1
|
Delipetar B, Žarković Krolo J, Bedalov A, Kovačić D. A Neuroelectronic Interface with Microstructured Substrates for Spiral Ganglion Neurons Cultured In Vitro: Proof of Concept. BIOSENSORS 2025; 15:224. [PMID: 40277538 PMCID: PMC12025272 DOI: 10.3390/bios15040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
In this study, we present a proof-of-concept neuroelectronic interface (NEI) for extracellular stimulation and recording of neurophysiological activity in spiral ganglion neurons (SGNs) cultured in vitro on three-dimensional, micro-patterned substrates with customized microtopographies, integrated within a 196-channel microelectrode array (MEA). This approach enables mechanotaxis-driven neuronal contact guidance, promoting SGN growth and development, which is highly sensitive to artificial in vitro environments. The microtopography geometry was optimized based on our previous studies to enhance SGN alignment and neuron-electrode interactions. The NEI was validated using SGNs dissociated from rat pups in the prehearing period and cultured for seven days in vitro (DIV). We observed viable and proliferative cellular cultures with robust neurophysiological responses in the form of local field potentials (LFPs) resembling action potentials (APs), elicited both spontaneously and through electrical stimulation. These findings provide deeper insights into SGN behavior and neuron-microenvironment interactions, laying the groundwork for further advancements in neuroelectronic systems.
Collapse
Affiliation(s)
- Boris Delipetar
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (B.D.)
- The Center of Research Excellence for Science and Technology Integrating Mediterranean Region (STIM), University of Split, Ruđera Boškovića 31, 21000 Split, Croatia
- The Doctoral Program in Mechanical Engineering, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ruđera Boškovića 32, 21000 Split, Croatia
| | - Jelena Žarković Krolo
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (B.D.)
- The Center of Research Excellence for Science and Technology Integrating Mediterranean Region (STIM), University of Split, Ruđera Boškovića 31, 21000 Split, Croatia
- The Doctoral Program in Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Ana Bedalov
- The Doctoral Program in Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
- Bedalov d.o.o for Research, Development and Consulting, Ulica T. Antunovića 17, 21212 Kaštel Sućurac, Croatia
| | - Damir Kovačić
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (B.D.)
- The Center of Research Excellence for Science and Technology Integrating Mediterranean Region (STIM), University of Split, Ruđera Boškovića 31, 21000 Split, Croatia
| |
Collapse
|
2
|
Fielder M, Nair AK. Predicting ultrasound wave stimulated bone growth in bioinspired scaffolds using machine learning. J Mech Behav Biomed Mater 2024; 159:106684. [PMID: 39178821 DOI: 10.1016/j.jmbbm.2024.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
For conditions like osteoporosis, changes in bone pore geometry even when porosity is constant have been shown to correlate to increased fracture risk using techniques such as dual-energy x-ray absorptiometry (DXA) and computed tomography (CT). Additionally, studies have found that bone pore geometry can be characterized by ultrasound to determine fracture risk, since certain pore geometries can cause stress concentration which in turn will be a source for fracture. However, it is not yet fully understood if changes in pore geometry can be detected by ultrasound when the porosity is constant. Therefore, this study develops an unsupervised machine learning model classifying pore geometry between bioinspired and quadrilateral pore scaffolds with constant porosity using experimental ultrasound wave transmission data. Our results demonstrate that differences in pore geometry can be detected by ultrasound, even at constant porosity, and that these differences can be distinguished in an unsupervised manner with machine learning. For traumatic bone injuries and late-stage osteoporosis where fracture occurs, tissue scaffolds are used to aid the healing of fractures or bone loss. The scaffold design is optimized to match material properties closely with bone, and healing can be enhanced with ultrasound stimulation. In this study we predict the combined effects of ultrasound parameters, such as wave frequency and mode of displacement, and scaffold material properties on bone tissue growth. We therefore develop an unsupervised machine learning clustering model of bone tissue growth in the scaffolds using finite element analysis and bone growth algorithms evaluating effects of pore geometry, scaffold materials, ultrasound wave type and frequency, and mesenchymal stem cell distribution on bone tissue growth. The computational predictions of tissue growth agreed within 10% of comparable experimental studies. The data corresponding to pore geometry, mesenchymal stem cell distribution, and scaffold material demonstrate distinct clusters of total bone formation, while ultrasound frequency and mesenchymal stem cell distribution show distinct clusters in bone growth rate. These variables can be tuned to tailor the scaffold design and optimize the required amount and rate of bone growth to meet a patient's specific needs.
Collapse
Affiliation(s)
- Marco Fielder
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Arun K Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA; Institute for Nanoscience and Engineering, 731 W. Dickson Street, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
3
|
Zhang T, Shan W, Le Dot M, Xiao P. Structural Functions of 3D-Printed Polymer Scaffolds in Regulating Cell Fates and Behaviors for Repairing Bone and Nerve Injuries. Macromol Rapid Commun 2024; 45:e2400293. [PMID: 38885644 DOI: 10.1002/marc.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Tissue repair and regeneration, such as bone and nerve restoration, face significant challenges due to strict regulations within the immune microenvironment, stem cell differentiation, and key cell behaviors. The development of 3D scaffolds is identified as a promising approach to address these issues via the efficiently structural regulations on cell fates and behaviors. In particular, 3D-printed polymer scaffolds with diverse micro-/nanostructures offer a great potential for mimicking the structures of tissue. Consequently, they are foreseen as promissing pathways for regulating cell fates, including cell phenotype, differentiation of stem cells, as well as the migration and the proliferation of key cells, thereby facilitating tissue repairs and regenerations. Herein, the roles of structural functions of 3D-printed polymer scaffolds in regulating the fates and behaviors of numerous cells related to tissue repair and regeneration, along with their specific influences are highlighted. Additionally, the challenges and outlooks associated with 3D-printed polymer scaffolds with various structures for modulating cell fates are also discussed.
Collapse
Affiliation(s)
- Tongling Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Wenpeng Shan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Marie Le Dot
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
4
|
Akcay G, Luttge R. Microenvironments Matter: Advances in Brain-on-Chip. BIOSENSORS 2023; 13:551. [PMID: 37232912 PMCID: PMC10216565 DOI: 10.3390/bios13050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
To highlight the particular needs with respect to modeling the unique and complex organization of the human brain structure, we reviewed the state-of-the-art in devising brain models with engineered instructive microenvironments. To acquire a better perspective on the brain's working mechanisms, we first summarize the importance of regional stiffness gradients in brain tissue, varying per layer and the cellular diversities of the layers. Through this, one can acquire an understanding of the essential parameters in emulating the brain in vitro. In addition to the brain's organizational architecture, we addressed also how the mechanical properties have an impact on neuronal cell responses. In this respect, advanced in vitro platforms emerged and profoundly changed the methods of brain modeling efforts from the past, mainly focusing on animal or cell line research. The main challenges in imitating features of the brain in a dish are with regard to composition and functionality. In neurobiological research, there are now methods that aim to cope with such challenges by the self-assembly of human-derived pluripotent stem cells (hPSCs), i.e., brainoids. Alternatively, these brainoids can be used stand-alone or in conjunction with Brain-on-Chip (BoC) platform technology, 3D-printed gels, and other types of engineered guidance features. Currently, advanced in vitro methods have made a giant leap forward regarding cost-effectiveness, ease-of-use, and availability. We bring these recent developments together into one review. We believe our conclusions will give a novel perspective towards advancing instructive microenvironments for BoCs and the understanding of the brain's cellular functions either in modeling healthy or diseased states of the brain.
Collapse
Affiliation(s)
- Gulden Akcay
- Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Regina Luttge
- Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
- Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Losero E, Jagannath S, Pezzoli M, Goblot V, Babashah H, Lashuel HA, Galland C, Quack N. Neuronal growth on high-aspect-ratio diamond nanopillar arrays for biosensing applications. Sci Rep 2023; 13:5909. [PMID: 37041255 PMCID: PMC10090193 DOI: 10.1038/s41598-023-32235-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Monitoring neuronal activity with simultaneously high spatial and temporal resolution in living cell cultures is crucial to advance understanding of the development and functioning of our brain, and to gain further insights in the origin of brain disorders. While it has been demonstrated that the quantum sensing capabilities of nitrogen-vacancy (NV) centers in diamond allow real time detection of action potentials from large neurons in marine invertebrates, quantum monitoring of mammalian neurons (presenting much smaller dimensions and thus producing much lower signal and requiring higher spatial resolution) has hitherto remained elusive. In this context, diamond nanostructuring can offer the opportunity to boost the diamond platform sensitivity to the required level. However, a comprehensive analysis of the impact of a nanostructured diamond surface on the neuronal viability and growth was lacking. Here, we pattern a single crystal diamond surface with large-scale nanopillar arrays and we successfully demonstrate growth of a network of living and functional primary mouse hippocampal neurons on it. Our study on geometrical parameters reveals preferential growth along the nanopillar grid axes with excellent physical contact between cell membrane and nanopillar apex. Our results suggest that neuron growth can be tailored on diamond nanopillars to realize a nanophotonic quantum sensing platform for wide-field and label-free neuronal activity recording with sub-cellular resolution.
