1
|
Choi YM, Choi B, Lee C, Paik JH, Jang TS. Leaf Micromorphological Characteristics of Korean Rush and Their Taxonomic Implications Based on Microscopic Analysis. Microsc Res Tech 2025; 88:1223-1238. [PMID: 40143439 DOI: 10.1002/jemt.24772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 03/28/2025]
Abstract
The genus Juncus L., comprising approximately 310 species, is a perennial herbaceous plant with the highest species diversity among Juncaceae. Although external leaf morphological and anatomical characteristics were used for taxonomic delimitation of Korean Juncus taxa, the micromorphological structure of Juncus is not comprehensively described. Our main objective was to determine whether leaf micromorphological comparisons among the studied Korean Juncus taxa could provide taxonomically informative characteristics. Korean rushes possessed both unifacial and bifacial leaves, although the patterns of cell outlines on the abaxial surfaces of cataphyll and cauline leaves and stems were similar. Leaf and stem epidermal cells were irregularly arranged and exhibited rectangular, rhomboidal, and polygonal shapes. Striations on epidermal cells are common in almost all species of the genus Juncus; however, scaly epicuticular wax is found only in J. setchuensis. The stomatal complexes of the studied Korean Juncus taxa were uniformly paracytic (stomata surrounded by two subsidiary cells), regardless of their occurrence in cataphyll and cauline leaves or on the stem surface. Guard cell length could be important taxonomic characters in Korean Juncus taxa, in accordance with traditional taxonomy, which distinguishes the two subgenera based on morphological characters. Differences in guard cell length and stomatal density were also influenced by external environmental factors but were not clearly correlated with variations in ploidy levels.
Collapse
Affiliation(s)
- Young-Min Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
2
|
Granse D, Wendt P, Suchrow S, Hanelt D, Fromm J, Milin M, Lima O, Salmon A, Aïnouche M, Jensen K. When Genetic Diversity Is Low: The Effects of Ploidy Level on Plant Functional Trait Expression in Spartina Under Global Change. Ecol Evol 2025; 15:e71022. [PMID: 40027418 PMCID: PMC11872210 DOI: 10.1002/ece3.71022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/21/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Whole genome duplication (WGD or polyploidization) events shape plant evolution, altering ecological responses and plant traits, particularly those related to cell and tissue size. We studied genetic diversity and phenotypic plasticity in Spartina populations, focusing on hybrid (Spartina × townsendii) and allopolyploid (S. anglica) cytotypes in Wadden Sea salt marshes. Our results reveal low genetic diversity in both cytotypes and a complex response of plant traits to global change factors (drought, elevated CO2 concentration). While WGD increased stomatal length, plasticity varied between cytotypes, with allopolyploids showing higher plasticity, especially under elevated CO2. Biomass allocation patterns differed between cytotypes under global change conditions, suggesting distinct effects on ecosystem functioning, such as belowground carbon sequestration and cycling. The allopolyploid's comparatively fewer, larger-diameter stems may affect aboveground ecosystem functions differently, including sediment trapping and the slowing of tidal currents. Despite similar genetic backgrounds, allopolyploids did not consistently exhibit higher plasticity, challenging previous assumptions. Our findings highlight the complex interplay between hybridization, WGD, phenotypic plasticity, and ecosystem responses to global change, emphasizing the importance of considering polyploidization in understanding plant adaptation and evolutionary dynamics.
Collapse
Affiliation(s)
- Dirk Granse
- Applied Plant Ecology, Institute of Plant Sciences and MicrobiologyUniversity of HamburgHamburgGermany
| | - Paul Wendt
- Applied Plant Ecology, Institute of Plant Sciences and MicrobiologyUniversity of HamburgHamburgGermany
| | - Sigrid Suchrow
- Applied Plant Ecology, Institute of Plant Sciences and MicrobiologyUniversity of HamburgHamburgGermany
| | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Sciences and MicrobiologyUniversity of HamburgHamburgGermany
| | - Jörg Fromm
- Wood Biology, Institute of Wood ScienceUniversity of HamburgHamburgGermany
| | - Morgane Milin
- University of Rennes 1, UMR CNRS 6553 EcobioRennes CedexFrance
| | - Oscar Lima
- University of Rennes 1, UMR CNRS 6553 EcobioRennes CedexFrance
| | - Armel Salmon
- University of Rennes 1, UMR CNRS 6553 EcobioRennes CedexFrance
| | - Malika Aïnouche
- University of Rennes 1, UMR CNRS 6553 EcobioRennes CedexFrance
| | - Kai Jensen
- Applied Plant Ecology, Institute of Plant Sciences and MicrobiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
3
|
Bayat N, Attar F, Sotoodeh A. Pollen and Leaf Micromorphological Characteristics of Spiny Almonds (Prunus subgenus Amygdalus) in Iran. Microsc Res Tech 2025; 88:575-594. [PMID: 39497553 DOI: 10.1002/jemt.24717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 01/19/2025]
Abstract
This study investigates the micromorphological characteristics of pollen grains and leaf epidermal cells from 20 accessions across four species of spiny almonds using scanning electron microscopy. Thirteen quantitative traits of pollen grains, including exine sculpturing, were analyzed alongside qualitative features such as shape, exine sculpture type, and aperture type. Additionally, four quantitative and five qualitative features of the leaf epidermis were examined, focusing on cuticular ornamentation patterns, types of epicuticular wax, and stomatal measurements. The pollen grains were found to be isopolar monads, radially symmetric, medium-sized, varying from prolate spheroidal to prolate, and exhibiting 3-colporate to 3-colpate structures. The exine sculpturing was generally striate with short and long ridges, with or without perforations, and could be classified into three types. Notably, in the Isfahan population of Prunus lycioides and the North Khorasan population of Prunus spinosissima, the exine sculpture types were distinctly different, being rugulate and reticulate, respectively. Multivariate statistical analysis identified equatorial diameter, colpus length and width, and ridge width as key diagnostic markers for species identification within spiny almonds. Principal component analysis and hierarchical clustering further highlighted the significance of stomatal length, cuticular ornamentation patterns, and epicuticular wax types in differentiating among taxa. We conclude that groupings recognized in recent classifications of the subgenus Amygdalus (spiny almonds) remain challenging to delineate solely based on palynological data, as diverse pollen types are present across different clades and subclades. Furthermore, micromorphological leaf traits proved valuable in distinguishing certain spiny almond taxa, and the traits of epidermal cells may reflect the ecological adaptations of spiny almond species.
Collapse
Affiliation(s)
- Nastaran Bayat
- Central Herbarium of Tehran University, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farideh Attar
- Central Herbarium of Tehran University, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Arash Sotoodeh
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
4
|
Ghimire B, Park BK, Son DC. Taxonomic relevance of leaf surface micromorphology in Korean Clematis L. (Ranunculaceae). PeerJ 2024; 12:e17997. [PMID: 39282113 PMCID: PMC11397135 DOI: 10.7717/peerj.17997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Clematis, one of the largest genera of the family Ranunculaceae, has a wide array of morphological variation and is considered the most difficult group of taxa in terms of infrageneric discrimination. This study assessed the leaf micromorphological features of 19 Clematis taxa (16 species and three varieties) found in Korea. The leaf surface features were studied under scanning electron microscopy, and the stomatal counting and measurement were carried out under light microscopy. Clematis are hypostomatic, meaning the stomata are only found on the abaxial surface of the leaf. Observed taxa showed near uniformity in the epidermal cell type, structure, and morphology on both surfaces of the leaf. Differences were observed in the presence and absence and/or abundance of trichomes on both the adaxial and abaxial surfaces, the epidermal cell boundary, and the periclinal and anticlinal wall of the cells. Differences were also observed in the number of the epidermal cells connected with the stomata on the abaxial surface, with small differences noted in epidermal cell shapes. The ANOVA showed a significant variation in the stomata density in the studied taxa (P < 0.0001). The cluster analysis based on 13 leaf micromorphological features generated four major clusters. These results indicated similarities in certain key leaf micromorphological features among taxa from the Tubulosae, Clematis, and Virona sections. In the genus Clematis, as with other morphological characteristics, using leaf micromorphological characters alone, which possess limited taxonomic value, proves inadequate for resolving infrageneric relationships. However, incorporating certain features with other morphological characteristics offers a possible alternative means of determining the infrageneric relationships within the genus.
Collapse
Affiliation(s)
- Balkrishna Ghimire
- Faculty of Forestry, Agriculture and Forestry University, Hetauda, Nepal
| | - Beom Kyun Park
- Division of Forest Biodiversity, Korean National Arboretum, Pocheon, Republic of Korea
| | - Dong Chan Son
- Division of Forest Biodiversity, Korean National Arboretum, Pocheon, Republic of Korea
| |
Collapse
|
5
|
van Mazijk R, West AG, Verboom GA, Elliott TL, Bureš P, Muasya AM. Genome size variation in Cape schoenoid sedges (Schoeneae) and its ecophysiological consequences. AMERICAN JOURNAL OF BOTANY 2024; 111:e16315. [PMID: 38695147 DOI: 10.1002/ajb2.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.
