1
|
Purse C, Parker A, James SA, Baker DJ, Moss CJ, Evans R, Durham J, Funnell SGP, Carding SR. Intestinal microbiota profiles of captive-bred cynomolgus macaques reveal influence of biogeography and age. Anim Microbiome 2025; 7:47. [PMID: 40369669 PMCID: PMC12080069 DOI: 10.1186/s42523-025-00409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/12/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Age-associated changes to the intestinal microbiome may be linked to inflammageing and the development of age-related chronic diseases. Cynomolgus macaques, a common animal model in biomedical research, have strong genetic physiological similarities to humans and may serve as beneficial models for the effect of age on the human microbiome. However, age-associated changes to their intestinal microbiome have previously only been investigated in faecal samples. Here, we have characterised and investigated the effects of age in the cynomolgus macaque intestinal tract in luminal samples from both the small and large intestine. RESULTS Whole metagenomic shotgun sequencing was used to analyse the microbial communities in intestinal content obtained from six different intestinal regions, covering the duodenum to distal colon, of 24 healthy, captive-bred cynomolgus macaques, ranging in age from 4 to 20 years. Both reference-based and assembly-based computational profiling approaches were used to analyse changes to intestinal microbiota composition and metabolic potential associated with intestinal biogeography and age. Reference-based computational profiling revealed a significant and progressive increase in both species richness and evenness along the intestinal tract. The microbial community composition also significantly differed between the small intestine, caecum, and colon. Notably, no significant changes in the taxonomic abundance of individual taxa with age were found except when sex was included as a covariate. Additionally, using an assembly-based computational profiling approach, 156 putative novel bacterial and archaeal species were identified. CONCLUSIONS We observed limited effects of age on the composition of the luminal microbiota in the profiled regions of the intestinal tract except when sex was included as a covariate. The enteric microbial communities of the small and the large intestine were, however, distinct, highlighting the limitations of frequently used faecal microbial profiling as a proxy for the intestinal microbiota. The identification of a number of putative novel microbial taxa contributes to knowledge of the full diversity of the cynomolgus macaque intestinal microbiome.
Collapse
Affiliation(s)
- C Purse
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - A Parker
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - S A James
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - D J Baker
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - C J Moss
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - R Evans
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - J Durham
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - S G P Funnell
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - S R Carding
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
2
|
Emborg ME, Metzger JM, D'Amour K, Colwell JC, Neumann LC, Zhang A, Federoff HJ. Advantages and challenges of using allogeneic vs. autologous sources for neuronal cell replacement in Parkinson's disease: Insights from non-human primate studies. Brain Res Bull 2025; 224:111297. [PMID: 40086764 PMCID: PMC12036832 DOI: 10.1016/j.brainresbull.2025.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Intracerebral grafting of dopamine-producing cells is proposed as a strategy to replace the typical neurons lost to Parkinson's disease (PD) and improve PD motor symptoms. Non-human primate studies have provided clues on the relationship between the host's immune response and grafting success. Herein, we discuss how the host's immune system differentially affects the graft depending on the origin of the cells and reflect on the advantages and limitations of the immune paradigms utilized to assess graft-related outcomes. We also consider new strategies to minimize or circumvent the host's immunological response and related preclinical research needed to identify the most promising new approaches to be translated into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Medical Physics, University of Wisconsin-Madison, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, USA.
| | - Jeanette M Metzger
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | | | - Julia C Colwell
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, USA
| | - Lindsey C Neumann
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | - Ai Zhang
- Genentech, South San Francisco, CA, USA
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, USA; Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
3
|
Hu X, Tediashvili G, Gravina A, Stoddard J, McGill TJ, Connolly AJ, Deuse T, Schrepfer S. Inhibition of polymorphonuclear cells averts cytotoxicity against hypoimmune cells in xenotransplantation. Nat Commun 2025; 16:3706. [PMID: 40251154 PMCID: PMC12008267 DOI: 10.1038/s41467-025-58774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
Allogeneic, immune-evasive hypoimmune (HIP) cell therapeutics that are HLA-depleted and overexpress CD47 create the opportunity to treat immunocompetent patients with cancer, degenerative, or autoimmune diseases. However, HIP cell therapy has not yet been established for xenotransplantation. Here we engineer, for human-to-non-human primate studies, human HIP* endothelial cells (EC) that are HLA-depleted and express macaque CD47 to allow compatibility with the macaque SIRPα immune checkpoint. Although no T cell, NK cell, or macrophage responses and no antibody-dependent cytotoxicity is observed in cynomolgus recipients, we reveal that macaque polymorphonuclear cells (PMN) show strong xenogeneic cytotoxicity against HIP* ECs. Inhibition of PMN killing using a multi-drug regimen leads to improved xenogeneic human HIP* EC survival in cynomolgus monkeys. Similarly, human PMNs show xenoreactivity against pig ECs, which has implications for clinical xenotransplantation. Accordingly, our engineered pig HIP* ECs that are SLA-depleted, overexpress human CD47, and additionally overexpress the PMN-inhibitory ligands CD99 and CD200, are protected against all human adaptive and innate cytotoxicity, including PMNs. In summary, specific targeting of PMN-mediated killing of the transplanted cells might improve outcomes for clinical pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA
- Sana Biotechnology Inc., South San Francisco, CA, USA
| | - Grigol Tediashvili
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA
| | - Alessia Gravina
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Stoddard
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Trevor J McGill
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Andrew J Connolly
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tobias Deuse
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA
| | - Sonja Schrepfer
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA.
- Sana Biotechnology Inc., South San Francisco, CA, USA.
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Mulholland MM, Nehete BP, DeLise A, Achorn AM, Pytka LM, Nehete PN. Age-associated alterations in immune and inflammatory responses in captive olive baboons ( Papio anubis). FRONTIERS IN AGING 2025; 5:1511370. [PMID: 39835299 PMCID: PMC11743478 DOI: 10.3389/fragi.2024.1511370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Introduction Advanced age is a primary risk factor for many chronic diseases and conditions; however, age-related immune dysregulation is not well understood. Animal models, particularly those that resemble human age-related physiological changes, are needed to better understand immunosenescence and to improve health outcomes. Here, we explore the utility of the olive baboon (Papio anubis) in studying age-related changes to the immune system and understanding mechanisms of immunosenescence. Methods We examined immune cell, inflammatory responses, cytokines, and cortisol levels using hematology and flow cytometry, mitogen stimulation, multiplex cytokine assay, and cortisol immunoassay. Results and Discussion Our results reveal significant age effects on numerous immune and inflammatory responses. For instance, adult and aged monkeys exhibited significantly fewer monocytes than young monkeys. After stimulation with Con A and PWM (separately), we found that old baboons had higher INFγ expression compared to young baboons. Similarly, after stimulation with LPS and PWM (separately), we found that old baboons had higher TNFα expression compared to young baboons. These findings suggest that the olive baboon is a suitable model for biogerontology research, immune senescence, and development of vaccines. Though there are phenotypic and functional similarities between baboons and humans, specific differences exist in immune cell expression and immune function of lymphocytes that should be considered for better experimental outcomes in the development of therapeutics and restoring innate and adaptive immune function in aged individuals.
Collapse
Affiliation(s)
- Michele M. Mulholland
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine TX, Bastrop, TX, United States
| | - Bharti P. Nehete
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine TX, Bastrop, TX, United States
| | - Ashley DeLise
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine TX, Bastrop, TX, United States
| | - Angela M. Achorn
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine TX, Bastrop, TX, United States
| | - Lisa M. Pytka
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine TX, Bastrop, TX, United States
| | - Pramod N. Nehete
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine TX, Bastrop, TX, United States
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Maximova OA, Anzick SL, Sturdevant DE, Bennett RS, Faucette LJ, St. Claire M, Whitehead SS, Kanakabandi K, Sheng ZM, Xiao Y, Kash JC, Taubenberger JK, Martens C, Cohen JI. Spatiotemporal profile of an optimal host response to virus infection in the primate central nervous system. PLoS Pathog 2025; 21:e1012530. [PMID: 39841753 PMCID: PMC11753669 DOI: 10.1371/journal.ppat.1012530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/26/2024] [Indexed: 01/24/2025] Open
Abstract
Viral infections of the central nervous system (CNS) are a major cause of morbidity largely due to lack of prevention and inadequate treatments. While mortality from viral CNS infections is significant, nearly two thirds of the patients survive. Thus, it is important to understand how the human CNS can successfully control virus infection and recover. Since it is not possible to study the human CNS throughout the course of viral infection at the cellular level, here we analyzed a non-lethal viral infection in the CNS of nonhuman primates (NHPs). We inoculated NHPs intracerebrally with a high dose of La Crosse virus (LACV), a bunyavirus that can infect neurons and cause encephalitis primarily in children, but with a very low (≤ 1%) mortality rate. To profile the CNS response to LACV infection, we used an integrative approach that was based on comprehensive analyses of (i) spatiotemporal dynamics of virus replication, (ii) identification of types of infected neurons, (iii) spatiotemporal transcriptomics, and (iv) morphological and functional changes in CNS intrinsic and extrinsic cells. We identified the location, timing, and functional repertoire of optimal transcriptional and translational regulation of the primate CNS in response to virus infection of neurons. These CNS responses involved a well-coordinated spatiotemporal interplay between astrocytes, lymphocytes, microglia, and CNS-border macrophages. Our findings suggest a multifaceted program governing an optimal CNS response to virus infection with specific events coordinated in space and time. This allowed the CNS to successfully control the infection by rapidly clearing the virus from infected neurons, mitigate damage to neurophysiology, activate and terminate immune responses in a timely manner, resolve inflammation, restore homeostasis, and initiate tissue repair. An increased understanding of these processes may provide new therapeutic opportunities to improve outcomes of viral CNS diseases in humans.