Collapse
Affiliation(s)
- Elena Losero
- School of Basic Sciences, Institute of Physics, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland.
- Division of Quantum Metrology and Nanotechnologies, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135, Torino, Italy.
- School of Engineering, Institute of Electrical and Micro Engineering, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland.
| | - Somanath Jagannath
- School of Life Sciences, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Maurizio Pezzoli
- School of Life Sciences, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Valentin Goblot
- School of Basic Sciences, Institute of Physics, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Hossein Babashah
- School of Basic Sciences, Institute of Physics, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Hilal A Lashuel
- School of Life Sciences, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Christophe Galland
- School of Basic Sciences, Institute of Physics, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Niels Quack
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia
- School of Engineering, Institute of Electrical and Micro Engineering, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Moslehi S, Rowland C, Smith JH, Griffiths W, Watterson WJ, Niell CM, Alemán BJ, Perez MT, Taylor RP. Comparison of fractal and grid electrodes for studying the effects of spatial confinement on dissociated retinal neuronal and glial behavior. Sci Rep 2022; 12:17513. [PMID: 36266414 PMCID: PMC9584887 DOI: 10.1038/s41598-022-21742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Understanding the impact of the geometry and material composition of electrodes on the survival and behavior of retinal cells is of importance for both fundamental cell studies and neuromodulation applications. We investigate how dissociated retinal cells from C57BL/6J mice interact with electrodes made of vertically-aligned carbon nanotubes grown on silicon dioxide substrates. We compare electrodes with different degrees of spatial confinement, specifically fractal and grid electrodes featuring connected and disconnected gaps between the electrodes, respectively. For both electrodes, we find that neuron processes predominantly accumulate on the electrode rather than the gap surfaces and that this behavior is strongest for the grid electrodes. However, the 'closed' character of the grid electrode gaps inhibits glia from covering the gap surfaces. This lack of glial coverage for the grids is expected to have long-term detrimental effects on neuronal survival and electrical activity. In contrast, the interconnected gaps within the fractal electrodes promote glial coverage. We describe the differing cell responses to the two electrodes and hypothesize that there is an optimal geometry that maximizes the positive response of both neurons and glia when interacting with electrodes.
Collapse
Affiliation(s)
- Saba Moslehi
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA
| | - Conor Rowland
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA
| | - Julian H. Smith
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA
| | - Willem Griffiths
- grid.170202.60000 0004 1936 8008Department of Biology, 1210 University of Oregon, Eugene, OR 97403 USA
| | - William J. Watterson
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA
| | - Cristopher M. Niell
- grid.170202.60000 0004 1936 8008Department of Biology, 1210 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403 USA
| | - Benjamín J. Alemán
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Oregon Center for Optical, Molecular and Quantum Science, 1274 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Phil and Penny Knight Campus for Accelerating Scientific Impact, 1505 University of Oregon, Franklin Blvd., Eugene, OR 97403 USA
| | - Maria-Thereza Perez
- grid.4514.40000 0001 0930 2361Division of Ophthalmology, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden ,grid.4514.40000 0001 0930 2361NanoLund, Lund University, 221 00 Lund, Sweden
| | - Richard P. Taylor
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Phil and Penny Knight Campus for Accelerating Scientific Impact, 1505 University of Oregon, Franklin Blvd., Eugene, OR 97403 USA
| |
Collapse
|
7
|
Mariano A, Bovio CL, Criscuolo V, Santoro F. Bioinspired micro- and nano-structured neural interfaces. NANOTECHNOLOGY 2022; 33:492501. [PMID: 35947922 DOI: 10.1088/1361-6528/ac8881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The development of a functional nervous system requires neurons to interact with and promptly respond to a wealth of biochemical, mechanical and topographical cues found in the neural extracellular matrix (ECM). Among these, ECM topographical cues have been found to strongly influence neuronal function and behavior. Here, we discuss how the blueprint of the architectural organization of the brain ECM has been tremendously useful as a source of inspiration to design biomimetic substrates to enhance neural interfaces and dictate neuronal behavior at the cell-material interface. In particular, we focus on different strategies to recapitulate cell-ECM and cell-cell interactions. In order to mimic cell-ECM interactions, we introduce roughness as a first approach to provide informative topographical biomimetic cues to neurons. We then examine 3D scaffolds and hydrogels, as softer 3D platforms for neural interfaces. Moreover, we will discuss how anisotropic features such as grooves and fibers, recapitulating both ECM fibrils and axonal tracts, may provide recognizable paths and tracks that neuron can follow as they develop and establish functional connections. Finally, we show how isotropic topographical cues, recapitulating shapes, and geometries of filopodia- and mushroom-like dendritic spines, have been instrumental to better reproduce neuron-neuron interactions for applications in bioelectronics and neural repair strategies. The high complexity of the brain architecture makes the quest for the fabrication of create more biologically relevant biomimetic architectures in continuous and fast development. Here, we discuss how recent advancements in two-photon polymerization and remotely reconfigurable dynamic interfaces are paving the way towards to a new class of smart biointerfaces forin vitroapplications spanning from neural tissue engineering as well as neural repair strategies.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
| | - Claudia Latte Bovio
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, I-80125, Naples, Italy
| | - Valeria Criscuolo
- Faculty of Electrical Engineering and IT, RWTH Aachen, D-52074, Germany
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
- Faculty of Electrical Engineering and IT, RWTH Aachen, D-52074, Germany
- Institute for Biological Information Processing-Bioelectronics, Forschungszentrum Juelich, D-52428, Germany
| |
Collapse
|
8
|
Pisciotta A, Lunghi A, Bertani G, Di Tinco R, Bertoni L, Orlandi G, Biscarini F, Bianchi M, Carnevale G. PEDOT: PSS promotes neurogenic commitment of neural crest-derived stem cells. Front Physiol 2022; 13:930804. [PMID: 36060701 PMCID: PMC9428488 DOI: 10.3389/fphys.2022.930804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Poly (3,4-ethylendioxythiophene) polystyrene sulphonate (PEDOT:PSS) is the workhorse of organic bioelectronics and is steadily gaining interest also in tissue engineering due to the opportunity to endow traditional biomaterials for scaffolds with conductive properties. Biomaterials capable of promoting neural stem cell differentiation by application of suitable electrical stimulation protocols are highly desirable in neural tissue engineering. In this study, we evaluated the adhesion, proliferation, maintenance of neural crest stemness markers and neurogenic commitment of neural crest-derived human dental pulp stem cells (hDPSCs) cultured on PEDOT:PSS nanostructured thin films deposited either by spin coating (SC-PEDOT) or by electropolymerization (ED-PEDOT). In addition, we evaluated the immunomodulatory properties of hDPSCs on PEDOT:PSS by investigating the expression and maintenance of the Fas ligand (FasL). We found that both SC-PEDOT and ED-PEDOT thin films supported hDPSCs adhesion and proliferation; however, the number of cells on the ED-PEDOT after 1 week of culture was significantly higher than that on SC-PEDOT. To be noted, both PEDOT:PSS films did not affect the stemness phenotype of hDPSCs, as indicated by the maintenance of the neural crest markers Nestin and SOX10. Interestingly, neurogenic induction was clearly promoted on ED-PEDOT, as indicated by the strong expression of MAP-2 and β—Tubulin-III as well as evident cytoskeletal reorganisation and appreciable morphology shift towards a neuronal-like shape. In addition, strong FasL expression was detected on both undifferentiated or undergoing neurogenic commitment hDPSCs, suggesting that ED-PEDOT supports the expression and maintenance of FasL under both expansion and differentiation conditions.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Sezione di Fisiologia, Università di Ferrara, Ferrara, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Life Sciences, Università di Modena e Reggio Emilia, Modena, Italy
| | - Michele Bianchi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- *Correspondence: Michele Bianchi,
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
9
|
Patel M, Ahn S, Koh WG. Topographical pattern for neuronal tissue engineering. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Procès A, Luciano M, Kalukula Y, Ris L, Gabriele S. Multiscale Mechanobiology in Brain Physiology and Diseases. Front Cell Dev Biol 2022; 10:823857. [PMID: 35419366 PMCID: PMC8996382 DOI: 10.3389/fcell.2022.823857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that mechanics play a critical role in regulating brain function at different scales. Downstream integration of mechanical inputs into biochemical signals and genomic pathways causes observable and measurable effects on brain cell fate and can also lead to important pathological consequences. Despite recent advances, the mechanical forces that influence neuronal processes remain largely unexplored, and how endogenous mechanical forces are detected and transduced by brain cells into biochemical and genetic programs have received less attention. In this review, we described the composition of brain tissues and their pronounced microstructural heterogeneity. We discuss the individual role of neuronal and glial cell mechanics in brain homeostasis and diseases. We highlight how changes in the composition and mechanical properties of the extracellular matrix can modulate brain cell functions and describe key mechanisms of the mechanosensing process. We then consider the contribution of mechanobiology in the emergence of brain diseases by providing a critical review on traumatic brain injury, neurodegenerative diseases, and neuroblastoma. We show that a better understanding of the mechanobiology of brain tissues will require to manipulate the physico-chemical parameters of the cell microenvironment, and to develop three-dimensional models that can recapitulate the complexity and spatial diversity of brain tissues in a reproducible and predictable manner. Collectively, these emerging insights shed new light on the importance of mechanobiology and its implication in brain and nerve diseases.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Yohalie Kalukula
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
11
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
12
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
13
|
The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells Int 2021; 2021:8124444. [PMID: 34349803 PMCID: PMC8328695 DOI: 10.1155/2021/8124444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
The surface topographies of artificial implants including surface roughness, surface groove size and orientation, and surface pore size and distribution have a great influence on the adhesion, migration, proliferation, and differentiation of nerve cells in the nerve regeneration process. Optimizing the surface topographies of biomaterials can be a key strategy for achieving excellent cell performance in various applications such as nerve tissue engineering. In this review, we offer a comprehensive summary of the surface topographies of nerve implants and their effects on nerve cell behavior. This review also emphasizes the latest work progress of the layered structure of the natural extracellular matrix that can be imitated by the material surface topology. Finally, the future development of surface topographies on nerve regeneration was prospectively remarked.
