1
|
Floor E, Su J, Chatterjee M, Kuipers ES, IJssennagger N, Heidari F, Giordano L, Wubbolts RW, Mihăilă SM, Stapels DAC, Vercoulen Y, Strijbis K. Development of a Caco-2-based intestinal mucosal model to study intestinal barrier properties and bacteria-mucus interactions. Gut Microbes 2025; 17:2434685. [PMID: 39714032 DOI: 10.1080/19490976.2024.2434685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for in vitro assays, particularly the generation of a mucus layer, has proven to be challenging. The intestinal cell-line Caco-2 is widely used in academic and industrial laboratories due to its capacity to polarize, form an apical brush border, and reproducibly grow into confluent cell layers in different culture systems. However, under normal culture conditions, Caco-2 cultures lack a mucus layer. Here, we demonstrate for the first time that Caco-2 cultures can form a robust mucus layer when cultured under air-liquid interface (ALI) conditions on Transwell inserts with addition of vasointestinal peptide (VIP) in the basolateral compartment. We demonstrate that unique gene clusters are regulated in response to ALI and VIP single stimuli, but the ALI-VIP combination treatment resulted in a significant upregulation of multiple mucin genes and proteins, including secreted MUC2 and transmembrane mucins MUC13 and MUC17. Expression of tight junction proteins was significantly altered in the ALI-VIP condition, leading to increased permeability to small molecules. Commensal Lactiplantibacillus plantarum bacteria closely associated with the Caco-2 mucus layer and differentially colonized the surface of the ALI cultures. Pathogenic Salmonella enterica were capable of invading beyond the mucus layer and brush border. In conclusion, Caco-2 ALI-VIP cultures provide an accessible and straightforward way to culture an in vitro intestinal mucosal model with improved biomimetic features. This novel in vitro intestinal model can facilitate studies into mucus and epithelial barrier functions and in-depth molecular characterization of pathogenic and commensal microbe-mucus interactions.
Collapse
Affiliation(s)
- Evelien Floor
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jinyi Su
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maitrayee Chatterjee
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- The TIM Company, Delft, the Netherlands
| | - Elise S Kuipers
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Noortje IJssennagger
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Danone Research and Innovation Center, Utrecht, The Netherlands
| | - Faranak Heidari
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Laura Giordano
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Richard W Wubbolts
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Silvia M Mihăilă
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daphne A C Stapels
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Vercoulen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Hieromnimon M, Regan DP, Lokken RP, Schook LB, Gaba RC, Schachtschneider KM. Single and multi-omic characterization of a porcine model of ethanol-induced hepatic fibrosis. Epigenetics 2025; 20:2471127. [PMID: 40040391 PMCID: PMC11901410 DOI: 10.1080/15592294.2025.2471127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Cirrhosis is a form of end-stage liver disease characterized by extensive hepatic fibrosis and loss of liver parenchyma. It is most commonly the result of long-term alcohol abuse in the United States. Large animal models of cirrhosis, as well as of one of its common long-term sequelae, HCC, are needed to study novel and emerging therapeutic interventions. In the present study, liver fibrosis was induced in the Oncopig cancer model, a large animal HCC model, via intrahepatic, intra-arterial ethanol infusion. Liver sections from five fibrosis induced and five age-matched controls were harvested for RNA-seq (mRNA and lncRNA), small RNA-seq (miRNA), and reduced representation bisulfite sequencing (RRBS; DNA methylation). Single- and multi-omic analysis was performed to investigate the transcriptomic and epigenomic mechanisms associated with fibrosis deposition in this model. A total of 3,439 genes, 70 miRNAs, 452 lncRNAs, and 7,715 methylation regions were found to be differentially regulated through individual single-omic analysis. Pathway analysis indicated differentially expressed genes were associated with collagen synthesis and turnover, hepatic metabolic functions such as ethanol and lipid metabolism, and proliferative and anti-proliferative pathways including PI3K and BAX/BCL signaling pathways. Multi-omic latent variable analysis demonstrated significant concordance with the single-omic analysis. lncRNA's associated with UHRF1BP1L and S1PR1 genes were found to reliably discriminate the two arms of the study. These genes were previously implicated in human cancer development and vasculogenesis, respectively. These findings support the validity and translatability of this model as a useful preclinical tool in the study of alcoholic liver disease and its treatment.
Collapse
Affiliation(s)
- Mark Hieromnimon
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel P. Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - R. Peter Lokken
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Sus Clinicals Inc, Chicago, IL, USA
| | - Ron C. Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Sus Clinicals Inc, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Lee JS, Kao DJ, Worledge CS, Villamaria ZF, Wang RX, Welch NM, Kostelecky RE, Colgan SP. E. coli genetically modified for purine nucleobase release promotes butyrate generation and colonic wound healing during DSS insult. Gut Microbes 2025; 17:2490211. [PMID: 40247632 PMCID: PMC12013446 DOI: 10.1080/19490976.2025.2490211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 12/27/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
The gut microbiota transforms energy stored as undigestible carbohydrates into a remarkable number of metabolites that fuel intestinal bacterial communities and the host tissue. Colonic epithelial cells at the microbiota-host interface depend upon such microbiota-derived metabolites (MDMs) to satisfy their energy requisite. Microbial dysbiosis eliciting MDM loss contributes to barrier dysfunction and mucosal disease. Recent work has identified a role for microbiota-sourced purines (MSPs), notably hypoxanthine, as an MDM salvaged by the colonic epithelium for nucleotide biogenesis and energy balance. Here, we investigated the role of MSPs in mice during disease-modeled colonic energetic stress using a strain of E. coli genetically modified for enhanced purine nucleobase release (E. coli Mutant). E. coli Mutant colonization protected against DSS-induced tissue damage and permeability while promoting proliferation for wound healing. Metabolite and metagenomic analyses suggested a colonic butyrate-purine nucleobase metabolic axis, wherein the E. coli Mutant provided purine substrate for Clostridia butyrate production and host purine salvage, altogether supplying the host substrate for efficient nucleotide biogenesis and energy balance.
Collapse
Affiliation(s)
- J. Scott Lee
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Daniel J. Kao
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Corey S. Worledge
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Zachary F. Villamaria
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Ruth X. Wang
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Nichole M. Welch
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| | - Rachael E. Kostelecky
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Sean P. Colgan
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| |
Collapse
|
4
|
Antsiferova M, Berrera M, Zagdoun AC, Raauf M, Nguyen TT, Murgia C, Appelt B, Trumpfheller C, Gasser S, Pilet S, Nicolini V, de Matos IG. Novel immunodominant neoepitope in a KPC mouse model of pancreatic cancer allowing identification of tumor-specific T cells. Oncoimmunology 2025; 14:2489815. [PMID: 40198613 PMCID: PMC11988233 DOI: 10.1080/2162402x.2025.2489815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025] Open
Abstract
The 4662 KPC model is one of the most widely used mouse models of pancreatic cancer. It represents an excluded immune phenotype and closely recapitulates the pathophysiology of pancreatic cancer in humans. We set out to identify the endogenous neoepitopes present in 4662 cells. By combining whole-exome and RNA-sequencing and a bioinformatic neoantigen prediction pipeline, we have identified 15 potential candidate neoantigen epitopes. Ten more highly expressed were selected for validation in an in vivo vaccination study with 4662-tumor bearing mice. The Mrps35-derived neoantigen was found to be immunogenic as we have identified endogenous T-cells responding to this neoepitope, and the response was significantly increased upon vaccination with a synthetic peptide and upon PD1-IL2v therapy. Dextramers based on this peptide were validated and can be used to monitor endogenous tumor-specific CD8+ T-cells in response to immunotherapy. This will support the development of novel therapies for this highly unmet medical need indication.
Collapse
Affiliation(s)
- Maria Antsiferova
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Marco Berrera
- Predictive Modelling and Data Analytics, Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Anne-Claire Zagdoun
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Maha Raauf
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Thuy Trinh Nguyen
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Claudio Murgia
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Birte Appelt
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christine Trumpfheller
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Stephan Gasser
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Sylvain Pilet
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Valeria Nicolini
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Ines Grazina de Matos
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| |
Collapse
|
5
|
Chowdhury SR, Shilpi A, Felsenfeld G. RNA Pol-II transcripts in nucleolar associated domains of cancer cell nucleoli. Nucleus 2025; 16:2468597. [PMID: 39987497 PMCID: PMC11849958 DOI: 10.1080/19491034.2025.2468597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
We performed a comparative study of the non-ribosomal gene content of nucleoli from seven cancer cell lines, using identical methods of purification and analysis. We identified unique chromosomal domains associated with the nucleolus (NADs) and genes within these domains (NAGs). Four cell lines have relatively few NAGs, which appears mostly transcriptionally inactive, consistent with literature. The remaining three lines formed a separate group with nucleoli with unique features and NADS. They constitute larger number of common NAGs, marked by ATAC-seq and having accessible promoters, with histone markers for transcriptional activity and detectable RNA Pol II bound at their promoters. The transcripts of these genes are almost entirely exported from the nucleolus. These results indicate that RNA Pol II dependent transcription in NADs can vary widely in different cell types, presumably dependent on the cell's developmental stage. Nucleolus-associated genes are likely to be distinguished marks reflecting the cell's metabolism.
Collapse
Affiliation(s)
- Soumya Roy Chowdhury
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Arunima Shilpi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | | |
Collapse
|
6
|
Wiecken M, Machiraju D, Chakraborty S, Mayr EM, Lenoir B, Eurich R, Richter J, Pfarr N, Halama N, Hassel JC. The immune checkpoint LAG-3 is expressed by melanoma cells and correlates with clinical progression of the melanoma. Oncoimmunology 2025; 14:2430066. [PMID: 39716918 DOI: 10.1080/2162402x.2024.2430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Immune checkpoint blockers have substantially improved prognosis of melanoma patients, nevertheless, resistance remains a significant problem. Here, intrinsic and extrinsic factors in the tumor microenvironment are discussed, including the expression of alternative immune checkpoints such as lymphocyte activation gene 3 (LAG-3) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3). While most studies focus on immune cell expression of these proteins, we investigated their melanoma cell intrinsic expression by immunohistochemistry in melanoma metastases of 60 patients treated with anti-programmed cell death protein 1 (PD-1) and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) therapy, and correlated it with the expression of potential ligands, RNA sequencing data and clinical outcome. LAG-3 and TIM-3 were commonly expressed in melanoma cells. In the stage IV cohort, expression of LAG-3 was associated with M1 stage (p < 0.001) and previous exposure to immune checkpoint inhibitors (p = 0.029). Moreover, in the anti-PD-1 monotherapy treatment group patients with high LAG-3 expression by tumor cells tended to have a shorter progression-free survival (p = 0.088), whereas high expression of TIM-3 was associated with a significantly longer overall survival (p = 0.007). In conclusion, we provide a systematic analysis of melanoma cell intrinsic LAG-3 and TIM-3 expression, highlighting potential implications of their expression on patient survival.
