1
|
Hong Y, Liu Y, Shen H, Li B, Li Q. A strategy for synergistic enhancement of immune circulation in head and neck squamous cell carcinoma by novel nucleic acid drug therapy and immunotherapy. J Transl Med 2025; 23:354. [PMID: 40114181 PMCID: PMC11927285 DOI: 10.1186/s12967-025-06344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
Studies have shown that in the pathogenesis of head and neck squamous cell carcinoma, immune circulation obstruction caused by various factors including metabolic abnormalities, gene mutations, and matrix barrier, is a critical factor for the induction of tumor development and progression. Therefore, the immunotherapy strategy of killing head and neck squamous cell carcinoma cells by an enhanced immune circulation mechanism has attracted much attention. In addition, the rapid development of new nucleic acid drug therapy, such as mRNA, oligonucleotide and small guide RNA (sgRNA), has taken immunotherapy of head and neck squamous cell carcinoma (immune checkpoint inhibitors, tumor vaccines, cellular immunotherapy, cytokines and adjuvants, etc.) to a new level. The combination of nucleic acid therapy with immunotherapy developed for its therapeutic properties has brought a new direction for the diagnosis and treatment of head and neck squamous cell carcinoma, and the combination of the two has had considerable curative effect to patients with refractory/recurrent head and neck squamous cell carcinoma. In this review, we summarized the latest progress of nucleic acid therapy applied to conventional immunotherapy for head and neck squamous cell carcinoma, discussed its mechanism of action and efficacy, and looked into the future development trend.
Collapse
Affiliation(s)
- Yangjian Hong
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanyang Liu
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Huize Shen
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Bowen Li
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Medicine(HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau DD, Shapiro VS, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. Nat Commun 2024; 15:10163. [PMID: 39580479 PMCID: PMC11585635 DOI: 10.1038/s41467-024-54344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
Germinal center (GC) formation, which is an integrant part of humoral immunity, involves energy-consuming metabolic reprogramming. Rag-GTPases are known to signal amino acid availability to cellular pathways that regulate nutrient distribution such as the mechanistic target of rapamycin complex 1 (mTORC1) pathway and the transcription factors TFEB and TFE3. However, the contribution of these factors to humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and to generate plasmablasts during both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish the Rag GTPase-TFEB/TFE3 pathway as a likely mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA.
| |
Collapse
|
3
|
Rosenlehner T, Pennavaria S, Akçabozan B, Jahani S, O'Neill TJ, Krappmann D, Straub T, Kranich J, Obst R. Reciprocal regulation of mTORC1 signaling and ribosomal biosynthesis determines cell cycle progression in activated T cells. Sci Signal 2024; 17:eadi8753. [PMID: 39436996 DOI: 10.1126/scisignal.adi8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Ribosomal biosynthesis in nucleoli is an energy-demanding process driven by all RNA polymerases and hundreds of auxiliary proteins. We investigated how this process is regulated in activated T lymphocytes by T cell receptor (TCR) signals and the multiprotein complexes mTORC1 and mTORC2, both of which contain the kinase mTOR. Deficiency in mTORC1 slowed the proliferation of T cells, with further delays in each consecutive division, an effect not seen with deficiency in mTORC2. mTORC1 signaling was stimulated by components of conventional TCR signaling, and, reciprocally, TCR sensitivity was decreased by mTORC1 inhibition. The substantial increase in the amount of RNA per cell induced by TCR activation was reduced by 50% by deficiency in mTORC1, but not in mTORC2 or in S6 kinases 1 and 2, which are activated downstream of mTORC1. RNA-seq data showed that mTORC1 deficiency reduced the abundance of all RNA biotypes, although rRNA processing was largely intact in activated T cells. Imaging cytometry with FISH probes for nascent pre-rRNA revealed that deletion of mTORC1, but not that of mTORC2, reduced the number and expansion of nucleolar sites of active transcription. Protein translation was consequently decreased by 50% in the absence of mTORC1. Inhibiting RNA polymerase I blocked not only proliferation but also mTORC1 signaling. Our data show that TCR signaling, mTORC1 activity, and ribosomal biosynthesis in the nucleolus regulate each other during biomass production in clonally expanding T cells.
