, Paris, France
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France
| | - Safa Azar
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, Inserm U1050, 75231, Cedex Paris, France
- Université Paris Sciences and Lettres, 75231, Cedex Paris, France
| | - Armanda Casrouge
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France
- Inserm U1135, 75013, Paris, France
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France
| | - Isabelle Brunet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, Inserm U1050, 75231, Cedex Paris, France
- Université Paris Sciences and Lettres, 75231, Cedex Paris, France
| | - Jean-Luc Teillaud
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France.
- Inserm U1135, 75013, Paris, France.
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France.
| | - Marie-Caroline Dieu-Nosjean
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France.
- Inserm U1135, 75013, Paris, France.
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France.
| |
Collapse
|
16
|
Zhang L, Zhang R, Jin D, Zhang T, Shahatiaili A, Zang J, Wang L, Pu Y, Zhuang G, Chen H, Fan J. Synergistic induction of tertiary lymphoid structures by chemoimmunotherapy in bladder cancer. Br J Cancer 2024; 130:1221-1231. [PMID: 38332180 PMCID: PMC10991273 DOI: 10.1038/s41416-024-02598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND A substantial number of patients with bladder cancer fail to benefit from immune checkpoint inhibitors (ICIs). We aim to investigate whether the addition of other therapeutic modalities into immunotherapy may augment the immune reactivity, thereby improving the overall response rate. METHODS We conducted a comprehensive assessment of the immunological changes following immunotherapy and chemotherapy, employing both single-cell RNA sequencing and bulk RNA sequencing analyses. RESULTS The bladder cancer patient treated with ICIs exhibited a higher abundance of B cells and T follicular helper cells compared to the treatment-naïve patient. Analysis of public datasets and the in-house RJBLC-I2N003 cohort revealed the induction of tertiary lymphoid structure (TLS) neogenesis and maturation by immunotherapy. The IMvigor 210 study suggested that TLS could serve as a predictor of immunotherapy response and patient prognosis. In addition, genome-wide transcriptome data unveiled a shift towards the immune-enriched subtype over the desert subtype in patients receiving neoadjuvant chemotherapy. Notably, the proportions of CD20 + B cells, T follicular helper cells, and TLSs were significantly increased. In patients treated with a combination of neoadjuvant chemotherapy and ICIs, TLS positivity and maturity were improved compared to the baseline. Furthermore, neoadjuvant chemoimmunotherapy resulted in a higher rate of pathological complete response compared to monotherapies. CONCLUSIONS This work pinpointed the individual effect of immunotherapy and chemotherapy in fostering TLS development, and underscored the superior effectiveness of combined modalities in enhancing TLS maturation and response rates.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiyun Zhang
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Jin
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianxiang Zhang
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Akezhouli Shahatiaili
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zang
- Department of Radiation Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanchun Pu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haige Chen
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
17
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
18
|
Do KTH, Willenzon S, Ristenpart J, Janssen A, Volz A, Sutter G, Förster R, Bošnjak B. The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice. Front Cell Infect Microbiol 2023; 13:1259822. [PMID: 37854858 PMCID: PMC10580083 DOI: 10.3389/fcimb.2023.1259822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background and aims Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.
Collapse
Affiliation(s)
- Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Munich, Germany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximiliam University (LMU) Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Houel A, Foloppe J, Dieu-Nosjean MC. Harnessing the power of oncolytic virotherapy and tertiary lymphoid structures to amplify antitumor immune responses in cancer patients. Semin Immunol 2023; 69:101796. [PMID: 37356421 DOI: 10.1016/j.smim.2023.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Tertiary lymphoid structures (TLS) are ectopic aggregates of immune cells that develop in non-lymphoid tissues under persistent inflammation. Since their presence has been associated with a better prognosis in cancer patients, modulating TLS formation is being part of new challenges in immunotherapy. Although mechanisms underlying TLS genesis are still not fully understood, different strategies have been developed in preclinical models to induce their formation and ultimately enhance antitumor responses. Herein, we will discuss a new approach that would consist in using oncolytic viruses (OV). These viruses have the unique feature to preferentially infect, replicate in and kill cancer cells. Their immunoadjuvant property, their use as a vector of therapeutic molecules and their selectivity for cancer cells, make them an attractive strategy to induce TLS in the tumor microenvironment. This review will examine the current knowledge about TLS neogenesis, approaches for inducing them, and relevance of using OV for this purpose, especially in combination with immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Ana Houel
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France; Transgene, Illkirch-Graffenstaden, France
| | | | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France.