Collapse
Affiliation(s)
- Melanie Wiecken
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Devayani Machiraju
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Shounak Chakraborty
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Eva-Maria Mayr
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Bénédicte Lenoir
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit "Applied Tumor Immunity"(TME unit), Heidelberg, Germany
| | - Rosa Eurich
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit "Applied Tumor Immunity"(TME unit), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Translational Immunotherapy, Heidelberg, Germany
| | - Jasmin Richter
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Niels Halama
- German Cancer Research Center (DKFZ) Heidelberg, Division of Translational Immunotherapy, Heidelberg, Germany
- Department of Medical Oncology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Naidovski N, Chong SKT, Liu F, Riordan SM, Wehrhahn MC, Yuwono C, Zhang L. Human macrophage response to the emerging enteric pathogen Aeromonas veronii: Inflammation, apoptosis, and downregulation of histones. Virulence 2025; 16:2440554. [PMID: 39663607 PMCID: PMC11702953 DOI: 10.1080/21505594.2024.2440554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
This study investigated the pathogenic mechanisms of Aeromonas veronii in macrophages. THP-1 derived macrophages were used as a human macrophage model and were treated with A. veronii strain AS1 isolated from intestinal biopsies of an IBD patient, or Escherichia coli strain K-12. RNA was extracted and subjected to RNA sequencing and comparative transcriptomic analyses. Protein levels of IL-8, IL-1β, IL-18, and TNFα were measured using ELISA, and apoptosis was assessed using caspase 3/7 assays. Both A. veronii AS1 and E. coli K-12 significantly upregulated the expression of many genes involving inflammation. At the protein level, A. veronii AS1 induced significantly higher levels of IL-8, TNFα, mature IL-18 and IL-1β than E. coli K-12, and led to greater elevation of caspase 3/7 activities. Both A. veronii AS1 and E. coli K-12 upregulated the expression of CASP5, but not other caspase genes. A. veronii AS1 significantly downregulated the expression of 20 genes encoding histone proteins that E. coli K-12 did not. The more profound pathogenic effects of A. veronii in inducing inflammation and apoptosis in macrophages than E. coli K-12 are consistent with its role as a human enteric pathogen. The upregulated expression of CASP5 and increased release of IL-1β and IL-18 support the role of CASP5 in activation of non-canonical inflammasome. The downregulation of histone genes by A. veronii suggests a unique impact on host cell gene expression, which may represent a novel virulence strategy. These findings advance the understanding of pathogenic mechanisms of the emerging human enteric pathogen A. veronii.
Collapse
Affiliation(s)
- Nicholas Naidovski
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sarah K. T. Chong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Michael C. Wehrhahn
- Douglass Hanly Moir Pathology, a Sonic Healthcare Practice, Macquarie Park, NSW, Australia
| | - Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Feng X, Feng Q, Abbas Raza SH, Li F, Ma Y. Identification of key factors causing ketosis in dairy cows with low feed intake. Anim Biotechnol 2025; 36:2487089. [PMID: 40184169 DOI: 10.1080/10495398.2025.2487089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Ketosis is a common metabolic disease in high-yield dairy cows. Key genes affecting ketosis need to be further explored by new methods. The gene expression profiling and clinical data of GSE92398, GSE104079, and GSE4304 were obtained from the gene expression omnibus (GEO) database. Core modules and genes associated with RFI (residual feed intake) and ADF (alternate day fasting) were identified by weighted gene co-expression network analysis (WGCNA). Subsequently, the key genes related to ketosis and RFI were determined by protein-protein interaction (PPI) networks, ROC curves, functional enrichment, and differential expression analysis, respectively. The results showed that the genes of ACACA, ELOVL6 and XPO7 could be used as regulators of ketosis induced by low feed intake in dairy cows. At the same time, three genes (HRFI, STAT3 and IFNAR1) were retained as additional RFI biomarkers that could be considered. We identified three key factors as candidate genes and biomarkers of ketosis and RFI, respectively. These factors may provide a theoretical basis for targeted therapy of ketosis in dairy cows.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Qi Feng
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Fen Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
9
|
Hamo CE, Muller M, Rosenfeld E, Xia Y, Akinlonu A, Luttrell-Williams E, Barrett TJ, Berger JS. Cardiometabolic risk factor burden associates with an immature platelet profile. Platelets 2025; 36:2459800. [PMID: 39882733 PMCID: PMC11801799 DOI: 10.1080/09537104.2025.2459800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Cardiometabolic risk factors, obesity, diabetes and hyperlipidemia contribute to cardiovascular disease (CVD). While platelets are involved in CVD pathogenesis, the relationship between risk factor burden on platelet indices and the platelet transcriptome remains uncertain. Blood was collected from CVD-free adults, measuring platelet count, mean platelet volume (MPV), immature platelet fraction (IPF), and absolute immature platelet fraction (AIPF) by hemogram. Platelets were isolated and analyzed via RNA sequencing. Participants were stratified by number of cardiometabolic risk factors (diabetes, obesity, hyperlipidemia). We calculated median (IQR) values of platelet indices and p-for-trend via linear regression across risk factor burden. To evaluate the association between risk factor burden and platelet transcripts, we performed multivariable linear regression adjusting for age, sex, and race/ethnicity. Among 141 participants, (50.5 ± 14.8 years, 42% male, 26% Black) risk factor burden was associated with increasing platelet size, IPF, and AIPF but not platelet count. Platelet RNA sequencing identified 100 differentially expressed transcripts (p < .01; 66 upregulated, 34 downregulated). Gene ontology enrichment analysis demonstrated upregulated pathways of secondary metabolic processes (NES = 1.96, p < .01), and hematopoietic stem cell proliferation (NES = 1.95, p < .01). Greater cardiometabolic risk factor burden is associated with increased platelet size and immaturity and suggesting novel platelet-mediated mechanisms linking risk factor burden with CVD.
Collapse
Affiliation(s)
- Carine E. Hamo
- Department of Medicine, Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York City, New York, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Matthew Muller
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Emily Rosenfeld
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Yuhe Xia
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Adedoyin Akinlonu
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Elliot Luttrell-Williams
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Tessa J. Barrett
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Jeffrey S. Berger
- Department of Medicine, Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York City, New York, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| |
Collapse
|
10
|
Brito Rodrigues P, de Rezende Rodovalho V, Sencio V, Benech N, Creskey M, Silva Angulo F, Delval L, Robil C, Gosset P, Machelart A, Haas J, Descat A, Goosens JF, Beury D, Maurier F, Hot D, Wolowczuk I, Sokol H, Zhang X, Ramirez Vinolo MA, Trottein F. Integrative metagenomics and metabolomics reveal age-associated gut microbiota and metabolite alterations in a hamster model of COVID-19. Gut Microbes 2025; 17:2486511. [PMID: 40172215 PMCID: PMC11970752 DOI: 10.1080/19490976.2025.2486511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Aging is a key contributor of morbidity and mortality during acute viral pneumonia. The potential role of age-associated dysbiosis on disease outcomes is still elusive. In the current study, we used high-resolution shotgun metagenomics and targeted metabolomics to characterize SARS-CoV-2-associated changes in the gut microbiota from young (2-month-old) and aged (22-month-old) hamsters, a valuable model of COVID-19. We show that age-related dysfunctions in the gut microbiota are linked to disease severity and long-term sequelae in older hamsters. Our data also reveal age-specific changes in the composition and metabolic activity of the gut microbiota during both the acute phase (day 7 post-infection, D7) and the recovery phase (D22) of infection. Aged hamsters exhibited the most notable shifts in gut microbiota composition and plasma metabolic profiles. Through an integrative analysis of metagenomics, metabolomics, and clinical data, we identified significant associations between bacterial taxa, metabolites and disease markers in the aged group. On D7 (high viral load and lung epithelial damage) and D22 (body weight loss and fibrosis), numerous amino acids, amino acid-related molecules, and indole derivatives were found to correlate with disease markers. In particular, a persistent decrease in phenylalanine, tryptophan, glutamic acid, and indoleacetic acid in aged animals positively correlated with poor recovery of body weight and/or lung fibrosis by D22. In younger hamsters, several bacterial taxa (Eubacterium, Oscillospiraceae, Lawsonibacter) and plasma metabolites (carnosine and cis-aconitic acid) were associated with mild disease outcomes. These findings support the need for age-specific microbiome-targeting strategies to more effectively manage acute viral pneumonia and long-term disease outcomes.
Collapse
Affiliation(s)
- Patrícia Brito Rodrigues
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | | | - Valentin Sencio
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Benech
- Gastroenterology Department, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- Hospices Civils de Lyon, Lyon GEM Microbiota Study Group, Lyon, France
| | - Marybeth Creskey
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, University of Ottawa, Ottawa, Canada
| | - Fabiola Silva Angulo
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Lou Delval
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Cyril Robil
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Philippe Gosset
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Arnaud Machelart
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joel Haas
- U1011-EGID, University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Amandine Descat
- EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, Lille, France
| | - Jean François Goosens
- EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, Lille, France
| | - Delphine Beury
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Florence Maurier
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - David Hot
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Isabelle Wolowczuk
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xu Zhang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, University of Ottawa, Ottawa, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - François Trottein
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
11
|
Li YX, Zhao LM, Zhang XZ, Ma XK, Liang JQ, Gan TJ, Gong H, Jiang YL, Wu Y, Song YT, Zhang Y, Li Y, Chen XT, Xu CH, Ouyang XY, Li-Ling J, Zhang H, Xie HQ. Smooth muscle extracellular matrix modified small intestinal submucosa conduits promote peripheral nerve repair. Biomaterials 2025; 321:123346. [PMID: 40253732 DOI: 10.1016/j.biomaterials.2025.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Challenges still exist to develop an ideal cell-free nerve guidance conduit (NGC) providing a favorable microenvironment for rapid and successful nerve regeneration. Proteomic analysis revealed that extracellular matrix (ECM) derived from smooth muscle cells (SMCs) was abundant in nerve-related active proteins and significantly enriched signaling pathways involved in nerve regeneration. However, whether NGCs based on SMCs-derived ECM modification strategy promote nerve regeneration remains unclear. In the study, we investigated the neuroregenerative effect of SMCs-derived ECM and developed a novel NGC (MyoNerve) by coating small intestinal submucosa (SIS) with SMCs-derived ECM. The SMCs-ECM was rich in neurotrophic factors, which endowed MyoNerve with remarkable neuroregenerative capabilities by promoting the expression of genes implicated in aspects of neuronal maintenance and activating signaling pathways involved in nerve regeneration. In vitro, MyoNerve exhibited excellent bioactivity for accelerating angiogenesis, regulating macrophages polarization, promoting the proliferation, migration and elongation of Schwann cells, enhancing differentiation of PC12 cells, and inducing the neurite outgrowth of dorsal root ganglia. In the model of rat sciatic nerve 10 mm defect, MyoNerve showed great potential for functional nerve regeneration by promoting angiogenesis, proliferation and migration of Schwann cells and neuron, axonal regeneration, remyelination, and neurological functional recovery.
Collapse
Affiliation(s)
- Ya-Xing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xi-Kun Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Jing-Qi Liang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ting-Jiang Gan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cong-Hui Xu
- Department of Radiology, Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang-Yu Ouyang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China.
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Uusi-Mäkelä M, Harjula SKE, Junno M, Sillanpää A, Nätkin R, Niskanen MT, Saralahti AK, Nykter M, Rämet M. The inflammasome adaptor pycard is essential for immunity against Mycobacterium marinum infection in adult zebrafish. Dis Model Mech 2025; 18:dmm052061. [PMID: 39916610 PMCID: PMC11972081 DOI: 10.1242/dmm.052061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025] Open
Abstract
Inflammasomes regulate the host response to intracellular pathogens including mycobacteria. We have previously shown that the course of Mycobacterium marinum infection in adult zebrafish (Danio rerio) mimics the course of tuberculosis in human. To investigate the role of the inflammasome adaptor pycard in zebrafish M. marinum infection, we produced two zebrafish knockout mutant lines for the pycard gene with CRISPR/Cas9 mutagenesis. Although the zebrafish larvae lacking pycard developed normally and had unaltered resistance against M. marinum, the loss of pycard led to impaired survival and increased bacterial burden in the adult zebrafish. Based on histology, immune cell aggregates, granulomas, were larger in pycard-deficient fish than in wild-type controls. Transcriptome analysis with RNA sequencing of a zebrafish haematopoietic tissue, kidney, suggested a role for pycard in neutrophil-mediated defence, haematopoiesis and myelopoiesis during infection. Transcriptome analysis of fluorescently labelled, pycard-deficient kidney neutrophils identified genes that are associated with compromised resistance, supporting the importance of pycard for neutrophil-mediated immunity against M. marinum. Our results indicate that pycard is essential for resistance against mycobacteria in adult zebrafish.