Collapse
Affiliation(s)
- Ruan van Mazijk
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- C4 EcoSolutions, Tokai, Cape Town, 7945, South Africa
| | - Adam G West
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - G Anthony Verboom
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - Tammy L Elliott
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
6
|
Chumová Z, Monier Z, Šemberová K, Havlíčková E, Euston-Brown D, Muasya AM, Bergh NG, Trávníček P. Diploid and tetraploid cytotypes of the flagship Cape species Dicerothamnus rhinocerotis (Asteraceae): variation in distribution, ecological niche, morphology and genetics. ANNALS OF BOTANY 2024; 133:851-870. [PMID: 37410810 PMCID: PMC11082512 DOI: 10.1093/aob/mcad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIMS The Greater Cape Floristic Region is one of the world's biodiversity hotspots and is considered poor in polyploids. To test this assumption, ploidy variation was investigated in a widespread Cape shrub, Dicerothamnus rhinocerotis (renosterbos, Asteraceae). The aim was to elucidate the cytotype distribution and population composition across the species range, and to assess differences in morphology, environmental niches and genetics. METHODS Ploidy level and genome size were determined via flow cytometry and cytotype assignment was confirmed by chromosome counting. Restriction site-associated DNA sequencing (RADseq) analyses were used to infer genetic relationships. Cytotype climatic and environmental niches were compared using a range of environmental layers and a soil model, while morphological differences were examined using multivariate methods. KEY RESULTS The survey of 171 populations and 2370 individuals showed that the species comprises diploid and tetraploid cytotypes, no intermediates and only 16.8 % of mixed populations. Mean 2C values were 1.80-2.06 pg for diploids and 3.48-3.80 pg for tetraploids, with very similar monoploid genome sizes. Intra-cytotype variation showed a significant positive correlation with altitude and longitude in both cytotypes and with latitude in diploids. Although niches of both cytotypes were highly equivalent and similar, their optima and breadth were shifted due to differences mainly in isothermality and available water capacity. Morphometric analyses showed significant differences in the leaves and corolla traits, the number of florets per capitulum, and cypsela dimensions between the two cytotypes. Genetic analyses revealed four groups, three of them including both cytotypes. CONCLUSIONS Dicerothamnus rhinocerotis includes two distinct cytotypes that are genetically similar. While tetraploids arise several times independently within different genetic groups, morphological and ecological differences are evident between cytotypes. Our results open up new avenues for questions regarding the importance of ploidy in the megadiverse Cape flora, and exemplify the need for population-based studies focused on ploidy variation.
Collapse
Affiliation(s)
- Zuzana Chumová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Zafar Monier
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, 7707, South Africa
| | - Kristýna Šemberová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Eliška Havlíčková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, 120 00, Czech Republic
| | | | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, 7707, South Africa
| | - Nicola G Bergh
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, 7707, South Africa
- The Compton Herbarium, Kirstenbosch National Botanical Gardens, Cape Town, 7735, South Africa
| | - Pavel Trávníček
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| |
Collapse
|
7
|
Hlavatá K, Záveská E, Leong-Škorničková J, Pouch M, Poulsen AD, Šída O, Khadka B, Mandáková T, Fér T. Ancient hybridization and repetitive element proliferation in the evolutionary history of the monocot genus Amomum (Zingiberaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1324358. [PMID: 38708400 PMCID: PMC11066291 DOI: 10.3389/fpls.2024.1324358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Genome size variation is a crucial aspect of plant evolution, influenced by a complex interplay of factors. Repetitive elements, which are fundamental components of genomic architecture, often play a role in genome expansion by selectively amplifying specific repeat motifs. This study focuses on Amomum, a genus in the ginger family (Zingiberaceae), known for its 4.4-fold variation in genome size. Using a robust methodology involving PhyloNet reconstruction, RepeatExplorer clustering, and repeat similarity-based phylogenetic network construction, we investigated the repeatome composition, analyzed repeat dynamics, and identified potential hybridization events within the genus. Our analysis confirmed the presence of four major infrageneric clades (A-D) within Amomum, with clades A-C exclusively comprising diploid species (2n = 48) and clade D encompassing both diploid and tetraploid species (2n = 48 and 96). We observed an increase in the repeat content within the genus, ranging from 84% to 89%, compared to outgroup species with 75% of the repeatome. The SIRE lineage of the Ty1-Copia repeat superfamily was prevalent in most analyzed ingroup genomes. We identified significant difference in repeatome structure between the basal Amomum clades (A, B, C) and the most diverged clade D. Our investigation revealed evidence of ancient hybridization events within Amomum, coinciding with a substantial proliferation of multiple repeat groups. This finding supports the hypothesis that ancient hybridization is a driving force in the genomic evolution of Amomum. Furthermore, we contextualize our findings within the broader context of genome size variations and repeatome dynamics observed across major monocot lineages. This study enhances our understanding of evolutionary processes within monocots by highlighting the crucial roles of repetitive elements in shaping genome size and suggesting the mechanisms that drive these changes.
Collapse
Affiliation(s)
- Kristýna Hlavatá
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Eliška Záveská
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, Czech Academy of Science, Průhonice, Czechia
| | - Jana Leong-Škorničková
- Herbarium, Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Milan Pouch
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Center for Biomolecular Research (NCBR), Masaryk University, Kamenice, Czechia
| | - Axel Dalberg Poulsen
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | - Otakar Šída
- Department of Botany, National Museum in Prague, Prague, Czechia
| | - Bijay Khadka
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Fér
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Záveská E, Šída O, Leong-Škorničková J, Chumová Z, Trávníček P, Newman MF, Poulsen AD, Böhmová A, Chudáčková H, Fér T. Testing the large genome constraint hypothesis in tropical rhizomatous herbs: life strategies, plant traits and habitat preferences in gingers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1223-1238. [PMID: 37991980 DOI: 10.1111/tpj.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Plant species with large genomes tend to be excluded from climatically more extreme environments with a shorter growing season. Species that occupy such environments are assumed to be under natural selection for more rapid growth and smaller genome size (GS). However, evidence for this is available only for temperate organisms. Here, we study the evolution of GS in two subfamilies of the tropical family Zingiberaceae to find out whether species with larger genomes are confined to environments where the vegetative season is longer. We tested our hypothesis on 337 ginger species from regions with contrasting climates by correlating their GS with an array of plant traits and environmental variables. We revealed 16-fold variation in GS which was tightly related to shoot seasonality. Negative correlations of GS with latitude, temperature and precipitation emerged in the subfamily Zingiberoidae, demonstrating that species with larger GS are excluded from areas with a shorter growing season. In the subfamily Alpinioideae, GS turned out to be correlated with the type of stem and light requirements and its members cope with seasonality mainly by adaptation to shady and moist habitats. The Ornstein-Uhlenbeck models suggested that evolution in regions with humid climates favoured larger GS than in drier regions. Our results indicate that climate seasonality exerts an upper constraint on GS not only in temperate regions but also in the tropics, unless species with large genomes find alternative ways to escape from that constraint.
Collapse
Affiliation(s)
- E Záveská
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - O Šída
- Department of Botany, National Museum in Prague, Prague, Czech Republic
| | - J Leong-Škorničková
- The Herbarium, Singapore Botanic Gardens, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Z Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - P Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - M F Newman
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - A D Poulsen
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - A Böhmová
- Department of Botany, National Museum in Prague, Prague, Czech Republic
- Department of Botany, Charles University, Prague, Czech Republic
| | - H Chudáčková
- Department of Botany, Charles University, Prague, Czech Republic
| | - T Fér
- Department of Botany, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Cang FA, Welles SR, Wong J, Ziaee M, Dlugosch KM. Genome size variation and evolution during invasive range expansion in an introduced plant. Evol Appl 2024; 17:e13624. [PMID: 38283607 PMCID: PMC10810172 DOI: 10.1111/eva.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle, Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for "colonizer" traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21-fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.
Collapse
Affiliation(s)
- F. Alice Cang
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Shana R. Welles
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Utah Valley UniversityOremUtahUSA
| | - Jenny Wong
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Maia Ziaee
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Mills CollegeOaklandCaliforniaUSA
| | - Katrina M. Dlugosch
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
10
|
Kim H, Choi B, Lee C, Paik JH, Jang CG, Weiss-Schneeweiss H, Jang TS. Does the evolution of micromorphology accompany chromosomal changes on dysploid and polyploid levels in the Barnardia japonica complex (Hyacinthaceae)? BMC PLANT BIOLOGY 2023; 23:485. [PMID: 37817118 PMCID: PMC10565974 DOI: 10.1186/s12870-023-04456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Chromosome number and genome size changes via dysploidy and polyploidy accompany plant diversification and speciation. Such changes often impact also morphological characters. An excellent system to address the questions of how extensive and structured chromosomal changes within one species complex affect the phenotype is the monocot species complex of Barnardia japonica. This taxon contains two well established and distinct diploid cytotypes differing in base chromosome numbers (AA: x = 8, BB: x = 9) and their allopolyploid derivatives on several ploidy levels (from 3x to 6x). This extensive and structured genomic variation, however, is not mirrored by gross morphological differentiation. RESULTS The current study aims to analyze the correlations between the changes of chromosome numbers and genome sizes with palynological and leaf micromorphological characters in diploids and selected allopolyploids of the B. japonica complex. The chromosome numbers varied from 2n = 16 and 18 (2n = 25 with the presence of supernumerary B chromosomes), and from 2n = 26 to 51 in polyploids on four different ploidy levels (3x, 4x, 5x, and 6x). Despite additive chromosome numbers compared to diploid parental cytotypes, all polyploid cytotypes have experienced genome downsizing. Analyses of leaf micromorphological characters did not reveal any diagnostic traits that could be specifically assigned to individual cytotypes. The variation of pollen grain sizes correlated positively with ploidy levels. CONCLUSIONS This study clearly demonstrates that karyotype and genome size differentiation does not have to be correlated with morphological differentiation of cytotypes.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chang-Gee Jang
- Department of Biology Education, Kongju National University, Gongju, 32588, Republic of Korea
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030, Austria.
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Pyšek P, Lučanová M, Dawson W, Essl F, Kreft H, Leitch IJ, Lenzner B, Meyerson LA, Pergl J, van Kleunen M, Weigelt P, Winter M, Guo WY. Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their invasive spread. THE NEW PHYTOLOGIST 2023; 239:2389-2403. [PMID: 37438886 DOI: 10.1111/nph.19135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.