Collapse
|
14
|
Milos F, Tullii G, Gobbo F, Lodola F, Galeotti F, Verpelli C, Mayer D, Maybeck V, Offenhäusser A, Antognazza MR. High Aspect Ratio and Light-Sensitive Micropillars Based on a Semiconducting Polymer Optically Regulate Neuronal Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23438-23451. [PMID: 33983012 PMCID: PMC8161421 DOI: 10.1021/acsami.1c03537] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many nano- and microstructured devices capable of promoting neuronal growth and network formation have been previously investigated. In certain cases, topographical cues have been successfully complemented with external bias, by employing electrically conducting scaffolds. However, the use of optical stimulation with topographical cues was rarely addressed in this context, and the development of light-addressable platforms for modulating and guiding cellular growth and proliferation remains almost completely unexplored. Here, we develop high aspect ratio micropillars based on a prototype semiconducting polymer, regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), as an optically active, three-dimensional platform for embryonic cortical neurons. P3HT micropillars provide a mechanically compliant environment and allow a close contact with neuronal cells. The combined action of nano/microtopography and visible light excitation leads to effective optical modulation of neuronal growth and orientation. Embryonic neurons cultured on polymer pillars show a clear polarization effect and, upon exposure to optical excitation, a significant increase in both neurite and axon length. The biocompatible, microstructured, and light-sensitive platform developed here opens up the opportunity to optically regulate neuronal growth in a wireless, repeatable, and spatio-temporally controlled manner without genetic modification. This approach may be extended to other cell models, thus uncovering interesting applications of photonic devices in regenerative medicine.
Collapse
Affiliation(s)
- Frano Milos
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Federico Gobbo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
- Physics
Department, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Francesco Galeotti
- Istituto
di Scienze e Tecnologie Chimiche G. Natta (SCITEC), Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Chiara Verpelli
- Istituto
di Neuroscienze, Consiglio Nazionale delle
Ricerche, 20133 Milano, Italy
| | - Dirk Mayer
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Vanessa Maybeck
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| |
Collapse
|
15
|
Leclech C, Barakat AI. Is there a universal mechanism of cell alignment in response to substrate topography? Cytoskeleton (Hoboken) 2021; 78:284-292. [PMID: 33843154 DOI: 10.1002/cm.21661] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Cell alignment and elongation in the direction of anisotropic and aligned topographies are key manifestations of cellular contact guidance and are observed in many cell types. Whether this observation occurs through a universal mechanism remains to be established. In this Views article, we begin by presenting the most widely accepted model of topography-driven cell alignment which posits that anisotropic topographies impose lateral constraints on the growth of focal adhesions and actin stress fibers, thereby driving anisotropic force generation and cellular elongation and alignment. We then discuss particular scenarios where alternative or complementary mechanisms of cell alignment appear to be at play. These include the cases of specific cell types such as amoeboid-like cells and neurons as well as certain topography sizes. Finally, we review the role of the actin cytoskeleton in modulating topography-driven cell alignment and underscore the need for elucidating the role that other cytoskeletal elements play. We close by identifying key open questions the responses to which will significantly enhance our understanding of the role of cellular contact guidance in health and disease.
Collapse
Affiliation(s)
- Claire Leclech
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
16
|
Khan H, Beck C, Kunze A. Multi-curvature micropatterns unveil distinct calcium and mitochondrial dynamics in neuronal networks. LAB ON A CHIP 2021; 21:1164-1174. [PMID: 33543185 PMCID: PMC7990709 DOI: 10.1039/d0lc01205j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tangential curvatures are a key geometric feature of tissue folds in the human cerebral cortex. In the brain, these smoother and firmer bends are called gyri and sulci and form distinctive curved tissue patterns imposing a mechanical stimulus on neuronal networks. This stimulus is hypothesized to be essential for proper brain cell function but lacks in most standard neuronal cell assays. A variety of soft lithographic micropatterning techniques can be used to integrate round geometries in cell assays. Most microfabricated patterns, however, focus only on a small set of defined curvatures. In contrast, curvatures in the brain span a wide physical range, leaving it unknown which precise role distinct curvatures may play on neuronal cell signaling. Here we report a hydrogel-based multi-curvature design consisting of over twenty bands of distinct parallel curvature ranges to precisely engineer neuronal networks' growth and signaling under patterns of arcs. Monitoring calcium and mitochondrial dynamics in primary rodent neurons grown over two weeks in the multi-curvature patterns, we found that static calcium signaling was locally attenuated under higher curvatures (k > 0.01 μm-1). In contrast, to randomize growth, transient calcium signaling showed higher synchronicity when neurons formed networks in confined multi-curvature patterns. Additionally, we found that mitochondria showed lower motility under high curvatures (k > 0.01 μm-1) than under lower curvatures (k < 0.01 μm-1). Our results demonstrate how sensitive neuronal cell function may be linked and controlled through specific curved geometric features. Furthermore, the hydrogel-based multi-curvature design possesses high compatibility with various surfaces, allowing a flexible integration of geometric features into next-generation neuro devices, cell assays, tissue engineering, and implants.
Collapse
Affiliation(s)
- Hammad Khan
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, USA.
| | | | | |
Collapse
|
17
|
Sathe SR, Jain D, Koh CG, Yim EKF. POPX2 phosphatase enhances topographical contact guidance for cell morphology and migration. Biomed Mater 2021; 16:025020. [PMID: 33321483 DOI: 10.1088/1748-605x/abd3b5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Topography mediated contact guidance affects multiple cell behaviors such as establishment of cellular morphology and migration. The direction of cell migration is associated with the establishment of cell polarity, which also affects the primary cilia in migrating cells. POPX2, a partner of PIX2, is involved in pathways essential to primary cilium formation, while over-expression of POPX2 has been reported to cause a loss of cell polarity during migration. This study aims to examine how topographical cues direct morphological changes, and how topography affects the process of cellular migration and primary cilium architecture, in the context of POPX2 over-expression. Thus, the effect of anisotropic topography, 2 μm grating pattern on tissue-culture polystyrene, was used as a contact guidance cue to investigate the migration and cell polarity of POPX2 overexpressing cells, in comparison to control NIH3T3 fibroblast cells. We report that POPX2 overexpressing NIH3T3 cells were more sensitive to surface topographical cues as the cells became more elongated. In addition, these cues also affected focal adhesion alignment of POPX2 overexpressing cells. Cell migration was further studied using wound closure assays, in which the 2 μm gratings were designed to be either perpendicular or parallel to wound-induced cell migration direction, which would be agonistic or antagonistic to cell migration, respectively. We observed that both POPX2 overexpressing cells' migration direction and migration rate were more significantly influenced by gratings direction compared to control NIH3T3 cells. The migration paths of POPX2 overexpressing cells become more direct in the presence of anisotropic topographical cues. Further, cilia and centrosome alignment, which is important in cell migration, was also affected by the direction of gratings during this migration process. Collectively, enhancement of NIH3T3 cell sensitivity towards surface topography through POPX2 overexpression might reflect one of the mechanisms that combine biochemical and mechanical cues for directional cell migration.