Collapse
Affiliation(s)
- Meri Uusi-Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | | | - Maiju Junno
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Alina Sillanpää
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Reetta Nätkin
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, FI-33521 Tampere, Finland
| | | | | | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, FI-33521 Tampere, Finland
| | - Mika Rämet
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| |
Collapse
|
13
|
Johansson Å, Venkita Subramani M, Yilmaz B, Nyström EE, Layunta E, Arike L, Sommer F, Rosenstiel P, Vereecke L, Mannerås-Holm L, Wullaert A, Pelaseyed T, Johansson ME, Birchenough GM. Neonatal microbiota colonization primes maturation of goblet cell-mediated protection in the pre-weaning colon. J Exp Med 2025; 222:e20241591. [PMID: 40323318 PMCID: PMC12051479 DOI: 10.1084/jem.20241591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Regulated host-microbe interactions are a critical aspect of lifelong health. Colonic goblet cells protect from microorganisms via the generation of a mucus barrier structure. Bacteria-sensing sentinel goblet cells provide secondary protection by orchestrating mucus secretion when microbes breach the mucus barrier. Mucus deficiencies in germ-free mice implicate a role for the microbiota in programming barrier generation, but its natural ontogeny remains undefined. We now investigate the mucus barrier and sentinel goblet cell development in relation to postnatal colonization. Combined in vivo and ex vivo analyses demonstrate rapid and sequential microbiota-dependent development of these primary and secondary goblet cell protective functions, with dynamic changes in mucus processing dependent on innate immune signaling via MyD88 and development of functional sentinel goblet cells dependent on the NADPH/dual oxidase family member Duox2. Our findings identify new mechanisms of microbiota-goblet cell regulatory interaction and highlight the critical importance of the pre-weaning period for the normal development of protective systems that are key legislators of host-microbiota interaction.
Collapse
Affiliation(s)
- Åsa Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mahadevan Venkita Subramani
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bahtiyar Yilmaz
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Elisabeth E.L. Nyström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Felix Sommer
- Institute of Clinical & Molecular Biology, University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical & Molecular Biology, University of Kiel, Kiel, Germany
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Louise Mannerås-Holm
- Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Andy Wullaert
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, Cell Death Signalling Lab, University of Antwerp, Antwerp, Belgium
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin E.V. Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - George M.H. Birchenough
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Xu J, Jia Z, Zhao X, Wang L, Jin G, Li Z, Yin N, Li Y, Peng M. BCOR and ZC3H12A suppress a core stemness program in exhausted CD8+ T cells. J Exp Med 2025; 222:e20241133. [PMID: 40327039 PMCID: PMC12054362 DOI: 10.1084/jem.20241133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
In chronic viral infections, sustained CD8+ T cell response relies on TCF1+ precursor-exhausted T cells (TPEX) exhibiting stem-like properties. TPEX self-renew and respond to PD-1 blockade, underscoring their paramount importance. However, strategies for effectively augmenting TPEX remain limited. Here, we demonstrate that ZC3H12A deficiency initiates a stemness program in TPEX but also increases cell death, whereas BCOR deficiency predominantly promotes TPEX proliferation. Consequently, co-targeting of both BCOR and ZC3H12A imparts exceptional stemness and functionality to TPEX, thereby enhancing viral control. Mechanistically, BCOR and ZC3H12A collaboratively suppress a core stemness program in TPEX characterized by heightened expression of ∼216 factors. While TCF1 plays a role, this core stemness program relies on novel factors, including PDZK1IP1, IFIT3, PIM2, LTB, and POU2F2. Crucially, overexpressing POU2F2 robustly boosts TPEX and enhances antiviral immunity. Thus, a core stemness program exists in exhausted T cells, jointly repressed by BCOR and ZC3H12A, robustly controlling TPEX differentiation and providing new targets for addressing T cell exhaustion.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zeran Jia
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lixia Wang
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Gang Jin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yinqing Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory of Immunological Research of Allergy, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
15
|
Clark KL, George JW. Environmentally relevant concentrations of individual per- and polyfluoroalkyl substances (PFAS) and a PFAS mixture impact proliferation, migration, and gene transcription in a human myometrial cell line. Toxicology 2025; 515:154173. [PMID: 40334771 DOI: 10.1016/j.tox.2025.154173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants linked to adverse health effects. Epidemiological studies have linked PFAS with an increased risk of uterine diseases including fibroids however, the mechanisms involved remain to be elucidated. This study examined the impact of individual PFAS, such as legacy compounds [perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS)] and alternative short-chain compounds [GENX/HFPO-DA and perfluorobutanesulfonic acid (PFBS)], along with a PFAS mixture, on the function and transcriptome of immortalized human myometrial cells (UT-TERT). Exposure to these PFAS resulted in increased cell viability and proliferation. Flow cytometry showed that PFOS and the PFAS mixture altered cell cycle progression, while migration assays indicated significant enhancement of cell migration following PFOS and mixture exposure. Moreover, PFOA, PFBS, and the PFAS mixture impaired gap junction intercellular communication (GJIC), suggesting possible disruptions in cellular communication in the uterine environment. Transcriptomic analysis identified extensive changes in gene expression after exposure to environmentally relevant PFAS levels, revealing common molecular pathways involved in cell signaling, lipid metabolism, and cell survival. These findings provide crucial insights into how PFAS may contribute to reproductive health risks, warranting further investigation into the long-term effects of PFAS on uterine function and overall reproductive health.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States; Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States.
| | - Jitu W George
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States; University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Luca AC, Kurnaeva M, John DK, Machtinger M, Vollmer NHJ, Mödl B, Hannich JT, Eckhard M, Lam HS, Musiejovsky L, Trenk C, Homolya M, Fürnsinn C, Sombke A, Schabbauer G, Eferl R, Sharif O, Casanova E, Moll HP. Loss of SPHK1 fuels inflammation to drive KRAS-mutated lung adenocarcinoma. Cancer Lett 2025; 623:217733. [PMID: 40254091 DOI: 10.1016/j.canlet.2025.217733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Inflammation is a widely recognized key contributor to KRAS-driven lung adenocarcinoma (LUAD). Tumor-associated macrophages (TAM) are an integral part of the tumor microenvironment and create a supportive niche that sustains inflammation-driven tumorigenesis. In the present study, we unravel a dual role of sphingosine kinase 1 (SPHK1) in KRAS-driven LUAD. While SPHK1 promotes tumorigenesis in in vitro experimental models, it paradoxically suppresses tumorigenesis in in vivo models of KRAS-mutated LUAD. Mechanistically, tumor-intrinsic loss of SPHK1 leads to disrupted lipid homeostasis, increased inflammation and infiltration by TAM, ultimately driving tumor progression. Thus, our study suggests that clinically targeting the SPHK1/S1P axis could potentially result in increased tumor progression, possibly by rewiring the tumor microenvironment toward a more inflammatory and pro-tumorigenic state.
Collapse
Affiliation(s)
- Andreea C Luca
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Margarita Kurnaeva
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Daniel K John
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Michael Machtinger
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Nadja H J Vollmer
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Margret Eckhard
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Hon S Lam
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Laszlo Musiejovsky
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Christoph Trenk
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Monika Homolya
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andy Sombke
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Herwig P Moll
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Chen X, Jin H. Essential Roles of Conserved Pseudouridines in Helix 69 for Ribosome Dynamics in Translation. J Mol Biol 2025; 437:169132. [PMID: 40194619 DOI: 10.1016/j.jmb.2025.169132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The widespread distribution of pseudouridine (Ψ), an isomer of the canonical uridine base, in RNA indicates its functional importance to the cell. In eukaryotes, it is estimated that around 2% of ribosomal RNA nucleotides are pseudouridines, most of which are located in functional regions of the ribosome. Defects in RNA pseudouridylation induce a range of detrimental effects from compromised cellular protein biosynthesis to disease phenotypes in humans. However, genome-wide changes to mRNA translation profiles by ribosomes lacking specific conserved pseudouridines have not been extensively studied. Here, using a new genomic method called 5PSeq and in vitro biochemistry, we investigated changes in ribosome dynamics and cellular translation profiles upon loss of Ψ2258 and Ψ2260 in helix 69, the two most conserved pseudouridines in the ribosome in yeast cells. We found that inhibiting the formation of these two pseudouridines challenges ribosomes to maintain the correct open reading frame and causes generally faster ribosome dynamics in translation. Furthermore, mutant ribosomes are more prone to pause while translating a subset of GC-rich codons, especially rare codons such as Arg (CGA) and Arg (CGG). These results demonstrate the presence of Ψ2258 and Ψ2260 contributes to the dynamics of the H69 RNA stem-loop, and helps to maintain functional interactions with the tRNAs as they move within the ribosome. The optimality of this ribosome-tRNA interaction is likely to be more critical for those limited tRNAs that decode rare codons. Consistent with the changes in ribosome dynamics, we observe that IRES-mediated translation is compromised in the mutant ribosome. These results explain the importance of Ψ2258 and Ψ2260 in H69 to maintain cellular fitness. The strong conservation of Ψ2258 and Ψ2260 in the ribosomes from bacteria to humans indicates their functional significance in modulating ribosome functions. It's likely that the identified functions of these covalent modifications are conserved across species.
Collapse
Affiliation(s)
- Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States.
| |
Collapse
|
18
|
Ojha A, Zhao SJ, Akpunonu B, Zhang JT, Simo KA, Liu JY. Gap-App: A sex-distinct AI-based predictor for pancreatic ductal adenocarcinoma survival as a web application open to patients and physicians. Cancer Lett 2025; 622:217689. [PMID: 40189015 DOI: 10.1016/j.canlet.2025.217689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
In this study, using RNA-Seq gene expression data and advanced machine learning techniques, we identified distinct gene expression profiles between male and female pancreatic ductal adenocarcinoma (PDAC) patients. Building on this insight, we developed sex-specific 3-year survival predictive models alongside a single comprehensive model. Despite smaller sample sizes, the sex-specific models outperformed the general model. We further refined our models by selecting the most important features from the initial models. The refined sex-specific predictive models achieved higher accuracy and consistently outperformed the refined comprehensive model, highlighting the value of sex-specific analysis. To ensure robustness, all refined sex-specific models were calibrated and then evaluated using an independent dataset. Random Forest models emerged as the most effective predictors, achieving accuracies of 90.33 % for males and 90.40 % for females on the training dataset, and 81.25 % for males and 89.47 % for females on the independent test dataset. These top-performing models were integrated into Gap-App, a web application that leverages individual gene expression profiles and sex information for personalized survival predictions. As the first online tool bridging complex genomic data with clinical application, Gap-App facilitates more precise, individualized cancer care, marking a significant step in personalized prognosis prediction. This study underscores the importance of incorporating sex differences in predictive modeling and sets the stage for the shift from traditional one-size-fits-all to more personalized and targeted medicine. The Gap-App service is freely available for patients and clinicians at www.gap-app.org.
Collapse
Affiliation(s)
- Anuj Ojha
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, USA
| | - Shu-Jun Zhao
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, USA
| | - Basil Akpunonu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Kerri A Simo
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; ProMedica Health System, ProMedica Cancer Institute, Toledo, OH, USA
| | - Jing-Yuan Liu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
19
|
Birgersson M, Holm M, Gallardo-Dodd CJ, Chen B, Stepanauskaitė L, Hases L, Kutter C, Archer A, Williams C. Intestinal estrogen receptor beta modulates the murine colon tumor immune microenvironment. Cancer Lett 2025; 622:217661. [PMID: 40120798 DOI: 10.1016/j.canlet.2025.217661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Chronic inflammation contributes to the development of colorectal cancer, partly through its regulation of the microenvironment and antitumor immunity. Interestingly, women have a lower incidence of colorectal cancer, and estrogen treatment has been shown to reduce the occurrence of colorectal tumors. While intestinal estrogen receptor beta (ERβ, Esr2) can protect against colitis and colitis-induced cancer in mice, its role in shaping the tumor microenvironment remains unknown. In this study, we performed RNA sequencing to analyze the transcriptome of colonic epithelia and tumors from azoxymethane/dextran sulfate sodium-treated wild-type and intestinal ERβ knockout (ERβKOVil) mice and vehicle-treated controls. This revealed significant differences in gene expression and enriched biological processes influenced by sex and genotype, with immune-related responses being overrepresented. Deconvolution supported differential immune cell abundance and immunostaining showed that tumors from ERβKOVil mice displayed significantly increased macrophage infiltration, decreased T cell infiltration, and impaired natural killer cell infiltration. Further, ERβ mRNA levels in clinical colorectal tumors correlated with immune signaling profiles and better survival. Our findings indicate that intestinal ERβ promotes an antitumor microenvironment and could potentially affect the effectiveness of immunotherapy. These insights highlight the importance of ERβ in modulating antitumor immunity and underscore its therapeutic potential in colorectal cancer.