Collapse
Affiliation(s)
- Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic
| | - Magdalena Lučanová
- Department of Evolutionary Biology of Plants, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Franz Essl
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Bernd Lenzner
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Laura A Meyerson
- University of Rhode Island, Natural Resources Science, 9 East Alumni Avenue, Kingston, 02881, RI, USA
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, D-78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Wen-Yong Guo
- Research Centre for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
12
|
Li S, Qi B, Peng X, Wang W, Wang W, Liu P, Liu B, Peng Z, Wang Q, Li Y. Genome size and GC content of myxomycetes. Eur J Protistol 2023; 90:125991. [PMID: 37331249 DOI: 10.1016/j.ejop.2023.125991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023]
Abstract
More than 1272 myxomycetes species have been described, accounting for more than half of all Amoebozoa species. However, the genome size of only three myxomycetes species has been reported. Therefore, we used flow cytometry to present an extensive survey and a phylogeny-based analysis of genome size and GC content evolution in 144 myxomycetes species. The genome size of myxomycetes ranged from 18.7 Mb to 470.3 Mb, and the GC content ranged from 38.7% to 70.1%. Bright-spored clade showed larger genome sizes and more intra-order genome size variations than the dark-spored clade. GC content and genome size were positively correlated in both bright-spored and dark-spored clades, and spore size was positively correlated with genome size and GC content in the bright-spored clade. We provided the first genome size data set in Myxomycetes, and our results will provide helpful information for future Myxomycetes studies, such as genome sequencing.
Collapse
Affiliation(s)
- Shu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Xueyan Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Wei Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Wan Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Pu Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Elliott TL, Muasya AM, Bureš P. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. ANNALS OF BOTANY 2023; 131:143-156. [PMID: 35226733 PMCID: PMC9904348 DOI: 10.1093/aob/mcac027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/27/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS It is unclear how widespread polyploidy is throughout the largest holocentric plant family - the Cyperaceae. Because of the prevalence of chromosomal fusions and fissions, which affect chromosome number but not genome size, it can be impossible to distinguish if individual plants are polyploids in holocentric lineages based on chromosome count data alone. Furthermore, it is unclear how differences in genome size and ploidy levels relate to environmental correlates within holocentric lineages, such as the Cyperaceae. METHODS We focus our analyses on tribe Schoeneae, and more specifically the southern African clade of Schoenus. We examine broad-scale patterns of genome size evolution in tribe Schoeneae and focus more intensely on determining the prevalence of polyploidy across the southern African Schoenus by inferring ploidy level with the program ChromEvol, as well as interpreting chromosome number and genome size data. We further investigate whether there are relationships between genome size/ploidy level and environmental variables across the nutrient-poor and summer-arid Cape biodiversity hotspot. KEY RESULTS Our results show a large increase in genome size, but not chromosome number, within Schoenus compared to other species in tribe Schoeneae. Across Schoenus, there is a positive relationship between chromosome number and genome size, and our results suggest that polyploidy is a relatively common process throughout the southern African Schoenus. At the regional scale of the Cape, we show that polyploids are more often associated with drier locations that have more variation in precipitation between dry and wet months, but these results are sensitive to the classification of ploidy level. CONCLUSIONS Polyploidy is relatively common in the southern African Schoenus, where a positive relationship is observed between chromosome number and genome size. Thus, there may be a high incidence of polyploidy in holocentric plants, whose cell division properties differ from monocentrics.
Collapse
Affiliation(s)
| | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| | - Petr Bureš
- Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
14
|
Bertel C, Kaplenig D, Ralser M, Arc E, Kolář F, Wos G, Hülber K, Holzinger A, Kranner I, Neuner G. Parallel Differentiation and Plastic Adjustment of Leaf Anatomy in Alpine Arabidopsis arenosa Ecotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2626. [PMID: 36235492 PMCID: PMC9573220 DOI: 10.3390/plants11192626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Functional and structural adjustments of plants in response to environmental factors, including those occurring in alpine habitats, can result in transient acclimation, plastic phenotypic adjustments and/or heritable adaptation. To unravel repeatedly selected traits with potential adaptive advantage, we studied parallel (ecotypic) and non-parallel (regional) differentiation in leaf traits in alpine and foothill ecotypes of Arabidopsis arenosa. Leaves of plants from eight alpine and eight foothill populations, representing three independent alpine colonization events in different mountain ranges, were investigated by microscopy techniques after reciprocal transplantation. Most traits clearly differed between the foothill and the alpine ecotype, with plastic adjustments to the local environment. In alpine populations, leaves were thicker, with altered proportions of palisade and spongy parenchyma, and had fewer trichomes, and chloroplasts contained large starch grains with less stacked grana thylakoids compared to foothill populations. Geographical origin had no impact on most traits except for trichome and stomatal density on abaxial leaf surfaces. The strong parallel, heritable ecotypic differentiation in various leaf traits and the absence of regional effects suggests that most of the observed leaf traits are adaptive. These trait shifts may reflect general trends in the adaptation of leaf anatomy associated with the colonization of alpine habitats.
Collapse
Affiliation(s)
- Clara Bertel
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Dominik Kaplenig
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria Ralser
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Erwann Arc
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Filip Kolář
- Department of Botany, Charles University of Prague, 110 00 Prague, Czech Republic
| | - Guillaume Wos
- Institute of Nature Conservation, Polish Academy of Sciences, 00-901 Krakow, Poland
| | - Karl Hülber
- Department of Botany and Biodiversity Research, University of Vienna, 1010 Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Gilbert Neuner
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Kadluczka D, Sliwinska E, Grzebelus E. Combining genome size and pollen morphology data to study species relationships in the genus Daucus (Apiaceae). BMC PLANT BIOLOGY 2022; 22:382. [PMID: 35909100 PMCID: PMC9341078 DOI: 10.1186/s12870-022-03743-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The genus Daucus (Apiaceae) comprises about 40 wild species and the cultivated carrot, a crop of great economic and nutritional importance. The rich genetic diversity of wild Daucus species makes them a valuable gene pool for carrot improvement breeding programs. Therefore, it is essential to have good knowledge of the genome structure and relationships among wild Daucus species. To broaden such knowledge, in this research, the nuclear DNA content for 14 Daucus accessions and four closely related species was estimated by flow cytometry and their pollen morphology was analyzed by light and scanning electron microscopy (SEM). RESULTS The flow cytometric analysis showed a 3.2-fold variation in the mean 2C values among Daucus taxa, ranging from 0.999 (D. carota subsp. sativus) to 3.228 pg (D. littoralis). Among the outgroup species, the mean 2C values were 1.775-2.882 pg. The pollen grains of Daucus were tricolporate, mainly prolate or perprolate (rarely) in shape, and mainly medium or small (rarely) in size (21.19-40.38 µm), whereas the outgroup species had tricolporate, perprolate-shaped, and medium-sized (26.01-49.86 µm) pollen grains. In the studied taxa, SEM analysis revealed that exine ornamentation was striate, rugulate, perforate, or the ornamentation pattern was mixed. At the time of shedding, all pollen grains were three-celled, as evidenced by DAPI staining. We also found high positive correlations between the length of the polar axis (P) and the length of the equatorial diameter (E) of pollen grains, as well as between P and P/E. However, when comparing cytogenetic information with palynological data, no significant correlations were observed. CONCLUSIONS This study complements the information on the nuclear DNA content in Daucus and provides comprehensive knowledge of the pollen morphology of its taxa. These findings may be important in elucidating the taxonomic relationships among Daucus species and can help in the correct identification of gene bank accessions. In a broader view, they could also be meaningful for the interpretation of evolutionary trends in the genus.
Collapse
Affiliation(s)
- Dariusz Kadluczka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, al. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| |
Collapse
|
16
|
Sklenář P, Ptáček J, Klimeš A. Genome size of alpine plants does not predict temperature resistance. PLANTA 2022; 256:18. [PMID: 35748952 DOI: 10.1007/s00425-022-03935-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Genome size of alpine plants is not related to their resistance against frost and heat. Genome size is a variable trait in angiosperms, and it was suggested that large genome size represents a constraint in stressful environments. We measured genome size and resistance to frost and heat in 89 species of plants from tropical and temperate alpine habitats. Genome size of the species, ranging from 0.49 pg to 25.8 pg across the entire dataset, was not related to either frost or heat resistance in either group of plants. Genome size does not predict resistance to extreme temperatures in alpine plants and is thus not likely to predict plant responses to climate changes.
Collapse
Affiliation(s)
- Petr Sklenář
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.
| | - Jan Ptáček
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Adam Klimeš
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Biological Sciences, Faculty of Mathematics and Natural Sciences, University of Bergen, Thormøhlens gate 53, 5020, Bergen, Norway
| |
Collapse
|
17
|
Comparative analysis of two Korean irises (Iris ruthenica and I. uniflora, Iridaceae) based on plastome sequencing and micromorphology. Sci Rep 2022; 12:9424. [PMID: 35676304 PMCID: PMC9177672 DOI: 10.1038/s41598-022-13528-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022] Open
Abstract
Iris ruthenica Ker Gawl. and I. uniflora Pall. ex Link, which are rare and endangered species in Korea, possess considerable horticultural and medicinal value among Korean irises. However, discrimination of the species is hindered by extensive morphological similarity. Thus, the aim of the present study was to identify discriminating features by comparing the species’ complete plastid genome (i.e., plastome) sequences and micromorphological features, including leaf margins, stomatal complex distribution (hypostomatic vs. amphistomatic leaves), anther stomata density, and tepal epidermal cell patterns. Plastome comparison revealed slightly divergent regions within intergenic spacer regions, and the most variable sequences, which were distributed in non-coding regions, could be used as molecular markers for the discrimination of I. ruthenica and I. uniflora. Phylogenetic analysis of the Iris species revealed that I. ruthenica and I. uniflora formed a well-supported clade. The comparison of plastomes and micromorphological features performed in this study provides useful information for elucidating taxonomic, phylogenetic, and evolutionary relationships in Iridaceae. Further studies, including those based on molecular cytogenetic approaches using species specific markers, will offer insights into species delimitation of the two closely related Iris species.