Collapse
Affiliation(s)
- Olga A. Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Sarah L. Anzick
- Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America
| | - Richard S. Bennett
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Lawrence J. Faucette
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | | | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Kishore Kanakabandi
- Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America
| | - Zong-mei Sheng
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - John C. Kash
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Jeffery K. Taubenberger
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Craig Martens
- Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Siracusa ER, Pavez-Fox MA, Negron-Del Valle JE, Phillips D, Platt ML, Snyder-Mackler N, Higham JP, Brent LJN, Silk MJ. Social ageing can protect against infectious disease in a group-living primate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220462. [PMID: 39463240 PMCID: PMC11528358 DOI: 10.1098/rstb.2022.0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 10/29/2024] Open
Abstract
The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence the evolutionary dynamics of social ageing in natural populations.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Erin R. Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Melissa A. Pavez-Fox
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J. N. Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Matthew J. Silk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Citron MP, Zang X, Leithead A, Meng S, Rose Ii WA, Murray E, Fontenot J, Bilello JP, Beshore DC, Howe JA. Evaluation of a non-nucleoside inhibitor of the RSV RNA-dependent RNA polymerase in translatable animals models. J Infect 2024; 89:106325. [PMID: 39454831 DOI: 10.1016/j.jinf.2024.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small-molecule antivirals are now either available or in development to prevent and treat RSV infections. Although rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents, there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.
Collapse
Affiliation(s)
- Michael P Citron
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States.
| | - Xiaowei Zang
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Andrew Leithead
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Shi Meng
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - William A Rose Ii
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Edward Murray
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Jane Fontenot
- The University of Louisiana New Iberia Research Center, New Iberia, LA 70560, United States
| | - John P Bilello
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Douglas C Beshore
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - John A Howe
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
8
|
Siracusa ER, Pavez-Fox MA, Negron-Del Valle JE, Phillips D, Platt ML, Snyder-Mackler N, Higham JP, Brent LJN, Silk MJ. Social ageing can protect against infectious disease in a group-living primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584237. [PMID: 38559098 PMCID: PMC10979879 DOI: 10.1101/2024.03.09.584237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity, and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence evolutionary dynamics of social ageing in natural populations.
Collapse
Affiliation(s)
- Erin R. Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Arizona, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, PA, USA
- Department of Psychology, University of Pennsylvania, PA, USA
- Department of Marketing, University of Pennsylvania, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Arizona, USA
- School of Life Sciences, Arizona State University, Arizona, USA
- School for Human Evolution and Social Change, Arizona State University, Arizona, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, USA
| | - Lauren J. N. Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Matthew J. Silk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Barnet IR, Emerzian SR, Behzad R, Brooks DJ, Tedtsen T, Granados M, Park S, Moore J, Olson JD, Karim L, Bouxsein ML, Cline JM, Willey JS. Total body irradiation is associated with long-term deficits in femoral bone structure but not mechanical properties in male rhesus macaques. Sci Rep 2024; 14:23379. [PMID: 39379502 PMCID: PMC11461916 DOI: 10.1038/s41598-024-75363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Exposure to ionizing radiation for oncological therapy increases the risk for late-onset fractures in survivors. However, the effects of total body irradiation (TBI) on adult bone are not well-characterized. The primary aim of this study was to quantify the long-term effects of TBI on bone microstructure, material composition, and mechanical behavior in skeletally mature rhesus macaque (Macaca mulatta) non-human primates. Femora were obtained post-mortem from animals exposed to an acute dose of TBI (6.0-6.75 Gy) nearly a decade earlier, age-matched non-irradiated controls, and non-irradiated young animals. The microstructure of femoral trabecular and cortical bone was assessed via micro-computed tomography. Material composition was evaluated by measuring total fluorescent advanced glycation end products (fAGEs). Cortical bone mechanical behavior was quantified via four-point bending and cyclic reference point indentation (cRPI). Animals exposed to TBI had slightly worse cortical microstructure, including lower cortical thickness (-11%, p = 0.037) and cortical area (-24%, p = 0.049), but similar fAGE content and mechanical properties as age-matched controls. Aging did not influence cortical microstructure, fAGE content, or cRPI measures but diminished femoral cortical post-yield properties, including toughness to fracture (-32%, p = 0.032). Because TBI was administered after the acquisition of peak bone mass, these results suggest that the skeletons of long-term survivors of adulthood TBI may be resilient, retaining or recovering their mechanical integrity during the post-treatment period, despite radiation-induced architectural deficits. Further investigation is necessary to better understand radiation-induced skeletal fragility in mature and immature bone to improve care for radiation patients of all ages.
Collapse
Affiliation(s)
| | - Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Trinity Tedtsen
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Marcela Granados
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Sun Park
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Joseph Moore
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| |
Collapse
|
10
|
Karanika S, Wang T, Yilma A, Castillo JR, Gordy JT, Bailey H, Quijada D, Fessler K, Tasneen R, Rouse Salcido EM, Harris HT, Bates RE, Ton H, Meza J, Li Y, Taylor AD, Zheng JJ, Zhang J, Peske JD, Karantanos T, Maxwell AR, Nuermberger E, Markham RB, Karakousis PC. Therapeutic DNA Vaccine Targeting Mycobacterium tuberculosis Persisters Shortens Curative Tuberculosis Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611055. [PMID: 39282461 PMCID: PMC11398349 DOI: 10.1101/2024.09.03.611055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Mycobacterium tuberculosis ( Mtb) is one of the leading infectious causes of death worldwide. There is no available licensed therapeutic vaccine that shortens active tuberculosis (TB) disease drug treatment and prevents relapse, despite the World Health Organization's calls. Here, we show that an intranasal DNA vaccine containing a fusion of the stringent response rel Mtb gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20, shortens the duration of curative TB treatment in immunocompetent mice. Compared to the first-line regimen for drug-susceptible TB alone, our novel adjunctive vaccine induced greater Rel Mtb -specific T-cell responses associated with optimal TB control in spleen, blood, lungs, mediastinal lymph nodes, and bronchoalveolar lavage (BAL) fluid. These responses were sustained, if not augmented, over time. It also triggered more effective dendritic cell recruitment, activation, and colocalization with T cells, implying enhanced crosstalk between innate and adaptive immunity. Moreover, it potentiated a 6-month TB drug-resistant regimen, rendering it effective across treatment regimens, and also showed promising results in CD4+ knockout mice, perhaps due to enhanced Rel-specific CD8+ T-cell responses. Notably, our novel fusion vaccine was also immunogenic in nonhuman primates, the gold standard animal model for TB vaccine studies, eliciting antigen-specific T-cell responses in blood and BAL fluid analogous to those observed in protected mice. Our findings have critical implications for therapeutic TB vaccine clinical development in immunocompetent and immunocompromised populations and may serve as a model for defining immunological correlates of therapeutic vaccine-induced protection. One sentence summary A TB vaccine shortens curative drug treatment in mice by eliciting strong TB-protective immune responses and induces similar responses in macaques.
Collapse
|
11
|
Ashbery D, Baez HC, Kanarr RE, Kunala K, Power D, Chu CJ, Schallek J, McGregor JE. In Vivo Visualization of Intravascular Patrolling Immune Cells in the Primate Eye. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39283618 PMCID: PMC11407476 DOI: 10.1167/iovs.65.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose Insight into the immune status of the living eye is essential as we seek to understand ocular disease and develop new treatments. The nonhuman primate (NHP) is the gold standard preclinical model for therapeutic development in ophthalmology, owing to the similar visual system and immune landscape in the NHP relative to the human. Here, we demonstrate the utility of phase-contrast adaptive optics scanning light ophthalmoscope (AOSLO) to visualize immune cell dynamics on the cellular scale, label-free in the NHP. Methods Phase-contrast AOSLO was used to image preselected areas of retinal vasculature in five NHP eyes. Images were registered to correct for eye motion, temporally averaged, and analyzed for immune cell activity. Cell counts, dimensions, velocities, and frequency per vessel were determined manually and compared between retinal arterioles and venules. Based on cell appearance and circularity index, cells were divided into three morphologies: ovoid, semicircular, and flattened. Results Immune cells were observed migrating along vascular endothelium with and against blood flow. Cell velocity did not significantly differ between morphology or vessel type and was independent of blow flood. Venules had a significantly higher cell frequency than arterioles. A higher proportion of cells resembled "flattened" morphology in arterioles. Based on cell speeds, morphologies, and behaviors, we identified these cells as nonclassical patrolling monocytes (NCPMs). Conclusions Phase-contrast AOSLO has the potential to reveal the once hidden behaviors of single immune cells in retinal circulation and can do so without the requirement of added contrast agents that may disrupt immune cell behavior.
Collapse
Affiliation(s)
- Drew Ashbery
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hector C Baez
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Rye E Kanarr
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Karteek Kunala
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Colin J Chu
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Department of Neuroscience, University of Rochester, Rochester, New York, United States
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
12
|
Charrier M, Leroux I, Pichon J, Schleder C, Larcher T, Hamel A, Magot A, Péréon Y, Lamirault G, Tremblay JP, Skuk D, Rouger K. Human MuStem cells are competent to fuse with nonhuman primate myofibers in a clinically relevant transplantation context: A proof-of-concept study. J Neuropathol Exp Neurol 2024; 83:684-694. [PMID: 38752570 DOI: 10.1093/jnen/nlae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.