Collapse
Affiliation(s)
- Sharvari R Sathe
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
18
|
Chen YJ, Huang YA, Ho CT, Yang JM, Chao JI, Li MC, Hwang E. A Nanodiamond-Based Surface Topography Downregulates the MicroRNA miR6236 to Enhance Neuronal Development and Regeneration. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yi-Ju Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Yung-An Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Chris T. Ho
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Jui-I Chao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Ming-Chia Li
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| |
Collapse
|
19
|
Wu Y, Wang M, Wang Y, Yang H, Qi H, Seicol BJ, Xie R, Guo L. A neuronal wiring platform through microridges for rationally engineered neural circuits. APL Bioeng 2020; 4:046106. [PMID: 33344876 PMCID: PMC7725535 DOI: 10.1063/5.0025921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
Precisely engineered neuronal circuits are promising for both fundamental research and clinical applications. However, randomly plating thousands of cells during neural network fabrication remains a major technical obstacle, which often results in a loss of tracking in neurons' identities. In this work, we demonstrated an accurate and unique neural wiring technique, mimicking neurons' natural affinity to microfibers. SU-8 microridges, imitating lie-down microfibers, were photolithographically patterned and then selectively coated with poly-l-lysine. We accurately plated Aplysia californica neurons onto designated locations. Plated neurons were immobilized by circular microfences. Furthermore, neurites regrew effectively along the microridges in vitro and reached adjacent neurons without undesirable crosstalks. Functional chemical synapses also formed between accurately wired neurons, enabling two-way transmission of electrical signals. Finally, we fabricated microridges on a microelectrode array. Neuronal spikes, stimulation-evoked synaptic activity, and putative synaptic adaption between connected neurons were observed. This biomimetic platform is simple to fabricate and effective with neurite pathfinding. Therefore, it can serve as a powerful tool for fabricating neuronal circuits with rational design, organized cellular communications, and fast prototyping.
Collapse
Affiliation(s)
- Yu Wu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Yong Wang
- Department of Otolaryngology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Huiran Yang
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hao Qi
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J. Seicol
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Liang Guo
- Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
21
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Wang J, Wang H, Mo X, Wang H. Reduced Graphene Oxide-Encapsulated Microfiber Patterns Enable Controllable Formation of Neuronal-Like Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004555. [PMID: 32875631 PMCID: PMC10865229 DOI: 10.1002/adma.202004555] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Indexed: 05/24/2023]
Abstract
Scaffold-guided formation of neuronal-like networks, especially under electrical stimulation, can be an appealing avenue toward functional restoration of injured nervous systems. Here, 3D conductive scaffolds are fabricated based on printed microfiber constructs using near-field electrostatic printing (NFEP) and graphene oxide (GO) coating. Various microfiber patterns are obtained from poly(l-lactic acid-co-caprolactone) (PLCL) using NFEP and complexity is achieved via modulating the fiber overlay angles (45°, 60°, 75°, 90°), fiber diameters (15 to 148 µm), and fiber spatial organization (spider web and tubular structure). Upon coating GO onto PLCL microfibers via a layer-by-layer (L-b-L) assembly technique and in situ reduction into reduced GO (rGO), the obtained conductive scaffolds, with 25-50 layers of rGO, demonstrate superior conductivity (≈0.95 S cm-1 ) and capability of inducing neuronal-like network formation along the conductive microfibers under electrical stimulation (100-150 mV cm-1 ). Both electric field (0-150 mV cm-1 ) and microfiber diameter (17-150 µm) affect neurite outgrowth (PC-12 cells and primary mouse hippocampal neurons) and the formation of orientated neuronal-like networks. With further demonstration of such guidance to neuronal cells, these conductive scaffolds may see versatile applications in nerve regeneration and neural engineering.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Haoyu Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
23
|
Abend A, Steele C, Schmidt S, Frank R, Jahnke HG, Zink M. Proliferation and Cluster Analysis of Neurons and Glial Cell Organization on Nanocolumnar TiN Sub-Strates. Int J Mol Sci 2020; 21:E6249. [PMID: 32872379 PMCID: PMC7503702 DOI: 10.3390/ijms21176249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterials employed for neural stimulation, as well as brain/machine interfaces, offer great perspectives to combat neurodegenerative diseases, while application of lab-on-a-chip devices such as multielectrode arrays is a promising alternative to assess neural function in vitro. For bioelectronic monitoring, nanostructured microelectrodes are required, which exhibit an increased surface area where the detection sensitivity is not reduced by the self-impedance of the electrode. In our study, we investigated the interaction of neurons (SH-SY5Y) and glial cells (U-87 MG) with nanocolumnar titanium nitride (TiN) electrode materials in comparison to TiN with larger surface grains, gold, and indium tin oxide (ITO) substrates. Glial cells showed an enhanced proliferation on TiN materials; however, these cells spread evenly distributed over all the substrate surfaces. By contrast, neurons proliferated fastest on nanocolumnar TiN and formed large cell agglomerations. We implemented a radial autocorrelation function of cellular positions combined with various clustering algorithms. These combined analyses allowed us to quantify the largest cluster on nanocolumnar TiN; however, on ITO and gold, neurons spread more homogeneously across the substrates. As SH-SY5Y cells tend to grow in clusters under physiologic conditions, our study proves nanocolumnar TiN as a potential bioactive material candidate for the application of microelectrodes in contact with neurons. To this end, the employed K-means clustering algorithm together with radial autocorrelation analysis is a valuable tool to quantify cell-surface interaction and cell organization to evaluate biomaterials' performance in vitro.
Collapse
Affiliation(s)
- Alice Abend
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| | - Chelsie Steele
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| | - Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Mareike Zink
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| |
Collapse
|
24
|
Yasodharababu M, Nair AK. A Multiscale Model to Predict Neuronal Cell Deformation with Varying Extracellular Matrix Stiffness and Topography. Cell Mol Bioeng 2020; 13:229-245. [PMID: 32426060 PMCID: PMC7225237 DOI: 10.1007/s12195-020-00615-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Neuronal cells are sensitive to mechanical properties of extracellular matrix (ECM) such as stiffness and topography. Cells contract and exert a force on ECM to detect the microenvironment, which activates the signaling pathway to influence the cell functions such as differentiation, migration, and proliferation. There are numerous transmembrane proteins that transmit signals; however, integrin and neural cellular adhesion molecules (NCAM) play an important role in sensing the ECM mechanical properties. Mechanotransduction of cell-ECM is the key to understand the influence of ECM stiffness and topography; therefore, in this study, we develop a multiscale computational model to investigate these properties. METHODS This model couples the molecular behavior of integrin and NCAM to microscale interactions of neuronal cell and the ECM. We analyze the atomistic/molecular behavior of integrin and NCAM due to mechanical stimuli using steered molecular dynamics. The microscale properties of the neuronal cell and the ECM are simulated using non-linear finite element analysis by applying cell contractility. RESULTS We predict that by increasing the ECM stiffness, a neuronal cell exerts greater stress on the ECM. However, this stress reaches a saturation value for a threshold stiffness of ECM, and the saturation value is affected by the ECM thickness, topography, and clustering of integrin and NCAMs. Further, the ECM topography leads to asymmetric stress and deformation in the neuronal cell. Predicted stress distribution in neuronal cell and ECM are consistent with experimental results from the literature. CONCLUSION The multiscale computational model will guide in selecting the optimal ECM stiffness and topography range for in vitro studies.
Collapse
Affiliation(s)
- Mohan Yasodharababu
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR USA
| | - Arun K. Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR USA
- Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson Street, Fayetteville, AR USA
| |
Collapse
|
25
|
Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS. Neuro-taxis: Neuronal movement in gradients of chemical and physical environments. Dev Neurobiol 2020; 80:361-377. [PMID: 32304173 DOI: 10.1002/dneu.22749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration. In this review, we discuss chemical (i.e., chemo- and hapto-) and physical (i.e., duro-) taxis phenomena on the movement of neurons including axonal elongation. In addition, we suggest topotaxis, the most recently proposed physical-taxis phenomenon, as another potential mechanism in the neuronal movement, based on the reports of neuronal recognition of and responses to nanotopography.
Collapse
Affiliation(s)
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | | - Christina Lanara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.,Physics Department, University of Crete, Heraklion, Crete, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
26
|
Besser RR, Bowles AC, Alassaf A, Carbonero D, Claure I, Jones E, Reda J, Wubker L, Batchelor W, Ziebarth N, Silvera R, Khan A, Maciel R, Saporta M, Agarwal A. Enzymatically crosslinked gelatin-laminin hydrogels for applications in neuromuscular tissue engineering. Biomater Sci 2020; 8:591-606. [PMID: 31859298 PMCID: PMC7141910 DOI: 10.1039/c9bm01430f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a water-soluble and non-toxic method to incorporate additional extracellular matrix proteins into gelatin hydrogels, while obviating the use of chemical crosslinkers such as glutaraldehyde. Gelatin hydrogels were fabricated using a range of gelatin concentrations (4%-10%) that corresponded to elastic moduli of approximately 1 kPa-25 kPa, respectively, a substrate stiffness relevant for multiple cell types. Microbial transglutaminase was then used to enzymatically crosslink a layer of laminin on top of gelatin hydrogels, resulting in 2-component gelatin-laminin hydrogels. Human induced pluripotent stem cell derived spinal spheroids readily adhered and rapidly extended axons on GEL-LN hydrogels. Axons displayed a more mature morphology and superior electrophysiological properties on GEL-LN hydrogels compared to the controls. Schwann cells on GEL-LN hydrogels adhered and proliferated normally, displayed a healthy morphology, and maintained the expression of Schwann cell specific markers. Lastly, skeletal muscle cells on GEL-LN hydrogels achieved long-term culture for up to 28 days without delamination, while expressing higher levels of terminal genes including myosin heavy chain, MyoD, MuSK, and M-cadherin suggesting enhanced maturation potential and myotube formation compared to the controls. Future studies will employ the superior culture outcomes of this hybrid substrate for engineering functional neuromuscular junctions and related organ on a chip applications.