Collapse
|
18
|
Cytogenetic, Morphometric, and Ecological Characterization of Festuca indigesta Boiss. in the Southeast of Spain. PLANTS 2022; 11:plants11050693. [PMID: 35270163 PMCID: PMC8912771 DOI: 10.3390/plants11050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022]
Abstract
Festuca indigesta subsp. indigesta (Poaceae) is endemic to the southeast of Spain, and until recently, it was considered that its range of distribution was restricted to the siliceous core of Sierra Nevada. However, it has been recently extended in the territory to others calcareous mountains. This study investigates the cytogenetic variability throughout the geographic range of this taxon, the possible edaphic preferences of each cytotype, and the morphological variation of cytotypes. Genome sizes and ploidy levels were estimated using flow cytometry and chromosome count. Soil samples were collected to test the nature of the substrate, i.e., pH, and calcium and magnesium contents. Finally, morphological characters were measured in herbarium specimens. This study provides the first genome size data for the species. Hidden cytogenetic diversity was detected in the taxon, comprising hexaploid (2n = 6x = 42), octoploid (2n = 8x = 56) and dodecaploid (2n = 12x = 84) individuals. No relationship between substrate nature and cytotype was observed. Morphological differences were detected for the size of floral parts and stomata among cytotypes, but these were blurred if the entire morphological variation range was considered. Our results suggest that each mountain range could act as a reservoir of morphologically cryptic genetic diversity regarding this taxon.
Collapse
|
19
|
Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. Exploring environmental selection on genome size in angiosperms. TRENDS IN PLANT SCIENCE 2021; 26:1039-1049. [PMID: 34219022 DOI: 10.1016/j.tplants.2021.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Angiosperms show a remarkable range in genome size (GS), yet most species have small genomes, despite the frequency of polyploidy and repeat amplification in the ancestries of most lineages. It has been suggested that larger genomes incur costs that have driven selection for GS reduction, although the nature of these costs and how they might impact selection remain unclear. We explore potential costs of increased GS encompassing impacts on minimum cell size with consequences for photosynthesis and water-use efficiency and effects of greater nitrogen and phosphorus demands of the nucleus leading to more severe trade-offs with photosynthesis. We suggest that nutrient-, water-, and/or CO2-stressed conditions might favour species with smaller genomes, with implications for species' ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Lubna Faizullah
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Joseph A Morton
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | - Ilia J Leitch
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK.
| |
Collapse
|
20
|
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. BIOLOGY 2021; 10:270. [PMID: 33810583 PMCID: PMC8067107 DOI: 10.3390/biology10040270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.
Collapse
|
21
|
Meeus S, Van den Bulcke J, wyffels F. From leaf to label: A robust automated workflow for stomata detection. Ecol Evol 2020; 10:9178-9191. [PMID: 32953053 PMCID: PMC7487252 DOI: 10.1002/ece3.6571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Plant leaf stomata are the gatekeepers of the atmosphere-plant interface and are essential building blocks of land surface models as they control transpiration and photosynthesis. Although more stomatal trait data are needed to significantly reduce the error in these model predictions, recording these traits is time-consuming, and no standardized protocol is currently available. Some attempts were made to automate stomatal detection from photomicrographs; however, these approaches have the disadvantage of using classic image processing or targeting a narrow taxonomic entity which makes these technologies less robust and generalizable to other plant species. We propose an easy-to-use and adaptable workflow from leaf to label. A methodology for automatic stomata detection was developed using deep neural networks according to the state of the art and its applicability demonstrated across the phylogeny of the angiosperms.We used a patch-based approach for training/tuning three different deep learning architectures. For training, we used 431 micrographs taken from leaf prints made according to the nail polish method from herbarium specimens of 19 species. The best-performing architecture was tested on 595 images of 16 additional species spread across the angiosperm phylogeny.The nail polish method was successfully applied in 78% of the species sampled here. The VGG19 architecture slightly outperformed the basic shallow and deep architectures, with a confidence threshold equal to 0.7 resulting in an optimal trade-off between precision and recall. Applying this threshold, the VGG19 architecture obtained an average F-score of 0.87, 0.89, and 0.67 on the training, validation, and unseen test set, respectively. The average accuracy was very high (94%) for computed stomatal counts on unseen images of species used for training.The leaf-to-label pipeline is an easy-to-use workflow for researchers of different areas of expertise interested in detecting stomata more efficiently. The described methodology was based on multiple species and well-established methods so that it can serve as a reference for future work.
Collapse
Affiliation(s)
| | | | - Francis wyffels
- Department of Electronics and Information SystemsIDLab‐AIROGhent University‐‐imecZwijnaardeBelgium
| |
Collapse
|
22
|
Veselý P, Šmarda P, Bureš P, Stirton C, Muasya AM, Mucina L, Horová L, Veselá K, Šilerová A, Šmerda J, Knápek O. Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. ANNALS OF BOTANY 2020; 126:323-330. [PMID: 32474609 PMCID: PMC7380457 DOI: 10.1093/aob/mcaa095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The idea that genome (size) evolution in eukaryotes could be driven by environmental factors is still vigorously debated. In extant plants, genome size correlates positively with stomatal size, leading to the idea that conditions enabling the existence of large stomata in fossil plants also supported growth of their genome size. We test this inductive assumption in drought-adapted, prostrate-leaved Cape (South Africa) geophytes where, compared with their upright-leaved geophytic ancestors, stomata develop in a favourably humid microclimate formed underneath their leaves. METHODS Stomatal parameters (leaf cuticle imprints) and genome size (flow cytometry) were measured in 16 closely related geophytic species pairs from seven plant families. In each pair, representing a different genus, we contrasted a prostrate-leaved species with its upright-leaved phylogenetic relative, the latter whose stomata are exposed to the ambient arid climate. KEY RESULTS Except for one, all prostrate-leaves species had larger stomata, and in 13 of 16 pairs they also had larger genomes than their upright-leaved relatives. Stomatal density and theoretical maximum conductance were less in prostrate-leaved species with small guard cells (<1 pL) but showed no systematic difference in species pairs with larger guard cells (>1 pL). Giant stomata were observed in the prostrate-leaved Satyrium bicorne (89-137 µm long), despite its relatively small genome (2C = 9 Gbp). CONCLUSIONS Our results imply that climate, through selection on stomatal size, might be able to drive genome size evolution in plants. The data support the idea that plants from 'greenhouse' geological periods with large stomata might have generally had larger genome sizes when compared with extant plants, though this might not have been solely due to higher atmospheric CO2 in these periods but could also have been due to humid conditions prevailing at fossil deposit sites.
Collapse
Affiliation(s)
- Pavel Veselý
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
- For correspondence. E-mail
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Charles Stirton
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Murdoch, Perth, Australia
- Department of Geography and Environmental Studies, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Lucie Horová
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Kristýna Veselá
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Alexandra Šilerová
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Jakub Šmerda
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Ondřej Knápek
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| |
Collapse
|
23
|
Stevens AV, Nicotra AB, Godfree RC, Guja LK. Polyploidy affects the seed, dormancy and seedling characteristics of a perennial grass, conferring an advantage in stressful climates. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:500-513. [PMID: 32011086 DOI: 10.1111/plb.13094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Polyploidy (the state of having more than two genome copies) is widely distributed in flowering plants and can vary within species, with polyploid races often associated with broad ecological tolerances. Polyploidy may influence within-species variation in seed development, germination and establishment. We hypothesized that interactions between polyploidy and the seed developmental environment would affect subsequent dormancy, germination and early growth traits, particularly in stressful environments. Using seeds developed in a common garden under ambient and warmed conditions, we conducted germination trials under drought and temperature stress, and monitored the subsequent growth of seedlings. The study species, Themeda triandra, is a widespread, keystone, Australian native grass and a known polyploid complex. Tetraploid plants produced heavier, more viable seeds than diploids. Tetraploids were significantly more dormant than diploids, regardless of seed developmental environment. Non-dormant tetraploids were more sensitive to germination stress compared to non-dormant diploids. Finally, tetraploid seedlings were larger and grew faster than diploids, usually when maternal plants were exposed to developmental temperatures atypical to the source environment. Seed and seedling traits suggest tetraploids are generally better adapted to stressful environments than diploids. Because tetraploid seeds of T. triandra are more dormant they are less likely to germinate under stress, and when they do germinate, seedling growth is rapid and independent of seed developmental environment. These novel results demonstrate that polyploidy, sometimes in interaction with developmental environment and possibly also asexuality, can have within-species variation in seed and seedling traits that increase fitness in stressful environments.
Collapse
Affiliation(s)
- A V Stevens
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- National Seed Bank, Australian National Botanic Gardens, Canberra, ACT, Australia
- Centre for Australian National Biodiversity Research, CSIRO, Canberra, ACT, Australia
| | - A B Nicotra
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - R C Godfree
- Centre for Australian National Biodiversity Research, CSIRO, Canberra, ACT, Australia
| | - L K Guja
- National Seed Bank, Australian National Botanic Gardens, Canberra, ACT, Australia
- Centre for Australian National Biodiversity Research, CSIRO, Canberra, ACT, Australia
| |
Collapse
|
24
|
Bainard JD, Newmaster SG, Budke JM. Genome size and endopolyploidy evolution across the moss phylogeny. ANNALS OF BOTANY 2020; 125:543-555. [PMID: 31777923 PMCID: PMC7102977 DOI: 10.1093/aob/mcz194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/27/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Compared with other plant lineages, bryophytes have very small genomes with little variation across species, and high levels of endopolyploid nuclei. This study is the first analysis of moss genome evolution over a broad taxonomic sampling using phylogenetic comparative methods. We aim to determine whether genome size evolution is unidirectional as well as examine whether genome size and endopolyploidy are correlated in mosses. METHODS Genome size and endoreduplication index (EI) estimates were newly generated using flow cytometry from moss samples collected in Canada. Phylogenetic relationships between moss species were reconstructed using GenBank sequence data and maximum likelihood methods. Additional 1C-values were compiled from the literature and genome size and EI were mapped onto the phylogeny to reconstruct ancestral character states, test for phylogenetic signal and perform phylogenetic independent contrasts. KEY RESULTS Genome size and EI were obtained for over 50 moss taxa. New genome size estimates are reported for 33 moss species and new EIs are reported for 20 species. In combination with data from the literature, genome sizes were mapped onto a phylogeny for 173 moss species with this analysis, indicating that genome size evolution in mosses does not appear to be unidirectional. Significant phylogenetic signal was detected for genome size when evaluated across the phylogeny, whereas phylogenetic signal was not detected for EI. Genome size and EI were not found to be significantly correlated when using phylogenetically corrected values. CONCLUSIONS Significant phylogenetic signal indicates closely related mosses have more similar genome sizes and EI values. This study supports that DNA content in mosses is defined by small genomes that are highly endopolyploid, suggesting strong selective pressure to maintain these features. Further research is needed to understand the functional significance of DNA content evolution in mosses.