Collapse
Affiliation(s)
- Marine Charrier
- Oniris, INRAE, PAnTher, Nantes, France
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- Nantes Université, Nantes, France
| | | | | | | | | | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | | | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | - Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | | |
Collapse
|
13
|
Hale LP, Macintyre AN, Bowles DE, Kwun J, Li J, Theriot B, Turek JW. Comprehensive Flow Cytometric, Immunohistologic, and Molecular Assessment of Thymus Function in Rhesus Macaques. Immunohorizons 2024; 8:500-510. [PMID: 39018546 PMCID: PMC11294275 DOI: 10.4049/immunohorizons.2300112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
The critical importance of the thymus for generating new naive T cells that protect against novel infections and are tolerant to self-antigens has led to a recent revival of interest in monitoring thymic function in species other than humans and mice. Nonhuman primates such as rhesus macaques (Macaca mulatta) provide particularly useful animal models for translational research in immunology. In this study, we tested the performance of a 15-marker multicolor Ab panel for flow cytometric phenotyping of lymphocyte subsets directly from rhesus whole blood, with validation by thymectomy and T cell depletion. Immunohistochemical and multiplex RNA expression analysis of thymus tissue biopsies and molecular assays on PBMCs were used to further validate thymus function. Results identify Ab panels that can accurately classify rhesus naive T cells (CD3+CD45RA+CD197+ or CD3+CD28+CD95-) and recent thymic emigrants (CD8+CD28+CD95-CD103+CD197+) using just 100 µl of whole blood and commercially available fluorescent Abs. An immunohistochemical panel reactive with pan-cytokeratin (CK), CK14, CD3, Ki-67, CCL21, and TdT provides histologic evidence of thymopoiesis from formalin-fixed, paraffin-embedded thymus tissues. Identification of mRNAs characteristic of both functioning thymic epithelial cells and developing thymocytes and/or molecular detection of products of TCR gene rearrangement provide additional complementary methods to evaluate thymopoiesis, without requiring specific Abs. Combinations of multiparameter flow cytometry, immunohistochemistry, multiplex gene expression, and TCR excision circle assays can comprehensively evaluate thymus function in rhesus macaques while requiring only minimal amounts of peripheral blood or biopsied thymus tissue.
Collapse
Affiliation(s)
- Laura P. Hale
- Department of Pathology and the Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Dawn E. Bowles
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jean Kwun
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jie Li
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Barbara Theriot
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC
| | - Joseph W. Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
14
|
Prall TM, Karl JA, Varghese JM, Baker DA, Minor NR, Raveendran M, Harris RA, Rogers J, Wiseman RW, O’Connor DH. Complete Genomic Assembly of Mauritian Cynomolgus Macaque Killer Ig-like Receptor and Natural Killer Group 2 Haplotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1754-1765. [PMID: 38639635 PMCID: PMC11102026 DOI: 10.4049/jimmunol.2300856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
Mauritian-origin cynomolgus macaques (MCMs) serve as a powerful nonhuman primate model in biomedical research due to their unique genetic homogeneity, which simplifies experimental designs. Despite their extensive use, a comprehensive understanding of crucial immune-regulating gene families, particularly killer Ig-like receptors (KIR) and NK group 2 (NKG2), has been hindered by the lack of detailed genomic reference assemblies. In this study, we employ advanced long-read sequencing techniques to completely assemble eight KIR and seven NKG2 genomic haplotypes, providing an extensive insight into the structural and allelic diversity of these immunoregulatory gene clusters. Leveraging these genomic resources, we prototype a strategy for genotyping KIR and NKG2 using short-read, whole-exome capture data, illustrating the potential for cost-effective multilocus genotyping at colony scale. These results mark a significant enhancement for biomedical research in MCMs and underscore the feasibility of broad-scale genetic investigations.
Collapse
Affiliation(s)
- Trent M. Prall
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - Julie A. Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - Joshua M. Varghese
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - David A. Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - Nicholas R. Minor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jeffery Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Roger W. Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI
| |
Collapse
|
15
|
Emborg ME, Gambardella JC, Zhang A, Federoff HJ. Autologous vs heterologous cell replacement strategies for Parkinson disease and other neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:41-56. [PMID: 39341662 DOI: 10.1016/b978-0-323-90120-8.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Successful cell replacement strategies for brain repair depend on graft integration into the neural network, which is affected by the immune response to the grafted cells. Using Parkinson disease as an example, in this chapter, we consider the immune system interaction and its role in autologous vs heterologous graft survival and integration, as well as past and emerging strategies to overcome the immunologic response. We also reflect on the role of nonhuman primate research to assess novel approaches and consider the role of different stakeholders on advancing the most promising new approaches into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States.
| | - Julia C Gambardella
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Ai Zhang
- Aspen Neuroscience, San Diego, CA, United States
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, United States; Georgetown University Medical Center, Georgetown, Washington, DC, United States
| |
Collapse
|
16
|
Brickey WJ, Caudell DL, Macintyre AN, Olson JD, Dai Y, Li S, Dugan GO, Bourland JD, O’Donnell LM, Tooze JA, Huang G, Yang S, Guo H, French MN, Schorzman AN, Zamboni WC, Sempowski GD, Li Z, Owzar K, Chao NJ, Cline JM, Ting JPY. The TLR2/TLR6 ligand FSL-1 mitigates radiation-induced hematopoietic injury in mice and nonhuman primates. Proc Natl Acad Sci U S A 2023; 120:e2122178120. [PMID: 38051771 PMCID: PMC10723152 DOI: 10.1073/pnas.2122178120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.
Collapse
Affiliation(s)
- W. June Brickey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - David L. Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - John D. Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Yanwan Dai
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gregory O. Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Lisa M. O’Donnell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Janet A. Tooze
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Guannan Huang
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Shuangshuang Yang
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Hao Guo
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Matthew N. French
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Allison N. Schorzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - William C. Zamboni
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
- Duke Cancer Institute, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
- Duke Cancer Institute, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Nelson J. Chao
- Department of Medicine, Duke University School of Medicine, Durham, NC27705
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Jenny P. Y. Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
17
|
Schramm CA, Moon D, Peyton L, Lima NS, Wake C, Boswell KL, Henry AR, Laboune F, Ambrozak D, Darko SW, Teng IT, Foulds KE, Carfi A, Edwards DK, Kwong PD, Koup RA, Seder RA, Douek DC. Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates. Nat Commun 2023; 14:7961. [PMID: 38042809 PMCID: PMC10693617 DOI: 10.1038/s41467-023-43420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023] Open
Abstract
As SARS-CoV-2 variants continue evolving, testing updated vaccines in non-human primates remains important for guiding human clinical practice. To date, such studies have focused on antibody titers and antigen-specific B and T cell frequencies. Here, we extend our understanding by integrating innate and adaptive immune responses to mRNA-1273 vaccination in rhesus macaques. We sorted innate immune cells from a pre-vaccine time point, as well as innate immune cells and antigen-specific peripheral B and T cells two weeks after each of two vaccine doses and used single-cell sequencing to assess the transcriptomes and adaptive immune receptors of each cell. We show that a subset of S-specific T cells expresses cytokines critical for activating innate responses, with a concomitant increase in CCR5-expressing intermediate monocytes and a shift of natural killer cells to a more cytotoxic phenotype. The second vaccine dose, administered 4 weeks after the first, elicits an increase in circulating germinal center-like B cells 2 weeks later, which are more clonally expanded and enriched for epitopes in the receptor binding domain. Both doses stimulate inflammatory response genes associated with elevated antibody production. Overall, we provide a comprehensive picture of bidirectional signaling between innate and adaptive components of the immune system and suggest potential mechanisms for the enhanced response to secondary exposure.
Collapse
Affiliation(s)
- Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christian Wake
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel W Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
King HAD, Pokkali S, Kim D, Brammer D, Song K, McCarthy E, Lehman C, Todd JP, Foulds KE, Darrah PA, Seder RA, Bolton DL, Roederer M. Immune Activation Profiles Elicited by Distinct, Repeated TLR Agonist Infusions in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1643-1655. [PMID: 37861342 PMCID: PMC10656433 DOI: 10.4049/jimmunol.2300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
TLR agonists are a promising class of immune system stimulants investigated for immunomodulatory applications in cancer immunotherapy and viral diseases. In this study, we sought to characterize the safety and immune activation achieved by different TLR agonists in rhesus macaques (Macaca mulatta), a useful preclinical model of complex immune interactions. Macaques received one of three TLR agonists, followed by plasma cytokine, immune cell subset representation, and blood cell activation measurements. The TLR4 agonist LPS administered i.v. induced very transient immune activation, including TNF-α expression and monocyte activation. The TLR7/8 agonist 2BXy elicited more persistent cytokine expression, including type I IFN, IL-1RA, and the proinflammatory IL-6, along with T cell and monocyte activation. Delivery of 2BXy i.v. and i.m. achieved comparable immune activation, which increased with escalating dose. Finally, i.v. bacillus Calmette-Guérin (BCG) vaccination (which activates multiple TLRs, especially TLR2/4) elicited the most pronounced and persistent innate and adaptive immune response, including strong induction of IFN-γ, IL-6, and IL-1RA. Strikingly, monocyte, T cell, and NK cell expression of the proliferation marker Ki67 increased dramatically following BCG vaccination. This aligned with a large increase in total and BCG-specific cells measured in the lung. Principal component analysis of the combined cytokine expression and cellular activation responses separated animals by treatment group, indicating distinct immune activation profiles induced by each agent. In sum, we report safe, effective doses and routes of administration for three TLR agonists that exhibit discrete immunomodulatory properties in primates and may be leveraged in future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hannah A. D. King
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Supriya Pokkali
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Dohoon Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Daniel Brammer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Kaimei Song
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | | - Chelsea Lehman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | | - Robert A. Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Smedley J. Editorial: Preclinical macaque models of viral diseases. Front Immunol 2023; 14:1331774. [PMID: 38022655 PMCID: PMC10666555 DOI: 10.3389/fimmu.2023.1331774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Jeremy Smedley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
20
|
Choi Y, Lee GS, Li S, Lee JW, Mixson-Hayden T, Woo J, Xia D, Prausnitz MR, Kamili S, Purdy MA, Tohme RA. Hepatitis B vaccine delivered by microneedle patch: Immunogenicity in mice and rhesus macaques. Vaccine 2023; 41:3663-3672. [PMID: 37179166 PMCID: PMC10961677 DOI: 10.1016/j.vaccine.2023.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Vaccination against hepatitis B using a dissolving microneedle patch (dMNP) could increase access to the birth dose by reducing expertise needed for vaccine administration, refrigerated storage, and safe disposal of biohazardous sharps waste. In this study, we developed a dMNP to administer hepatitis B surface antigen (HBsAg) adjuvant-free monovalent vaccine (AFV) at doses of 5 µg, 10 µg, and 20 µg, and compared its immunogenicity to vaccination with 10 µg of standard monovalent HBsAg delivered by intramuscular (IM) injection either in an AFV format or as aluminum-adjuvanted vaccine (AAV). Vaccination was performed on a three dose schedule of 0, 3, and 9 weeks in mice and 0, 4, and 24 weeks in rhesus macaques. Vaccination by dMNP induced protective levels of anti-HBs antibody responses (≥10 mIU/ml) in mice and rhesus macaques at all three HBsAg doses studied. HBsAg delivered by dMNP induced higher anti-HBsAg antibody (anti-HBs) responses than the 10 µg IM AFV, but lower responses than 10 µg IM AAV, in mice and rhesus macaques. HBsAg-specific CD4+ and CD8+ T cell responses were detected in all vaccine groups. Furthermore, we analyzed differential gene expression profiles related to each vaccine delivery group and found that tissue stress, T cell receptor signaling, and NFκB signaling pathways were activated in all groups. These results suggest that HBsAg delivered by dMNP, IM AFV, and IM AAV have similar signaling pathways to induce innate and adaptive immune responses. We further demonstrated that dMNP was stable at room temperature (20 °C-25 °C) for 6 months, maintaining 67 ± 6 % HBsAg potency. This study provides evidence that delivery of 10 µg (birth dose) AFV by dMNP induced protective levels of antibody responses in mice and rhesus macaques. The dMNPs developed in this study could be used to improve hepatitis B birth dose vaccination coverage levels in resource limited regions to achieve and maintain hepatitis B elimination.