| |
Collapse
|
20
|
Ding Z, Tarlinton D. The case for BALT in human respiratory immunity. Nat Immunol 2023; 24:1220-1221. [PMID: 37488430 DOI: 10.1038/s41590-023-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Affiliation(s)
- Zhoujie Ding
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - David Tarlinton
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
T-cell-B-cell collaboration in the lung. Curr Opin Immunol 2023; 81:102284. [PMID: 36753826 DOI: 10.1016/j.coi.2023.102284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Collaboration between T and B cells in secondary lymphoid organs is a crucial component of adaptive immunity, but lymphocytes also persist in other tissues. Recent studies have examined T-cell-B-cell interactions in nonlymphoid tissues such as the lung. CD4+ T- resident helper cells (TRH) remain in the lung after influenza infection and support both resident CD8 T cells and B cells. Multiple lung-resident B-cell subsets (B-resident memory (BRM)) that exhibit spatial and phenotypic diversity have also been described. Though not generated by all types of infection, inducible bronchus-associated lymphoid tissue offers a logical place for T and B cells to interact. Perturbations to BRM and TRH cells elicit effects specific to Immunoglobulin A (IgA) production, an antibody isotype with privileged access to mucosa. Understanding the interplay of lymphocytes in mucosal tissues, which can be insulated from systemic immune responses, may improve the design of future vaccines and therapies.
Collapse
|
22
|
Xian S, Dosset M, Castro A, Carter H, Zanetti M. Transcriptional analysis links B cells and TERT expression to favorable prognosis in head and neck cancer. PNAS NEXUS 2023; 2:pgad046. [PMID: 36909826 PMCID: PMC10003760 DOI: 10.1093/pnasnexus/pgad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Telomerase reverse transcriptase (TERT) is a conserved self-tumor antigen overexpressed in ∼85% of tumor cells and is immunogenic in cancer patients. The effect of TERT expression on the regulation of intratumor adaptive immunity has not yet been investigated. We used RNA sequencing data from The Cancer Genome Atlas (TCGA) in 11 solid tumor types to investigate potential interactions between TERT expression, and B and T cell infiltrate in the tumor microenvironment. We found a positive correlation between TERT expression, B and T cells in four cancer types with the strongest association in head and neck squamous cell carcinoma (HSNCC). In HNSCC a Bhigh/TERThigh signature was associated with improved progression-free survival (PFS) (P = 0.0048). This effect was independent of HPV status and not shared in comparable analysis by other conserved tumor antigens (NYESO1, MUC1, MAGE, and CEA). Bhigh/TERThigh HNSCC tumors also harbored evidence of tertiary lymphoid structure (TLS) such as signatures for germinal center (GC) and switched memory B cells, central memory CD4 and effector memory CD8 T cells. Bhigh/TERThigh HNSCC tumors also showed an up-regulation of genes and pathways related to B and T cell activation, proliferation, migration, and cytotoxicity, while factors associated with immunosuppression and cancer cell invasiveness were down-regulated. In summary, our study uncovers a new association between high TERT expression and high B cell infiltrate in HNSCC, suggesting a potential benefit from therapeutic strategies that invigorate intratumor TERT-mediated T-B cooperation.
Collapse
Affiliation(s)
- Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Castro
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Prince L, Martín-Faivre L, Villeret B, Sanchez-Guzman D, Le Guen P, Sallenave JM, Garcia-Verdugo I. Eosinophils Recruited during Pulmonary Vaccination Regulate Mucosal Antibody Production. Am J Respir Cell Mol Biol 2023; 68:186-200. [PMID: 36194580 DOI: 10.1165/rcmb.2022-0236oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Eosinophils have been previously shown to be able to regulate early humoral responses during systemic vaccination. Here we investigated the role of eosinophils during pulmonary vaccination, comparing vaccine-induced responses in eosinophil-deficient (ΔdblGATA) and wild-type mice using a Th2 adjuvant. We observed that eosinophils were needed to induce a complete vaccine response, thereby eliciting specific antibody-secreting plasma cells in the regional lymph nodes and antibody secretion in the BAL at the early stage of the immune response. Reintroduction of eosinophils in the lungs of ΔdblGATA mice during the priming stage enhanced both specific IgM and IgG plasma cells but not specific IgA plasma cells. Upon vaccination, eosinophils migrated to the lungs and secreted cytokines involved in B-cell activation, which might promote antibody production. Importantly, however, the absence of eosinophils did not impair late immune responses in a prime/boost protocol because, in that setup, we uncovered a compensating mechanism involving a Th17 pathway. In conclusion, our data demonstrate for the first time a new role for eosinophils during lung mucosal vaccination, whereby they accelerate early immune responses (IgM and IgG) while regulating IgA production at the late stages.