Collapse
Affiliation(s)
- Jillian D Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-food Canada, Swift Current, SK, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Steven G Newmaster
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Jessica M Budke
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
25
|
Alonso C, Medrano M, Pérez R, Canto A, Parra-Tabla V, Herrera CM. Interspecific variation across angiosperms in global DNA methylation: phylogeny, ecology and plant features in tropical and Mediterranean communities. THE NEW PHYTOLOGIST 2019; 224:949-960. [PMID: 31276214 DOI: 10.1111/nph.16046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
The interspecific range of epigenetic variation and the degree to which differences between angiosperm species are related to geography, evolutionary history, ecological settings or species-specific traits, remain essentially unexplored. Genome-wide global DNA cytosine methylation is a tractable 'epiphenotypic' feature suitable for exploring these relationships. Global cytosine methylation was estimated in 279 species from two distant, ecologically disparate geographical regions: Mediterranean Spain and tropical México. At each region, four distinct plant communities were analyzed. Global methylation spanned a 10-fold range among species (4.8-42.2%). Interspecific differences were related to evolutionary trajectories, as denoted by a strong phylogenetic signal. Genomes of tropical species were on average less methylated than those of Mediterranean ones. Woody plants have genomes with lower methylation than perennial herbs, and genomes of widespread species were less methylated than those of species with restricted geographical distribution. The eight communities studied exhibited broad and overlapping interspecific variances in global cytosine methylation and only two of them differed in average methylation. Altogether, our broad taxonomic survey supported global methylation as a plant 'epiphenotypic' trait largely associated with species evolutionary history, genome size, range size and woodiness. Additional studies are required for better understanding the environmental components underlying local and geographical variation.
Collapse
Affiliation(s)
- Conchita Alonso
- Estación Biológica de Doñana, CSIC, Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Mónica Medrano
- Estación Biológica de Doñana, CSIC, Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, CSIC-US, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Azucena Canto
- Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Víctor Parra-Tabla
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Campus de Ciencias Biológicas y Agropecuarias, Km. 15.5 Carretera Mérida-Xtmakui, 97000, Mérida, Yucatán, Mexico
| | - Carlos M Herrera
- Estación Biológica de Doñana, CSIC, Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| |
Collapse
|
26
|
Pyšek P, Skálová H, Čuda J, Guo WY, Suda J, Doležal J, Kauzál O, Lambertini C, Lučanová M, Mandáková T, Moravcová L, Pyšková K, Brix H, Meyerson LA. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 2019; 99:79-90. [PMID: 29313970 DOI: 10.1002/ecy.2068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/08/2017] [Accepted: 10/16/2017] [Indexed: 01/24/2023]
Abstract
The literature suggests that small genomes promote invasion in plants, but little is known about the interaction of genome size with other traits or about the role of genome size during different phases of the invasion process. By intercontinental comparison of native and invasive populations of the common reed Phragmites australis, we revealed a distinct relationship between genome size and invasiveness at the intraspecific level. Monoploid genome size was the only significant variable that clearly separated the North American native plants from those of European origin. The mean Cx value (the amount of DNA in one chromosome set) for source European native populations was 0.490 ± 0.007 (mean ± SD), for North American invasive 0.506 ± 0.020, and for North American native 0.543 ± 0.021. Relative to native populations, the European populations that successfully invaded North America had a smaller genome that was associated with plant traits favoring invasiveness (long rhizomes, early emerging abundant shoots, resistance to aphid attack, and low C:N ratio). The knowledge that invasive populations within species can be identified based on genome size can be applied to screen potentially invasive populations of Phragmites in other parts of the world where they could grow in mixed stands with native plants, as well as to other plant species with intraspecific variation in invasion potential. Moreover, as small genomes are better equipped to respond to extreme environmental conditions such as drought, the mechanism reported here may represent an emerging driver for future invasions and range expansions.
Collapse
Affiliation(s)
- Petr Pyšek
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Hana Skálová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jan Čuda
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Wen-Yong Guo
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | | | - Jan Doležal
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Museum and Gallery of the Orlické hory Mts, Jiráskova 2, CZ-516 01, Rychnov nad Kněžnou, Czech Republic
| | - Ondřej Kauzál
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Carla Lambertini
- Department of Bioscience, Faculty of Science, Aarhus University, Ole Worms Alle 1, DK-8000, Aarhus C, Denmark
| | - Magdalena Lučanová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00, Prague, Czech Republic
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC - Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Lenka Moravcová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Klára Pyšková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Hans Brix
- Department of Bioscience, Faculty of Science, Aarhus University, Ole Worms Alle 1, DK-8000, Aarhus C, Denmark
| | - Laura A Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, Rhode Island, 02881, USA
| |
Collapse
|
27
|
A genome size and phylogenetic survey of Mediterranean Tripleurospermum and Matricaria (Anthemideae, Asteraceae). PLoS One 2018; 13:e0203762. [PMID: 30300347 PMCID: PMC6177153 DOI: 10.1371/journal.pone.0203762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022] Open
Abstract
The study of genome size variation can contribute valuable information on species relationships as well as correlate to several morphological or ecological features, among others. Here we provide an extensive report on genome sizes on genus Tripleurospermum and its closely related genus Matricaria, which are two typically Mediterranean genera particularly widespread and diverse in Turkey, the origin of most of the populations here studied. We analyse and discuss genome size variation in the first relatively complete molecular phylogenetic framework of Tripleurospermum (based on ITS and ETS ribosomal DNA-rDNA-regions). We find cases of intraspecific genome size variation, which could be taxonomically significant. Genome downsizing is also detected as the typical response to polyploidisation in Tripleurospermum taxa, being most conspicuous at the tetraploid level. Several positive correlations with genome size, including those with pollen and stomatal size or cypsela length, among others, are also found. Remarkably, taxa presenting rhizomes tend to present higher genome sizes, confirming a trend to accumulate nuclear DNA in such species, which could be explained by the nutrient reserves availability in their storage organs, allowing genome expansion, or by the lower rates of sexual reproduction in rhizomatous taxa.
Collapse
|
28
|
Šmarda P, Horová L, Knápek O, Dieck H, Dieck M, Ražná K, Hrubík P, Orlóci L, Papp L, Veselá K, Veselý P, Bureš P. Multiple haploids, triploids, and tetraploids found in modern-day "living fossil" Ginkgo biloba. HORTICULTURE RESEARCH 2018; 5:55. [PMID: 30302259 PMCID: PMC6165845 DOI: 10.1038/s41438-018-0055-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 05/30/2023]
Abstract
Ginkgo biloba, the last extant representative of a lineage of Mesozoic gymnosperms, is one of the few seed plants with an exceptionally long (~300 Myr) evolutionary history free of genome-wide duplications (polyploidy). Despite this genome conservatism, we have recently found a viable spontaneous tetraploid Ginkgo sapling during routine screening of several plants, demonstrating that natural polyploidy is possible in Ginkgo. Here we provide a much wider flow cytometry survey of ploidy in some European Ginkgo collections, and own seedlings (>2200 individuals and ~200 cultivars). We found a surprisingly high level of ploidy variation in modern-day Ginkgo and documented altogether 13 haploid, 3 triploid, and 10 tetraploid Ginkgo plants or cultivars, most of them being morphologically distinct from common diploids. Haploids frequently produced polyploid (dihaploid) buds or branches. Tetraploids showed some genome size variation. The surveyed plants provide a unique resource for future Ginkgo research and breeding, and they might be used to accelerate the modern diversification of this nearly extinct plant lineage.