Collapse
Affiliation(s)
- Madeleine Birgersson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Matilda Holm
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor and Cell Biology, SciLifeLab, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Baizhen Chen
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden
| | - Lina Stepanauskaitė
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Linnea Hases
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, SciLifeLab, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Amena Archer
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Cecilia Williams
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
20
|
Fonta N, Page N, Klimek B, Piccinno M, Di Liberto G, Lemeille S, Kreutzfeldt M, Kastner AL, Ertuna YI, Vincenti I, Wagner I, Pinschewer DD, Merkler D. Oligodendrocyte-derived IL-33 regulates self-reactive CD8+ T cells in CNS autoimmunity. J Exp Med 2025; 222:e20241188. [PMID: 40227193 PMCID: PMC11995930 DOI: 10.1084/jem.20241188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
In chronic inflammatory disorders of the central nervous system (CNS), tissue-resident self-reactive T cells perpetuate disease. The specific tissue factors governing the persistence and continuous differentiation of these cells remain undefined but could represent attractive therapeutic targets. In a model of chronic CNS autoimmunity, we find that oligodendrocyte-derived IL-33, an alarmin, is key for locally regulating the pathogenicity of self-reactive CD8+ T cells. The selective ablation of IL-33 from neo-self-antigen-expressing oligodendrocytes mitigates CNS disease. In this context, fewer self-reactive CD8+ T cells persist in the inflamed CNS, and the remaining cells are impaired in generating TCF-1low effector cells. Importantly, interventional IL-33 blockade by locally administered somatic gene therapy reduces T cell infiltrates and improves the disease course. Our study identifies oligodendrocyte-derived IL-33 as a druggable tissue factor regulating the differentiation and survival of self-reactive CD8+ T cells in the inflamed CNS. This finding introduces tissue factors as a novel category of immune targets for treating chronic CNS autoimmune diseases.
Collapse
Affiliation(s)
- Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Anna Lena Kastner
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yusuf I. Ertuna
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
21
|
Matsumoto M, Yoshida M, Oya T, Tsuneyama K, Matsumoto M, Yoshida H. Role of PRC2 in the stochastic expression of Aire target genes and development of mimetic cells in the thymus. J Exp Med 2025; 222:e20240817. [PMID: 40244172 PMCID: PMC12005117 DOI: 10.1084/jem.20240817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
The transcriptional targets of Aire and the mechanisms controlling their expression in medullary thymic epithelial cells (mTECs) need to be clarified to understand Aire's tolerogenic function. By using a multi-omics single-cell approach coupled with deep scRNA-seq, we examined how Aire controls the transcription of a wide variety of genes in a small fraction of Aire-expressing cells. We found that chromatin repression by PRC2 is an important step for Aire to achieve stochastic gene expression. Aire unleashed the silenced chromatin configuration caused by PRC2, thereby increasing the expression of its functional targets. Besides this preconditioning for Aire's gene induction, we demonstrated that PRC2 also controls the composition of mTECs that mimic the developmental trait of peripheral tissues, i.e., mimetic cells. Of note, this action of PRC2 was independent of Aire and it was more apparent than Aire. Thus, our study uncovered the essential role of polycomb complex for Aire-mediated promiscuous gene expression and the development of mimetic cells.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
22
|
Frolov A, Huang H, Schütz D, Köhne M, Blank-Stein N, Osei-Sarpong C, Büttner M, Elmzzahi T, Khundadze M, Zahid M, Reuter M, Becker M, De Domenico E, Bonaguro L, Kallies A, Morrison H, Hübner CA, Händler K, Stumm R, Mass E, Beyer MD. Microglia and CD8+ T cell activation precede neuronal loss in a murine model of spastic paraplegia 15. J Exp Med 2025; 222:e20232357. [PMID: 40266307 PMCID: PMC12017274 DOI: 10.1084/jem.20232357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
In central nervous system (CNS) diseases characterized by late-onset neurodegeneration, the interplay between innate and adaptive immune responses remains poorly understood. This knowledge gap is exacerbated by the prolonged protracted disease course as it complicates the delineation of brain-resident and infiltrating cells. Here, we conducted comprehensive profiling of innate and adaptive immune cells in a murine model of spastic paraplegia 15 (SPG15), a complicated form of hereditary spastic paraplegia. Using fate-mapping of bone marrow-derived cells, we identified microgliosis accompanied by infiltration and local expansion of T cells in the CNS of Spg15-/- mice. Single-cell analysis revealed an expansion of disease-associated microglia (DAM) and effector CD8+ T cells prior to neuronal loss. Analysis of potential cell-cell communication pathways suggested bidirectional interactions between DAM and effector CD8+ T cells, potentially contributing to disease progression in Spg15-/- mice. In summary, we identified a shift in microglial phenotypes associated with the recruitment and expansion of T cells as a new characteristic of Spg15-driven neuropathology.
Collapse
Affiliation(s)
- Aleksej Frolov
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Hao Huang
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Maren Köhne
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nelli Blank-Stein
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Collins Osei-Sarpong
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Maren Büttner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Tarek Elmzzahi
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Zahid
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Modular High-Performance Computing and Artificial Intelligence, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Marc D. Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| |
Collapse
|
23
|
Hsu FM, Pickering H, Rubbi L, Thompson M, Reed EF, Pellegrini M, Schaenman JM. DNA methylation predicts infection risk in kidney transplant recipients. Life Sci Alliance 2025; 8:e202403124. [PMID: 40324822 PMCID: PMC12053434 DOI: 10.26508/lsa.202403124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Kidney transplantation (KTx) is the method of choice for treating kidney failure. Identifying biomarkers predictive of transplant (Tx) outcomes is critical to optimize KTx; however, the immunosuppressive therapies required after KTx must also be considered. We applied targeted bisulfite sequencing (TBS-seq) to PBMCs isolated from 90 patients, with samples collected pre- and post-Tx (day 90), to measure DNA methylation changes. Our findings indicate that the PBMC DNA methylome is significantly affected by induction immunosuppression with anti-thymocyte globulin (ATG). We discovered that the risk of infection can be predicted using DNA methylation profiles, but not gene expression profiles. Specifically, 515 CpG loci associated with 275 genes were significantly impacted by ATG induction, even after accounting for age, sex, and cell-type composition. Notably, ATG-associated hyper-methylation down-regulates genes critical for immune response. In conclusion, this clinical omics study reveals that the immunosuppressant ATG profoundly impacts the DNA methylome of KTx recipients and identifies biomarkers that could be used in pre-Tx screening of patients vulnerable to infection, thereby informing immunosuppression strategies post-Tx.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Joanna M Schaenman
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Liu W, Chi X, Wu MP, Zhai Y, Jia R. Induction of immune priming against white spot syndrome in Procambarus clarkii through oral administration of transgenic Synechococcus sp. PCC7942: Insights from transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110352. [PMID: 40268071 DOI: 10.1016/j.fsi.2025.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
White Spot Syndrome Virus (WSSV) poses a significant threat to aquaculture, particularly affecting the red swamp crayfish (Procambarus clarkii). This study explores the efficacy of oral administration of transgenic Synechococcus sp. PCC7942, engineered to express WSSV envelop protein VP19 and VP (19 + 28), in inducing immune priming in red swamp crayfish. Our results demonstrate that the transgenic cyanobacteria significantly enhance the immune responses of crayfish, as evidenced by the upregulation of immune-related genes and increased survival rates post-WSSV challenge. Furthermore, the immune-stimulating activity of these proteins is maintained even after fragmentation into polypeptides during digestion. These findings highlight the potential of using genetically modified algae as a sustainable and effective strategy for disease management in aquaculture. Additionally, the molecular mechanism of immune priming effect of crayfish was explained, which provided theoretical support for long-term protection of aquatic economic species against virus.
Collapse
Affiliation(s)
- Wei Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaoping Chi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Max Peiyuan Wu
- Shanghai High School International Division, Shanghai, 200231, China
| | - Yufeng Zhai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Jia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
25
|
Nakahara R, Ito A, Nagai-Tanima M, Tai C, Zhao Z, Xu S, Miyamoto F, Abiko S, Aoyama T, Kuroki H. Effect of Low-Intensity Pulsed Ultrasound on Post-Traumatic Intra-Articular Knee Adhesions in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1102-1111. [PMID: 40199651 DOI: 10.1016/j.ultrasmedbio.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVE Intra-articular adhesions (IAA) caused by trauma or surgical invasion commonly elicit pain and motor dysfunction. However, effective treatments for preventing IAA remain elusive. This study investigated the effects of low-intensity pulsed ultrasound (LIPUS) therapy on IAA after immobilization following trauma. METHODS A knee adhesion model was established in male Wistar rats, which were divided into LIPUS and sham groups. LIPUS was applied for 20 min/d (30 mW/cm2 [spatial average temporal average], 1 MHz, duty cycle 20%, 5 times/wk, for 1, 2 and 3 wk). Another group of rats was treated with the same parameters for 3 or 7 d. After the treatment period, we evaluated the range of motion (ROM) of the knee joint, the length of the adhesion and the posterior knee joint capsule. RNA-seq and RT-quantitative polymerase chain reaction were performed to investigate the molecular mechanisms underlying the effects of LIPUS. RESULTS The knee ROM was significantly improved, and the adhesion length was reduced in the LIPUS group. RNA-seq identified 113 and 776 differentially expressed genes on days 3 and 7, respectively, highlighting pathways related to inflammatory, immune and fibrotic responses. IL-6 mRNA in the LIPUS group was significantly upregulated on day 3 and significantly downregulated at 1 wk. The TNFα, TGFβ and HIF1α levels did not differ between all groups. COL1A1 expression in the sham group significantly increased on day 7. CONCLUSION These results indicate that LIPUS therapy may affect inflammatory and fibrotic pathways and may serve as a rehabilitation approach to prevent the development of IAA.