Collapse
Affiliation(s)
- Lisa Prince
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Lydie Martín-Faivre
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Bérengère Villeret
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Daniel Sanchez-Guzman
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Pierre Le Guen
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Jean-Michel Sallenave
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Ignacio Garcia-Verdugo
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| |
Collapse
|
24
|
Sato Y, Tamura M, Yanagita M. Tertiary lymphoid tissues: a regional hub for kidney inflammation. Nephrol Dial Transplant 2023; 38:26-33. [PMID: 34245300 DOI: 10.1093/ndt/gfab212] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/26/2023] Open
Abstract
Tertiary lymphoid tissues (TLTs) are inducible ectopic lymphoid tissues that develop at sites of chronic inflammation in nonlymphoid organs. As with lymph nodes, TLTs initiate adaptive immune responses and coordinate local tissue immunity. Although virtually ignored for decades, TLTs have recently received a great deal of attention for their ability to influence disease severity, prognosis and response to therapy in various diseases, including cancer, autoimmune disorders and infections. TLTs are also induced in kidneys of patients with chronic kidney diseases such as immunoglobulin A nephropathy and lupus nephritis. Nevertheless, TLTs in the kidney have not been extensively investigated and their mechanism of development, functions and clinical relevance remain unknown, mainly because of the absence of adequate murine kidney TLT models and limited availability of human kidney samples containing TLTs. We recently found that aged kidneys, but not young kidneys, exhibit multiple TLTs after injury. Interestingly, although they are a minor component of TLTs, resident fibroblasts in the kidneys diversify into several distinct phenotypes that play crucial roles in TLT formation. Furthermore, the potential of TLTs as a novel kidney injury/inflammation marker as well as a novel therapeutic target for kidney diseases is also suggested. In this review article we describe the current understanding of TLTs with a focus on age-dependent TLTs in the kidney and discuss their potential as a novel therapeutic target and kidney inflammation marker.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Suryadevara N, Kumar A, Ye X, Rogers M, Williams JV, Wilson JT, Karijolich J, Joyce S. A molecular signature of lung-resident CD8 + T cells elicited by subunit vaccination. Sci Rep 2022; 12:19101. [PMID: 36351985 PMCID: PMC9645351 DOI: 10.1038/s41598-022-21620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Natural infection as well as vaccination with live or attenuated viruses elicit tissue resident, CD8+ memory T cell (Trm) response. Trm cells so elicited act quickly upon reencounter with the priming agent to protect the host. These Trm cells express a unique molecular signature driven by the master regulators-Runx3 and Hobit. We previously reported that intranasal instillation of a subunit vaccine in a prime boost vaccination regimen installed quick-acting, CD8+ Trm cells in the lungs that protected against lethal vaccinia virus challenge. It remains unexplored whether CD8+ Trm responses so elicited are driven by a similar molecular signature as those elicited by microbes in a real infection or by live, attenuated pathogens in conventional vaccination. We found that distinct molecular signatures distinguished subunit vaccine-elicited lung interstitial CD8+ Trm cells from subunit vaccine-elicited CD8+ effector memory and splenic memory T cells. Nonetheless, the transcriptome signature of subunit vaccine elicited CD8+ Trm resembled those elicited by virus infection or vaccination. Clues to the basis of tissue residence and function of vaccine specific CD8+ Trm cells were found in transcripts that code for chemokines and chemokine receptors, purinergic receptors, and adhesins when compared to CD8+ effector and splenic memory T cells. Our findings inform the utility of protein-based subunit vaccination for installing CD8+ Trm cells in the lungs to protect against respiratory infectious diseases that plague humankind.
Collapse
Affiliation(s)
- Naveenchandra Suryadevara
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xiang Ye
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Meredith Rogers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - John V Williams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Institute for Infection, Immunity, and Inflammation in Children (i4Kids), Pittsburgh, PA, 15224, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - John Karijolich
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
26
|
CHEN J, CHEN J, WANG L. Tertiary lymphoid structures as unique constructions associated with the organization, education, and function of tumor-infiltrating immunocytes. J Zhejiang Univ Sci B 2022; 23:812-822. [PMID: 36226536 PMCID: PMC9561406 DOI: 10.1631/jzus.b2200174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tertiary lymphoid structures (TLSs) are formations at sites with persistent inflammatory stimulation, including tumors. These ectopic lymphoid organs mainly consist of chemo-attracting B cells, T cells, and supporting dendritic cells (DCs). Mature TLSs exhibit functional organization for the optimal development and collaboration of adaptive immune response, delivering an augmented effect on the tumor microenvironment (TME). The description of the positive correlation between TLSs and tumor prognosis is reliable only under a certain condition involving the localization and maturation of TLSs. Emerging evidence suggests that underlying mechanisms of the anti-tumor effect of TLSs pave the way for novel immunotherapies. Several approaches have been developed to take advantage of intratumoral TLSs, either by combining it with therapeutic agents or by inducing the neogenesis of TLSs.