Collapse
Affiliation(s)
- Rachel R Besser
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
AbstractPrimary brain cells cultured on flat surfaces, i.e., in a two-dimensional fashion, have a long history of use as an experimental model system in neuroscience research. However, it is questionable to which extent these cultured brain cells resemble their in vivo counterparts. Mainly, it has been claimed that the non-oxidative glucose metabolism reflected by lactate production is unphysiologically high. Furthermore, it is known that culturing in 2D alters the phenotype of cells. Here we present diphenylalanine peptide nanowires (PNWs) as a culturing substrate for primary neocortical neurons from mice. The topology of the PNWs leads to neuronal cultures developing in 2.5D environment and hence improved culturing conditions. We investigate the effect of different concentrations of PNWs and different cell densities of neurons on the culturing conditions. The neocortical neurons were examined through scanning electron microscopy in order to study the effect of PNW concentrations and neuron densities on the structural appearance of the cells. Then employing the optimal combination of neuron density and PNW concentration, the neurons were evaluated functionally and metabolically by comparison with neocortical neurons standard culturing methods in 2D. Specifically, we tested neuronal viability, capacity for vesicular release of neurotransmitter GABA, as well as oxidative and non-oxidative glucose metabolism. It was evident that neurons cultured on PNWs exhibited increased viability combined with an increased capacity for neurotransmitter release and a lower fraction of non-oxidative metabolism than neurons cultured in 2D. Hence, neocortical neurons cultured in 2.5D on PNWs appear to be healthier and less glycolytic than neurons cultured in 2D.
Collapse
|
28
|
Cutarelli A, Ghio S, Zasso J, Speccher A, Scarduelli G, Roccuzzo M, Crivellari M, Maria Pugno N, Casarosa S, Boscardin M, Conti L. Vertically-Aligned Functionalized Silicon Micropillars for 3D Culture of Human Pluripotent Stem Cell-Derived Cortical Progenitors. Cells 2019; 9:E88. [PMID: 31905823 PMCID: PMC7017050 DOI: 10.3390/cells9010088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Silicon is a promising material for tissue engineering since it allows to produce micropatterned scaffolding structures resembling biological tissues. Using specific fabrication methods, it is possible to build aligned 3D network-like structures. In the present study, we exploited vertically-aligned silicon micropillar arrays as culture systems for human iPSC-derived cortical progenitors. In particular, our aim was to mimic the radially-oriented cortical radial glia fibres that during embryonic development play key roles in controlling the expansion, radial migration and differentiation of cortical progenitors, which are, in turn, pivotal to the establishment of the correct multilayered cerebral cortex structure. Here we show that silicon vertical micropillar arrays efficiently promote expansion and stemness preservation of human cortical progenitors when compared to standard monolayer growth conditions. Furthermore, the vertically-oriented micropillars allow the radial migration distinctive of cortical progenitors in vivo. These results indicate that vertical silicon micropillar arrays can offer an optimal system for human cortical progenitors' growth and migration. Furthermore, similar structures present an attractive platform for cortical tissue engineering.
Collapse
Affiliation(s)
- Alessandro Cutarelli
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| | - Simone Ghio
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Jacopo Zasso
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| | - Alessandra Speccher
- Laboratory of Neural Development and Regeneration, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.S.); (S.C.)
| | - Giorgina Scarduelli
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (G.S.); (M.R.)
| | - Michela Roccuzzo
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (G.S.); (M.R.)
| | - Michele Crivellari
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Nicola Maria Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy;
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Ket-Lab, Edoardo Amaldi Foundation, via del Politecnico snc, I-00133 Roma, Italy
| | - Simona Casarosa
- Laboratory of Neural Development and Regeneration, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.S.); (S.C.)
| | - Maurizio Boscardin
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Luciano Conti
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| |
Collapse
|
29
|
Basso JMV, Yurchenko I, Wiens MR, Staii C. Neuron dynamics on directional surfaces. SOFT MATTER 2019; 15:9931-9941. [PMID: 31764921 DOI: 10.1039/c9sm01769k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Geometrical features play a very important role in neuronal growth and the formation of functional connections between neuronal cells. Here, we analyze the dynamics of axonal growth for neuronal cells cultured on micro-patterned polydimethylsiloxane surfaces. We utilize fluorescence microscopy to image axons, quantify their dynamics, and demonstrate that periodic geometrical patterns impart strong directional bias to neuronal growth. We quantify axonal alignment and present a general stochastic approach that quantitatively describes the dynamics of the growth cones. Neuronal growth is described by a general phenomenological model, based on a simple automatic controller with a closed-loop feedback system. We demonstrate that axonal alignment on these substrates is determined by the surface geometry, and it is quantified by the deterministic part of the stochastic (Langevin and Fokker-Planck) equations. We also show that the axonal alignment with the surface patterns is greatly suppressed by the neuron treatment with Blebbistatin, a chemical compound that inhibits the activity of myosin II. These results give new insight into the role played by the molecular motors and external geometrical cues in guiding axonal growth, and could lead to novel approaches for bioengineering neuronal regeneration platforms.
Collapse
Affiliation(s)
- Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | |
Collapse
|
30
|
Radotić V, Bedalov A, Drviš P, Braeken D, Kovačić D. Guided growth with aligned neurites in adult spiral ganglion neurons cultured in vitro on silicon micro-pillar substrates. J Neural Eng 2019; 16:066037. [PMID: 31189144 DOI: 10.1088/1741-2552/ab2968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Assessment of the relationship between the topographical organization of silicon micro-pillar surfaces (MPS) on guidance and neural alignment of adult spiral ganglion neurons (SGN) and use of the otosurgical approach as an alternative for the extraction and isolation of SGNs from adult guinea pigs. APPROACH SGNs from adult guinea pigs were isolated using conventional and otosurgical approach for in vitro cell culturing on MPS of various micro-pillar widths (1-5.6 µm) and spacing (0.6-15 µm). Cell cultures were compared morphologically with neuronal cultures on control glass coverslips. MAIN RESULTS We found enhanced SGN in vitro cultures in MPS areas with small and intermediate inter-pillar spacing (from 0.6 µm to 3.2 µm) as well as in MPS areas with wider pillars (from 1.8 µm to 4 µm) compared to MPS flat zones and control glass coverslips. Scanning electron microscopy (SEM) images highlighted how neurites of SGNs follow straight lines by growing on top and between micro-pillars. Only micro-pillars with small and intermediate pillar spacings favor neurite alignment along preferred angles (30°, 90°, and 150°), while pillars with wider spacing produced less aligned neurites. We found propensity of adult SGNs grown on MPSs to attain more bipolar and multipolar morphologies. Additionally, we observed reduced interaction between neuronal and glial cells compared to control glass coverslips. Finally, we found that the otosurgical approach was more beneficial for SGN survival on glass coverslips and MPS flat surfaces than the conventional method. SIGNIFICANCE MPS with specific architecture supports the guided growth of adult SGNs in vitro and controls adult SGN development and behavior.
Collapse
Affiliation(s)
- Viktorija Radotić
- Faculty of Science, Department of Physics, Laboratory for Biophysics and Medical Neuroelectronics, University of Split, R.Boškovića 33, HR-21000 Split, Croatia. The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000 Split, Croatia
| | | | | | | | | |
Collapse
|
31
|
Tullii G, Giona F, Lodola F, Bonfadini S, Bossio C, Varo S, Desii A, Criante L, Sala C, Pasini M, Verpelli C, Galeotti F, Antognazza MR. High-Aspect-Ratio Semiconducting Polymer Pillars for 3D Cell Cultures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28125-28137. [PMID: 31356041 PMCID: PMC6943816 DOI: 10.1021/acsami.9b08822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/16/2019] [Indexed: 05/20/2023]
Abstract
Hybrid interfaces between living cells and nano/microstructured scaffolds have huge application potential in biotechnology, spanning from regenerative medicine and stem cell therapies to localized drug delivery and from biosensing and tissue engineering to neural computing. However, 3D architectures based on semiconducting polymers, endowed with responsivity to visible light, have never been considered. Here, we apply for the first time a push-coating technique to realize high aspect ratio polymeric pillars, based on polythiophene, showing optimal biocompatibility and allowing for the realization of soft, 3D cell cultures of both primary neurons and cell line models. HEK-293 cells cultured on top of polymer pillars display a remarkable change in the cell morphology and a sizable enhancement of the membrane capacitance due to the cell membrane thinning in correspondence to the pillars' top surface, without negatively affecting cell proliferation. Electrophysiology properties and synapse number of primary neurons are also very well preserved. In perspective, high aspect ratio semiconducting polymer pillars may find interesting applications as soft, photoactive elements for cell activity sensing and modulation.