Collapse
Affiliation(s)
- Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Jeong Woo Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Tonya Mixson-Hayden
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Jungreem Woo
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Dengning Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Saleem Kamili
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Rania A Tohme
- Global Immunization Division, Centers for Global Health, CDC, Atlanta, GA, USA.
| |
Collapse
|
21
|
Pons-Faudoa FP, Di Trani N, Capuani S, Hernandez N, Wood AM, Nehete B, Niles J, Shelton KA, Kezar S, Bushman LR, Chua CYX, Ittmann MM, Anderson PL, Nehete PN, Arduino RC, Nichols JE, Grattoni A. Changes in local tissue microenvironment in response to subcutaneous long-acting delivery of tenofovir alafenamide in rats and non-human primates. J Control Release 2023; 358:116-127. [PMID: 37120032 PMCID: PMC10330370 DOI: 10.1016/j.jconrel.2023.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Several implantable long-acting (LA) delivery systems have been developed for sustained subcutaneous administration of tenofovir alafenamide (TAF), a potent and effective nucleotide reverse transcriptase inhibitor used for HIV pre-exposure prophylaxis (PrEP). LA platforms aim to address the lack of adherence to oral regimens, which has impaired PrEP efficacy. Despite extensive investigations in this field, tissue response to sustained subcutaneous TAF delivery remains to be elucidated as contrasting preclinical results have been reported in the literature. To this end, here we studied the local foreign body response (FBR) to sustained subdermal delivery of three forms of TAF, namely TAF free base (TAFfb), TAF fumarate salt (TAFfs), and TAFfb with urocanic acid (TAF-UA). Sustained constant drug release was achieved via titanium-silicon carbide nanofluidic implants previously shown to be bioinert. The analysis was conducted in both Sprague-Dawley (SD) rats and rhesus macaques over 1.5 and 3 months, respectively. While visual observation did not reveal abnormal adverse tissue reaction at the implantation site, histopathology and Imaging Mass Cytometry (IMC) analyses exposed a local chronic inflammatory response to TAF. In rats, UA mitigated foreign body response to TAF in a concentration-dependent manner. This was not observed in macaques where TAFfb was better tolerated than TAFfs and TAF-UA. Notably, the level of FBR was tightly correlated with local TAF tissue concentration. Further, regardless of the degree of FBR, the fibrotic capsule (FC) surrounding the implants did not interfere with drug diffusion and systemic delivery, as evidenced by TAF PK results and fluorescence recovery after photobleaching (FRAP).
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; University of Chinese Academy of Science (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Anthony M Wood
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bharti Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jean Niles
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Sarah Kezar
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Lane R Bushman
- Deparment of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado- Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter L Anderson
- Deparment of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado- Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Roberto C Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Joan E Nichols
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Nash MJ, Dobrinskikh E, Soderborg TK, Janssen RC, Takahashi DL, Dean TA, Varlamov O, Hennebold JD, Gannon M, Aagaard KM, McCurdy CE, Kievit P, Bergman BC, Jones KL, Pietras EM, Wesolowski SR, Friedman JE. Maternal diet alters long-term innate immune cell memory in fetal and juvenile hematopoietic stem and progenitor cells in nonhuman primate offspring. Cell Rep 2023; 42:112393. [PMID: 37058409 PMCID: PMC10570400 DOI: 10.1016/j.celrep.2023.112393] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.
Collapse
Affiliation(s)
- Michael J Nash
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taylor K Soderborg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel C Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Bryan C Bergman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eric M Pietras
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
23
|
Lianos EA, Detsika MG. Metalloporphyrins as Tools for Deciphering the Role of Heme Oxygenase in Renal Immune Injury. Int J Mol Sci 2023; 24:6815. [PMID: 37047787 PMCID: PMC10095062 DOI: 10.3390/ijms24076815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Renal immune injury is a frequent cause of end-stage renal disease, and, despite the progress made in understanding underlying pathogenetic mechanisms, current treatments to preserve renal function continue to be based mainly on systemic immunosuppression. Small molecules, naturally occurring biologic agents, show considerable promise in acting as disease modifiers and may provide novel therapeutic leads. Certain naturally occurring or synthetic Metalloporphyrins (Mps) can act as disease modifiers by increasing heme oxygenase (HO) enzymatic activity and/or synthesis of the inducible HO isoform (HO-1). Depending on the metal moiety of the Mp employed, these effects may occur in tandem or can be discordant (increased HO-1 synthesis but inhibition of enzyme activity). This review discusses effects of Mps, with varying redox-active transitional metals and cyclic porphyrin cores, on mechanisms underlying pathogenesis and outcomes of renal immune injury.
Collapse
Affiliation(s)
- Elias A. Lianos
- Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, Salem, VA 24153, USA
| | - Maria G. Detsika
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, 1st Department of Critical Care Medicine & Pulmonary Services, National and Kapodistrian University of Athens, 10675 Athens, Greece
| |
Collapse
|
24
|
Long-Term Immunological Consequences of Radiation Exposure in a Diverse Cohort of Rhesus Macaques. Int J Radiat Oncol Biol Phys 2023; 115:945-956. [PMID: 36288757 PMCID: PMC9974872 DOI: 10.1016/j.ijrobp.2022.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The aim of this study was to develop an improved understanding of the delayed immunologic effects of acute total body irradiation (TBI) using a diverse cohort of nonhuman primates as a model for an irradiated human population. METHODS AND MATERIALS Immune recovery was evaluated in 221 rhesus macaques either left unirradiated (n = 36) or previously irradiated (n = 185) at 1.1 to 8.5 Gy TBI (median, 6.5 Gy) when aged 2.1 to 15.5 years (median, 4.2 years). Blood was drawn annually for up to 5 years total between 0.5 and 14.3 years after exposure. Blood was analyzed by complete blood count, immunophenotyping of monocytes, dendritic cells (DC) and lymphocytes by flow cytometry, and signal joint T-cell receptor exclusion circle quantification in isolated peripheral blood CD4 and CD8 T cells. Animals were categorized by age, irradiation status, and time since irradiation. Sex-adjusted means of immune metrics were evaluated by generalized estimating equation models to identify cell populations altered by TBI. RESULTS Overall, the differences between irradiated and nonirradiated animals were subtle and largely restricted to younger animals and select cell populations. Subsets of monocytes, DC, T cells, and B cells showed significant interaction effects between radiation dose and age after adjustment for sex. Irradiation at a young age caused transient increases in the percentage of peripheral blood myeloid DC and dose-dependent changes in monocyte balance for at least 5 years after TBI. TBI also led to a sustained decrease in the percentage of circulating memory B cells. Young irradiated animals exhibited statistically significant and prolonged disruption of the naïve/effector memory/central memory CD4 and CD8 T-cell equilibrium and exhibited a dose-dependent increase in thymopoiesis for 2 to 3 years after exposure. CONCLUSIONS This study indicates TBI subtly but significantly alters the circulating proportions of cellular mediators of adaptive immune memory for several years after irradiation, especially in macaques under 5 years of age and those receiving a high dose of radiation.
Collapse
|
25
|
Deycmar S, Gomes B, Charo J, Ceppi M, Cline JM. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J Immunother Cancer 2023; 11:e005514. [PMID: 36593067 PMCID: PMC9808758 DOI: 10.1136/jitc-2022-005514] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
The complexity of cancer immunotherapy (CIT) demands reliable preclinical models to successfully translate study findings to the clinics. Non-human primates (NHPs; here referring to rhesus and cynomolgus macaques) share broad similarities with humans including physiology, genetic homology, and importantly also immune cell populations, immune regulatory mechanisms, and protein targets for CIT. Furthermore, NHP naturally develop cancers such as colorectal and breast cancer with an incidence, pathology, and age pattern comparable to humans. Thus, these tumor-bearing monkeys (TBMs) have the potential to bridge the experimental gap between early preclinical cancer models and patients with human cancer.This review presents our current knowledge of NHP immunology, the incidence and features of naturally-occurring cancers in NHP, and recent TBM trials investigating CIT to provide a scientific rationale for this unique model for human cancer.