Collapse
Affiliation(s)
- Jing CHEN
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China,Institute of Immunology and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Jian CHEN
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China,Jian CHEN,
| | - Lie WANG
- Institute of Immunology and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Cancer Center, Zhejiang University, Hangzhou310058, China,Lie WANG,
| |
Collapse
|
27
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
28
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
29
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
30
|
Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci 2022; 79:359. [PMID: 35689679 PMCID: PMC9188279 DOI: 10.1007/s00018-022-04388-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.
Collapse
|
31
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
32
|
Goyal G, Prabhala P, Mahajan G, Bausk B, Gilboa T, Xie L, Zhai Y, Lazarovits R, Mansour A, Kim MS, Patil A, Curran D, Long JM, Sharma S, Junaid A, Cohen L, Ferrante TC, Levy O, Prantil‐Baun R, Walt DR, Ingber DE. Ectopic Lymphoid Follicle Formation and Human Seasonal Influenza Vaccination Responses Recapitulated in an Organ-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103241. [PMID: 35289122 PMCID: PMC9109055 DOI: 10.1002/advs.202103241] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/08/2021] [Indexed: 05/13/2023]
Abstract
Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.
Collapse
Affiliation(s)
- Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Pranav Prabhala
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Bruce Bausk
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Tal Gilboa
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Liangxia Xie
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Roey Lazarovits
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Adam Mansour
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Min Sun Kim
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Aditya Patil
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Danielle Curran
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Jaclyn M. Long
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Sanjay Sharma
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Limor Cohen
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Thomas C. Ferrante
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Oren Levy
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Rachelle Prantil‐Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - David R. Walt
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Vascular Biology Program and Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02139USA
| |
Collapse
|
33
|
Fleig S, Kapanadze T, Bernier-Latmani J, Lill JK, Wyss T, Gamrekelashvili J, Kijas D, Liu B, Hüsing AM, Bovay E, Jirmo AC, Halle S, Ricke-Hoch M, Adams RH, Engel DR, von Vietinghoff S, Förster R, Hilfiker-Kleiner D, Haller H, Petrova TV, Limbourg FP. Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nat Commun 2022; 13:2022. [PMID: 35440634 PMCID: PMC9018798 DOI: 10.1038/s41467-022-29701-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation. Loss of canonical Notch signaling in vascular endothelial cells induces spontaneous formation of proto-typical tertiary lymphoid structures in mouse kidney, liver and lungs, which form around central arteries that acquire a high endothelial cell signature
Collapse
Affiliation(s)
- Susanne Fleig
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Department of Geriatric Medicine (Medical Clinic VI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Jeremiah Bernier-Latmani
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Julia K Lill
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Tania Wyss
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Bin Liu
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Anne M Hüsing
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Esther Bovay
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Adan Chari Jirmo
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Sibylle von Vietinghoff
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Division of Medicine I, Nephrology section, UKB Bonn University Hospital, Bonn, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany.,Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, 35037, Marburg, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Tatiana V Petrova
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Florian P Limbourg
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany. .,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
34
|
Di Rocco A, Petrucci L, Assanto GM, Martelli M, Pulsoni A. Extranodal Marginal Zone Lymphoma: Pathogenesis, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14071742. [PMID: 35406516 PMCID: PMC8997163 DOI: 10.3390/cancers14071742] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Extranodal marginal zone lymphoma (EMZL) is an indolent lymphoproliferative disease morphologically composed of small heterogeneous B lymphocytes. It generally occurs with a localized stage and can arise in various organs, the most frequent being the stomach, lung, and ocular adnexa. Depending on the presentation and the possible association with infectious agents, different therapeutic approaches are to be undertaken. The purpose of this review is to describe the biology underlying this pathology, the diagnostic, and therapeutic approach. Abstract Extranodal Marginal Zone Lymphoma (EMZL lymphoma) is an indolent B-cell lymphoma with a median age at diagnosis of about 60 years. It accounts for 7–8% of all B-cell lymphomas. It can occur in various extranodal sites, including stomach, lung, ocular adnexa, and skin; furthermore, the disseminated disease can be found in 25–50% of cases. Several infectious agents, such as Helicobacter pylori (H. Pylori) in the case of gastric Mucosa Associated Lymphoid Tissue (MALT) Lymphoma, can drive the pathogenesis of this cancer, through the autoantigenic stimulation of T cells, but there may also be other factors participating such autoimmune diseases. Initial staging should include total body computed tomography, bone marrow aspirate, and endoscopic investigation if indicated. Fluorescence in situ hybridization (FISH), should be performed to detect the presence of specific chromosomal translocations involving the MALT1 and BCL10 genes, which leads to the activation of the NF-κB signaling pathway. Depending on the location and dissemination of the disease, different therapeutic choices may include targeted therapy against the etiopathogenetic agent, radiotherapy, immunochemotherapy, and biological drugs. The purpose of this review is to illustrate the complex biology and the diagnosis of this disease and to better define new treatment strategies.