Collapse
Affiliation(s)
- Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | | | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Silvio Bonfadini
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Caterina Bossio
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Simone Varo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Andrea Desii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Luigino Criante
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Carlo Sala
- CNR Neuroscience
Institute, Milan 20129, Italy
| | - Mariacecilia Pasini
- Istituto
per lo Studio delle Macromolecole, Consiglio
Nazionale delle Ricerche (ISMAC-CNR), Via Bassini 15, 20133 Milano, Italy
| | | | - Francesco Galeotti
- Istituto
per lo Studio delle Macromolecole, Consiglio
Nazionale delle Ricerche (ISMAC-CNR), Via Bassini 15, 20133 Milano, Italy
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| |
Collapse
|
32
|
Accardo A, Cirillo C, Lionnet S, Vieu C, Loubinoux I. Interfacing cells with microengineered scaffolds for neural tissue reconstruction. Brain Res Bull 2019; 152:202-211. [PMID: 31348979 DOI: 10.1016/j.brainresbull.2019.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
The development of cellular microenvironments suitable for neural tissue engineering purposes involves a plethora of research fields ranging from cell biology to biochemistry, neurosciences, physics, nanotechnology, mechanobiology. In the last two decades, this multi-disciplinary activity has led to the emergence of numerous strategies to create architectures capable of reproducing the topological, biochemical and mechanical properties of the extracellular matrix present in the central (CNS) and peripheral nervous system (PNS). Some of these approaches have succeeded in inducing the functional recovery of damaged areas in the CNS and the PNS to address the current lack of effective medical treatments for this type of injury. In this review, we analyze recent developments in the realization of two-dimensional and three-dimensional neuronal scaffolds following either top-down or bottom-up approaches. After providing an overview of the different fabrication techniques employed for tailoring the biomaterials, we draw on specific examples to describe the major features of the developed approaches. We then conclude with prospective proof of concept studies on guiding scaffolds and regenerative models on macro-scale brain implants targeting neural regeneration.
Collapse
Affiliation(s)
- Angelo Accardo
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
| | - Carla Cirillo
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France
| | - Sarah Lionnet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France; Université de Toulouse, Institut National des Sciences Appliquées - INSA, F-31400, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France.
| |
Collapse
|
33
|
Yurchenko I, Vensi Basso JM, Syrotenko VS, Staii C. Anomalous diffusion for neuronal growth on surfaces with controlled geometries. PLoS One 2019; 14:e0216181. [PMID: 31059532 PMCID: PMC6502317 DOI: 10.1371/journal.pone.0216181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
Geometrical cues are known to play a very important role in neuronal growth and the formation of neuronal networks. Here, we present a detailed analysis of axonal growth and dynamics for neuronal cells cultured on patterned polydimethylsiloxane surfaces. We use fluorescence microscopy to image neurons, quantify their dynamics, and demonstrate that the substrate geometrical patterns cause strong directional alignment of axons. We quantify axonal growth and report a general stochastic approach that quantitatively describes the motion of growth cones. The growth cone dynamics is described by Langevin and Fokker-Planck equations with both deterministic and stochastic contributions. We show that the deterministic terms contain both the angular and speed dependence of axonal growth, and that these two contributions can be separated. Growth alignment is determined by surface geometry, and it is quantified by the deterministic part of the Langevin equation. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: speed and angular distributions, correlation functions, diffusion coefficients, characteristics speeds and damping coefficients. We demonstrate that axonal dynamics displays a cross-over from Brownian motion (Ornstein-Uhlenbeck process) at earlier times to anomalous dynamics (superdiffusion) at later times. The superdiffusive regime is characterized by non-Gaussian speed distributions and power law dependence of the axonal mean square length and the velocity correlation functions. These results demonstrate the importance of geometrical cues in guiding axonal growth, and could lead to new methods for bioengineering novel substrates for controlling neuronal growth and regeneration.
Collapse
Affiliation(s)
- Ilya Yurchenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Vladyslav Serhiiovych Syrotenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Cristian Staii
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
34
|
Vensi Basso JM, Yurchenko I, Simon M, Rizzo DJ, Staii C. Role of geometrical cues in neuronal growth. Phys Rev E 2019; 99:022408. [PMID: 30934335 DOI: 10.1103/physreve.99.022408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 11/07/2022]
Abstract
Geometrical cues play an essential role in neuronal growth. Here, we quantify axonal growth on surfaces with controlled geometries and report a general stochastic approach that quantitatively describes the motion of growth cones. We show that axons display a strong directional alignment on micropatterned surfaces when the periodicity of the patterns matches the dimension of the growth cone. The growth cone dynamics on surfaces with uniform geometry is described by a linear Langevin equation with both deterministic and stochastic contributions. In contrast, axonal growth on surfaces with periodic patterns is characterized by a system of two generalized Langevin equations with both linear and quadratic velocity dependence and stochastic noise. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: angular distributions, correlation functions, diffusion coefficients, characteristics speeds, and damping coefficients. We demonstrate that axonal dynamics displays a crossover from an Ornstein-Uhlenbeck process to a nonlinear stochastic regime when the geometrical periodicity of the pattern approaches the linear dimension of the growth cone. Growth alignment is determined by surface geometry, which is fully quantified by the deterministic part of the Langevin equation. These results provide insight into the role of curvature sensing proteins and their interactions with geometrical cues.
Collapse
Affiliation(s)
- Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Ilya Yurchenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Marc Simon
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Daniel J Rizzo
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
35
|
Huang Y, Ho CT, Lin Y, Lee C, Ho S, Li M, Hwang E. Nanoimprinted Anisotropic Topography Preferentially Guides Axons and Enhances Nerve Regeneration. Macromol Biosci 2018; 18:e1800335. [DOI: 10.1002/mabi.201800335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Yun‐An Huang
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
| | - Chris T. Ho
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 300 Taiwan
| | - Yu‐Hsuan Lin
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 300 Taiwan
| | - Chen‐Ju Lee
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
| | - Szu‐Mo Ho
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 300 Taiwan
| | - Ming‐Chia Li
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B)National Chiao Tung University Hsinchu 300 Taiwan
| | - Eric Hwang
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 300 Taiwan
- Institute of Bioinformatics and Systems BiologyNational Chiao Tung University Hsinchu 300 Taiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B)National Chiao Tung University Hsinchu 300 Taiwan
| |
Collapse
|
36
|
Pardo-Figuerez M, Martin NRW, Player DJ, Roach P, Christie SDR, Capel AJ, Lewis MP. Controlled Arrangement of Neuronal Cells on Surfaces Functionalized with Micropatterned Polymer Brushes. ACS OMEGA 2018; 3:12383-12391. [PMID: 30411006 PMCID: PMC6217525 DOI: 10.1021/acsomega.8b01698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 05/03/2023]
Abstract
Conventional in vitro cultures are useful to represent simplistic neuronal behavior; however, the lack of organization results in random neurite spreading. To overcome this problem, control over the directionality of SH-SY5Y cells was attained, utilizing photolithography to pattern the cell-repulsive anionic brush poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) into tracks of 20, 40, 80, and 100 μm width. These data validate the use of PKSPMA brush coatings for a long-term culture of the SH-SY5Y cells, as well as providing a methodology by which the precise deposition of PKSPMA can be utilized to achieve a targeted control over the SH-SY5Y cells. Specifically, the PKSPMA brush patterns prevented cell attachment, allowing the SH-SY5Y cells to grow only on noncoated glass (gaps of 20, 50, 75, and 100 μm width) at different cell densities (5000, 10 000, and 15 000 cells/cm2). This research demonstrates the importance of achieving cell directionality in vitro, while these simplistic models could provide new platforms to study complex neuron-neuron interactions.
Collapse
Affiliation(s)
- Maria Pardo-Figuerez
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Neil R. W. Martin
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Darren J. Player
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
- Institute
of Orthopaedics and Musculoskeletal Science, University College London, Stanmore HA7 4LP, U.K.
| | - Paul Roach
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Steven D. R. Christie
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Andrew J. Capel
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Mark P. Lewis
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| |
Collapse
|
37
|
George JH, Nagel D, Waller S, Hill E, Parri HR, Coleman MD, Cui Z, Ye H. A closer look at neuron interaction with track-etched microporous membranes. Sci Rep 2018; 8:15552. [PMID: 30341335 PMCID: PMC6195627 DOI: 10.1038/s41598-018-33710-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/03/2018] [Indexed: 01/18/2023] Open
Abstract
Microporous membranes support the growth of neurites into and through micro-channels, providing a different type of neural growth platform to conventional dish cultures. Microporous membranes are used to support various types of culture, however, the role of pore diameter in relation to neurite growth through the membrane has not been well characterised. In this study, the human cell line (SH-SY5Y) was differentiated into neuron-like cells and cultured on track-etched microporous membranes with pore and channel diameters selected to accommodate neurite width (0.8 µm to 5 µm). Whilst neurites extended through all pore diameters, the extent of neurite coverage on the non-seeded side of the membranes after 5 days in culture was found to be directly proportional to channel diameter. Neurite growth through membrane pores reduced significantly when neural cultures were non-confluent. Scanning electron microscopy revealed that neurites bridged pores and circumnavigated pore edges – such that the overall likelihood of a neurite entering a pore channel was decreased. These findings highlight the role of pore diameter, cell sheet confluence and contact guidance in directing neurite growth through pores and may be useful in applications that seek to use physical substrates to maintain separate neural populations whilst permitting neurite contact between cultures.