Collapse
Affiliation(s)
- Teresa Rosenlehner
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shiva Jahani
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas J O'Neill
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Lorefice L, Pitzalis M, Zoledziewska M. Intermittent and periodic fasting - Evidence and perspectives in multiple sclerosis. Mult Scler Relat Disord 2024; 88:105744. [PMID: 38914047 DOI: 10.1016/j.msard.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Multiple sclerosis (MS) is a complex neurological disease characterized by great variability in clinical presentation, including the radiological features, and degree of disability. Both genetics and environment contribute to disease etiopathogenesis. Because MS is more common in Western countries, and diet has been proposed among the etiologic factors. However, based on the several studies published thus far, principally involving small cohorts, there is no described diet-protocol to be applied in clinical practice as a supplement to the standard immunomodulatory treatment of MS. Diet is an easily changeable factor thus the research on the diet importance in MS has been exploded in last years. Starting from the notions that diet can change lifespan and quality of life in general, and its improvement could be one of many contributing factors with effects on disease evolution, this review examines the evidence of the effects of intermittent fasting in a mouse model of MS; the evidence derived from clinical trials; and future perspectives.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, ASL Cagliari, Department of Medical Sciences and Public Health, Binaghi Hospital, University of Cagliari, via Is Guadazzonis 2, Cagliari 09126
| | - Maristella Pitzalis
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato 09042, Sardinia, Italy
| | - Magdalena Zoledziewska
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato 09042, Sardinia, Italy.
| |
Collapse
|
5
|
Meza-Perez S, Liu M, Silva-Sanchez A, Morrow CD, Eipers PG, Lefkowitz EJ, Ptacek T, Scharer CD, Rosenberg AF, Hill DD, Arend RC, Gray MJ, Randall TD. Proteobacteria impair anti-tumor immunity in the omentum by consuming arginine. Cell Host Microbe 2024; 32:1177-1191.e7. [PMID: 38942027 PMCID: PMC11245731 DOI: 10.1016/j.chom.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter G Eipers
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Travis Ptacek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander F Rosenberg
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dave D Hill
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
Chapman NM, Chi H. Metabolic rewiring and communication in cancer immunity. Cell Chem Biol 2024; 31:862-883. [PMID: 38428418 PMCID: PMC11177544 DOI: 10.1016/j.chembiol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The immune system shapes tumor development and progression. Although immunotherapy has transformed cancer treatment, its overall efficacy remains limited, underscoring the need to uncover mechanisms to improve therapeutic effects. Metabolism-associated processes, including intracellular metabolic reprogramming and intercellular metabolic crosstalk, are emerging as instructive signals for anti-tumor immunity. Here, we first summarize the roles of intracellular metabolic pathways in controlling immune cell function in the tumor microenvironment. How intercellular metabolic communication regulates anti-tumor immunity, and the impact of metabolites or nutrients on signaling events, are also discussed. We then describe how targeting metabolic pathways in tumor cells or intratumoral immune cells or via nutrient-based interventions may boost cancer immunotherapies. Finally, we conclude with discussions on profiling and functional perturbation methods of metabolic activity in intratumoral immune cells, and perspectives on future directions. Uncovering the mechanisms for metabolic rewiring and communication in the tumor microenvironment may enable development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau D, Shapiro V, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582122. [PMID: 38463988 PMCID: PMC10925109 DOI: 10.1101/2024.02.26.582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 pathway as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
8
|
Raynor JL, Chi H. Nutrients: Signal 4 in T cell immunity. J Exp Med 2024; 221:e20221839. [PMID: 38411744 PMCID: PMC10899091 DOI: 10.1084/jem.20221839] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