Collapse
|
35
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
36
|
Clubb JHA, Kudling TV, Heiniö C, Basnet S, Pakola S, Cervera Carrascón V, Santos JM, Quixabeira DCA, Havunen R, Sorsa S, Zheng V, Salo T, Bäck L, Aro K, Tulokas S, Loimu V, Hemminki A. Adenovirus Encoding Tumor Necrosis Factor Alpha and Interleukin 2 Induces a Tertiary Lymphoid Structure Signature in Immune Checkpoint Inhibitor Refractory Head and Neck Cancer. Front Immunol 2022; 13:794251. [PMID: 35355980 PMCID: PMC8959099 DOI: 10.3389/fimmu.2022.794251] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have provided significant improvement in clinical outcomes for some patients with solid tumors. However, for patients with head and neck cancer, the response rate to ICI monotherapy remains low, leading to the exploration of combinatorial treatment strategies. In this preclinical study, we use an oncolytic adenovirus (Ad5/3) encoding hTNFα and hIL-2 and non-replicate adenoviruses (Ad5) encoding mTNFα and mIL-2 with ICI to achieve superior tumor growth control and improved survival outcomes. The in vitro effect of Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 was characterized through analyses of virus replication, transgene expression and lytic activity using head and neck cancer patient derived cell lines. Mouse models of ICI naïve and refractory oral cavity squamous cell carcinoma were established to evaluate the local and systemic anti-tumor immune response upon ICI treatment with or without the non-replicative adenovirus encoding mTNFα and mIL-2. We delineated the mechanism of action by measuring the metabolic activity and effector function of CD3+ tumor infiltrating lymphocytes (TIL) and transcriptomic profile of the CD45+ tumor immune compartment. Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 demonstrated robust replicative capability in vitro across all head and neck cell lines screened through potent lytic activity, E1a and transgene expression. In vivo, in both ICI naïve and refractory models, we observed improvement to tumor growth control and long-term survival when combining anti-PD-1 or anti-PD-L1 with the non-replicative adenovirus encoding mTNFα and mIL-2 compared to monotherapies. This observation was verified by striking CD3+ TIL derived mGranzyme b and interferon gamma production complemented by increased T cell bioenergetics. Notably, interrogation of the tumor immune transcriptome revealed the upregulation of a gene signature distinctive of tertiary lymphoid structure formation upon treatment of murine anti-PD-L1 refractory tumors with non-replicative adenovirus encoding mTNFα and mIL-2. In addition, we detected an increase in anti-tumor antibody production and expansion of the memory T cell compartment in the secondary lymphoid organs. In summary, a non-replicative adenovirus encoding mTNFα and mIL-2 potentiates ICI therapy, demonstrated by improved tumor growth control and survival in head and neck tumor-bearing mice. Moreover, the data reveals a potential approach for inducing tertiary lymphoid structure formation. Altogether our results support the clinical potential of combining this adenovirotherapy with anti-PD-1 or anti-PD-L1.
Collapse
Affiliation(s)
- James H. A. Clubb
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Tatiana V. Kudling
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Víctor Cervera Carrascón
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - João Manuel Santos
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Dafne C. A. Quixabeira
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Vincent Zheng
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
- Oulu University Central Hospital, Oulu, Finland
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leif Bäck
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katri Aro
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sanni Tulokas
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Venla Loimu
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Synthetic multiantigen MVA vaccine COH04S1 protects against SARS-CoV-2 in Syrian hamsters and non-human primates. NPJ Vaccines 2022; 7:7. [PMID: 35064109 PMCID: PMC8782996 DOI: 10.1038/s41541-022-00436-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models. We demonstrate that intramuscular or intranasal vaccination of Syrian hamsters with COH04S1 induces robust Th1-biased antigen-specific humoral immunity and cross-neutralizing antibodies (NAb) and protects against weight loss, lower respiratory tract infection, and lung injury following intranasal SARS-CoV-2 challenge. Moreover, we demonstrate that single-dose or two-dose vaccination of non-human primates with COH04S1 induces robust antigen-specific binding antibodies, NAb, and Th1-biased T cells, protects against both upper and lower respiratory tract infection following intranasal/intratracheal SARS-CoV-2 challenge, and triggers potent post-challenge anamnestic antiviral responses. These results demonstrate COH04S1-mediated vaccine protection in animal models through different vaccination routes and dose regimens, complementing ongoing investigation of this multiantigen SARS-CoV-2 vaccine in clinical trials.