Collapse
Affiliation(s)
- Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Momoko Nagai-Tanima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chia Tai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zixi Zhao
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shixuan Xu
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumika Miyamoto
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Lee HK, Chen J, Philips RL, Lee SG, Feng X, Wu Z, Liu C, Schultz AB, Dalzell M, Meggendorfer M, Haferlach C, Birnbaum F, Sexton JA, Keating AE, O'Shea JJ, Young NS, Villarino AV, Furth PA, Hennighausen L. STAT5B leukemic mutations, altering SH2 tyrosine 665, have opposing impacts on immune gene programs. Life Sci Alliance 2025; 8:e202503222. [PMID: 40228864 PMCID: PMC11999048 DOI: 10.26508/lsa.202503222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
STAT5B is a vital transcription factor for lymphocytes. Here, the function of two STAT5B mutations from human T-cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5BY665F) and the other with histidine (STAT5BY665H), was interrogated. In silico modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity. In primary T cells in vitro, STAT5BY665F showed gain-of-function, whereas STAT5BY665H demonstrated loss-of-function. Introducing the mutation into the mouse genome illustrated that the gain-of-function Stat5b Y665F mutation resulted in accumulation of CD8+ effector and memory and CD4+ regulatory T cells, altering CD8+/CD4+ ratios. In contrast, STAT5BY665H "knock-in" mice showed diminished CD8+ effector and memory and CD4+ regulatory T cells. In contrast to WT STAT5B, the STAT5BY665F variant displayed greater STAT5 phosphorylation, DNA binding, and transcriptional activity after cytokine activation, whereas the STAT5BY665H variant resembled a null. The work exemplifies how joining in silico and in vivo studies of single nucleotides deepens our understanding of disease-associated variants, revealing structural determinants of altered function, defining mechanistic roles, and, specifically here, identifying a gain-of-function variant that does not directly induce hematopoietic malignancy.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rachael L Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung-Gwon Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Aaron B Schultz
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Molly Dalzell
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Claudia Haferlach
- Munich Leukemia Laboratory (MLL) Max-Lebsche-Platz 31, München, Germany
| | - Foster Birnbaum
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joel A Sexton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro V Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Priscilla A Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Leroux N, Baekelandt S, Robert JB, Burattin L, Keime C, Gérard C, Kestemont P. Assessment of the effects of estetrol and 17α-ethinylestradiol on zebrafish (Danio rerio) metamorphosis: a morphological and transcriptomic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126423. [PMID: 40360079 DOI: 10.1016/j.envpol.2025.126423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
17α-ethinylestradiol (EE2) is a synthetic estrogen widely used in combined oral contraceptives (COCs) for years. Estetrol (E4), a natural estrogen synthesized by the fetal liver during pregnancy, is the estrogenic component of a new COC. While E4 is thought to have a limited environmental impact in comparison to EE2, its effects on non-reproductive functions in aquatic species remain underexplored. This study compared the impact of EE2 and E4 on the metamorphosis of zebrafish (Danio rerio), a vital life cycle process. Larvae were exposed to concentrations ranging from 10 to 10,000 times the measured (0.1 ng/L) or predicted (32 ng/L) environmental concentrations of EE2 and E4 respectively. Samples were collected at 14, 22, and 30 days post-fertilization (dpf) to assess morphological traits and perform transcriptomic analysis. EE2 exposure at 1,000 ng/L exhibited developmental delays from the onset of metamorphosis, with most traits affected at 22 dpf. The effects intensified at 30 dpf, with notable impacts at both EE2 100 and 1,000 ng/L. At 100 ng/L, modulations in the expression of genes involved in macronutrient metabolism, crucial to the developmental process, were observed throughout metamorphosis. Additionally, an upregulation of estrogen-specific responses and drug metabolism was noted. In contrast, no notable changes in traits were detected for the concentrations of E4 tested. Although gene expression related to cell structure and adhesion, peptidase activity, and muscle structure and contraction was altered at E4 32,000 ng/L, no metamorphosis-related pathways were affected. These results suggest that E4 presents a greater safety margin and may therefore be more environmentally friendly than EE2.
Collapse
Affiliation(s)
- Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| | - Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| | - Céline Keime
- GenomEast Platform, Institute of Genetics and Molecular and Cellular Biology (CNRS UMR 7104 - Inserm U1258 - University of Strasbourg), 67404, France.
| | | | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, 5000, Belgium.
| |
Collapse
|
28
|
Hashimoto R, Watanabe Y, Keshta A, Sugiyama M, Kitai Y, Hirabayashi A, Yasuhara N, Morimoto S, Sakamoto A, Matsumura Y, Nishimura H, Noda T, Yamamoto T, Nagao M, Takeda M, Takayama K. Human iPS cell-derived respiratory organoids as a model for respiratory syncytial virus infection. Life Sci Alliance 2025; 8:e202402837. [PMID: 40262853 PMCID: PMC12015132 DOI: 10.26508/lsa.202402837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Respiratory syncytial virus (RSV) is a seasonal respiratory pathogen that primarily affects young children, potentially causing severe lower respiratory tract disease. Despite the high disease burden, understanding of RSV pathophysiology remains limited. To address this, advanced RSV infection models are needed. Whereas HEp-2 cells are widely used because of their high susceptibility to RSV, they do not accurately reflect the host response of the human respiratory tract. In this study, we evaluated human-induced pluripotent stem cell-derived respiratory organoids, which contain respiratory epithelial cells, immune cells, fibroblasts, and vascular endothelial cells, for their potential to model RSV infection and support pharmaceutical research. RSV-infected organoids exhibited high viral genome and protein expression, epithelial layer destruction, and increased collagen accumulation. Pro-inflammatory cytokine levels in culture supernatants also increased post-infection. Furthermore, RSV infection was significantly inhibited by monoclonal antibodies (nirsevimab, palivizumab, suptavumab, or clesrovimab), although ribavirin showed limited efficacy. These findings highlight the utility of respiratory organoids for RSV research.
Collapse
Affiliation(s)
- Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Synthetic Human Body System, Medical Research Institute, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Yukio Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Abeer Keshta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ai Hirabayashi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Naoko Yasuhara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shiho Morimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ayaka Sakamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Synthetic Human Body System, Medical Research Institute, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Eteleeb AM, Alves SS, Buss S, Shafi M, Press D, Garcia-Cairasco N, Benitez BA. Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes. Epilepsy Behav 2025; 168:110421. [PMID: 40250147 DOI: 10.1016/j.yebeh.2025.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND & OBJECTIVE Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we leveraged high-throughput transcriptomic data from sporadic AD cases at different stages of cognitive impairment across multiple independent cohorts and brain regions to examine the role of epilepsy-causing genes. METHODS Epilepsy-causing genes were manually curated, and their expression levels were analyzed across bulk transcriptomic data from three AD cohorts and three brain regions. RNA-seq data from sporadic AD and control cases from the Knight ADRC, MSBB, and ROSMAP cohorts were processed and analyzed under the same analytical pipeline. An integrative clustering approach employing machine learning and multi-omics data was employed to identify molecularly defined profiles with different cognitive scores. RESULTS We found several epilepsy-associated genes/pathways significantly dysregulated in a group of AD patients with more severe cognitive impairment. We observed 15 genes consistently downregulated across the three cohorts, including sodium and potassium channels genes, suggesting that these genes play fundamental roles in cognitive function or AD progression. Notably, we found 25 of these genes dysregulated in earlier stages of AD and become worse with AD progression. CONCLUSION Our findings revealed that epilepsy-causing genes showed changes in the early and late stages of AD progression, suggesting that they might be playing a role in AD progression. We can not establish directionality or cause-effect with our findings. However, changes in the epilepsy-causing genes might underlie the presence of seizures in AD patients, which might be present before or concurrently with the initial stages of AD.
Collapse
Affiliation(s)
- Abdallah M Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, MO, United States of America; The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, United States of America
| | - Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
| | - Stephanie Buss
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Mouhsin Shafi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Daniel Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil; Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
30
|
Xia F, Santacruz A, Wu D, Bertho S, Fritz E, Morales-Sosa P, McKinney S, Nowotarski SH, Rohner N. Reproductive adaptation of Astyanax mexicanus under nutrient limitation. Dev Biol 2025; 523:82-98. [PMID: 40222642 PMCID: PMC12068995 DOI: 10.1016/j.ydbio.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Reproduction is a fundamental biological process for the survival and continuity of species. Examining changes in reproductive strategies offers valuable insights into how animals have adapted their life histories to different environments. Since reproduction is one of the most energy-intensive processes in female animals, nutrient scarcity is expected to interfere with the ability to invest in gametes. Lately, a new model to study adaptation to nutrient limitation has emerged; the Mexican tetra Astyanax mexicanus. This fish species exists as two different morphs, a surface river morph and a cave-dwelling morph. The cave-dwelling morph has adapted to the dark, lower biodiversity, and nutrient-limited cave environment and consequently evolved an impressive starvation resistance. However, how reproductive strategies have adapted to nutrient limitations in this species remains poorly understood. Here, we compared breeding activities and maternal contributions between laboratory-raised surface fish and cavefish. We found that cavefish produce different clutch sizes of eggs with larger yolk compared to surface fish, indicating a greater maternal nutrient deposition in cavefish embryos. To systematically characterize yolk compositions, we used untargeted proteomics and lipidomics approaches to analyze protein and lipid profiles in 2-cell stage embryos and found an increased proportion of sphingolipids in cavefish compared to surface fish. Additionally, we generated transcriptomic profiles of surface fish and cavefish ovaries using a combination of single cell and bulk RNA sequencing to examine differences in maternal contribution. We found that genes essential for hormone regulation were upregulated in cavefish follicular somatic cells compared to surface fish. To evaluate whether these differences contribute to their reproductive abilities under natural-occurring stress, we induced breeding in starved female fish. Remarkably, cavefish maintained their ability to breed under starvation, whereas surface fish largely lost this ability. We identified insulin-like growth factor 1a receptor (igf1ra) as a potential candidate gene mediating the downregulation of ovarian development genes, potentially contributing to the starvation-resistant fertility of cavefish. Taken together, we investigated the female reproductive strategies in Astyanax mexicanus, which will provide fundamental insights into the adaptations of animals to environments with extreme nutrient deficit.
Collapse
Affiliation(s)
- Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ana Santacruz
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Di Wu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Elizabeth Fritz
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
31
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, White K, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL induces cytokine production via the NFkB2 pathway promoting neutrophil chemotaxis and neutrophil-mediated immune-suppression in triple negative breast cancer cells. Cancer Lett 2025; 620:217692. [PMID: 40187604 PMCID: PMC12049148 DOI: 10.1016/j.canlet.2025.217692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown mechanisms modulating TRAIL activity in patients. We hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. RNAseq analysis of MDA-MB-231 cells along with validation in additional cell lines demonstrated that TRAIL induced cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, TRAIL dependent induction of the cytokines was predominantly mediated by death receptor 5, caspase-8 and the non-canonical NFKB2 pathway. These cytokines produced by TRAIL-treated TNBC cells enhanced chemotaxis of normal human donor isolated neutrophils. Using TNBC xenograft models, TRAIL induced activation of NFkB2 pathway, cytokine production and increased neutrophil recruitment into the tumors. Moreover, preincubation of neutrophils in supernatants from TRAIL-treated TNBC cells significantly impaired neutrophil function as measured by reduced respiratory burst and cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies showed that these neutrophils suppress T cell proliferation and augment Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and neutrophil-mediated immune suppression.
Collapse
Affiliation(s)
- Manjari Kundu
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yoshimi E Greer
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexei Lobanov
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Lisa Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Shashi Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Karley White
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donna Voeller
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah Weltz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maggie Cam
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
32
|
Gerakopoulos V, Ramos C, Müller C, Walterskirchen N, Vintila S, Zotter C, Ilg M, Pap A, Riss S, Bergmann M, Unger LW, Vogt AB, Oehler R, Lukowski SW. Single-cell transcriptomic analysis identifies tissue-specific fibroblasts as the main modulators of myeloid cells in peritoneal metastasis of different origin. Cancer Lett 2025; 620:217678. [PMID: 40154914 DOI: 10.1016/j.canlet.2025.217678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Colorectal cancer (CRC) peritoneal metastasis (CPM) is related to limited therapy options and poor prognosis. Although stromal cells heavily infiltrate most CPMs, interactions between different cell types in their microenvironment remain unclear. Here, we investigated tumor and distant normal tissue from CPM and CRC patients using single-cell RNA sequencing. Investigating the incoming and outgoing signals between cells revealed that fibroblasts dominate the CPM signaling landscape with myeloid cells as their strongest interaction partner. Using immunohistochemistry, we confirmed that fibroblasts co-localize with macrophages in the CPM microenvironment. A fibroblast sub-population detected only in CPM and normal peritoneum demonstrated immunoregulatory properties in co-culture experiments, and was further detected in additional peritoneal malignancies derived from ovarian and gastric origin. This novel fibroblast type and its communication with macrophages could be attractive targets for therapeutic interventions in CPM and potentially peritoneal surface malignancies in general.