T cells are integral in mediating adaptive immunity to infection, autoimmunity, and cancer. Upon immune challenge, T cells exit from a quiescent state, followed by clonal expansion and effector differentiation. These processes are shaped by three established immune signals, namely antigen stimulation (Signal 1), costimulation (Signal 2), and cytokines (Signal 3). Emerging findings reveal that nutrients, including glucose, amino acids, and lipids, are crucial regulators of T cell responses and interplay with Signals 1-3, highlighting nutrients as Signal 4 to license T cell immunity. Here, we first summarize the functional importance of Signal 4 and the underlying mechanisms of nutrient transport, sensing, and signaling in orchestrating T cell activation and quiescence exit. We also discuss the roles of nutrients in programming T cell differentiation and functional fitness and how nutrients can be targeted to improve disease therapy. Understanding how T cells respond to Signal 4 nutrients in microenvironments will provide insights into context-dependent functions of adaptive immunity and therapeutic interventions.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
9
|
Li X, Zhu J, Zhao W, Zhu Y, Zhu L, Shi R, Wang Z, Pan H, Wang D. The Causal Effect of Obesity on the Risk of 15 Autoimmune Diseases: A Mendelian Randomization Study. Obes Facts 2023; 16:598-605. [PMID: 37827145 PMCID: PMC10697740 DOI: 10.1159/000534468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
INTRODUCTION Observational studies have shown that obesity is a risk factor for various autoimmune diseases. However, the causal relationship between obesity and autoimmune diseases is unclear. Mendelian randomization (MR) was used to investigate the causal effects of obesity on 15 autoimmune diseases. METHODS MR analysis employed instrumental variables, specifically single-nucleotide polymorphisms associated with obesity measures such as body mass index (BMI), waist circumference, hip circumference, and waist-to-hip ratio. The study utilized UK Biobank and FinnGen data to estimate the causal relationship between obesity and autoimmune diseases. RESULTS Genetically predicted BMI was associated with risk for five autoimmune diseases. The odds ratio per 1-SD increase in genetically predicted BMI, the OR was 1.28 (95% CI, 1.18-1.09; p < 0.001) for asthma, 1.37 (95% CI, 1.24-1.51; p < 0.001) for hypothyroidism, 1.52 (95% CI, 1.27-1.83; p < 0.001) for psoriasis, 1.22 (95% CI, 1.06-1.40; p = 0.005) for rheumatoid arthritis, and 1.55 (95% CI, 1.32-1.83; p < 0.001) for type 1 diabetes. However, after adjusting for genetic susceptibility to drinking and smoking, the correlation between BMI and rheumatoid arthritis was not statistically significant. Genetically predicted waist circumference, hip circumference, and waist and hip circumference were associated with 6, 6, and 1 autoimmune disease, respectively. CONCLUSION This study suggests that obesity may be associated with an increased risk of several autoimmune diseases, such as asthma, hypothyroidism, psoriasis, rheumatoid arthritis, and type 1 diabetes.
Collapse
Affiliation(s)
- Xunliang Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China,
| | - Jie Zhu
- Department of Infectious Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenman Zhao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyu Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Shi
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhijuan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haifeng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Zhang X, Li S, Malik I, Do MH, Ji L, Chou C, Shi W, Capistrano KJ, Zhang J, Hsu TW, Nixon BG, Xu K, Wang X, Ballabio A, Schmidt LS, Linehan WM, Li MO. Reprogramming tumour-associated macrophages to outcompete cancer cells. Nature 2023; 619:616-623. [PMID: 37380769 PMCID: PMC10719927 DOI: 10.1038/s41586-023-06256-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours1,2. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells3-6. Tumours are metabolically active and are populated by stroma cells7,8, but how environmental factors affect cancer cell competition remains largely unknown. Here we show that tumour-associated macrophages (TAMs) can be dietarily or genetically reprogrammed to outcompete MYC-overexpressing cancer cells. In a mouse model of breast cancer, MYC overexpression resulted in an mTORC1-dependent 'winner' cancer cell state. A low-protein diet inhibited mTORC1 signalling in cancer cells and reduced tumour growth, owing unexpectedly to activation of the transcription factors TFEB and TFE3 and mTORC1 in TAMs. Diet-derived cytosolic amino acids are sensed by Rag GTPases through the GTPase-activating proteins GATOR1 and FLCN to control Rag GTPase effectors including TFEB and TFE39-14. Depletion of GATOR1 in TAMs suppressed the activation of TFEB, TFE3 and mTORC1 under the low-protein diet condition, causing accelerated tumour growth; conversely, depletion of FLCN or Rag GTPases in TAMs activated TFEB, TFE3 and mTORC1 under the normal protein diet condition, causing decelerated tumour growth. Furthermore, mTORC1 hyperactivation in TAMs and cancer cells and their competitive fitness were dependent on the endolysosomal engulfment regulator PIKfyve. Thus, noncanonical engulfment-mediated Rag GTPase-independent mTORC1 signalling in TAMs controls competition between TAMs and cancer cells, which defines a novel innate immune tumour suppression pathway that could be targeted for cancer therapy.