Collapse
|
38
|
Abstract
Ectopic lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are formed in numerous cancer types, and, with few exceptions, their presence is associated with superior prognosis and response to immunotherapy. In spite of their presumed importance, the triggers that lead to TLS formation in cancer tissue and the contribution of these structures to intratumoral immune responses remain incompletely understood. Here, we discuss the present knowledge on TLSs in cancer, focusing on (i) the drivers of TLS formation, (ii) the function and contribution of TLSs to the antitumor immune response, and (iii) the potential of TLSs as therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
39
|
Alexandrova Y, Costiniuk CT, Jenabian MA. Pulmonary Immune Dysregulation and Viral Persistence During HIV Infection. Front Immunol 2022; 12:808722. [PMID: 35058937 PMCID: PMC8764194 DOI: 10.3389/fimmu.2021.808722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV continue to suffer from high burdens of respiratory infections, lung cancers and chronic lung disease at a higher rate than the general population. The lung mucosa, a previously neglected HIV reservoir site, is of particular importance in this phenomenon. Because ART does not eliminate the virus, residual levels of HIV that remain in deep tissues lead to chronic immune activation and pulmonary inflammatory pathologies. In turn, continuous pulmonary and systemic inflammation cause immune cell exhaustion and pulmonary immune dysregulation, creating a pro-inflammatory environment ideal for HIV reservoir persistence. Moreover, smoking, gut and lung dysbiosis and co-infections further fuel the vicious cycle of residual viral replication which, in turn, contributes to inflammation and immune cell proliferation, further maintaining the HIV reservoir. Herein, we discuss the recent evidence supporting the notion that the lungs serve as an HIV viral reservoir. We will explore how smoking, changes in the microbiome, and common co-infections seen in PLWH contribute to HIV persistence, pulmonary immune dysregulation, and high rates of infectious and non-infectious lung disease among these individuals.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
40
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
41
|
Bošnjak B, Odak I, Barros-Martins J, Sandrock I, Hammerschmidt SI, Permanyer M, Patzer GE, Greorgiev H, Gutierrez Jauregui R, Tscherne A, Schwarz JH, Kalodimou G, Ssebyatika G, Ciurkiewicz M, Willenzon S, Bubke A, Ristenpart J, Ritter C, Tuchel T, Meyer zu Natrup C, Shin DL, Clever S, Limpinsel L, Baumgärtner W, Krey T, Volz A, Sutter G, Förster R. Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents. Front Immunol 2021; 12:772240. [PMID: 34858430 PMCID: PMC8632543 DOI: 10.3389/fimmu.2021.772240] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Hristo Greorgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
| | | | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Tamara Tuchel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dai-Lun Shin
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabrina Clever
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| |
Collapse
|
42
|
Lai Y, Wei X, Ye T, Hang L, Mou L, Su J. Interrelation Between Fibroblasts and T Cells in Fibrosing Interstitial Lung Diseases. Front Immunol 2021; 12:747335. [PMID: 34804029 PMCID: PMC8602099 DOI: 10.3389/fimmu.2021.747335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of diseases characterized by varying degrees of inflammation and fibrosis of the pulmonary interstitium. The interrelations between multiple immune cells and stromal cells participate in the pathogenesis of ILDs. While fibroblasts contribute to the development of ILDs through secreting extracellular matrix and proinflammatory cytokines upon activation, T cells are major mediators of adaptive immunity, as well as inflammation and autoimmune tissue destruction in the lung of ILDs patients. Fibroblasts play important roles in modulating T cell recruitment, differentiation and function and conversely, T cells can balance fibrotic sequelae with protective immunity in the lung. A more precise understanding of the interrelation between fibroblasts and T cells will enable a better future therapeutic design by targeting this interrelationship. Here we highlight recent work on the interactions between fibroblasts and T cells in ILDs, and consider the implications of these interactions in the future development of therapies for ILDs.