Collapse
Affiliation(s)
- Simon Deycmar
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bruno Gomes
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Jehad Charo
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Maurizio Ceppi
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
- iTeos Therapeutics Inc, Watertown, Massachusetts, USA
| | - J Mark Cline
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
26
|
Harvey W, Hutto EH, Chilton JA, Chamanza R, Mysore JV, Parry NM, Dick E, Wojcinski ZW, Piaia A, Garcia B, Flandre TD, Pardo ID, Cramer S, Wright JA, Bradley AE. Infectious diseases of non-human primates. SPONTANEOUS PATHOLOGY OF THE LABORATORY NON-HUMAN PRIMATE 2023:15-69. [DOI: 10.1016/b978-0-12-813088-9.00020-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
27
|
Sureshchandra S, Chan CN, Robino JJ, Parmelee LK, Nash MJ, Wesolowski SR, Pietras EM, Friedman JE, Takahashi D, Shen W, Jiang X, Hennebold JD, Goldman D, Packwood W, Lindner JR, Roberts CT, Burwitz BJ, Messaoudi I, Varlamov O. Maternal Western-style diet remodels the transcriptional landscape of fetal hematopoietic stem and progenitor cells in rhesus macaques. Stem Cell Reports 2022; 17:2595-2609. [PMID: 36332628 PMCID: PMC9768582 DOI: 10.1016/j.stemcr.2022.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA
| | - Chi N Chan
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Jacob J Robino
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Lindsay K Parmelee
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Michael J Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric M Pietras
- Department of Immunology and Microbiology, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana Takahashi
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Weining Shen
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Xiwen Jiang
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Devorah Goldman
- Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan R Lindner
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006; Vaccine & Gene Therapy Institute, Beaverton, OR 97006, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA; Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006.
| |
Collapse
|
28
|
Adapen C, Réot L, Menu E. Role of the human vaginal microbiota in the regulation of inflammation and sexually transmitted infection acquisition: Contribution of the non-human primate model to a better understanding? FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:992176. [PMID: 36560972 PMCID: PMC9763629 DOI: 10.3389/frph.2022.992176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
The human vaginal microbiota has a central role in the regulation of the female reproductive tract (FRT) inflammation. Indeed, on one hand an optimal environment leading to a protection against sexually transmitted infections (STI) is associated with a high proportion of Lactobacillus spp. (eubiosis). On the other hand, a more diverse microbiota with a high amount of non-Lactobacillus spp. (dysbiosis) is linked to a higher local inflammation and an increased STI susceptibility. The composition of the vaginal microbiota is influenced by numerous factors that may lead to a dysbiotic environment. In this review, we first discuss how the vaginal microbiota composition affects the local inflammation with a focus on the cytokine profiles, the immune cell recruitment/phenotype and a large part devoted on the interactions between the vaginal microbiota and the neutrophils. Secondly, we analyze the interplay between STI and the vaginal microbiota and describe several mechanisms of action of the vaginal microbiota. Finally, the input of the NHP model in research focusing on the FRT health including vaginal microbiota or STI acquisition/control and treatment is discussed.
Collapse
Affiliation(s)
- Cindy Adapen
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Louis Réot
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)/Department of Infectious Disease Models and Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)/Department of Infectious Disease Models and Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Zhang X. Magnetic resonance imaging of the monkey fetal brain in utero. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:177-190. [PMID: 36937817 PMCID: PMC10019598 DOI: 10.13104/imri.2022.26.4.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-human primates (NHPs) are the closest living relatives of the human and play a critical role in investigating the effects of maternal viral infection and consumption of medicines, drugs, and alcohol on fetal development. With the advance of contemporary fast MRI techniques with parallel imaging, fetal MRI is becoming a robust tool increasingly used in clinical practice and preclinical studies to examine congenital abnormalities including placental dysfunction, congenital heart disease (CHD), and brain abnormalities non-invasively. Because NHPs are usually scanned under anesthesia, the motion artifact is reduced substantially, allowing multi-parameter MRI techniques to be used intensively to examine the fetal development in a single scanning session or longitudinal studies. In this paper, the MRI techniques for scanning monkey fetal brains in utero in biomedical research are summarized. Also, a fast imaging protocol including T2-weighted imaging, diffusion MRI, resting-state functional MRI (rsfMRI) to examine rhesus monkey fetal brains in utero on a clinical 3T scanner is introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, Georgia, 30329, USA
| |
Collapse
|
30
|
Chin N, Narayan NR, Méndez-Lagares G, Ardeshir A, Chang WLW, Deere JD, Fontaine JH, Chen C, Kieu HT, Lu W, Barry PA, Sparger EE, Hartigan-O'Connor DJ. Cytomegalovirus infection disrupts the influence of short-chain fatty acid producers on Treg/Th17 balance. MICROBIOME 2022; 10:168. [PMID: 36210471 PMCID: PMC9549678 DOI: 10.1186/s40168-022-01355-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Both the gut microbiota and chronic viral infections have profound effects on host immunity, but interactions between these influences have been only superficially explored. Cytomegalovirus (CMV), for example, infects approximately 80% of people globally and drives significant changes in immune cells. Similarly, certain gut-resident bacteria affect T-cell development in mice and nonhuman primates. It is unknown if changes imposed by CMV on the intestinal microbiome contribute to immunologic effects of the infection. RESULTS We show that rhesus cytomegalovirus (RhCMV) infection is associated with specific differences in gut microbiota composition, including decreased abundance of Firmicutes, and that the extent of microbial change was associated with immunologic changes including the proliferation, differentiation, and cytokine production of CD8+ T cells. Furthermore, RhCMV infection disrupted the relationship between short-chain fatty acid producers and Treg/Th17 balance observed in seronegative animals, showing that some immunologic effects of CMV are due to disruption of previously existing host-microbe relationships. CONCLUSIONS Gut microbes have an important influence on health and disease. Diet is known to shape the microbiota, but the influence of concomitant chronic viral infections is unclear. We found that CMV influences gut microbiota composition to an extent that is correlated with immunologic changes in the host. Additionally, pre-existing correlations between immunophenotypes and gut microbes can be subverted by CMV infection. Immunologic effects of CMV infection on the host may therefore be mediated by two different mechanisms involving gut microbiota. Video Abstract.
Collapse
Affiliation(s)
- Ning Chin
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Nicole R Narayan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Gema Méndez-Lagares
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, USA
| | - W L William Chang
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Jesse D Deere
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Justin H Fontaine
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Connie Chen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Hung T Kieu
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Wenze Lu
- California National Primate Research Center, University of California, Davis, Davis, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA
| | - Peter A Barry
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, USA
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, Davis, USA.
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, USA.
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
31
|
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet Sci 2022; 9:516. [PMID: 36288129 PMCID: PMC9609818 DOI: 10.3390/vetsci9100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest living relatives of humans and play a critical and unique role in neuroscience research and pharmaceutical development. General anesthesia is usually required in neuroimaging studies of NHPs to keep the animal from stress and motion. However, the adverse effects of anesthesia on cerebral physiology and neural activity are pronounced and can compromise the data collection and interpretation. Functional connectivity is frequently examined using resting-state functional MRI (rsfMRI) to assess the functional abnormality in the animal brain under anesthesia. The fMRI signal can be dramatically suppressed by most anesthetics in a dose-dependent manner. In addition, rsfMRI studies may be further compromised by inter-subject variations when the sample size is small (as seen in most neuroscience studies of NHPs). Therefore, proper use of anesthesia is strongly demanded to ensure steady and consistent physiology maintained during rsfMRI data collection of each subject. The aim of this review is to summarize typical anesthesia used in rsfMRI scans of NHPs and the effects of anesthetics on cerebral physiology and functional connectivity. Moreover, the protocols with optimal rsfMRI data acquisition and anesthesia procedures for functional connectivity study of macaque monkeys are introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood RD, Atlanta, GA 30329, USA
| |
Collapse
|
32
|
Sills WS, Tooze JA, Olson JD, Caudell DL, Dugan GO, Johnson BJ, Kock ND, Andrews RN, Schaaf GW, Lang RA, Cline JM. Total-Body Irradiation Is Associated With Increased Incidence of Mesenchymal Neoplasia in a Radiation Late Effects Cohort of Rhesus Macaques (Macaca mulatta). Int J Radiat Oncol Biol Phys 2022; 113:661-674. [PMID: 35361520 PMCID: PMC9250621 DOI: 10.1016/j.ijrobp.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Cancer is a severe delayed effect of acute radiation exposure. Total-body irradiation has been associated with an increased risk of solid cancer and leukemia in Japanese atomic bomb survivors, and secondary malignancies, such as sarcoma, are a serious consequence of cancer radiation therapy. The radiation late effects cohort (RLEC) of rhesus macaques (Macaca mulatta) is a unique resource of more than 200 animals for studying the long-term consequences of total-body irradiation in an animal model that closely resembles humans at the genetic and physiologic levels. METHODS AND MATERIALS Using clinical records, clinical imaging, histopathology, and immunohistochemistry, this retrospective study characterized the incidence of neoplasia in the RLEC. RESULTS Since 2007, 61 neoplasms in 44 of 239 irradiated animals were documented (18.4% of the irradiated population). Only 1 neoplasm was diagnosed among the 51 nonirradiated controls of the RLEC (2.0%). The most common malignancies in the RLEC were sarcomas (38.3% of diagnoses), which are rare neoplasms in nonirradiated macaques. The most common sarcomas included malignant nerve sheath tumors and malignant glomus tumors. Carcinomas were less common (19.7% of diagnoses), and consisted primarily of renal cell and hepatocellular carcinomas. Neoplasia occurred in most major body systems, with the skin and subcutis being the most common site (40%). RNA analysis showed similarities in transcriptional profiles between RLEC and human malignant nerve sheath tumors. CONCLUSIONS This study indicates that total-body irradiation is associated with an increased incidence of neoplasia years following irradiation, at more than double the incidence described in aging, nonirradiated animals, and promotes tumor histotypes that are rarely observed in nonirradiated, aging rhesus macaques.