Collapse
Affiliation(s)
- Xian Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shun Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isha Malik
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mytrang H Do
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Liangliang Ji
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chun Chou
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Shi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristelle J Capistrano
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jing Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ting-Wei Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Briana G Nixon
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Ke Xu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
- META Pharmaceuticals, Shenzhen, China
| | - Xinxin Wang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
11
|
Zhang H, Feng H, Yu T, Zhang M, Liu Z, Ma L, Liu H. Construction of an oxidative stress-related lncRNAs signature to predict prognosis and the immune response in gastric cancer. Sci Rep 2023; 13:8822. [PMID: 37258567 DOI: 10.1038/s41598-023-35167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
Oxidative stress, as a characteristic of cellular aerobic metabolism, plays a crucial regulatory role in the development and metastasis of gastric cancer (GC). Long noncoding RNAs (lncRNAs) are important regulators in GC development. However, research on the prognostic patterns of oxidative stress-related lncRNAs (OSRLs) and their functions in the immune microenvironment is currently insufficient. We identified the OSRLs signature (DIP2A-IT1, DUXAP8, TP53TG1, SNHG5, AC091057.1, AL355001.1, ARRDC1-AS1, and COLCA1) from 185 oxidative stress-related genes in The Cancer Genome Atlas (TCGA) cohort via random survival forest and Cox analyses, and the results were subsequently validated in the Gene Expression Omnibus (GEO) dataset. The patients were divided into high- and low-risk groups by the risk score of the OSRLs signature. Longer overall survival was detected in the low-risk group than in the high-risk group in both the TCGA cohort (P < 0. 001, HR = 0.43, 95% CI 0.31-0.62) and the GEO cohort (P = 0.014, HR = 0.67, 95% CI 0.48-0.93). Next, multivariate Cox analysis identified that the risk model was an independent prognostic characteristic (HR > 1, P = 0.005), and time-dependent receiver operating characteristic (ROC) curve analysis and nomogram analysis were utilized to evaluate the predictive ability of the risk model. Next, gene set enrichment analysis revealed that the immune-related pathway, Wnt/[Formula: see text]-catenin signature, mammalian target of rapamycin complex 1 signature, and cytokine‒cytokine receptor interaction was enriched. High-risk patients were more responsive to CD200, TNFSF4, TNFSF9, and BTNL2 immune checkpoint blockade. The results of qRT‒PCR further proved the accuracy of our bioinformatic analysis. Overall, our study identified a novel OSRLs signature that can serve as a promising biomarker and prognostic indicator, which provides a personalized predictive approach for patient prognosis evaluation and treatment.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Huawei Feng
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, 110036, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, 110036, China
- Key Laboratory for Simulating Computation and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China
| | - Tiansong Yu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Man Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co, Shenyang, 110036, China
| | - Lidan Ma
- Dandong Customs Integrated Technical Service Center, Dandong, 118000, China
| | - Hongsheng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, 110036, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, 110036, China.
- Key Laboratory for Simulating Computation and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China.
| |
Collapse
|
12
|
Solanki S, Sanchez K, Ponnusamy V, Kota V, Bell HN, Cho CS, Kowalsky AH, Green M, Lee JH, Shah YM. Dysregulated Amino Acid Sensing Drives Colorectal Cancer Growth and Metabolic Reprogramming Leading to Chemoresistance. Gastroenterology 2023; 164:376-391.e13. [PMID: 36410445 PMCID: PMC10448739 DOI: 10.1053/j.gastro.2022.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is a devastating disease that is highly modulated by dietary nutrients. Mechanistic target of rapamycin complex 1 (mTORC1) contributes to tumor growth and limits therapy responses. Growth factor signaling is a major mechanism of mTORC1 activation. However, compensatory pathways exist to sustain mTORC1 activity after therapies that target oncogenic growth factor signaling. Amino acids potently activate mTORC1 via amino acid-sensing GTPase activity towards Rags (GATOR). The role of amino acid-sensing pathways in CRC is unclear. METHODS Human colon cancer cell lines, preclinical intestinal epithelial-specific GATOR1 and GATOR2 knockout mice subjected to colitis-induced or sporadic colon tumor models, small interfering RNA screening targeting regulators of mTORC1, and tissues of patients with CRC were used to assess the role of amino acid sensing in CRC. RESULTS We identified loss-of-function mutations of the GATOR1 complex in CRC and showed that altered expression of amino acid-sensing pathways predicted poor patient outcomes. We showed that dysregulated amino acid-sensing induced mTORC1 activation drives colon tumorigenesis in multiple mouse models. We found amino acid-sensing pathways to be essential in the cellular reprogramming of chemoresistance, and chemotherapeutic-resistant patients with colon cancer exhibited de-regulated amino acid sensing. Limiting amino acids in in vitro and in vivo models (low-protein diet) reverted drug resistance, revealing a metabolic vulnerability. CONCLUSIONS Our findings suggest a critical role for amino acid-sensing pathways in driving CRC and highlight the translational implications of dietary protein intervention in CRC.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Katherine Sanchez
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Varun Ponnusamy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Vasudha Kota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Allison H Kowalsky
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael Green
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Departments of Radiation Oncology and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
13
|
Redox Remodeling by Nutraceuticals for Prevention and Treatment of Acute and Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12010132. [PMID: 36670995 PMCID: PMC9855137 DOI: 10.3390/antiox12010132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Antioxidant-rich dietary regimens are considered the best practice to maintain health, control inflammation, and prevent inflammatory diseases. Yet, nutraceuticals as food supplements are self-prescribed and purchasable over the counter by healthy individuals for the purpose of beneficial effects on fitness and aging. Hence, the effectiveness, safety, and correct intake of these compounds need to be better explored. Since redox-modulating activity of these compounds appears to be involved in activation and or suppression of immune cells, the preventive use of nutraceuticals is very attractive even for healthy people. This review focuses on redox- and immunomodulating nutraceuticals in the context of diabetes mellitus (DM). In fact, DM is an illustrative disease of latent and predictable inflammatory pathogenetic processes set out and sustained by oxidative stress. DM has been thoroughly investigated through in vitro and in vivo models. Furthermore, human DM is characterized by uncontrolled levels of glucose, a pivotal factor shaping immune responses. Hence, antioxidant nutraceuticals with multifaced activities, including glucose keeping, are described here. A greater number of such multi-player nutraceuticals might be identified using DM animal models and validated in clinical settings on genetic and environmental high-risk individuals.