Collapse
Affiliation(s)
- Julian H George
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - David Nagel
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Sharlayne Waller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Eric Hill
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - H Rhein Parri
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Michael D Coleman
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
38
|
Bérces Z, Pomothy J, Horváth ÁC, Kőhidi T, Benyei É, Fekete Z, Madarász E, Pongrácz A. Effect of nanostructures on anchoring stem cell-derived neural tissue to artificial surfaces. J Neural Eng 2018; 15:056030. [DOI: 10.1088/1741-2552/aad972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Radotić V, Braeken D, Drviš P, Mattotti M, Kovačić D. Advantageous environment of micro-patterned, high-density complementary metal-oxide-semiconductor electrode array for spiral ganglion neurons cultured in vitro. Sci Rep 2018; 8:7446. [PMID: 29748613 PMCID: PMC5945660 DOI: 10.1038/s41598-018-25814-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
This study investigated micro-patterned, high-density complementary metal–oxide–semiconductor (CMOS) electrode array to be used as biologically permissive environment for organization, guidance and electrical stimulation of spiral ganglion neurons (SGN). SGNs extracted and isolated from cochleae of P5-P7 rat pups and adult guinea pigs were cultured 1, 4 and 7 days in vitro on glass coverslips (control) and CMOS electrode array. The cultures were analyzed visually and immunohistochemically for SGN presence, outgrowth, neurite alignment, neurite length, neurite asymmetry as well as the contact of a neuronal soma and neurites with the micro-electrodes. Our findings indicate that topographical environment of CMOS chip with micro-patterned pillars enhanced growth, survival, morphology, neural orientation and alignment of SGNs in vitro compared to control. Smaller spacing (0.8–1.6 µm) between protruding pillars on CMOS led SGNs to develop structured and guided neurites oriented along three topographical axes separated by 60°. We found morphological basis for positioning of the micro-electrodes on the chip that was appropriate for direct contact of SGNs with them. This configuration allowed CMOS electrode array to electrically stimulate the SGN whose responses were observed with live Fluo 4 calcium imaging.
Collapse
Affiliation(s)
- Viktorija Radotić
- Laboratory for Biophysics and Medical Neuroelectronics, Department of Physics, University of Split, Faculty of Science, R.Boškovića 33, HR-21000, Split, Croatia.,The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000, Split, Croatia.,Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
| | - Dries Braeken
- Cell and Tissue Technologies group, Life Science Technologies department, Imec, Kapeldreef 75, B-3001, Leuven, Belgium
| | - Petar Drviš
- University Hospital Centre Split, Department of Otorhinolaryngology & Head and Neck Surgery, Spinčićeva 1, HR-21000, Split, Croatia
| | - Marta Mattotti
- Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
| | - Damir Kovačić
- Laboratory for Biophysics and Medical Neuroelectronics, Department of Physics, University of Split, Faculty of Science, R.Boškovića 33, HR-21000, Split, Croatia. .,The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000, Split, Croatia. .,Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia.
| |
Collapse
|
40
|
Amin H, Dipalo M, De Angelis F, Berdondini L. Biofunctionalized 3D Nanopillar Arrays Fostering Cell Guidance and Promoting Synapse Stability and Neuronal Activity in Networks. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15207-15215. [PMID: 29620843 PMCID: PMC5934727 DOI: 10.1021/acsami.8b00387] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/05/2018] [Indexed: 05/19/2023]
Abstract
A controlled geometry of in vitro neuronal networks allows investigation of the cellular mechanisms that underlie neuron-to-neuron and neuron-extracellular matrix interactions, which are essential to biomedical research. Herein, we report a selective guidance of primary hippocampal neurons by using arrays of three-dimensional vertical nanopillars (NPs) functionalized with a specific adhesion-promoting molecule-poly-dl-ornithine (PDLO). We show that 90% of neuronal cells are guided exclusively on the combinatorial PDLO/NP substrate. Moreover, we demonstrate the influence of the interplay between nanostructures and neurons on synapse formation and maturation, resulting in increased expression of postsynaptic density-95 protein and enhanced network cellular activity conferred by the endogenous c-fos expression. Successful guidance to foster synapse stability and cellular activity on multilevel cues of surface topography and chemical functionalization suggests the potential to devise technologies to control neuronal growth on nanostructures for tissue engineering, neuroprostheses, and drug development.
Collapse
Affiliation(s)
- Hayder Amin
- Nets Laboratory, Department of Neuroscience
and Brain
Technologies (NBT), and Department of Plasmon Nanotechnologies, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Michele Dipalo
- Nets Laboratory, Department of Neuroscience
and Brain
Technologies (NBT), and Department of Plasmon Nanotechnologies, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Francesco De Angelis
- Nets Laboratory, Department of Neuroscience
and Brain
Technologies (NBT), and Department of Plasmon Nanotechnologies, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Luca Berdondini
- Nets Laboratory, Department of Neuroscience
and Brain
Technologies (NBT), and Department of Plasmon Nanotechnologies, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
41
|
Abstract
Objectives To test a 3D approach for neural network formation, alignment, and patterning that is reproducible and sufficiently stable to allow for easy manipulation. Results A novel cell culture system was designed by engineering a method for the directional growth of neurons. This uses NG108-15 neuroblastoma x glioma hybrid cells cultured on suspended and aligned electrospun fibers. These fiber networks improved cellular directionality, with alignment angle standard deviations significantly lower on fibers than on regular culture surfaces. Morphological studies found nuclear aspect ratios and cell projection lengths to be unchanged, indicating that cells maintained neural morphology while growing on fibers and forming a 3D network. Furthermore, fibronectin-coated fibers enhanced neurite extensions for all investigated time points. Differentiated neurons exhibited significant increases in average neurite lengths 96 h post plating, and formed neurite extensions parallel to suspended fibers, as visualized through scanning electron microscopy. Conclusions The developed model has the potential to serve as the basis for advanced 3D studies, providing an original approach to neural network patterning and setting the groundwork for further investigations into functionality.
Collapse
|
42
|
Nissan I, Schori H, Kumar VB, Passig MA, Shefi O, Gedanken A. Topographical impact of silver nanolines on the morphology of neuronal SH-SY5Y Cells. J Mater Chem B 2017; 5:9346-9353. [PMID: 32264537 DOI: 10.1039/c7tb02492d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An extracellular environment is critical in neuronal development and growth. Changes in neuronal morphology, neuron adhesion, and even the rate of neurite formation, can be modified by both the chemical and physical properties of interfacing substrates. Topography has a major impact on neuronal growth. Neuronal behavior and morphology are affected by the size, shape and pattern of the topographic elements. Combining topography with active materials may lead to enhanced influence. This paper demonstrates the effects of silver nanolines (AgNLs) on the growth pattern of SH-SY5Y cells. The morphology of the cells atop the nanotopographical substrates is measured, revealing a significant promoting effect. The number of neurites initiating from the soma is larger in SH-SY5Y cells plated on AgNLs than in control samples. The cells also exhibit an increase in neurite branching points towards more complex structures. These results indicate that substrates decorated with nanotopography affect cellular growth in a way that may be useful for enhanced regeneration, opening new possibilities for electrode and implant design.
Collapse
Affiliation(s)
- Ifat Nissan
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | | | | | | | | | | |
Collapse
|
43
|
Design of Cultured Neuron Networks in vitro with Predefined Connectivity Using Asymmetric Microfluidic Channels. Sci Rep 2017; 7:15625. [PMID: 29142321 PMCID: PMC5688062 DOI: 10.1038/s41598-017-15506-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
The architecture of neuron connectivity in brain networks is one of the basic mechanisms by which to organize and sustain a particular function of the brain circuitry. There are areas of the brain composed of well-organized layers of neurons connected by unidirectional synaptic connections (e.g., cortex, hippocampus). Re-engineering of the neural circuits with such a heterogeneous network structure in culture may uncover basic mechanisms of emergent information functions of these circuits. In this study, we present such a model designed with two subpopulations of primary hippocampal neurons (E18) with directed connectivity grown in a microfluidic device with asymmetric channels. We analysed and compared neurite growth in the microchannels with various shapes that promoted growth dominantly in one direction. We found an optimal geometric shape features of the microchannels in which the axons coupled two chambers with the neurons. The axons grew in the promoted direction and formed predefined connections during the first 6 days in vitro (DIV). The microfluidic devices were coupled with microelectrode arrays (MEAs) to confirm unidirectional spiking pattern propagation through the microchannels between two compartments. We found that, during culture development, the defined morphological and functional connectivity formed and was maintained for up to 25 DIV.