Collapse
Affiliation(s)
- W Shane Sills
- Department of Pathology, Section on Comparative Medicine
| | | | - John D Olson
- Department of Pathology, Section on Comparative Medicine
| | | | - Greg O Dugan
- Department of Pathology, Section on Comparative Medicine
| | | | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine
| | - Rachel N Andrews
- Department of Pathology, Section on Comparative Medicine; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Richard A Lang
- Department of Pathology, Section on Comparative Medicine
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
33
|
Tarantal AF, Hartigan-O'Connor DJ, Noctor SC. Translational Utility of the Nonhuman Primate Model. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:491-497. [PMID: 35283343 PMCID: PMC9576492 DOI: 10.1016/j.bpsc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
Nonhuman primates are essential for the study of human disease and to explore the safety of new diagnostics and therapies proposed for human use. They share similar genetic, physiologic, immunologic, reproductive, and developmental features with humans and thus have proven crucial for the study of embryonic/fetal development, organ system ontogeny, and the role of the maternal-placental-fetal interface in health and disease. The fetus may be exposed to a variety of inflammatory stimuli including infectious microbes as well as maternal inflammation, which can result from infections, obesity, or environmental exposures. Growing evidence supports that inflammation is a mediator of fetal programming and that the maternal immune system is tightly integrated with fetal-placental immune responses that may set a postnatal path for future health or disease. This review addresses some of the unique features of the nonhuman primate model system, specifically the rhesus monkey (Macaca mulatta), and importance of the species for studies focused on organ system ontogeny and the impact of viral teratogens in relation to development and congenital disorders.
Collapse
Affiliation(s)
- Alice F Tarantal
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, California; Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California.
| | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, California; Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis, Davis, California
| |
Collapse
|
34
|
Nash AM, Jarvis MI, Aghlara-Fotovat S, Mukherjee S, Hernandez A, Hecht AD, Rios PD, Ghani S, Joshi I, Isa D, Cui Y, Nouraein S, Lee JZ, Xu C, Zhang DY, Sheth RA, Peng W, Oberholzer J, Igoshin OA, Jazaeri AA, Veiseh O. Clinically translatable cytokine delivery platform for eradication of intraperitoneal tumors. SCIENCE ADVANCES 2022; 8:eabm1032. [PMID: 35235346 PMCID: PMC8890714 DOI: 10.1126/sciadv.abm1032] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
Proinflammatory cytokines have been approved by the Food and Drug Administration for the treatment of metastatic melanoma and renal carcinoma. However, effective cytokine therapy requires high-dose infusions that can result in antidrug antibodies and/or systemic side effects that limit long-term benefits. To overcome these limitations, we developed a clinically translatable cytokine delivery platform composed of polymer-encapsulated human ARPE-19 (RPE) cells that produce natural cytokines. Tumor-adjacent administration of these capsules demonstrated predictable dose modulation with spatial and temporal control and enabled peritoneal cancer immunotherapy without systemic toxicities. Interleukin-2 (IL2)-producing cytokine factory treatment eradicated peritoneal tumors in ovarian and colorectal mouse models. Furthermore, computational pharmacokinetic modeling predicts clinical translatability to humans. Notably, this platform elicited T cell responses in NHPs, consistent with reported biomarkers of treatment efficacy without toxicity. Combined, our findings demonstrate the safety and efficacy of IL2 cytokine factories in preclinical animal models and provide rationale for future clinical testing in humans.
Collapse
Affiliation(s)
- Amanda M. Nash
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maria I. Jarvis
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Andrew D. Hecht
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | | | | | - Yufei Cui
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Shirin Nouraein
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jared Z. Lee
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Chunyu Xu
- Department of Biology and Biochemistry, The University of Houston, Houston, TX, USA
| | - David Y. Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, The University of Houston, Houston, TX, USA
| | - Jose Oberholzer
- CellTrans Inc., Chicago, IL, USA
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Amir A. Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
35
|
IMGT® Biocuration and Analysis of the Rhesus Monkey IG Loci. Vaccines (Basel) 2022; 10:vaccines10030394. [PMID: 35335026 PMCID: PMC8950363 DOI: 10.3390/vaccines10030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
The adaptive immune system, along with the innate immune system, are the two main biological processes that protect an organism from pathogens. The adaptive immune system is characterized by the specificity and extreme diversity of its antigen receptors. These antigen receptors are the immunoglobulins (IG) or antibodies of the B cells and the T cell receptors (TR) of the T cells. The IG are proteins that have a dual role in immunity: they recognize antigens and trigger elimination mechanisms, to rid the body of foreign cells. The synthesis of the immunoglobulin heavy and light chains requires gene rearrangements at the DNA level in the IGH, IGK, and IGL loci. The rhesus monkey (Macaca mulatta) is one of the most widely used nonhuman primate species in biomedical research. In this manuscript, we provide a thorough analysis of the three IG loci of the Mmul_10 assembly of rhesus monkey, integrating IMGT previously existing data. Detailed characterization of IG genes includes their localization and position in the loci, the determination of the allele functionality, and the description of the regulatory elements of their promoters as well as the sequences of the conventional recombination signals (RS). This complete annotation of the genomic IG loci of Mmul_10 assembly and the highly detailed IG gene characterization could be used as a model, in additional rhesus monkey assemblies, for the analysis of the IG allelic polymorphism and structural variation, which have been described in rhesus monkeys.
Collapse
|
36
|
Gerdemann U, Fleming RA, Kaminski J, McGuckin C, Rui X, Lane JF, Keskula P, Cagnin L, Shalek AK, Tkachev V, Kean LS. Identification and Tracking of Alloreactive T Cell Clones in Rhesus Macaques Through the RM-scTCR-Seq Platform. Front Immunol 2022; 12:804932. [PMID: 35154078 PMCID: PMC8825351 DOI: 10.3389/fimmu.2021.804932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
T cell receptor (TCR) clonotype tracking is a powerful tool for interrogating T cell mediated immune processes. New methods to pair a single cell's transcriptional program with its TCR identity allow monitoring of T cell clonotype-specific transcriptional dynamics. While these technologies have been available for human and mouse T cells studies, they have not been developed for Rhesus Macaques (RM), a critical translational organism for autoimmune diseases, vaccine development and transplantation. We describe a new pipeline, 'RM-scTCR-Seq', which, for the first time, enables RM specific single cell TCR amplification, reconstruction and pairing of RM TCR's with their transcriptional profiles. We apply this method to a RM model of GVHD, and identify and track in vitro detected alloreactive clonotypes in GVHD target organs and explore their GVHD driven cytotoxic T cell signature. This novel, state-of-the-art platform fundamentally advances the utility of RM to study protective and pathogenic T cell responses.
Collapse
Affiliation(s)
- Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ryan A Fleming
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.,Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA, United States
| | - Connor McGuckin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Xianliang Rui
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Jennifer F Lane
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Paula Keskula
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Lorenzo Cagnin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.,Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA, United States
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Abstract
Nonhuman primates are critically important animal models in which to study complex human diseases, understand biological functions, and address the safety of new diagnostics and therapies proposed for human use. They have genetic, physiologic, immunologic, and developmental similarities when compared to humans and therefore provide important preclinical models of human health and disease. This review highlights select research areas that demonstrate the importance of nonhuman primates in translational research. These include pregnancy and developmental disorders, infectious diseases, gene therapy, somatic cell genome editing, and applications of in vivo imaging. The power of the immune system and our increasing understanding of the role it plays in acute and chronic illnesses are being leveraged to produce new treatments for a range of medical conditions. Given the importance of the human immune system in health and disease, detailed study of the immune system of nonhuman primates is essential to advance preclinical translational research. The need for nonhuman primates continues to remain a high priority, which has been acutely evident during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Nonhuman primates will continue to address key questions and provide predictive models to identify the safety and efficiency of new diagnostics and therapies for human use across the lifespan.
Collapse
Affiliation(s)
- Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, California, USA;
- California National Primate Research Center, University of California, Davis, California, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California, USA;
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, California, USA
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
38
|
Speranza E, Purushotham JN, Port JR, Schwarz B, Flagg M, Williamson BN, Feldmann F, Singh M, Pérez-Pérez L, Sturdevant GL, Roberts LM, Carmody A, Schulz JE, van Doremalen N, Okumura A, Lovaglio J, Hanley PW, Shaia C, Germain RN, Best SM, Munster VJ, Bosio CM, de Wit E. Age-related differences in immune dynamics during SARS-CoV-2 infection in rhesus macaques. Life Sci Alliance 2022; 5:5/4/e202101314. [PMID: 35039442 PMCID: PMC8807873 DOI: 10.26508/lsa.202101314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Increased age is a risk factor for severe COVID-19. Multi-omics profiling in rhesus macaques suggests that aging may delay or impair cellular immune responses and the return to immune homeostasis. Advanced age is a key predictor of severe COVID-19. To gain insight into this relationship, we used the rhesus macaque model of SARS-CoV-2 infection. Eight older and eight younger macaques were inoculated with SARS-CoV-2. Animals were evaluated using viral RNA quantification, clinical observations, thoracic radiographs, single-cell transcriptomics, multiparameter flow cytometry, multiplex immunohistochemistry, cytokine detection, and lipidomics analysis at predefined time points in various tissues. Differences in clinical signs, pulmonary infiltrates, and virus replication were limited. Transcriptional signatures of inflammation-associated genes in bronchoalveolar lavage fluid at 3 dpi revealed efficient mounting of innate immune defenses in both cohorts. However, age-specific divergence of immune responses emerged during the post-acute phase. Older animals exhibited sustained local inflammatory innate responses, whereas local effector T-cell responses were induced earlier in the younger animals. Circulating lipid mediator and cytokine levels highlighted increased repair-associated signals in the younger animals, and persistent pro-inflammatory responses in the older animals. In summary, despite similar disease outcomes, multi-omics profiling suggests that age may delay or impair antiviral cellular immune responses and delay efficient return to immune homeostasis.