Collapse
|
14
|
Norcantharidin liposome emulsion hybrid delivery system enhances PD-1/PD-L1 immunotherapy by agonizing the non-canonical NF-κB pathway. Int J Pharm 2022; 628:122361. [DOI: 10.1016/j.ijpharm.2022.122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
15
|
Kao KC, Vilbois S, Tsai CH, Ho PC. Metabolic communication in the tumour-immune microenvironment. Nat Cell Biol 2022; 24:1574-1583. [PMID: 36229606 DOI: 10.1038/s41556-022-01002-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/29/2022] [Indexed: 01/18/2023]
Abstract
The metabolically hostile tumour microenvironment imposes barriers to tumour-infiltrating immune cells and impedes durable clinical remission following immunotherapy. Metabolic communication between cancer cells and their neighbouring immune cells could determine the amplitude and type of immune responses, highlighting a potential involvement of metabolic crosstalk in immune surveillance and escape. In this Review, we explore tumour-immune metabolic crosstalk and discuss potential nutrient-limiting strategies that favour anti-tumour immune responses.
Collapse
Affiliation(s)
- Kung-Chi Kao
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Stefania Vilbois
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
16
|
Nixon BG, Chou C, Krishna C, Dadi S, Michel AO, Cornish AE, Kansler ER, Do MH, Wang X, Capistrano KJ, Rudensky AY, Leslie CS, Li MO. Cytotoxic granzyme C-expressing ILC1s contribute to antitumor immunity and neonatal autoimmunity. Sci Immunol 2022; 7:eabi8642. [PMID: 35394814 DOI: 10.1126/sciimmunol.abi8642] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate lymphocytes are integral components of the cellular immune system that can coordinate host defense against a multitude of challenges and trigger immunopathology when dysregulated. Natural killer (NK) cells and innate lymphoid cells (ILCs) are innate immune effectors postulated to functionally mirror conventional cytotoxic T lymphocytes and helper T cells, respectively. Here, we showed that the cytolytic molecule granzyme C was expressed in cells with the phenotype of type 1 ILCs (ILC1s) in mouse liver and salivary gland. Cell fate-mapping and transfer studies revealed that granzyme C-expressing innate lymphocytes could be derived from ILC progenitors and did not interconvert with NK cells, ILC2s, or ILC3s. Granzyme C defined a maturation state of ILC1s. These granzyme C-expressing ILC1s required the transcription factors T-bet and, to a lesser extent, Eomes and support from transforming growth factor-β (TGF-β) signaling for their maintenance in the salivary gland. In a transgenic mouse breast cancer model, depleting ILC1s caused accelerated tumor growth. ILC1s gained granzyme C expression following interleukin-15 (IL-15) stimulation, which enabled perforin-mediated cytotoxicity. Constitutive activation of STAT5, a transcription factor regulated by IL-15, in granzyme C-expressing ILC1s triggered lethal perforin-dependent autoimmunity in neonatal mice. Thus, granzyme C marks a cytotoxic effector state of ILC1s, broadening their function beyond "helper-like" lymphocytes.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY 10065, USA
| | - Chun Chou
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Saïda Dadi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adam O Michel
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew E Cornish
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily R Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mytrang H Do
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY 10065, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY 10065, USA
| | | | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY 10065, USA
| |
Collapse
|
17
|
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 2022; 55:14-30. [PMID: 35021054 PMCID: PMC8842882 DOI: 10.1016/j.immuni.2021.12.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Adaptive immune responses mediated by T cells and B cells are crucial for protective immunity against pathogens and tumors. Differentiation and function of immune cells require dynamic reprogramming of cellular metabolism. Metabolic inputs, pathways, and enzymes display remarkable flexibility and heterogeneity, especially in vivo. How metabolic plasticity and adaptation dictate functional specialization of immune cells is fundamental to our understanding and therapeutic modulation of the immune system. Extensive progress has been made in characterizing the effects of metabolic networks on immune cell fate and function in discrete microenvironments or immunological contexts. In this review, we summarize how rewiring of cellular metabolism determines the outcome of adaptive immunity in vivo, with a focus on how metabolites, nutrients, and driver genes in immunometabolism instruct cellular programming and immune responses during infection, inflammation, and cancer in mice and humans. Understanding context-dependent metabolic remodeling will manifest legitimate opportunities for therapeutic intervention of human disease.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