Collapse
Affiliation(s)
- Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, CZ-61137 Brno, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, CZ-61137 Brno, Czech Republic
| | - Ondřej Knápek
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, CZ-61137 Brno, Czech Republic
| | - Heidi Dieck
- Herrenkamper Gärten, Herrenkamp 1, DE-27254 Siedenburg, Germany
| | - Martin Dieck
- Herrenkamper Gärten, Herrenkamp 1, DE-27254 Siedenburg, Germany
| | - Katarína Ražná
- Department of Genetics and Plant Breeding, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Pavel Hrubík
- Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Dunajská 16, 949 11 Nitra, Slovakia
| | - Laszlo Orlóci
- Botanical Garden of Eötvös University, Illés utca 25, Budapest, Hungary
| | - Laszlo Papp
- Botanical Garden of Eötvös University, Illés utca 25, Budapest, Hungary
| | - Kristýna Veselá
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, CZ-61137 Brno, Czech Republic
| | - Pavel Veselý
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, CZ-61137 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, CZ-61137 Brno, Czech Republic
| |
Collapse
|
29
|
Effect of polyploidy on the leaf epidermis structure of Cynodon dactylon (L.) Pers. (Poaceae). Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0106-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
De Baerdemaeker NJF, Hias N, Van den Bulcke J, Keulemans W, Steppe K. The effect of polyploidization on tree hydraulic functioning. AMERICAN JOURNAL OF BOTANY 2018; 105:161-171. [PMID: 29570227 DOI: 10.1002/ajb2.1032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY Recent research has highlighted the importance of living tissue in wood. Polyploidization can impact amounts and arrangements of living cells in wood, potentially leading to increased drought tolerance. Tetraploid variants were created from the apple cultivar Malus ×domestica 'Gala' (Gala-4x), and their vulnerability to drought-induced cavitation and their hydraulic capacitance were compared to those of their diploid predecessors (Gala-2x). Assuming a positive correlation between polyploidy and drought tolerance, we hypothesized lower vulnerability and higher capacitance for the tetraploid. METHODS Vulnerability to drought-induced cavitation and the hydraulic capacitance were quantified through acoustic emission and continuous weighing of shoots during a bench-top dehydration experiment. To underpin the hydraulic trait results, anatomical variables such as vessel area, conduit diameter, cell wall reinforcement, and ray and vessel-associated parenchyma were measured. KEY RESULTS Vulnerability to drought-induced cavitation was intrinsically equal for both ploidy variants, but Gala-4x proved to be more vulnerable than Gala-2x during the early phase of desiccation as was indicated by its significantly lower air entry value. Higher change in water content of the leafy shoot, higher amount of parenchyma, and larger vessel area and size resulted in a significantly higher hydraulic capacitance and efficiency for Gala-4x compared to Gala-2x. CONCLUSIONS Both ploidy variants were typified as highly sensitive to drought-induced cavitation, with no significant difference in their overall drought vulnerability. But, when water deficit is short and moderate, Gala-4x may delay a drought-induced decrease in performance by trading hydraulic safety for increased release of capacitively stored water from living tissue.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Niek Hias
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Jan Van den Bulcke
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Wannes Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
31
|
Simonin KA, Roddy AB. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol 2018; 16:e2003706. [PMID: 29324757 PMCID: PMC5764239 DOI: 10.1371/journal.pbio.2003706] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
The abrupt origin and rapid diversification of the flowering plants during the Cretaceous has long been considered an “abominable mystery.” While the cause of their high diversity has been attributed largely to coevolution with pollinators and herbivores, their ability to outcompete the previously dominant ferns and gymnosperms has been the subject of many hypotheses. Common among these is that the angiosperms alone developed leaves with smaller, more numerous stomata and more highly branching venation networks that enable higher rates of transpiration, photosynthesis, and growth. Yet, how angiosperms pack their leaves with smaller, more abundant stomata and more veins is unknown but linked—we show—to simple biophysical constraints on cell size. Only angiosperm lineages underwent rapid genome downsizing during the early Cretaceous period, which facilitated the reductions in cell size necessary to pack more veins and stomata into their leaves, effectively bringing actual primary productivity closer to its maximum potential. Thus, the angiosperms' heightened competitive abilities are due in no small part to genome downsizing. The angiosperms, commonly referred to as the flowering plants, are the dominant plants in most terrestrial ecosystems, but how they came to be so successful is considered one of the most profound mysteries in evolutionary biology. Prevailing hypotheses have suggested that the angiosperms rose to dominance through an increase in their maximum potential photosynthesis and whole-plant carbon gain, allowing them to outcompete the ferns and gymnosperms that had previously dominated terrestrial ecosystems. Using a combination of anatomy, cytology, and modelling of liquid water transport and CO2 exchange between leaves and the atmosphere, we now provide strong evidence that the success and rapid spread of flowering plants around the world was the result of genome downsizing. Smaller genomes permit the construction of smaller cells that allow for greater CO2 uptake and photosynthetic carbon gain. Genome downsizing occurred only among the angiosperms, and we propose that it was a necessary prerequisite for rapid growth rates among land plants.
Collapse
Affiliation(s)
- Kevin A. Simonin
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- * E-mail:
| | - Adam B. Roddy
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
32
|
Hodgson JG, Santini BA, Montserrat Marti G, Royo Pla F, Jones G, Bogaard A, Charles M, Font X, Ater M, Taleb A, Poschlod P, Hmimsa Y, Palmer C, Wilson PJ, Band SR, Styring A, Diffey C, Green L, Nitsch E, Stroud E, Romo-Díez A, de Torres Espuny L, Warham G. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology? ANNALS OF BOTANY 2017; 120:633-652. [PMID: 28961937 PMCID: PMC5714152 DOI: 10.1093/aob/mcx084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/05/2017] [Indexed: 05/20/2023]
Abstract
Background and Aims While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Methods Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Key Results Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Conclusions Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL. 1974. Flowering plants: evolution above the species level . Cambridge, MA: Belknap Press) is perhaps associated with both seed and leaf development, and major taxa appear routinely specialized with respect to ecologically important size-related traits.
Collapse
Affiliation(s)
- John G Hodgson
- Unit of Comparative Plant Ecology, The University, Sheffield S1 4ET, UK
- Department of Archaeology, The University, Sheffield S10 2TN, UK
| | - Bianca A Santini
- Department of Animal and Plant Sciences, The University, Sheffield S10 2TN, UK
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04500, Mexico
| | - Gabriel Montserrat Marti
- Dept. Ecología Funcional y Biodiversidad, Instituto Pirenaico de Ecología (CSIC) Aptdo. 202, 30080 Zaragoza, Spain
| | - Ferran Royo Pla
- Grup de Recerca Científica ‘Terres de l’Ebre’, C/ Rosa Maria Molas, 25 A, 2n B, 43500 Tortosa, Spain
| | - Glynis Jones
- Department of Archaeology, The University, Sheffield S10 2TN, UK
| | - Amy Bogaard
- School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
| | - Mike Charles
- School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
| | - Xavier Font
- Department of Plant Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Mohammed Ater
- Laboratoire Diversité et Conservation des Systèmes Biologiques (LDICOSYB), Département de Biologie, Faculté des Sciences de Tétouan, Université Abdelmalek Essaâdi, BP 2062, 93030, Tétouan, Morocco
| | | | - Peter Poschlod
- Institute of Botany, Faculty of Biology and Preclinical Medicine, University of Regensburg, 93040 Regensburg, Germany
| | - Younes Hmimsa
- Laboratoire Diversité et Conservation des Systèmes Biologiques (LDICOSYB), Département de Biologie, Faculté des Sciences de Tétouan, Université Abdelmalek Essaâdi, BP 2062, 93030, Tétouan, Morocco
| | - Carol Palmer
- Department of Archaeology, The University, Sheffield S10 2TN, UK
| | - Peter J Wilson
- Unit of Comparative Plant Ecology, The University, Sheffield S1 4ET, UK
| | - Stuart R Band
- Unit of Comparative Plant Ecology, The University, Sheffield S1 4ET, UK
| | - Amy Styring
- School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
| | - Charlotte Diffey
- School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
| | - Laura Green
- School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
| | - Erika Nitsch
- School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
| | - Elizabeth Stroud
- School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
| | - Angel Romo-Díez
- Institut Botànic de Barcelona, Parc Montjuïc, Av. dels Muntanyans s/n, 08038 Barcelona, Spain
| | - Lluis de Torres Espuny
- Grup de Recerca Científica ‘Terres de l’Ebre’, C/ Rosa Maria Molas, 25 A, 2n B, 43500 Tortosa, Spain
| | - Gemma Warham
- Department of Archaeology, The University, Sheffield S10 2TN, UK
| |
Collapse
|
33
|
Rockwell FE, Holbrook NM. Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective. PLANT PHYSIOLOGY 2017; 174:1996-2007. [PMID: 28615346 PMCID: PMC5543976 DOI: 10.1104/pp.17.00303] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 05/13/2023]
Abstract
Mechanistic modeling of water transport from petiole to stomata provides new perspectives on optimality in vascular and mesophyll transport properties.
Collapse
Affiliation(s)
- Fulton E Rockwell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
34
|
Renzaglia KS, Villarreal JC, Piatkowski BT, Lucas JR, Merced A. Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves. PLANT PHYSIOLOGY 2017; 174:788-797. [PMID: 28584065 PMCID: PMC5462037 DOI: 10.1104/pp.17.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/15/2017] [Indexed: 05/18/2023]
Abstract
As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves.
Collapse
Affiliation(s)
- Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509 (K.S.R., J.R.L.);
- Département de Biologie, Université Laval, Quebec, Quebec, Canada G1V 0A6 (J.C.V.);
- Smithsonian Tropical Research Institute, Ancon, 0843-03092 Panama, Republic of Panama (J.C.V.); Department of Biology, Duke University, Durham, North Carolina 27708 (B.T.P.); and
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico 00901 (A.M.)
| | - Juan Carlos Villarreal
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509 (K.S.R., J.R.L.)
- Département de Biologie, Université Laval, Quebec, Quebec, Canada G1V 0A6 (J.C.V.)
- Smithsonian Tropical Research Institute, Ancon, 0843-03092 Panama, Republic of Panama (J.C.V.); Department of Biology, Duke University, Durham, North Carolina 27708 (B.T.P.); and
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico 00901 (A.M.)
| | - Bryan T Piatkowski
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509 (K.S.R., J.R.L.)
- Département de Biologie, Université Laval, Quebec, Quebec, Canada G1V 0A6 (J.C.V.)
- Smithsonian Tropical Research Institute, Ancon, 0843-03092 Panama, Republic of Panama (J.C.V.); Department of Biology, Duke University, Durham, North Carolina 27708 (B.T.P.); and
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico 00901 (A.M.)
| | - Jessica R Lucas
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509 (K.S.R., J.R.L.)
- Département de Biologie, Université Laval, Quebec, Quebec, Canada G1V 0A6 (J.C.V.)
- Smithsonian Tropical Research Institute, Ancon, 0843-03092 Panama, Republic of Panama (J.C.V.); Department of Biology, Duke University, Durham, North Carolina 27708 (B.T.P.); and
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico 00901 (A.M.)
| | - Amelia Merced
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509 (K.S.R., J.R.L.)
- Département de Biologie, Université Laval, Quebec, Quebec, Canada G1V 0A6 (J.C.V.)