Collapse
Affiliation(s)
- Emily Speranza
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Jyothi N Purushotham
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA.,The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Meaghan Flagg
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N Williamson
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Gail L Sturdevant
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Lydia M Roberts
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Aaron Carmody
- Research Technologies Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Sonja M Best
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
39
|
Nugent JL, Singh A, Wirth KM, Oppler SH, Hocum Stone L, Janecek JL, Sheka AC, Kizy S, Moore MEG, Staley C, Hering BJ, Ramachandran S, Ikramuddin S, Graham ML. A nonhuman primate model of vertical sleeve gastrectomy facilitates mechanistic and translational research in human obesity. iScience 2021; 24:103421. [PMID: 34877488 PMCID: PMC8633018 DOI: 10.1016/j.isci.2021.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The obesity epidemic significantly contributes to overall morbidity and mortality. Bariatric surgery is the gold standard treatment for obesity and metabolic dysfunction, yet the mechanisms by which it exerts metabolic benefit remain unclear. Here, we demonstrate a model of vertical sleeve gastrectomy (VSG) in nonhuman primates (NHP) that mimics the complexity and outcomes in humans. We also show that VSG confers weight loss and durable metabolic benefit, where equivalent caloric intake in shams resulted in significant weight gain following surgery. Furthermore, we show that VSG is associated with early, weight-independent increases in bile acids, short-chain fatty acids, and reduced visceral adipose tissue (VAT) inflammation with a polarization of VAT-resident immunocytes toward highly regulatory myeloid cells and Tregs. These data demonstrate that this strongly translational NHP model can be used to interrogate factors driving successful intervention to unravel the interplay between physiologic systems and improve therapies for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Julia L Nugent
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Amar Singh
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | - Keith M Wirth
- Department of Surgery, University of Minnesota, MN, USA
| | - Scott Hunter Oppler
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Jody L Janecek
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Adam C Sheka
- Department of Surgery, University of Minnesota, MN, USA
| | - Scott Kizy
- Department of Surgery, University of Minnesota, MN, USA
| | - Meghan E G Moore
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, MN, USA.,BioTechnology Institute, University of Minnesota, MN, USA
| | - Bernhard J Hering
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | - Sabarinathan Ramachandran
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | | | - Melanie L Graham
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
40
|
Citron MP, McAnulty J, Callahan C, Knapp W, Fontenot J, Morales P, Flynn JA, Douglas CM, Espeseth AS. Transplacental Antibody Transfer of Respiratory Syncytial Virus Specific IgG in Non-Human Primate Mother-Infant Pairs. Pathogens 2021; 10:pathogens10111441. [PMID: 34832599 PMCID: PMC8624788 DOI: 10.3390/pathogens10111441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
One approach to protect new-borns against respiratory syncytial virus (RSV) is to vaccinate pregnant women in the last trimester of pregnancy. The boosting of circulating antibodies which can be transferred to the foetus would offer immune protection against the virus and ultimately the disease. Since non-human primates (NHPs) have similar reproductive anatomy, physiology, and antibody architecture and kinetics to humans, we utilized this preclinical species to evaluate maternal immunization (MI) using an RSV F subunit vaccine. Three species of NHPs known for their ability to be infected with human RSV in experimental challenge studies were tested for RSV-specific antibodies. African green monkeys had the highest overall antibody levels of the old-world monkeys evaluated and they gave birth to offspring with anti-RSV titers that were proportional to their mother. These higher overall antibody levels are associated with greater durability found in their offspring. Immunization of RSV seropositive AGMs during late pregnancy boosts RSV titers, which consequentially results in significantly higher titers in the vaccinated new-borns compared to the new-borns of unvaccinated mothers. These findings, accomplished in small treatment group sizes, demonstrate a model that provides an efficient, resource sparing and translatable preclinical in vivo system for evaluating vaccine candidates for maternal immunization.
Collapse
Affiliation(s)
- Michael P. Citron
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
- Correspondence:
| | - Jessica McAnulty
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Cheryl Callahan
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Walter Knapp
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Jane Fontenot
- The New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
| | - Pablo Morales
- The Mannheimer Foundation, Homestead, FL 33034, USA;
| | - Jessica A. Flynn
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Cameron M. Douglas
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Amy S. Espeseth
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| |
Collapse
|
41
|
Ground M, Waqanivavalagi S, Walker R, Milsom P, Cornish J. Models of immunogenicity in preclinical assessment of tissue engineered heart valves. Acta Biomater 2021; 133:102-113. [PMID: 34082103 DOI: 10.1016/j.actbio.2021.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Tissue engineered heart valves may one day offer an exciting alternative to traditional valve prostheses. Methods of construction vary, from decellularised animal tissue to synthetic hydrogels, but the goal is the same: the creation of a 'living valve' populated with autologous cells that may persist indefinitely upon implantation. Previous failed attempts in humans have highlighted the difficulty in predicting how a novel heart valve will perform in vivo. A significant hurdle in bringing these prostheses to market is understanding the immune reaction in the short and long term. With respect to innate immunity, the chronic remodelling of a tissue engineered implant by macrophages remains poorly understood. Also unclear are the mechanisms behind unknown antigens and their effect on the adaptive immune system. No silver bullet exists, rather researchers must draw upon a number of in vitro and in vivo models to fully elucidate the effect a host will exert on the graft. This review details the methods by which the immunogenicity of tissue engineered heart valves may be investigated and reveals areas that would benefit from more research. STATEMENT OF SIGNIFICANCE: Both academic and private institutions around the world are committed to the creation of a valve prosthesis that will perform safely upon implantation. To date, however, no truly non-immunogenic valves have emerged. This review highlights the importance of preclinical immunogenicity assessment, and summarizes the available techniques used in vitro and in vivo to elucidate the immune response. To the authors knowledge, this is the first review that details the immune testing regimen specific to a TEHV candidate.
Collapse
|
42
|
Stonebarger GA, Bimonte-Nelson HA, Urbanski HF. The Rhesus Macaque as a Translational Model for Neurodegeneration and Alzheimer's Disease. Front Aging Neurosci 2021; 13:734173. [PMID: 34539388 PMCID: PMC8446616 DOI: 10.3389/fnagi.2021.734173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022] Open
Abstract
A major obstacle to progress in understanding the etiology of normative and pathological human brain aging is the availability of suitable animal models for experimentation. The present article will highlight our current knowledge regarding human brain aging and neurodegeneration, specifically in the context of Alzheimer's disease (AD). Additionally, it will examine the use of the rhesus macaque monkey as a pragmatic translational animal model in which to study underlying causal mechanisms. Specifically, the discussion will focus on behavioral and protein-level brain changes that occur within the central nervous system (CNS) of aged monkeys, and compare them to the changes observed in humans during clinically normative aging and in AD.
Collapse
Affiliation(s)
- Gail A. Stonebarger
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
43
|
Macintyre AN, French MJ, Sanders BR, Riebe KJ, Shterev ID, Wiehe K, Hora B, Evangelous T, Dugan G, Bourland JD, Cline JM, Sempowski GD. Long-Term Recovery of the Adaptive Immune System in Rhesus Macaques After Total Body Irradiation. Adv Radiat Oncol 2021; 6:100677. [PMID: 34646962 PMCID: PMC8498734 DOI: 10.1016/j.adro.2021.100677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Ionizing radiation causes acute damage to hematopoietic and immune cells, but the long-term immunologic consequences of irradiation are poorly understood. We therefore performed a prospective study of the delayed immune effects of radiation using a rhesus macaque model. METHODS AND MATERIALS Ten macaques received 4 Gy high-energy x-ray total body irradiation (TBI) and 6 control animals received sham irradiation. TBI caused transient lymphopenia that resolved over several weeks. Once white blood cell counts recovered, flow cytometry was used to immunophenotype the circulating adaptive immune cell populations 4, 9, and 21 months after TBI. Data were fit using a mixed-effects model to determine age-dependent, radiation-dependent, and interacting effects. T cell receptor (TCR) sequencing and quantification of TCR Excision Circles were used to determine relative contributions of thymopoiesis and peripheral expansion to T cell repopulation. Two years after TBI, the cohort was vaccinated with a 23-valent pneumococcal polysaccharide vaccine and a tetravalent influenza hemagglutinin vaccine. RESULTS Aging, but not TBI, led to significant changes in the frequencies of dendritic cells, CD4 and CD8 T cells, and B cells. However, irradiated animals exhibited increased frequencies of central memory T cells and decreased frequencies of naïve T cells. These consequences of irradiation were time-dependent and more prolonged in the CD8 T cell population. Irradiation led to transient increases in CD8+ T cell TCR Excision Circles and had no significant effect on TCR sequence entropy, indicating T cell recovery was partially mediated by thymopoiesis. Animals that were irradiated and then vaccinated showed normal immunoglobulin G binding and influenza neutralization titers in response to the 4 protein antigens but weaker immunoglobulin G binding titers to 10 of the 23 polysaccharide antigens. CONCLUSIONS These findings indicate that TBI causes subtle but long-lasting immune defects that are evident years after recovery from lymphopenia.
Collapse
Affiliation(s)
- Andrew N. Macintyre
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Matthew J. French
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Brittany R. Sanders
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kristina J. Riebe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Ivo D. Shterev
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kevin Wiehe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Bhavna Hora
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Tyler Evangelous
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Greg Dugan
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
44
|
Richter C, Hinkel R. Research('s) Sweet Hearts: Experimental Biomedical Models of Diabetic Cardiomyopathy. Front Cardiovasc Med 2021; 8:703355. [PMID: 34368257 PMCID: PMC8342758 DOI: 10.3389/fcvm.2021.703355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes and the often accompanying cardiovascular diseases including cardiomyopathy represent a complex disease, that is reluctant to reveal the molecular mechanisms and underlying cellular responses. Current research projects on diabetic cardiomyopathy are predominantly based on animal models, in which there are not only obvious advantages, such as genetics that can be traced over generations and the directly measurable influence of dietary types, but also not despisable disadvantages. Thus, many studies are built up on transgenic rodent models, which are partly comparable to symptoms in humans due to their genetic alterations, but on the other hand are also under discussion regarding their clinical relevance in the translation of biomedical therapeutic approaches. Furthermore, a focus on transgenic rodent models ignores spontaneously occurring diabetes in larger mammals (such as dogs or pigs), which represent with their anatomical similarity to humans regarding their cardiovascular situation appealing models for testing translational approaches. With this in mind, we aim to shed light on the currently most popular animal models for diabetic cardiomyopathy and, by weighing the advantages and disadvantages, provide decision support for future animal experimental work in the field, hence advancing the biomedical translation of promising approaches into clinical application.