18
|
Ortega-Molina A, Lebrero-Fernández C, Sanz A, Deleyto-Seldas N, Plata-Gómez AB, Menéndez C, Graña-Castro O, Caleiras E, Efeyan A. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep 2021; 36:109372. [PMID: 34260908 PMCID: PMC8355512 DOI: 10.1016/j.celrep.2021.109372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
B lymphocytes are exquisitely sensitive to fluctuations in nutrient signaling by the Rag GTPases, and 15% of follicular lymphomas (FLs) harbor activating mutations in RRAGC. Hence, a potential therapeutic approach against malignant B cells is to inhibit Rag GTPase signaling, but because such inhibitors are still to be developed, efficacy and safety remain unknown. We generated knockin mice expressing a hypomorphic variant of RagC (Q119L); RagCQ119L/+ mice are viable and show attenuated nutrient signaling. B lymphocyte activation is cell-intrinsically impaired in RagCQ119L/+ mice, which also show significant suppression of genetically induced lymphomagenesis and autoimmunity. Surprisingly, no overt systemic trade-offs or phenotypic alterations caused by partial suppression of nutrient signaling are seen in other organs, and RagCQ119L/+ mice show normal longevity and normal age-dependent health decline. These results support the efficacy and safety of moderate inhibition of nutrient signaling against pathological B cells.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain.
| | - Cristina Lebrero-Fernández
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Camino Menéndez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
19
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
20
|
Blagih J, Hennequart M, Zani F. Tissue Nutrient Environments and Their Effect on Regulatory T Cell Biology. Front Immunol 2021; 12:637960. [PMID: 33868263 PMCID: PMC8050341 DOI: 10.3389/fimmu.2021.637960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for mitigating inflammation. Tregs are found in nearly every tissue and play either beneficial or harmful roles in the host. The availability of various nutrients can either enhance or impair Treg function. Mitochondrial oxidative metabolism plays a major role in supporting Treg differentiation and fitness. While Tregs rely heavily on oxidation of fatty acids to support mitochondrial activity, they have found ways to adapt to different tissue types, such as tumors, to survive in competitive environments. In addition, metabolic by-products from commensal organisms in the gut also have a profound impact on Treg differentiation. In this review, we will focus on the core metabolic pathways engaged in Tregs, especially in the context of tissue nutrient environments, and how they can affect Treg function, stability and differentiation.
Collapse
Affiliation(s)
| | | | - Fabio Zani
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
21
|
Zhang Y, Hu H, Liu W, Yan SM, Li Y, Tan L, Chen Y, Liu J, Peng Z, Yuan Y, Huang W, Yu F, He X, Li B, Zhang H. Amino acids and RagD potentiate mTORC1 activation in CD8 + T cells to confer antitumor immunity. J Immunother Cancer 2021; 9:e002137. [PMID: 33883257 PMCID: PMC8061841 DOI: 10.1136/jitc-2020-002137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the tumor microenvironment, tumor cells are able to suppress antitumor immunity by competing for essential nutrients, including amino acids. However, whether amino acid depletion modulates the activity of CD8+ tumor-infiltrating lymphocytes (TILs) is unclear. METHOD In this study, we evaluated the roles of amino acids and the Rag complex in regulating mammalian target of rapamycin complex 1 (mTORC1) signaling in CD8+ TILs. RESULTS We discovered that the Rag complex, particularly RagD, was crucial for CD8+ T-cell antitumor immunity. RagD expression was positively correlated with the antitumor response of CD8+ TILs in both murine syngeneic tumor xenografts and clinical human colon cancer samples. On RagD deficiency, CD8+ T cells were rendered more dysfunctional, as demonstrated by attenuation of mTORC1 signaling and reductions in proliferation and cytokine secretion. Amino acids maintained RagD-mediated mTORC1 translocation to the lysosome, thereby achieving maximal mTORC1 activity in CD8+ T cells. Moreover, the limited T-cell access to leucine (LEU), overshadowed by tumor cell amino acid consumption, led to impaired RagD-dependent mTORC1 activity. Finally, combined with antiprogrammed cell death protein 1 antibody, LEU supplementation improved T-cell immunity in MC38 tumor-bearing mice in vivo. CONCLUSION Our results revealed that robust signaling of amino acids by RagD and downstream mTORC1 signaling were crucial for T-cell receptor-initiated antitumor immunity. The characterization the role of RagD and LEU in nutrient mTORC1 signaling in TILs might suggest potential therapeutic strategies based on the manipulation of RagD and its upstream pathway.