- Smithsonian Tropical Research Institute, Ancon, 0843-03092 Panama, Republic of Panama (J.C.V.); Department of Biology, Duke University, Durham, North Carolina 27708 (B.T.P.); and
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico 00901 (A.M.)
| |
Collapse
|
35
|
Li DD, Lu YL, Guo SL, Yin LP, Zhou P, Lou YX. Nuclear DNA contents of Echinchloa crus-galli and its Gaussian relationships with environments. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2017. [DOI: 10.1016/j.actao.2017.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Snodgrass SJ, Jareczek J, Wendel JF. An examination of nucleotypic effects in diploid and polyploid cotton. AOB PLANTS 2017; 9:plw082. [PMID: 28013252 PMCID: PMC5234348 DOI: 10.1093/aobpla/plw082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/15/2016] [Indexed: 05/03/2023]
Abstract
Nucleotypic effects are phenotypic changes related to the total nuclear DNA amount per cell. These effects are commonly observed among and within genera for certain cell types, and the generality of the positive correlation between genome size and cell size has been well established. However, there are few studies of nucleotypic effects which incorporate into the analysis both ploidy level and genome size (given as Mbp determined by 2C values). To test the hypothesis that cell size scales with genome size and ploidy, we measured the guard cell length, epidermal pavement cell surface area, and pollen grain diameter using individuals of multiple species and accessions of the cotton genus (Gossypium), in which different species exhibit three-fold variation in genome size. We measured cell sizes using calibrated microscopic image analysis. Significant relationships were found between genome size and cell size, with stronger correlations between guard cell length and genome size than with epidermal pavement cell surface area. We also found a relationship between pollen grain diameter and genome size. These results indicate that nucleotypic effects occur within Gossypium, scale with ploidy level, and are stronger in less variable cell types.
Collapse
Affiliation(s)
- S J Snodgrass
- Department of Biology, Grinnell College, Grinnell, IA, USA
| | - J Jareczek
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - J F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
37
|
Zhukovskaya NV, Bystrova EI, Ivanov VB. Length of meristematic and fully elongated root cells related to haploid DNA content. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Glick L, Sabath N, Ashman TL, Goldberg E, Mayrose I. Polyploidy and sexual system in angiosperms: Is there an association? AMERICAN JOURNAL OF BOTANY 2016; 103:1223-1235. [PMID: 27352832 DOI: 10.3732/ajb.1500424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/19/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Flowering plants display a variety of sexual systems, ranging from complete cosexuality (hermaphroditism) to separate-sexed individuals (dioecy). While dioecy is relatively rare, it has evolved many times and is present in many plant families. Transitions in sexual systems are hypothesized to be affected by large genomic events such as whole-genome duplication, or polyploidy, and several models have been proposed to explain the observed patterns of association. METHODS In this study, we assessed the association between ploidy and sexual system (separate or combined sexes). To this end, we assembled a database of ploidy levels and sexual systems for ∼1000 species, spanning 18 genera and 15 families. We applied several phylogenetic comparative approaches, including Pagel's coevolutionary framework and sister clade analyses, for detecting correlations between ploidy level and sexual system. KEY RESULTS Our results indicate a broad association between polyploidy and sexual system dimorphism, with low evolutionary stability of the diploid-dioecious condition observed in several clades. A detailed examination of the clades exhibiting this correlation reveals that it is underlain by various patterns of transition rate asymmetry. CONCLUSIONS We conclude that the long-hypothesized connection between ploidy and sexual system holds in some clades, although it may well be affected by factors that differ from clade to clade. Our results further demonstrate that to better understand the evolutionary processes involved, more sophisticated methods and extensive and detailed data sets are required for both broad and focused inquiry.
Collapse
Affiliation(s)
- Lior Glick
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Niv Sabath
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Tia-Lynn Ashman
- Department of Biological Sciences University of Pittsburgh, Pittsburgh, Pennsylvania 15260 USA
| | - Emma Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108-6097 USA
| | - Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C, Trimmer M, Leitch IJ, Leitch AR. Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. THE NEW PHYTOLOGIST 2016; 210:1195-206. [PMID: 26875784 PMCID: PMC4991274 DOI: 10.1111/nph.13881] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/21/2015] [Indexed: 05/18/2023]
Abstract
Angiosperm genome sizes (GS) range c. 2400-fold, and as nucleic acids are amongst the most phosphorus- (P) and nitrogen (N)-demanding cellular biomolecules, we test the hypothesis that a key influence on plant biomass and species composition is the interaction between N and P availability and plant GS. We analysed the impact of different nutrient regimes on above-ground biomass of angiosperm species with different GS, ploidy level and Grime's C-S-R (competitive, stress-tolerant, ruderal) plant strategies growing at the Park Grass Experiment (Rothamsted, UK), established in 1856. The biomass-weighted mean GS of species growing on plots with the addition of both N and P fertilizer were significantly higher than that of plants growing on control plots and plots with either N or P. The plants on these N + P plots are dominated by polyploids with large GS and a competitive plant strategy. The results are consistent with our hypothesis that large genomes are costly to build and maintain under N and P limitation. Hence GS and ploidy are significant traits affecting biomass growth under different nutrient regimes, influencing plant community composition and ecosystem dynamics. We propose that GS is a critical factor needed in models that bridge the knowledge gap between biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Maïté S. Guignard
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Jodrell LaboratoryRoyal Botanic Gardens, KewRichmondSurreyTW9 3DSUK
| | - Richard A. Nichols
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Robert J. Knell
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Andy Macdonald
- Department of Sustainable Soils and Grassland SystemsRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Catalina‐Andreea Romila
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Mark Trimmer
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Ilia J. Leitch
- Jodrell LaboratoryRoyal Botanic Gardens, KewRichmondSurreyTW9 3DSUK
| | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
40
|
Zhang W, Hu H, Zhang SB. Divergent Adaptive Strategies by Two Co-occurring Epiphytic Orchids to Water Stress: Escape or Avoidance? FRONTIERS IN PLANT SCIENCE 2016; 7:588. [PMID: 27200059 PMCID: PMC4853394 DOI: 10.3389/fpls.2016.00588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 05/21/2023]
Abstract
Due to the fluctuating water availability in the arboreal habitat, epiphytic plants are considered vulnerable to climate change and anthropogenic disturbances. Although co-occurring taxa have been observed divergent adaptive performances in response to drought, the underlying physiological and morphological mechanisms by which epiphyte species cope with water stress remain poorly understood. In the present study, two co-occurring epiphytic orchids with different phenologies were selected to investigate their drought-resistance performances. We compared their functional traits, and monitored their physiological performances in a 25-days of drought treatment. In contrast to the deciduous species Pleione albiflora, the evergreen species Coelogyne corymbosa had different root anatomical structures and higher values for saturated water content of pseudobulbs. Moreover, plants of C. corymbosa had thicker leaves and epidermis, denser veins and stomata, and higher values for leaf mass per unit area and the time required to dry saturated leaves to 70% relative water content. However, samples from that species had lower values for net photosynthetic rate (A n), stomatal length and chlorophyll content per unit dry mass. Nevertheless, due to greater capacity for water storage and conservation, C. corymbosa maintained higher A n, stomatal conductance (g s), and instantaneous water-use efficiency during severe drought period, and their values for leaf water potential were higher after the water stress treatment. By Day 10 after irrigation was restarted, only C. corymbosa plants recovered their values for A n and g s to levels close to those calculated prior to the imposition of water stress. Our results suggest that the different performance responding to drought and re-watering in two co-occurring epiphytic orchids is related to water-related traits and these two species have divergent adaptive mechanisms. Overall, C. corymbosa demonstrates drought avoidance by enhancing water uptake and storage, and by reducing water losses while P. albiflora employs a drought escape strategy by fixing more carbon during growing season and shedding leaves and roots at dry season, leaving a dormant pseudobulb to minimize transpiration. These findings may improve our understanding of the potential effects that climate change can have on the population dynamics of different epiphytic taxa.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| |
Collapse
|
41
|
Fridley JD, Craddock A. Contrasting growth phenology of native and invasive forest shrubs mediated by genome size. THE NEW PHYTOLOGIST 2015; 207:659-668. [PMID: 25809298 DOI: 10.1111/nph.13384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Examination of the significance of genome size to plant invasions has been largely restricted to its association with growth rate. We investigated the novel hypothesis that genome size is related to forest invasions through its association with growth phenology, as a result of the ability of large-genome species to grow more effectively through cell expansion at cool temperatures. We monitored the spring leaf phenology of 54 species of eastern USA deciduous forests, including native and invasive shrubs of six common genera. We used new measurements of genome size to evaluate its association with spring budbreak, cell size, summer leaf production rate, and photosynthetic capacity. In a phylogenetic hierarchical model that differentiated native and invasive species as a function of summer growth rate and spring budbreak timing, species with smaller genomes exhibited both faster growth and delayed budbreak compared with those with larger nuclear DNA content. Growth rate, but not budbreak timing, was associated with whether a species was native or invasive. Our results support genome size as a broad indicator of the growth behavior of woody species. Surprisingly, invaders of deciduous forests show the same small-genome tendencies of invaders of more open habitats, supporting genome size as a robust indicator of invasiveness.
Collapse
Affiliation(s)
- Jason D Fridley
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Alaä Craddock
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
42
|
Hennig A, Kleinschmit JRG, Schoneberg S, Löffler S, Janßen A, Polle A. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress. FRONTIERS IN PLANT SCIENCE 2015; 6:330. [PMID: 26042130 PMCID: PMC4436569 DOI: 10.3389/fpls.2015.00330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/27/2015] [Indexed: 05/04/2023]
Abstract
Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites.