Collapse
Affiliation(s)
- Vasileios Gerakopoulos
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Cristiano Ramos
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Catharina Müller
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Natalie Walterskirchen
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Stefania Vintila
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Chiara Zotter
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Mathias Ilg
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Anna Pap
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Stefan Riss
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Lukas W Unger
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria; Dept. of Colorectal Surgery, Oxford University Hospitals, Old Rd, Headington, Oxford, OX3 7LE, United Kingdom
| | - Anne B Vogt
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria.
| | - Samuel W Lukowski
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| |
Collapse
|
33
|
Sin Z, Kinnear E, Doshi R, Chatterjee S, Derbel H, Guha P, Liu Q. IPMK depletion influences genome-wide DNA methylation. Biochem Biophys Res Commun 2025; 766:151874. [PMID: 40300331 DOI: 10.1016/j.bbrc.2025.151874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Inositol polyphosphate multikinase (IPMK) is emerging as a critical regulator of nuclear functions. While earlier studies in yeast and cell lines linked IPMK to gene expression, recent work reveals its role in modulating histone acetylation through the activation of histone deacetylases 1/3 (HDAC1/3). Interestingly, HDAC1/3 interact with DNA methyltransferase 1 (DNMT1), stabilizing DNMT1 and promoting DNA methylation. As an HDAC1/3 activator, IPMK may thereby influence DNA methylation dynamics. This study investigates how the genetic depletion of IPMK influences DNA methylation, though the role of its kinase activity remains untested. Using long-read Oxford nanopore sequencing, we conducted methylation analysis for >28 millions of CpG sites and discovered that IPMK deletion results in over 22,000 differentially methylated regions (DMRs). Integrating affected genes by DMRs and RNA-seq data, we found that 35 genes show an inverse correlation between methylation in promoter regions and gene expression. Pathway analysis revealed that genes related to tissue remodeling and hematopoiesis are affected. Notably, MMP14 and LIF showed significant methylation changes in promoter regions under IPMK deletion, resulting in decreased mRNA and protein expression. Collectively, this study identifies IPMK as a novel regulator of DNA methylation. While this study did not investigate the role of IPMK's kinase activity in regulating DNA methylation, future studies will determine whether IPMK's effects on DNA methylation are driven by its kinase activity or by kinase-independent mechanisms.
Collapse
Affiliation(s)
- Zachary Sin
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| | - Evan Kinnear
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| | - Raj Doshi
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA; School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Sujan Chatterjee
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| | - Houssemeddine Derbel
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| | - Prasun Guha
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA; School of Life Sciences, University of Nevada, Las Vegas, NV, USA.
| | - Qian Liu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA; School of Life Sciences, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
34
|
Wu Y, Xie L, Sun J, Wang Q, Xia W, Cai Q, Lu X, Gou X. Response of astrocytes and their interaction with surrounding brain cells after acute ischemia-reperfusion analyzed by single-cell transcriptome sequencing. Brain Res Bull 2025; 226:111355. [PMID: 40286940 DOI: 10.1016/j.brainresbull.2025.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Astrocytes play a key role in the occurrence and development of ischemic stroke. However, reactive astrocytes have both detrimental and protective roles in ischemic stroke. Regrettably, the stimulation signals associated with the transformation of astrocytes into different subclusters lack systemic analysis, and the mechanism by which astrocytes produce multiple effects is not entirely clear. We investigated the heterogeneity of mouse astrocytes 12 h after cerebral ischemia-reperfusion via Single-cell RNA sequencing and verified gene expressions by reverse transcription-polymerase chain reaction. We acquired astrocyte subclusters' transcriptional characteristics involved in diversified functions. To explore what stimulus signals cause astrocyte heterogeneity, we present a blueprint for cellular communication between astrocyte subclusters and other surrounding brain cells 12 h after ischemia-reperfusion, and identified 9 genes which are potential and promising for being therapeutic targets and 6 genes were specific to astrocyte subcluster 2 that tend to resist ischemia-reperfusion injury. At 12 h after ischemia-reperfusion, each subcluster of astrocytes is characteristic in terms of function and communication with surrounding cells, which is based on the activation genes and transcription molecules that we have revealed with subcluster characteristics. Our results provide a basis for revealing the anti-injury response of astrocytes to cerebral ischemia-reperfusion, which involves coordination of different subclusters and the coordination of astrocytes with surrounding brain cells.
Collapse
Affiliation(s)
- YongHong Wu
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710049, China
| | - Lei Xie
- Department of Radiology, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong Province 515041, China
| | - Jing Sun
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - Qing Wang
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - WangXiao Xia
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province 430060, China.
| | - XiaoYun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710049, China.
| | - XingChun Gou
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China.
| |
Collapse
|
35
|
Wang K, Xiang J, Zhou J, Chen C, Wang Z, Qin N, Zhu M, Bi L, Gong L, Yang L, Chen Y, Xu X, Dai J, Ma H, Hu Z, Li W, Wang C, Jin G, Shen H. Development and validation of a transcription factor regulatory network-based signature for individualized prognostic risk in lung adenocarcinoma. Int J Cancer 2025; 156:2440-2451. [PMID: 39960662 DOI: 10.1002/ijc.35375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Despite significant progress in diagnostic and therapeutic modalities, lung adenocarcinoma (LUAD) still exhibits a high recurrence risk and a low 5-year survival rate. Reliable prognostic signatures are imperative for risk stratification in LUAD patients. This study encompassed 2740 patients from 23 LUAD cohorts, including one single-cell RNA sequencing (scRNA-seq) dataset, five bulk RNA-seq datasets, and 17 microarray datasets. Using scRNA-seq dataset, we defined a group of epithelial-specific transcription factors significantly over-represented in the epithelial-to-mesenchymal transition (EMT) gene set (enrichment ratio [ER] = 5.80, Fisher's exact test p < .001), and the corresponding target genes were significantly enriched in the cancer driver gene set (ER = 2.74, p < .001), indicating of their crucial roles in the EMT process and tumor progression. We constructed a single-cell gene pairs (scGPS) signature, composed of 3521 gene pairs derived from the epithelial cell-specific transcription factor regulatory network, to predict overall survival (OS) of LUAD. High-risk patients identified by scGPS in the discovery cohort exhibited significantly worse OS compared to low-risk patients (Hazard ratio [HR] = 1.78, 95% CI: 1.29-2.46, log-rank p = 1.80 × 10-4). The scGPS outperformed other established gene signatures and demonstrated robust prognostic stratification across various independent datasets, including microarray data and even early-stage LUAD patients. It remained an independent prognostic factor after adjusting for clinical and pathologic factors. In addition, combining scGPS with tumor stage further enhanced prognostic accuracy compared to using stage alone. The scGPS signature offers individualized prognosis estimations, showing significant potential for practical application in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Xiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingjia Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Miglio U, Berrino E, Avanzato D, Molineris I, Miano V, Milan M, Lanzetti L, Morelli E, Hughes JM, De Bortoli M, Sapino A, Venesio T. Inhibition of the LINE1-derived MET transcript induces apoptosis and oncoprotein knockdown in cancer cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102529. [PMID: 40291377 PMCID: PMC12032326 DOI: 10.1016/j.omtn.2025.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
The expression of intragenic long interspersed nuclear elements 1 (LINE1s) can generate chimeric sequences disrupting host gene transcription. Among these, L1-MET, within mesenchymal epithelial transition (MET) oncogene, is particularly interesting, as its expression has been associated with the acquisition of tumorigenic phenotypes and cancer progression. We investigated the effects of targeting L1-MET in eight cancer cell lines derived from breast, lung, and gastrointestinal cancers, as well as in non-transformed human fibroblasts and lymphocytes, using specifically developed modified antisense oligonucleotides. Inhibition of L1-MET resulted in decreased cell viability, increased apoptosis, and gene expression profile reprogramming in cancer cells, including significant downregulation of MET and epidermal growth factor receptor (EGFR) proteins. These effects were related to the L1-MET/MET expression levels and the type of cellular addiction, with pronounced impacts in cells harboring MET gene amplification and EGFR-activating mutations. They were also detectable, though less pronounced, in cancer cells with steady-state levels of MET and EGFR proteins or addiction to other oncogenes. We demonstrate that targeting L1-MET can knockdown MET and EGFR protein. The restricted expression of L1-MET to cancer cells suggests that its inhibition could be an effective strategy to induce death in oncogene-addicted tumor cells and offers a potential means to overcome the limitations of conventional targeted therapies.
Collapse
Affiliation(s)
- Umberto Miglio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino Medical School, 10043 Orbassano, TO, Italy
| | - Ivan Molineris
- Department of Life Sciences and System Biology and MBC, University of Torino, 10123 Torino, Italy
| | - Valentina Miano
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
| | - Melissa Milan
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
| | - Letizia Lanzetti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino Medical School, 10043 Orbassano, TO, Italy
| | - Eugenio Morelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino Medical School, 10043 Orbassano, TO, Italy
| | - James M. Hughes
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Tiziana Venesio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
| |
Collapse
|
37
|
Gibaut QM, Li C, Cheng A, Moranguinho I, Mori LP, Valente ST. FUBP3 enhances HIV-1 transcriptional activity and regulates immune response pathways in T cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102525. [PMID: 40248217 PMCID: PMC12005928 DOI: 10.1016/j.omtn.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Far-upstream element-binding protein 3 (FUBP3) was identified at actively transcribing HIV promoters through chromatin affinity purification and mass spectrometry. Known for regulating cellular processes such as transcription and translation by binding to DNAs and RNAs, FUBP3's role in HIV transcriptional regulation was previously unrecognized. This study reveals that FUBP3 enhances HIV-1 transcriptional activation by interacting with Tat and trans-activation response (TAR)-RNA, critical for boosting viral transcription through recruitment of activating factors that promote RNA polymerase II (RNAPII) elongation. Transcriptomic analysis, chromatin immunoprecipitation, and biochemical assays demonstrated that FUBP3 associates with and stabilizes TAR-RNA, in a Tat-dependent manner, and enhances Tat steady-state levels via interaction with Tat's basic domain. Suppressing FUBP3 decreased HIV-1 transcription and altered expression of host genes linked to T cell activation and inflammation, underscoring its broad regulatory impact. Additionally, FUBP3 was enriched at active promoters, confirming its role in transcriptional regulation at specific genomic locations. These findings highlight FUBP3's critical role in the HIV-1 life cycle and suggest its potential as a therapeutic target in HIV-1 infection. Additionally, this study expands our understanding of FUBP3's functions in oncogenic and inflammatory pathways.
Collapse
Affiliation(s)
- Quentin M.R. Gibaut
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Chuan Li
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Anqi Cheng
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Ines Moranguinho
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Luisa P. Mori
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Susana T. Valente
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| |
Collapse
|
38
|
Bauman BM, Stinson JR, Kallarakal MA, Huang LH, Frank AM, Sukumar G, Saucier N, Dalgard CL, Chan AY, Milner JD, Cooper MA, Snow AL. Dominant interfering CARD11 variants disrupt JNK signaling to promote GATA3 expression in T cells. J Exp Med 2025; 222:e20240272. [PMID: 40111223 PMCID: PMC11924952 DOI: 10.1084/jem.20240272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Several "primary atopic disorders" are linked to monogenic defects that attenuate TCR signaling, favoring T helper type 2 (TH2) cell differentiation. Patients with CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS) disease suffer from severe atopy, caused by germline loss-of-function/dominant interfering (LOF/DI) CARD11 variants. The CARD11 scaffold enables TCR-induced activation of NF-κB, mTORC1, and JNK signaling, yet the function of CARD11-dependent JNK signaling in T cells remains nebulous. Here we show that CARD11 is critical for TCR-induced activation of JNK1 and JNK2, as well as canonical JUN/FOS AP-1 family members. Patient-derived CARD11 DI variants attenuated WT CARD11 JNK signaling, mirroring effects on NF-κB. Transcriptome profiling revealed JNK inhibition upregulated TCR-induced expression of GATA3 and NFATC1, key transcription factors for TH2 cell development. Further, impaired CARD11-JNK signaling was linked to enhanced GATA3 expression in CADINS patient T cells. Our findings reveal a novel intrinsic mechanism connecting impaired CARD11-dependent JNK signaling to enhanced GATA3/NFAT2 induction and TH2 cell differentiation in CADINS patients.