Collapse
Affiliation(s)
- Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongrong Hu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiwei Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shu-Mei Yan
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuzhuang Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Yingshi Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Liu
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhilin Peng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Fei Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
T cell metabolism in homeostasis and cancer immunity. Curr Opin Biotechnol 2021; 68:240-250. [PMID: 33676144 DOI: 10.1016/j.copbio.2021.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
T cells shape immune responses in cancer, autoimmunity and infection, in which CD4+ T helper (Th) and CD8+ T cells mediate effector responses that are suppressed by regulatory T (Treg) cells. The balance between effector T cell and Treg cell function orchestrates immune homeostasis and functional programming, with important contributions to the onset and progression of cancer. Cellular metabolism is dynamically rewired in T cells in response to environmental cues and dictates various aspects of T cell function. In this review, we summarize recent findings on how cellular metabolism modulates effector T cell and Treg cell functional fitness in homeostasis and cancer immunity, and highlight the therapeutic implications of targeting immunometabolic pathways for cancer and other diseases.
Collapse
|
23
|
|
24
|
Lercher A, Baazim H, Bergthaler A. Systemic Immunometabolism: Challenges and Opportunities. Immunity 2020; 53:496-509. [PMID: 32937151 PMCID: PMC7491485 DOI: 10.1016/j.immuni.2020.08.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Over the past 10 years, the field of immunometabolism made great strides to unveil the crucial role of intracellular metabolism in regulating immune cell function. Emerging insights into how systemic inflammation and metabolism influence each other provide a critical additional dimension on the organismal level. Here, we discuss the concept of systemic immunometabolism and review the current understanding of the communication circuits that underlie the reciprocal impact of systemic inflammation and metabolism across organs in inflammatory and infectious diseases, as well as how these mechanisms apply to homeostasis. We present current challenges of systemic immunometabolic research, and in this context, highlight opportunities and put forward ideas to effectively explore organismal physiological complexity in both health and disease.
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
25
|
Huang X, Zhang G, Bai X, Liang T. Reviving the role of MET in liver cancer therapy and vaccination: an autophagic perspective. Oncoimmunology 2020; 9:1818438. [PMID: 33457099 PMCID: PMC7781811 DOI: 10.1080/2162402x.2020.1818438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 01/26/2023] Open
Abstract
Past failures in clinical trials have dampened the enthusiasm for studying the HGF receptor MET and postponed the development of MET-targeted drugs for cancer therapy. However, new evidence suggests that, at least in liver cancer, MET is still a promising therapeutic target, and may also be a potential target for cancer vaccines. This paper briefly highlights novel research advances in this rapidly-evolving field in the perspective of autophagy, and discusses future directions for further investigation of MET-based cancer therapy and vaccination.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Atif M, Mohr A, Conti F, Scatton O, Gorochov G, Miyara M. Metabolic Optimisation of Regulatory T Cells in Transplantation. Front Immunol 2020; 11:2005. [PMID: 33013855 PMCID: PMC7495149 DOI: 10.3389/fimmu.2020.02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells expressing the FOXP3 transcription factor are presently under investigation by many teams globally as a cellular therapy to induce tolerance in transplantation. This is primarily due to their immunosuppressive and homeostatic functions. Depending on the type of allograft, Treg cells will need to infiltrate and function in metabolically diverse microenvironments. This means that any resident and circulating Treg cells need to differentially adapt to counter acute or chronic allograft rejection. However, the links between Treg cell metabolism and function are still not entirely delineated. Current data suggest that Treg cells and their effector counterparts have different metabolite dependencies and metabolic programs. These properties could be exploited to optimize intragraft Treg cell function. In this review, we discuss the current paradigms regarding Treg cell metabolism and outline critical intracellular axes that link metabolism and function. Finally, we discuss how this knowledge could be clinically translated for the benefit of transplant patients.