Collapse
|
44
|
Microelectrode array-induced neuronal alignment directs neurite outgrowth: analysis using a fast Fourier transform (FFT). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:719-727. [PMID: 29075798 DOI: 10.1007/s00249-017-1263-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 09/24/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
Abstract
Many studies have shown that the topography of the substrate on which neurons are cultured can promote neuronal adhesion and guide neurite outgrowth in the same direction as the underlying topography. To investigate this effect, isotropic substrate-complementary metal-oxide-semiconductor (CMOS) chips were used as one example of microelectrode arrays (MEAs) for directing neurite growth of spiral ganglion neurons. Neurons were isolated from 5 to 7-day-old rat pups, cultured 1 day in vitro (DIV) and 4 DIV, and then fixed with 4% paraformaldehyde. For analysis of neurite alignment and orientation, fast Fourier transformation (FFT) was used. Results revealed that on the micro-patterned surface of a CMOS chip, neurons orient their neurites along three directional axes at 30, 90, and 150° and that neurites aligned in straight lines between adjacent pillars and mostly followed a single direction while occasionally branching perpendicularly. We conclude that the CMOS substrate guides neurites towards electrodes by means of their structured pillar organization and can produce electrical stimulation of aligned neurons as well as monitoring their neural activities once neurites are in the vicinity of electrodes. These findings are of particular interest for neural tissue engineering with the ultimate goal of developing a new generation of MEA essential for improved electrical stimulation of auditory neurons.
Collapse
|
45
|
|
46
|
Völker J, Kohm F, Jürgens L, Scherzad A, Schendzielorz P, Schraven SP, Mlynski R, Radeloff A, Hagen R, Rak K. Patterned semiconductor structures modulate neuronal outgrowth: Implication for the development of a neurobionic interface. J Biomed Mater Res A 2017; 106:65-72. [PMID: 28884492 DOI: 10.1002/jbm.a.36203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022]
Abstract
Auditory implants stimulate the neurons by broad electrical fields, which leads to a low number of spectral channels. A reduction in the distance between the electrode and the neuronal structures might lead to better electrical transduction. The use of microstructured semiconductors offers a large number of contacts, which could attract neurons and stimulate them individually. To investigate the interaction between neurons and semiconductors, differentiated neuronal precursor cells were cultured on silicon wafers. Different structures were added on the wafers by electron beam lithography, and deep reactive ion etching in different depths (2 and 7 µm). Grooved surfaces guided the neurons and resulted in straight oriented axons, but neuronal outgrowth was impaired by the 7 µm grooves. Within the 7 µm structures, the neuronal cell body was totally encased and the nuclei were deformed from a round to an elliptical shape. On both square and cylindrical structures neuronal bridging could be detected in different forms, either between the tops of the structures or between the bottom and the top. Furthermore, neuronal bridges were established on the lateral part of the structures, and change in direction of neuronal growth was induced by the structure. Finally, it could be shown that neuronal growth cones were particularly attracted by the top of the cylinders, which might allow for the stimulation of neurons via this structure. In conclusion, study results indicate that structured semiconductors can modulate neuronal growth and its direction, offering a novel method for the development of new implants with improved neuronal stimulation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 65-72, 2018.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Fabian Kohm
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Lukas Jürgens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Sebastian P Schraven
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Andreas Radeloff
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University of Oldenburg, Oldenburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
47
|
Sathe S, Chan XQ, Jin J, Bernitt E, Döbereiner HG, Yim EKF. Correlation and Comparison of Cortical and Hippocampal Neural Progenitor Morphology and Differentiation through the Use of Micro- and Nano-Topographies. J Funct Biomater 2017; 8:jfb8030035. [PMID: 28805664 PMCID: PMC5618286 DOI: 10.3390/jfb8030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Neuronal morphology and differentiation have been extensively studied on topography. The differentiation potential of neural progenitors has been shown to be influenced by brain region, developmental stage, and time in culture. However, the neurogenecity and morphology of different neural progenitors in response to topography have not been quantitatively compared. In this study, the correlation between the morphology and differentiation of hippocampal and cortical neural progenitor cells was explored. The morphology of differentiated neural progenitors was quantified on an array of topographies. In spite of topographical contact guidance, cell morphology was observed to be under the influence of regional priming, even after differentiation. This influence of regional priming was further reflected in the correlations between the morphological properties and the differentiation efficiency of the cells. For example, neuronal differentiation efficiency of cortical neural progenitors showed a negative correlation with the number of neurites per neuron, but hippocampal neural progenitors showed a positive correlation. Correlations of morphological parameters and differentiation were further enhanced on gratings, which are known to promote neuronal differentiation. Thus, the neurogenecity and morphology of neural progenitors is highly responsive to certain topographies and is committed early on in development.
Collapse
Affiliation(s)
- Sharvari Sathe
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
| | - Xiang Quan Chan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
| | - Jing Jin
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
| | - Erik Bernitt
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany.
| | - Hans-Günther Döbereiner
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany.
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228.
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
48
|
Gautam V, Naureen S, Shahid N, Gao Q, Wang Y, Nisbet D, Jagadish C, Daria VR. Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds. NANO LETTERS 2017; 17:3369-3375. [PMID: 28437614 DOI: 10.1021/acs.nanolett.6b05288] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Identifying the specific role of physical guidance cues in the growth of neurons is crucial for understanding the fundamental biology of brain development and for designing scaffolds for tissue engineering. Here, we investigate the structural significance of nanoscale topographies as physical cues for neurite outgrowth and circuit formation by growing neurons on semiconductor nanowires. We monitored neurite growth using optical and scanning electron microscopy and evaluated the spontaneous neuronal network activity using functional calcium imaging. We show, for the first time, that an isotropic arrangement of indium phosphide (InP) nanowires can serve as physical cues for guiding neurite growth and aid in forming a network with neighboring neurons. Most importantly, we confirm that multiple neurons, with neurites guided by the topography of the InP nanowire scaffolds, exhibit synchronized calcium activity, implying intercellular communications via synaptic connections. Our study imparts new fundamental insights on the role of nanotopographical cues in the formation of functional neuronal circuits in the brain and will therefore advance the development of neuroprosthetic scaffolds.
Collapse
Affiliation(s)
- Vini Gautam
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Shagufta Naureen
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Naeem Shahid
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Qian Gao
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Yi Wang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - David Nisbet
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Chennupati Jagadish
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Vincent R Daria
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
49
|
Simitzi C, Ranella A, Stratakis E. Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomater 2017; 51:21-52. [PMID: 28069509 DOI: 10.1016/j.actbio.2017.01.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Unlike other tissue types, like epithelial tissue, which consist of cells with a much more homogeneous structure and function, the nervous tissue spans in a complex multilayer environment whose topographical features display a large spectrum of morphologies and size scales. Traditional cell cultures, which are based on two-dimensional cell-adhesive culture dishes or coverslips, are lacking topographical cues and mainly simulate the biochemical microenvironment of the cells. With the emergence of micro- and nano-fabrication techniques new types of cell culture platforms are developed, where the effect of various topographical cues on cellular morphology, proliferation and differentiation can be studied. Different approaches (regarding the material, fabrication technique, topographical characteristics, etc.) have been implemented. The present review paper aims at reviewing the existing body of literature on the use of artificial micro- and nano-topographical features to control neuronal and neuroglial cells' morphology, outgrowth and neural network topology. The cell responses-from phenomenology to investigation of the underlying mechanisms- on the different topographies, including both deterministic and random ones, are summarized. STATEMENT OF SIGNIFICANCE There is increasing evidence that physical cues, such as topography, can have a significant impact on the neural cell functions. With the aid of micro-and nanofabrication techniques, new types of cell culture platforms are developed and the effect of surface topography on the cells has been studied. The present review article aims at reviewing the existing body of literature reporting on the use of various topographies to study and control the morphology and functions of cells from nervous tissue, i.e. the neuronal and the neuroglial cells. The cell responses-from phenomenology to investigation of the underlying mechanisms- on the different topographies, including both deterministic and random ones, are summarized.
Collapse
Affiliation(s)
- C Simitzi
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece
| | - A Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece
| | - E Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece.
| |
Collapse
|
50
|
Nissan I, Kumar VB, Porat Z, Makovec D, Shefi O, Gedanken A. Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. J Mater Chem B 2017; 5:1371-1379. [PMID: 32264629 DOI: 10.1039/c6tb02508k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this paper, we report the fabrication of an antibacterial material, Ga-doped C-dots on Ga nanoparticles (Ga@C-dots@Ga NPs), which is deposited on a glass substrate for neural growth. A one-step sonochemical process is applied for the simultaneous fabrication and coating of Ga@C-dots@Ga NPs using PEG 400 and molten gallium. The physical and chemical characteristics of the synthesized materials were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), fluorescence analysis, dynamic light scattering (DLS) and other techniques. SH-SY5Y cells were plated on the substrates. The effect of the Ga@C-dots@Ga NPs on the development of neurites during the initiation and elongation growth phases was studied and compared with C-dots, Ga@C-dots and Ga NPs. Our research focuses on the influence of the physical and chemical properties of composites on neurite growth. We observed that cells grown on a Ga@C-dots@Ga-coated substrate exhibit a 97% increase in the number of branches originating from the soma. We found that surface modification and particle morphology play a significant role in the neural growth.
Collapse
Affiliation(s)
- Ifat Nissan
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | | | | | | | | | | |
Collapse
|