Collapse
Affiliation(s)
- Bradly M. Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jeffrey R. Stinson
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Melissa A. Kallarakal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lei Haley Huang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew M. Frank
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Student Bioinformatics Initiative, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Student Bioinformatics Initiative, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nermina Saucier
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Clifton L. Dalgard
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alice Y. Chan
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan A. Cooper
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew L. Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
39
|
Paudel D, Parrish SB, Peng Z, Parajuli S, Deng Z. A chromosome-scale and haplotype-resolved genome assembly of tetraploid blackberry ( Rubus L. subgenus Rubus Watson). HORTICULTURE RESEARCH 2025; 12:uhaf052. [PMID: 40271456 PMCID: PMC12015472 DOI: 10.1093/hr/uhaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/13/2025] [Indexed: 04/25/2025]
Abstract
Blackberries (Rubus spp.) are globally consumed and well known for their rich anthocyanin and antioxidant content and distinct flavors. Improving blackberries has been challenging due to genetic complexity of traits and limited genomic resources. The blackberry genome has been particularly challenging to assemble due to its polyploid nature. Here, we present the first chromosome-scale and haplotype-phased assembly for the primocane-fruiting, thornless tetraploid blackberry selection BL1 (Rubus L. subgenus Rubus Watson). The genome assembly was generated using Oxford Nanopore Technology and Hi-C scaffolding, resulting in a 919 Mb genome distributed across 27 pseudochromosomes, with an N50 of 35.73 Mb. This assembly covers >92% of the genome length and contains over 98% of complete BUSCOs. Approximately, 58% of the assembly consists of repetitive sequences, with long terminal repeats being the most abundant class. A total of 87,968 protein-coding genes were predicted, of which, 82% were functionally annotated. Genome mining and RNA-Seq analyses identified possible candidate genes and transcription factors related to thornlessness and the key structural genes and transcription factors for anthocyanin biosynthesis. Activator genes including PAP1 and TTG1 and repressor genes such as ANL2 and MYBPA1 play an important role in the fine tuning of anthocyanin production during blackberry development. Resequencing of seven tetraploid blackberry cultivars/selections with different horticultural characteristics revealed candidate genes that could impact fruiting habit and disease resistance/susceptibility. This tetraploid reference genome should provide a valuable resource for accelerating genetic analysis of blackberries and facilitating the development of new improved cultivars with enhanced horticultural and nutritional traits.
Collapse
Affiliation(s)
- Dev Paudel
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - S Brooks Parrish
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Ze Peng
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Saroj Parajuli
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Zhanao Deng
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| |
Collapse
|
40
|
Domaoal JG, Stack ME, Hollman K, Khanum S, Cho C, Daines A, Mladenov N, Hoh E, Sant KE. Effects of sunlight exposure on tire tread particle leachates: Chemical composition and toxicity in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126286. [PMID: 40258507 DOI: 10.1016/j.envpol.2025.126286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 04/23/2025]
Abstract
Tire tread particles (TTP) are small micro- or nano-particles resulting from the friction of tire tread against roadways. These secondary microplastics have been found in waterways, arriving through airborne means or runoff. Due to their abundance and persistence in aquatic environments, TTP pose a potential hazard to wildlife. Natural degradation processes like photoirradiation can potentially worsen this by transforming leached TTP chemicals. In this study, we assessed the toxicity and chemical composition of TTP leachates produced over 1 or 6 days in either dark or photoirradiated conditions. For toxicity studies, zebrafish embryos were exposed to leachates over a range of concentrations and from 0 to 4 days post fertilization. TTP exposures impaired survival and hatching, induced embryonic defects, and modulated detoxification by the enzyme ethyoxyresorufin-O-deethylase. RNA sequencing revealed divergent effects based on photoirradiation, including impacts on glycolysis, lipid metabolism, and mitochondrial function. For chemical analysis, leachates were assessed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS) and chromatographic features were annotated. In total, 546 chromatographic features were detected across all samples, and clustering showed unique chemical profiles based on photoirradiation during leaching. Several compounds were in high abundance in 1-day irradiated leachates, including 1,3-diphenylguanidine, aniline, and 1H-benzotriazole, though their relative abundance was reduced in 6-day leachates. Overall, this research compounds on the existing literature defining TTPs as toxic microplastics in the environment, and we show novel chemical and toxicological data that demonstrates how photoirradiation in the natural environment may exacerbate toxicity.
Collapse
Affiliation(s)
- Jenielle G Domaoal
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Margaret E Stack
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; San Diego State University Research Foundation, San Diego, CA, 92128, USA
| | - Kelly Hollman
- San Diego State University Department of Civil, Construction, and Environmental Engineering, San Diego, 92128, CA, USA
| | - Saleha Khanum
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; San Diego State University Research Foundation, San Diego, CA, 92128, USA
| | - Christine Cho
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Alysia Daines
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Natalie Mladenov
- San Diego State University Department of Civil, Construction, and Environmental Engineering, San Diego, 92128, CA, USA
| | - Eunha Hoh
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Karilyn E Sant
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; Michigan State University, Department of Pharmacology & Toxicology, East Lansing, 48824, MI, USA.
| |
Collapse
|
41
|
Zakrzewska‐Placzek M, Golisz‐Mocydlarz A, Kwasnik A, Krzyszton M, Niedzwiecka K, Kufel J. Defective Processing of Cytoplasmic and Chloroplast Ribosomal RNA in the Absence of Arabidopsis DXO1. PLANT, CELL & ENVIRONMENT 2025; 48:4227-4244. [PMID: 39927756 PMCID: PMC12050399 DOI: 10.1111/pce.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Decapping 5'-3' exoribonucleases from the DXO/Rai1 family are highly conserved among eukaryotes and exhibit diverse enzymatic activities depending on the organism. The biochemical and structural properties of the plant DXO1 differ from the yeast and animal counterparts, which is reflected in the in vivo functions of this enzyme. Here we show that Arabidopsis DXO1 contributes to the efficient processing of rRNA precursors in both nucleolar/cytosolic and chloroplast maturation pathways. However, the processing defects in DXO1-deficient plants do not depend on the catalytic activity of the enzyme but rely on its plant-specific N-terminal extension, which is responsible for the interaction with the mRNA cap methyltransferase RNMT1. Our RNA sequencing analyses show that the dxo1 mutation deregulates the expression of many ribosomal protein genes, most likely leading to inefficient or delayed pre-rRNA maturation. These phenotypes are partially suppressed by RNMT1 overexpression, suggesting that defective cap synthesis may be responsible, at least to some extent, for the observed effects.
Collapse
Affiliation(s)
| | - Anna Golisz‐Mocydlarz
- Institute of Genetics and Biotechnology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Aleksandra Kwasnik
- Institute of Genetics and Biotechnology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Katarzyna Niedzwiecka
- Institute of Genetics and Biotechnology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
42
|
Liu M, Fang K, Wang XR, Wang K, Zhang LH, He MY, Xu YY, Wu Y, Ge JF. Serum exosomal hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p as candidate biomarkers for recurrent depressive disorder diagnosis and ECT treatment response: A preliminary investigation. Brain Res Bull 2025; 225:111345. [PMID: 40220964 DOI: 10.1016/j.brainresbull.2025.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE This study investigated the differential expression of serum exosomal miRNAs in female patients with recurrent depressive disorder (RDD) before and after non-convulsive electroconvulsive therapy (ECT), aiming to explore potential diagnostic and therapeutic biomarkers. METHOD Serum samples were collected from three groups: healthy female volunteers aged 30-50, female patients with RDD prior to ECT, and female patients post-ECT who had achieved remission. Exosomes were isolated from serum, identified through transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis of exosomal markers. Total RNA was extracted from exosomes, and miRNA sequencing was conducted to identify differentially expressed miRNAs. Gene target prediction, Gene Ontology, and KEGG pathway enrichment analyses were also performed. RESULTS miRNA sequencing revealed significant differences in exosomal miRNA profiles among the three groups. Compared to controls, 69 miRNAs were upregulated and 98 downregulated in the model group, while the recovery group showed 41 upregulated and 51 downregulated miRNAs compared to the model group. Furthermore, the recovery group exhibited 35 upregulated and 59 downregulated miRNAs compared to controls. Analysis identified hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p as potential biomarkers for RDD diagnosis and ECT treatment response, with functional roles likely related to inflammation, neurotransmission, and synaptic plasticity. CONCLUSION Serum exosomal miRNAs, particularly hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p, emerged as promising candidates for further investigation as biomarkers for RDD diagnosis and treatment monitoring. Larger, multi-center studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Meng Liu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Ke Fang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Xiao-Rui Wang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Kun Wang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Li-Hong Zhang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Man-Yun He
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Yan-Yan Xu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Yuan Wu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
43
|
Sillo F, Blaser SRGA, Díaz-Tielas C, Clayton J, Araniti F, Sánchez-Moreiras AM, George TS, Balestrini R, Vetterlein D. Size Matters: Influence of Available Soil Volume on the Root Architecture and Plant Response at Transcriptomic and Metabolomic Levels in Barley. PLANT, CELL & ENVIRONMENT 2025; 48:4685-4702. [PMID: 40065576 DOI: 10.1111/pce.15457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 05/06/2025]
Abstract
Pot size is a critical factor in plant growth experiments, influencing root architecture, nutrient uptake, and overall plant development as well as sensing of stress. In controlled environments, variation in pot size can impact phenotypic and molecular outcomes and may bias experimental results. Here, we investigated how pot size affects the root system architecture and molecular responses of two barley genotypes, the landrace BERE and the modern elite CONCERTO, through assessment of shoot and root traits and by using X-ray computed tomography complemented by transcriptomic and metabolomic analyses. The two genotypes showed distinctly different adaptations to changes in pot size. The landrace showed greater stability and adaptability with consistent root traits and enhanced accumulation of osmoprotectant metabolites across different pot sizes with respect to CONCERTO. Conversely, the elite line was more sensitive to pot size variations, particularly showing altered root architecture and transcriptomic responses. Overall, this study highlights the importance of selecting an appropriate pot size for plant growth experiments, particularly when focused on root traits, and highlights the importance of considering the physiological and molecular changes due to growth environment choice in experimental design in barley.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Torino, Italy
| | - Sebastian R G A Blaser
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Carla Díaz-Tielas
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | - Jessica Clayton
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | | | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Torino, Italy
- National Research Council, Institute of Biosciences and BioResources, Bari, Italy
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
44
|
Nam LB, Kim SJ, Nguyen TK, Jeong CY, Lee JY, Lee JS, Seo JT, Moon SJ. Cholesterol sulfate as a negative regulator of cellular cholesterol homeostasis. Mol Cells 2025; 48:100209. [PMID: 40089157 DOI: 10.1016/j.mocell.2025.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Cholesterol sulfate (CS), one of the most abundant cholesterol derivatives, recently emerged as a key regulatory molecule in several physiological processes. Here, we demonstrate multiple mechanisms by which CS reduces intracellular cholesterol levels. CS promotes the proteasomal degradation of 3-hydroxy-3-methylglutaryl-CoA reductase reductase by enhancing insulin-induced gene-mediated ubiquitination, thereby inhibiting cholesterol synthesis. In addition, CS blocks low-density lipoprotein receptor endocytosis, reducing low-density lipoprotein cholesterol uptake. CS further suppresses the proteolytic activation of sterol regulatory element-binding protein 2, a master transcription factor governing cholesterol synthesis and uptake. Using in vitro and in vivo models, we show that CS lowers cholesterol by targeting both the cholesterol synthesis and uptake pathways, while also modulating an important feedback loop via sterol regulatory element-binding protein 2. These findings highlight the potential of CS as a modulator of cholesterol metabolism, offering new therapeutic insights into cholesterol-related disorders.