Collapse
Affiliation(s)
- Mo Atif
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Centre for Liver and Gastrointestinal Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Audrey Mohr
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Filomena Conti
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Olivier Scatton
- Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Guy Gorochov
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Makoto Miyara
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
27
|
Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab 2020; 32:154-175. [PMID: 32649859 DOI: 10.1016/j.cmet.2020.06.010] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Amino acids are fundamental building blocks supporting life. Their role in protein synthesis is well defined, but they contribute to a host of other intracellular metabolic pathways, including ATP generation, nucleotide synthesis, and redox balance, to support cellular and organismal function. Immune cells critically depend on such pathways to acquire energy and biomass and to reprogram their metabolism upon activation to support growth, proliferation, and effector functions. Amino acid metabolism plays a key role in this metabolic rewiring, and it supports various immune cell functions beyond increased protein synthesis. Here, we review the mechanisms by which amino acid metabolism promotes immune cell function, and how these processes could be targeted to improve immunity in pathological conditions.
Collapse
Affiliation(s)
- Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
28
|
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 2020; 19:116. [PMID: 32680511 PMCID: PMC7367382 DOI: 10.1186/s12943-020-01234-1] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) characterized by the expression of the master transcription factor forkhead box protein p3 (Foxp3) suppress anticancer immunity, thereby hindering protective immunosurveillance of tumours and hampering effective antitumour immune responses in tumour-bearing hosts, constitute a current research hotspot in the field. However, Tregs are also essential for the maintenance of the immune tolerance of the body and share many molecular signalling pathways with conventional T cells, including cytotoxic T cells, the primary mediators of tumour immunity. Hence, the inability to specifically target and neutralize Tregs in the tumour microenvironment without globally compromising self-tolerance poses a significant challenge. Here, we review recent advances in characterizing tumour-infiltrating Tregs with a focus on the functional roles of costimulatory and inhibitory receptors in Tregs, evaluate their potential as clinical targets, and systematically summarize their roles in potential treatment strategies. Also, we propose modalities to integrate our increasing knowledge on Tregs phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Finally, we propose possible treatment strategies that can be used to develop Treg-targeted therapies.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
29
|
Huang H, Long L, Zhou P, Chapman NM, Chi H. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. Immunol Rev 2020; 295:15-38. [PMID: 32212344 PMCID: PMC8101438 DOI: 10.1111/imr.12845] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved serine/threonine kinase mTOR (mechanistic target of rapamycin) forms the distinct protein complexes mTORC1 and mTORC2 and integrates signals from the environment to coordinate downstream signaling events and various cellular processes. T cells rely on mTOR activity for their development and to establish their homeostasis and functional fitness. Here, we review recent progress in our understanding of the upstream signaling and downstream targets of mTOR. We also provide an updated overview of the roles of mTOR in T-cell development, homeostasis, activation, and effector-cell fate decisions, as well as its important impacts on the suppressive activity of regulatory T cells. Moreover, we summarize the emerging roles of mTOR in T-cell exhaustion and transdifferentiation. A better understanding of the contribution of mTOR to T-cell fate decisions will ultimately aid in the therapeutic targeting of mTOR in human disease.
Collapse
Affiliation(s)
- Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Peipei Zhou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
30
|
Saravia J, Raynor JL, Chapman NM, Lim SA, Chi H. Signaling networks in immunometabolism. Cell Res 2020; 30:328-342. [PMID: 32203134 PMCID: PMC7118125 DOI: 10.1038/s41422-020-0301-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adaptive immunity is essential for pathogen and tumor eradication, but may also trigger uncontrolled or pathological inflammation. T cell receptor, co-stimulatory and cytokine signals coordinately dictate specific signaling networks that trigger the activation and functional programming of T cells. In addition, cellular metabolism promotes T cell responses and is dynamically regulated through the interplay of serine/threonine kinases, immunological cues and nutrient signaling networks. In this review, we summarize the upstream regulators and signaling effectors of key serine/threonine kinase-mediated signaling networks, including PI3K–AGC kinases, mTOR and LKB1–AMPK pathways that regulate metabolism, especially in T cells. We also provide our perspectives about the pending questions and clinical applicability of immunometabolic signaling. Understanding the regulators and effectors of immunometabolic signaling networks may uncover therapeutic targets to modulate metabolic programming and T cell responses in human disease.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|