Collapse
Affiliation(s)
- Yunxin Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinru Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lilin Hang
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ling Mou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
43
|
Pabst R. The bronchus-associated-lymphoid tissue (BALT) an unique lymphoid organ in man and animals. Ann Anat 2021; 240:151833. [PMID: 34670121 DOI: 10.1016/j.aanat.2021.151833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/10/2023]
Abstract
The development structure and number of bronchus-associated lymphoid tissue (BALT) will be described in many different animals (like chicken, rabbit, mouse, rat, farm animals and particular the pig, monkey) and these data compared to healthy man and in human diseases. The term induced BALT should not be used because it is a tertiary lymphoid structure, which lacks the contact to a bronchus and does not consist of the important area (dome area) which is essential for antigen uptake of microbial stimuli, which are essential in the development of BALT. Mycoplasma seems to play a critical role as shown in pigs but there not been documented in other species like rabbits. More studies have to be performed in health and disease (e.g. in apes) to document the structural and functional basis to use BALT as an entry site for vaccination protocols.
Collapse
Affiliation(s)
- Reinhard Pabst
- Immunomorphology, Centre of Anatomy, Medical School Hannover, Germany.
| |
Collapse
|
44
|
Chiuppesi F, Nguyen VH, Park Y, Contreras H, Karpinski V, Faircloth K, Nguyen J, Kha M, Johnson D, Martinez J, Iniguez A, Zhou Q, Kaltcheva T, Frankel P, Kar S, Sharma A, Andersen H, Lewis MG, Shostak Y, Wussow F, Diamond DJ. Synthetic Multiantigen MVA Vaccine COH04S1 Protects Against SARS-CoV-2 in Syrian Hamsters and Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34545366 DOI: 10.1101/2021.09.15.460487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen Modified Vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models. We demonstrate that intramuscular or intranasal vaccination of Syrian hamsters with COH04S1 induces robust Th1-biased antigen-specific humoral immunity and cross-neutralizing antibodies (NAb) and protects against weight loss, lower respiratory tract infection, and lung injury following intranasal SARS-CoV-2 challenge. Moreover, we demonstrate that single-dose or two-dose vaccination of non-human primates with COH04S1 induces robust antigen-specific binding antibodies, NAb, and Th1-biased T cells, protects against both upper and lower respiratory tract infection following intranasal/intratracheal SARS-CoV-2 challenge, and triggers potent post-challenge anamnestic antiviral responses. These results demonstrate COH04S1-mediated vaccine protection in animal models through different vaccination routes and dose regimens, complementing ongoing investigation of this multiantigen SARS-CoV-2 vaccine in clinical trials.
Collapse
|
45
|
Parlak Ak T. Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies. Vet Med Sci 2021. [DOI: 10.5772/intechopen.99366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The lower respiratory tract is in direct communication with the external environment for gas exchange to occur. Therefore, it is constantly exposed to allergens, antigens, bacteria, viruses, and a wide variety of airborne foreign bodies. Bronchus-associated lymphoid tissue (BALT), which develops in response to these exposures and is one of the most prominent representatives of mucosa-associated lymphoid tissue (MALT), is important for generating rapid and specific bronchopulmonary adaptive immune responses. Therefore, this chapter focuses on the lymphoid architecture of BALT, which was first discovered in the bronchial wall of rabbits, its inducible form called inducible BALT (iBALT), its immunological response mechanisms, and its roles in certain pathologies including infectious and autoimmune diseases as well as in allergic and malignant conditions. In conclusion, it is hypothesized that BALT plays an important role in maintaining health and in the development of lower respiratory tract diseases; thanks to the pulmonary immune system in which it functions as a functional lymphoid tissue.
Collapse
|
46
|
Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. Int J Mol Sci 2021; 22:ijms22158340. [PMID: 34361107 PMCID: PMC8348795 DOI: 10.3390/ijms22158340] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Chemotactic cytokines-chemokines-control immune cell migration in the process of initiation and resolution of inflammatory conditions as part of the body's defense system. Many chemokines also participate in pathological processes leading up to and exacerbating the inflammatory state characterizing chronic inflammatory diseases. In this review, we discuss the role of dendritic cells (DCs) and the central chemokine receptor CCR7 in the initiation and sustainment of selected chronic inflammatory diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. We revisit the binary role that CCR7 plays in combatting and progressing cancer, and we discuss how CCR7 and DCs can be harnessed for the treatment of cancer. To provide the necessary background, we review the differential roles of the natural ligands of CCR7, CCL19, and CCL21 and how they direct the mobilization of activated DCs to lymphoid organs and control the formation of associated lymphoid tissues (ALTs). We provide an overview of DC subsets and, briefly, elaborate on the different T-cell effector types generated upon DC-T cell priming. In the conclusion, we promote CCR7 as a possible target of future drugs with an antagonistic effect to reduce inflammation in chronic inflammatory diseases and an agonistic effect for boosting the reactivation of the immune system against cancer in cell-based and/or immune checkpoint inhibitor (ICI)-based anti-cancer therapy.