Collapse
Affiliation(s)
- Claudia Richter
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Partnersite Goettingen, German Center for Cardiovascular Research (DZHK e.V.), Goettingen, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Partnersite Goettingen, German Center for Cardiovascular Research (DZHK e.V.), Goettingen, Germany.,Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
45
|
Saravanan C, Flandre T, Hodo CL, Lewis AD, Mecklenburg L, Romeike A, Turner OC, Yen HY. Research Relevant Conditions and Pathology in Nonhuman Primates. ILAR J 2021; 61:139-166. [PMID: 34129672 DOI: 10.1093/ilar/ilab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Biomedical research involving animal models continues to provide important insights into disease pathogenesis and treatment of diseases that impact human health. In particular, nonhuman primates (NHPs) have been used extensively in translational research due to their phylogenetic proximity to humans and similarities to disease pathogenesis and treatment responses as assessed in clinical trials. Microscopic changes in tissues remain a significant endpoint in studies involving these models. Spontaneous, expected (ie, incidental or background) histopathologic changes are commonly encountered and influenced by species, genetic variations, age, and geographical origin of animals, including exposure to infectious or parasitic agents. Often, the background findings confound study-related changes, because numbers of NHPs used in research are limited by animal welfare and other considerations. Moreover, background findings in NHPs can be exacerbated by experimental conditions such as treatment with xenobiotics (eg, infectious morphological changes related to immunosuppressive therapy). This review and summary of research-relevant conditions and pathology in rhesus and cynomolgus macaques, baboons, African green monkeys, common marmosets, tamarins, and squirrel and owl monkeys aims to improve the interpretation and validity of NHP studies.
Collapse
Affiliation(s)
- Chandra Saravanan
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, Massachusetts 02139, USA
| | - Thierry Flandre
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Carolyn L Hodo
- The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, New Jersey, USA
| | - Hsi-Yu Yen
- Covance Preclinical Services GmbH, Münster 48163, Germany
| |
Collapse
|
46
|
Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP, Wiethoff CM, Blackbourne JL, Heinz BA, Foster D, Higgs RE, Balasubramaniam D, Wang L, Zhang Y, Yang ES, Bidshahri R, Kraft L, Hwang Y, Žentelis S, Jepson KR, Goya R, Smith MA, Collins DW, Hinshaw SJ, Tycho SA, Pellacani D, Xiang P, Muthuraman K, Sobhanifar S, Piper MH, Triana FJ, Hendle J, Pustilnik A, Adams AC, Berens SJ, Baric RS, Martinez DR, Cross RW, Geisbert TW, Borisevich V, Abiona O, Belli HM, de Vries M, Mohamed A, Dittmann M, Samanovic MI, Mulligan MJ, Goldsmith JA, Hsieh CL, Johnson NV, Wrapp D, McLellan JS, Barnhart BC, Graham BS, Mascola JR, Hansen CL, Falconer E. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med 2021; 13:eabf1906. [PMID: 33820835 PMCID: PMC8284311 DOI: 10.1126/scitranslmed.abf1906] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics that may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Here, we report that high-throughput microfluidic screening of antigen-specific B cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19). Biochemical, structural, and functional characterization of LY-CoV555 revealed high-affinity binding to the receptor-binding domain, angiotensin-converting enzyme 2 binding inhibition, and potent neutralizing activity. A pharmacokinetic study of LY-CoV555 conducted in cynomolgus monkeys demonstrated a mean half-life of 13 days and a clearance of 0.22 ml hour-1 kg-1, consistent with a typical human therapeutic antibody. In a rhesus macaque challenge model, prophylactic doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract in samples collected through study day 6 after viral inoculation. This antibody has entered clinical testing and is being evaluated across a spectrum of COVID-19 indications, including prevention and treatment.
Collapse
Affiliation(s)
- Bryan E Jones
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA.
| | | | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Julian Davies
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Thomas P Cujec
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | | | | | | - Denisa Foster
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | | | | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Lucas Kraft
- AbCellera Biologics Inc., Vancouver, BC V5Y0A1, Canada
| | - Yuri Hwang
- AbCellera Biologics Inc., Vancouver, BC V5Y0A1, Canada
| | | | | | - Rodrigo Goya
- AbCellera Biologics Inc., Vancouver, BC V5Y0A1, Canada
| | - Maia A Smith
- AbCellera Biologics Inc., Vancouver, BC V5Y0A1, Canada
| | | | | | - Sean A Tycho
- AbCellera Biologics Inc., Vancouver, BC V5Y0A1, Canada
| | | | - Ping Xiang
- AbCellera Biologics Inc., Vancouver, BC V5Y0A1, Canada
| | | | | | - Marissa H Piper
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Franz J Triana
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Jorg Hendle
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Anna Pustilnik
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | | | | - Ralph S Baric
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert W Cross
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Olubukola Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hayley M Belli
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maren de Vries
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Adil Mohamed
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marie I Samanovic
- NYU Langone Vaccine Center, Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mark J Mulligan
- NYU Langone Vaccine Center, Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jory A Goldsmith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Nicole V Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carl L Hansen
- AbCellera Biologics Inc., Vancouver, BC V5Y0A1, Canada
| | | |
Collapse
|
47
|
Spruit CM, Nemanichvili N, Okamatsu M, Takematsu H, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses 2021; 13:815. [PMID: 34062844 PMCID: PMC8147317 DOI: 10.3390/v13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in influenza virus infection is the binding of hemagglutinin to sialic acid-containing glycans present on the cell surface. Over 50 different sialic acid modifications are known, of which N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two main species. Animal models with α2,6 linked Neu5Ac in the upper respiratory tract, similar to humans, are preferred to enable and mimic infection with unadapted human influenza A viruses. Animal models that are currently most often used to study human influenza are mice and ferrets. Additionally, guinea pigs, cotton rats, Syrian hamsters, tree shrews, domestic swine, and non-human primates (macaques and marmosets) are discussed. The presence of NeuGc and the distribution of sialic acid linkages in the most commonly used models is summarized and experimentally determined. We also evaluated the role of Neu5Gc in infection using Neu5Gc binding viruses and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)-/- knockout mice, which lack Neu5Gc and concluded that Neu5Gc is unlikely to be a decoy receptor. This article provides a base for choosing an appropriate animal model. Although mice are one of the most favored models, they are hardly naturally susceptible to infection with human influenza viruses, possibly because they express mainly α2,3 linked sialic acids with both Neu5Ac and Neu5Gc modifications. We suggest using ferrets, which resemble humans closely in the sialic acid content, both in the linkages and the lack of Neu5Gc, lung organization, susceptibility, and disease pathogenesis.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| | - Nikoloz Nemanichvili
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan;
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan;
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| |
Collapse
|
48
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
49
|
Sartoretti J, Eberhardt CS. The Potential Role of Nonhuman Primate Models to Better Comprehend Early Life Immunity and Maternal Antibody Transfer. Vaccines (Basel) 2021; 9:vaccines9040306. [PMID: 33804886 PMCID: PMC8063815 DOI: 10.3390/vaccines9040306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 02/04/2023] Open
Abstract
Early life immunity is a complex field of research and there are still gaps in knowledge regarding the detailed mechanism of maternal antibody transfer, the impact of maternal antibodies on infant vaccine responses and the ontogeny of human early life immunity. A comprehensive understanding is necessary to identify requirements for early life vaccines and to improve early childhood immunization. New immunological methods have facilitated performing research in the youngest, however, some questions can only be addressed in animal models. To date, mostly murine models are used to study neonatal and infant immunity since they are well-described, easy to use and cost effective. Given their limitations especially in the transfer biology of maternal antibodies and the lack of infectivity of numerous human pathogens, this opinion piece discusses the potential and prerequisites of the nonhuman primate model in studying early life immunity and maternal antibody transfer.
Collapse
Affiliation(s)
- Julie Sartoretti
- Center for Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland;
- Department of Woman, Child and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, 6 rue Willy-Donze, 1211 Geneve 4, Switzerland
| | - Christiane S. Eberhardt
- Center for Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland;
- Department of Woman, Child and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, 6 rue Willy-Donze, 1211 Geneve 4, Switzerland
- Center for Vaccinology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
50
|
Maximova OA, Sturdevant DE, Kash JC, Kanakabandi K, Xiao Y, Minai M, Moore IN, Taubenberger J, Martens C, Cohen JI, Pletnev AG. Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host responses. eLife 2021; 10:e62273. [PMID: 33599611 PMCID: PMC7891934 DOI: 10.7554/elife.62273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment for many viral infections of the central nervous system (CNS) remains only supportive. Here we address a remaining gap in our knowledge regarding how the CNS and immune systems interact during viral infection. By examining the regulation of the immune and nervous system processes in a nonhuman primate model of West Nile virus neurological disease, we show that virus infection disrupts the homeostasis of the immune-neural-synaptic axis via induction of pleiotropic genes with distinct functions in each component of the axis. This pleiotropic gene regulation suggests an unintended off-target negative impact of virus-induced host immune responses on the neurotransmission, which may be a common feature of various viral infections of the CNS.
Collapse
Affiliation(s)
- Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Daniel E Sturdevant
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - John C Kash
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Kishore Kanakabandi
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Jeff Taubenberger
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Craig Martens
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|