Collapse
Affiliation(s)
- Anne Hennig
- Department for Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August University of GöttingenGöttingen, Germany
- Department Forest Genetic Resources, Northwest German Forest Research InstituteHann. Münden, Germany
| | - Jörg R. G. Kleinschmit
- Department Forest Genetic Resources, Northwest German Forest Research InstituteHann. Münden, Germany
| | - Sebastian Schoneberg
- Department Ecoinformatics, Biometrics and Forest Growth, Büsgen-Institute, Georg-August University of GöttingenGöttingen, Germany
| | - Sonja Löffler
- Department for Monitoring and Forest Development, Forest Research Institute EberswaldeEberswalde, Germany
| | - Alwin Janßen
- Department Forest Genetic Resources, Northwest German Forest Research InstituteHann. Münden, Germany
| | - Andrea Polle
- Department for Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August University of GöttingenGöttingen, Germany
| |
Collapse
|
43
|
Henry TA, Bainard JD, Newmaster SG. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing. Genome 2015; 57:555-66. [PMID: 25727714 DOI: 10.1139/gen-2014-0090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.
Collapse
Affiliation(s)
- Thomas A Henry
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
44
|
Bromham L, Hua X, Lanfear R, Cowman PF. Exploring the Relationships between Mutation Rates, Life History, Genome Size, Environment, and Species Richness in Flowering Plants. Am Nat 2015; 185:507-24. [PMID: 25811085 DOI: 10.1086/680052] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A new view is emerging of the interplay between mutation at the genomic level, substitution at the population level, and diversification at the lineage level. Many studies have suggested that rate of molecular evolution is linked to rate of diversification, but few have evaluated competing hypotheses. By analyzing sequences from 130 families of angiosperms, we show that variation in the synonymous substitution rate is correlated among genes from the mitochondrial, chloroplast, and nuclear genomes and linked to differences in traits among families (average height and genome size). Within each genome, synonymous rates are correlated to nonsynonymous substitution rates, suggesting that increasing the mutation rate results in a faster rate of genome evolution. Substitution rates are correlated with species richness in protein-coding sequences from the chloroplast and nuclear genomes. These data suggest that species traits contribute to lineage-specific differences in the mutation rate that drive both synonymous and nonsynonymous rates of change across all three genomes, which in turn contribute to greater rates of divergence between populations, generating higher rates of diversification. These observations link mutation in individuals to population-level processes and to patterns of lineage divergence.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
45
|
Suda J, Meyerson LA, Leitch IJ, Pyšek P. The hidden side of plant invasions: the role of genome size. THE NEW PHYTOLOGIST 2015; 205:994-1007. [PMID: 25323486 DOI: 10.1111/nph.13107] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/11/2014] [Indexed: 05/11/2023]
Abstract
The ecological role of genome size in plant biology, biogeography, and morphology has garnered increasing attention as the methods and technology associated with measuring cytological characteristics have become more reliable and accessible. However, how plant genome size influences plant invasions and at what stage in the invasion this influence occurs have been little explored. Several large-scale analyses of published data have yielded valuable interspecific comparisons, but experimental studies that manipulate environmental factors are needed, particularly below the species level, to fully understand the role that genome size plays in plant invasion. In this review, we summarize the available knowledge, discuss the integration of genome size data into invasion research, and suggest how it can be applied to detect and manage invasive species. We also explore how global climate change could exert selective pressures on plant populations with varying genome sizes, thereby increasing the distribution range and invasiveness of some populations while decreasing others. Finally, we outline avenues for future research, including considerations of large-scale studies of intraspecific variation in genome size of invasive populations, testing the interaction of genome size with other factors in macroecological analyses of invasions, as well as the role this trait may play in plant-enemy interactions.
Collapse
Affiliation(s)
- Jan Suda
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague 2, CZ-128 01, Czech Republic
| | - Laura A Meyerson
- University of Rhode Island, 1 Greenhouse Road, Kingston, RI, 02881, USA
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Petr Pyšek
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-252 43, Czech Republic
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, Prague, CZ-128 44, Czech Republic
- Centre for Invasion Biology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
46
|
Visser V, Molofsky J. Ecological niche differentiation of polyploidization is not supported by environmental differences among species in a cosmopolitan grass genus. AMERICAN JOURNAL OF BOTANY 2015; 102:36-49. [PMID: 25587146 DOI: 10.3732/ajb.1400432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Polyploidization frequently results in the creation of new plant species, the establishment of which is thought to often be facilitated by ecological niche differentiation from the diploid species. We tested this hypothesis using the cosmopolitan grass genus Phalaris (Poaceae), consisting of 19 species that range from diploid to tetraploid to hexaploid. Specifically, we tested whether (1) polyploids occupy more extreme environments and/or (2) have broader niche breadths and/or (3) whether the polyploid species' distributions indicate a niche shift from diploid species.• METHODS We employed a bootstrapping approach using distribution data for each species and eight environmental variables to investigate differences between species in the means, extremes, and breadths of each environmental variable. We used a kernel smoothing technique to quantify niche overlap between species.• KEY RESULTS Although we found some support for the three hypotheses for a few diploid-polyploid pairs and for specific environmental variables, none of these hypotheses were generally supported.• CONCLUSIONS Our results suggest that these commonly held hypotheses about the effects of polyploidization on ecological distributions are not universally applicable. Correlative biogeographic studies like ours provide a necessary first step for suggesting specific hypotheses that require experimental verification. A combination of genetic, physiological, and ecological studies will be required to achieve a better understanding of the role of polyploidization in niche evolution.
Collapse
Affiliation(s)
- Vernon Visser
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Jane Molofsky
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405 USA
| |
Collapse
|
47
|
Jordan GJ, Carpenter RJ, Koutoulis A, Price A, Brodribb TJ. Environmental adaptation in stomatal size independent of the effects of genome size. THE NEW PHYTOLOGIST 2015; 205:608-17. [PMID: 25266914 PMCID: PMC4301182 DOI: 10.1111/nph.13076] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/20/2014] [Indexed: 05/18/2023]
Abstract
Cell sizes are linked across multiple tissues, including stomata, and this variation is closely correlated with genome size. These associations raise the question of whether generic changes in cell size cause suboptimal changes in stomata, requiring subsequent evolution under selection for stomatal size. We tested the relationships among guard cell length, genome size and vegetation type using phylogenetically independent analyses on 67 species of the ecologically and structurally diverse family, Proteaceae. We also compared how genome and stomatal sizes varied at ancient (among genera) and more recent (within genus) levels. The observed 60-fold range in genome size in Proteaceae largely reflected the mean chromosome size. Compared with variation among genera, genome size varied much less within genera (< 6% of total variance) than stomatal size, implying evolution in stomatal size subsequent to changes in genome size. Open vegetation and closed forest had significantly different relationships between stomatal and genome sizes. Ancient changes in genome size clearly influenced stomatal size in Proteaceae, but adaptation to habitat strongly modified the genome-stomatal size relationship. Direct adaptation to the environment in stomatal size argues that new proxies for past concentrations of atmospheric CO2 that incorporate stomatal size are superior to older models based solely on stomatal frequency.
Collapse
Affiliation(s)
- Gregory J Jordan
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | | | | | | | | |
Collapse
|
48
|
Zahedi AA, Hosseini B, Fattahi M, Dehghan E, Parastar H, Madani H. Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss. BOTANICAL STUDIES 2014; 55:22. [PMID: 28510927 PMCID: PMC5430325 DOI: 10.1186/1999-3110-55-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/08/2014] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ploidy manipulation is considered an efficient method to increase production potential of medicinally important compounds. Dracocephalum kotschyi Boiss. is an endangered medicinal plant of Iran. Various concentrations of colchicine (0.05, 0.10, 0.20, and 0.50% w/v) were applied to shoot apical meristems of D. kotschyi seedlings in two and four-leaf stages to induce tetraploidy. RESULTS According to the results, 0.5% (w/v) of colchicine can be effective for polyploidy induction in D. kotschyi. Putative tetraploids were selected by morphological and microscopic characteristics and their ploidy level was confirmed by flow cytometry analysis and chromosome counting. The chromosome number of original diploid plant was confirmed to be 2n = 2× = 20 whereas that of the tetraploid plant was 2n = 4× = 40. Tetraploid and mixoploid plants showed different morphological, physiological and microscopic characteristics from those of diploid counterparts. The total content of flavonoids was increased from 1583.28 in diploids to 1890.07 (μg/g DW) in stable tetraploids. CONCLUSION High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) confirmed over accumulation of methoxylated hydroxyflavones in solid tetraploid plants of D. kotschyi.
Collapse
Affiliation(s)
- Ali Akbar Zahedi
- Student of Medicinal Plants, Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Bahman Hosseini
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Fattahi
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Esmail Dehghan
- Ph.D. Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hadi Parastar
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Hadi Madani
- Student of Medicinal Plants, Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
49
|
|
50
|
Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. Polyploidy and novelty: Gottlieb's legacy. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130351. [PMID: 24958924 PMCID: PMC4071524 DOI: 10.1098/rstb.2013.0351] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nearly four decades ago, Roose & Gottlieb (Roose & Gottlieb 1976 Evolution 30, 818-830. (doi:10.2307/2407821)) showed that the recently derived allotetraploids Tragopogon mirus and T. miscellus combined the allozyme profiles of their diploid parents (T. dubius and T. porrifolius, and T. dubius and T. pratensis, respectively). This classic paper addressed the link between genotype and biochemical phenotype and documented enzyme additivity in allopolyploids. Perhaps more important than their model of additivity, however, was their demonstration of novelty at the biochemical level. Enzyme multiplicity-the production of novel enzyme forms in the allopolyploids-can provide an extensive array of polymorphism for a polyploid individual and may explain, for example, the expanded ranges of polyploids relative to their diploid progenitors. In this paper, we extend the concept of evolutionary novelty in allopolyploids to a range of genetic and ecological features. We observe that the dynamic nature of polyploid genomes-with alterations in gene content, gene number, gene arrangement, gene expression and transposon activity-may generate sufficient novelty that every individual in a polyploid population or species may be unique. Whereas certain combinations of these features will undoubtedly be maladaptive, some unique combinations of newly generated variation may provide tremendous evolutionary potential and adaptive capabilities.
Collapse
Affiliation(s)
- Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|