Collapse
|
47
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Rodriguez AB, Peske JD, Woods AN, Leick KM, Mauldin IS, Meneveau MO, Young SJ, Lindsay RS, Melssen MM, Cyranowski S, Parriott G, Conaway MR, Fu YX, Slingluff CL, Engelhard VH. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Rep 2021; 36:109422. [PMID: 34289373 PMCID: PMC8362934 DOI: 10.1016/j.celrep.2021.109422] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated tertiary lymphoid structures (TA-TLS) are associated with enhanced patient survival and responsiveness to cancer therapies, but the mechanisms underlying their development are unknown. We show here that TA-TLS development in murine melanoma is orchestrated by cancer-associated fibroblasts (CAF) with characteristics of lymphoid tissue organizer cells that are induced by tumor necrosis factor receptor signaling. CAF organization into reticular networks is mediated by CD8 T cells, while CAF accumulation and TA-TLS expansion depend on CXCL13-mediated recruitment of B cells expressing lymphotoxin-α1β2. Some of these elements are also overrepresented in human TA-TLS. Additionally, we demonstrate that immunotherapy induces more and larger TA-TLS that are more often organized with discrete T and B cell zones, and that TA-TLS presence, number, and size are correlated with reduced tumor size and overall response to checkpoint immunotherapy. This work provides a platform for manipulating TA-TLS development as a cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Anthony B Rodriguez
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - J David Peske
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Amber N Woods
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Katie M Leick
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ileana S Mauldin
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Max O Meneveau
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Samuel J Young
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Robin S Lindsay
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Marit M Melssen
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Salwador Cyranowski
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Geoffrey Parriott
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark R Conaway
- Division of Translational Research & Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Craig L Slingluff
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Victor H Engelhard
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
49
|
Worrell JC, MacLeod MKL. Stromal-immune cell crosstalk fundamentally alters the lung microenvironment following tissue insult. Immunology 2021; 163:239-249. [PMID: 33556186 PMCID: PMC8014587 DOI: 10.1111/imm.13319] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Communication between stromal and immune cells is essential to maintain tissue homeostasis, mount an effective immune response and promote tissue repair. This 'crosstalk' occurs in both the steady state and following a variety of insults, for example, in response to local injury, at sites of infection or cancer. What do we mean by crosstalk between cells? Reciprocal activation and/or regulation occurs between immune and stromal cells, by direct cell contact and indirect mechanisms, including the release of soluble cytokines. Moving beyond cell-to-cell contact, this review investigates the complexity of 'cross-space' cellular communication. We highlight different examples of cellular communication by a variety of lung stromal and immune cells following tissue insults. This review examines how the 'geography of the lung microenvironment' is altered in various disease states; more specifically, we investigate how this influences lung epithelial cells and fibroblasts via their communication with immune cells and each other.
Collapse
Affiliation(s)
- Julie C. Worrell
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Megan K. L. MacLeod
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| |
Collapse
|
50
|
Lymph-Derived Neutrophils Primarily Locate to the Subcapsular and Medullary Sinuses in Resting and Inflamed Lymph Nodes. Cells 2021; 10:cells10061486. [PMID: 34204825 PMCID: PMC8231499 DOI: 10.3390/cells10061486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Neutrophils are the first immune cells to be recruited from the blood to the tissue site of an infection or inflammation. It has been suggested that neutrophils are capable of migrating from the infected tissue via lymphatic vessels to the draining lymph nodes. However, it remains elusive as to which areas within the lymph nodes can be reached by such reversely migrating cells. To address this question, we applied a model for adoptive neutrophil transfer into the afferent lymphatic vessel that drains towards the popliteal lymph node in mice. We showed that resting and in vitro-activated neutrophils did not enter the lymph node parenchyma but localized primarily in the subcapsular and medullary sinuses. Within the medulla, neutrophils show random migration and are able to sense laser-induced sterile tissue injury by massively swarming to the damaged tissue site. Co-injected dendritic cells supported the entry of resting neutrophils into the lymph node parenchyma via the subcapsular sinus. In contrast, in vivo-activated adoptively transferred neutrophils were capable of migrating into the interfollicular areas of the lymph node. Collectively, the data presented here give further insights into the functional behavior of neutrophils within the lymph nodes.
Collapse
|