Collapse
Affiliation(s)
- Le Ba Nam
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Sung-Jin Kim
- Department of Oral Histology and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Tan Khanh Nguyen
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Chang-Yun Jeong
- Department of Microbiology, BK21 PLUS Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - June-Yong Lee
- Department of Microbiology, BK21 PLUS Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| |
Collapse
|
45
|
Ji W, Xiong Y, Yang W, Shao Z, Guo X, Jin G, Su J, Zhou M. Transcriptomic profiling of blood platelets identifies a diagnostic signature for pancreatic cancer. Br J Cancer 2025; 132:937-946. [PMID: 40133510 DOI: 10.1038/s41416-025-02980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PaCa) is a deadly malignancy that is often diagnosed at an advanced stage, limiting treatment and reducing survival. There is an urgent need for convenient and accurate diagnostic markers for the early detection of PaCa. METHODS In this multicenter case-control study, we performed transcriptome analysis of 673 platelet samples from different in-house and public cohorts. RNA sequencing and RT-qPCR were used to discover and validate potential platelet biomarkers. A multi-gene signature was developed using binomial generalized linear model and independently validated in multicenter cohorts. RESULTS Two platelet RNAs, SCN1B and MAGOHB, consistently showed robust altered expression patterns between PaCa and healthy controls across cohorts, as confirmed by both RNA sequencing and RT-qPCR. The diagnostic two-RNA signature, PLA2Sig, demonstrated remarkable performance in detecting PaCa, with area under the receiver operating characteristic curve (AUC) values of 0.808, 0.900, 0.783, and 0.830 across multicenter cohorts. Furthermore, PLA2Sig effectively identified resectable stage I&II PaCa cases with an AUC of 0.812. Notably, PLA2Sig outperformed the traditional serum markers carcinoembryonic antigen and carbohydrate antigen 19-9 in distinguishing PaCa from healthy controls, and is complementary to established blood-based screening biomarkers. CONCLUSION These findings provide preliminary but promising evidence for the potential utility of platelet RNAs as an alternative non-invasive liquid biopsy tool for the early detection of PaCa.
Collapse
Affiliation(s)
- Weiping Ji
- Department of General Surgery, School of Biomedical Engineering, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yichun Xiong
- Department of General Surgery, School of Biomedical Engineering, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wei Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Zhuo Shao
- Department of General Surgery, Shanghai Changhai Hospital of Navy Medical University, Shanghai, 200438, China
| | - Xiaoling Guo
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Gang Jin
- Department of General Surgery, Shanghai Changhai Hospital of Navy Medical University, Shanghai, 200438, China
| | - Jianzhong Su
- Department of General Surgery, School of Biomedical Engineering, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Meng Zhou
- Department of General Surgery, School of Biomedical Engineering, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
46
|
Nakagawa T, Honda T, Inagaki S, Yuasa T, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Aouimeur I, Vaitinadapoule H, Travers G, He Z, Gain P, Koizumi N, Thuret G, Okumura N. Involvement of TGF-β signaling pathway-associated genes in the corneal endothelium of patients with Fuchs endothelial corneal dystrophy. Exp Eye Res 2025; 255:110334. [PMID: 40081749 DOI: 10.1016/j.exer.2025.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study investigated the involvement of TGF-β signaling pathway-associated genes in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). The RNA-sequencing analysis of corneal endothelial cells (CECs) from FECD patients revealed significant alterations in multiple TGF-β superfamily genes, with 9 genes upregulated (including BMP6, GDF5, and TGF-β2) and 10 genes downregulated (including BMP2, NOG, and INHBA) compared to controls. Quantitative PCR validation confirmed the elevated expression of GDF5 (3.35-fold in non-expanded and 7.66-fold in expanded TCF4), TGF-β2 (6.17-fold and 11.5-fold), and TGF-β1 (1.78-fold and 1.58-fold) in FECD patients with and without TCF4 trinucleotide repeat expansion. Ex-vivo experiments using donor corneas demonstrated that TGF-β2 stimulation significantly increased the expression of extracellular matrix (ECM) components associated with guttae formation, including fibronectin, types I and VI collagens, and other matrix proteins. Immunofluorescence confirmed increased fibronectin protein expression in the corneal endothelium following TGF-β1 or TGF-β2 treatment. This study provides the first comprehensive analysis of TGF-β superfamily involvement in FECD and suggests that GDF5, found to be upregulated in FECD, may contribute to the disease process. These findings further indicate that dysregulation of TGF-β signaling pathways drives the characteristic ECM accumulation in FECD, potentially offering new therapeutic targets for this progressive corneal disease involving fibrosis-related alterations. Future research is warranted to clarify GDF5's specific role and mechanistic impact on FECD pathogenesis.
Collapse
Affiliation(s)
- Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tetsuro Honda
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Soichiro Inagaki
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Aouimeur
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Hanielle Vaitinadapoule
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Gauthier Travers
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Zhiguo He
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Philippe Gain
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France; Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Gilles Thuret
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France; Ophthalmology Department, University Hospital, Saint-Etienne, France.
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
47
|
Rusu EC, Clavero-Mestres H, Sánchez-Álvarez M, Veciana-Molins M, Bertran L, Monfort-Lanzas P, Aguilar C, Camaron J, Auguet T. Uncovering hepatic transcriptomic and circulating proteomic signatures in MASH: A meta-analysis and machine learning-based biomarker discovery. Comput Biol Med 2025; 191:110170. [PMID: 40220593 DOI: 10.1016/j.compbiomed.2025.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Metabolic-associated steatohepatitis (MASH), the progressive form of metabolic-associated steatotic liver disease (MASLD), poses significant risks for liver fibrosis and cardiovascular complications. Despite extensive research, reliable biomarkers for MASH diagnosis and progression remain elusive. This study aimed to identify hepatic transcriptomic and circulating proteomic signatures specific to MASH, and to develop a machine learning-based biomarker discovery model. METHODS A systematic review of RNA-Seq and proteomic datasets was conducted, retrieving 7 hepatic transcriptomics and 3 circulating proteomics studies, encompassing 483 liver samples and 169 serum/plasma samples, respectively. Differential gene and protein expression analyses were performed, and pathways were enriched using gene set enrichment analysis. A machine learning (ML) model was developed to identify MASH-specific biomarkers, utilizing biologically significant protein ratios. KEY FINDINGS Hepatic transcriptomic analysis identified 5017 differentially expressed genes (DEGs), with significant enrichment of extracellular matrix (ECM) pathways. Serum proteomics revealed six differentially expressed proteins (DEPs), including complement-related proteins. Integration of transcriptomic and proteomic data highlighted the complement cascade as a key pathway in MASH, with discordant regulation between the liver and circulation. The ML-based biomarker discovery model, utilizing protein ratios, achieved an F1 scores of 0.83 and 0.64 in the training sets and 0.67 in an external validation set. CONCLUSION Our findings indicate ECM deregulation and complement system involvement in MASH progression. The novel ML model incorporating protein ratios offers a potential tool for MASH diagnosis. However, further refinement and validation across larger and more diverse cohorts is needed to generalize these results.
Collapse
Affiliation(s)
- Elena Cristina Rusu
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and the Spanish National Research Council (CSIC), 46980, Valencia, Spain.
| | - Helena Clavero-Mestres
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Mario Sánchez-Álvarez
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Marina Veciana-Molins
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Laia Bertran
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria; Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Carmen Aguilar
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Javier Camaron
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Teresa Auguet
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain; Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| |
Collapse
|
48
|
Fullstone T, Rohm H, Kaltofen T, Hierlmayer S, Reichenbach J, Schweikert S, Knodel F, Loeffler AK, Mayr D, Jeschke U, Mahner S, Kessler M, Trillsch F, Rathert P. Identification of FLYWCH1 as a regulator of platinum-resistance in epithelial ovarian cancer. NAR Cancer 2025; 7:zcaf012. [PMID: 40191655 PMCID: PMC11970373 DOI: 10.1093/narcan/zcaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Platinum-based combination chemotherapy remains the backbone of first-line treatment for patients with advanced epithelial ovarian cancer (EOC). While most patients initially respond well to the treatment, patients with relapse ultimately develop platinum resistance. This study identified FLYWCH-type zinc finger-containing protein 1 (FLYWCH1) as an important regulator in the resistance development process. We showed that the loss of FLYWCH1 promotes platinum resistance in EOC cells, and the low FLYWCH1 expression is correlated with poor prognosis of EOC patients. In platinum-sensitive cells, FLYWCH1 colocalizes with H3K9me3, but this association is significantly reduced when cells acquire resistance. The suppression of FLYWCH1 induces gene expression changes resulting in the deregulation of pathways associated with resistance. In line with its connection to H3K9me3, FLYWCH1 induces gene silencing in a synthetic reporter assay and the suppression of FLYWCH1 alters H3K9me3 at promoter regions and repeat elements. The loss of FLYWCH1 leads to the derepression of LTR and Alu repeats, thereby increasing transcriptional plasticity and driving the resistance development process. Our data highlight the importance of FLYWCH1 in chromatin biology and acquisition of platinum resistance through transcriptional plasticity and propose FLYWCH1 as a potential biomarker for predicting treatment responses in EOC patients.
Collapse
MESH Headings
- Female
- Humans
- Drug Resistance, Neoplasm/genetics
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/drug therapy
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Cell Line, Tumor
- Histones/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/metabolism
- Platinum/pharmacology
- Prognosis
- Promoter Regions, Genetic
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Tabea L Fullstone
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Helene Rohm
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sophia Hierlmayer
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Juliane Reichenbach
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Schweikert
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ann-Kathrin Loeffler
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Doris Mayr
- Institute of Pathology, LMU Munich, 81377 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
49
|
Du Q, Li R. Super pan-genome-wide analysis of Hordeum WOX genes and identification of key members conferring salt stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109874. [PMID: 40186911 DOI: 10.1016/j.plaphy.2025.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The WUSCHEL-related homeobox (WOX) is a transcription factor family specific to plants, playing a key role in the initiation and maintenance of meristematic tissue, organ formation and response to abiotic stress. Here we identified 14-15 WOX genes in four Hordeum species, conducted their phylogenetic tree, determined their chromosome locations and gene structures, and analyzed their collinearity and cis-acting elements in promoters. Presence Absence Variation (PAV) analysis revealed that certain WOX genes in the four Hordeum species were lost and expanded. Duplication analysis discovered five types of duplications contributing to the formation of WOX genes, with dispersed duplication (DSD) being the main type in four Hordeum species. WOXs belonging to DSD exhibited a high number of long terminal repeat retrotransposons (LTR-RTs), indicating the potential role of LTR-RTs in the formation of WOX genes of the DSD type. Evaluation of Ka/Ks values showed that all WOX genes have undergone purification selection, with varying degrees among different clades of WOX genes. Furthermore, through pan-transcriptome analysis and quantitative experiments, we identified a common gene clade and the WOX13 co-expression networks responding to saline stress. Survival ratio statistics of Arabidopsis thaliana complementation lines under salt treatment suggested that HvWOX13 may play a crucial role in regulating salt tolerance. These findings provide new insights into evolutionary studies of WOX gene family and offer valuable gene resources for breeding crops with enhanced salt stress resistance.
Collapse
Affiliation(s)
- Qingwei Du
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
50
|
Ungar B, Manson M, Kim M, Gour D, Temboonnark P, Metukuru R, Correa Da Rosa J, Estrada Y, Gay-Mimbrera J, Gómez-Arias PJ, Ruano J, Shemer A, Hanna D, Burnett P, Guttman-Yassky E. Tape-strip profiling identifies unique immune and lipid dysregulation in patients with seborrheic dermatitis. J Am Acad Dermatol 2025; 92:1277-1287. [PMID: 39900186 DOI: 10.1016/j.jaad.2025.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Seborrheic dermatitis (SD) is a common, chronic inflammatory skin disease with limited understanding of its pathophysiology. Molecular profiling has been limited by invasiveness of sampling methods. OBJECTIVE To analyze the molecular skin profile of adult patients with SD using tape strips. METHODS Tape-strips obtained from facial lesions of 26 adult SD patients and 18 demographically matched healthy controls were evaluated with RNA sequencing. RESULTS SD molecular skin fingerprint was characterized by strong and significant upregulation of interleukin (IL)23/T-helper (Th)17 and Th22 (i.e. IL23A, IL22, PI3, LL37, S100A8, S100A12), some Th1 skewing (OASL, STAT1, CXCL9), and limited Th2 modulation. A parallel downregulation of barrier markers (CLDN1/8, FA2H, ELOVL3) was also observed. LIMITATIONS Limited representation of mild and severe SD patients. CONCLUSION These data deepen our understanding of SD suggesting that it has robust Th17/Th22, some Th1 skewing, and minimal Th2 activation, and associated skin barrier alterations. This provides rationale for novel immunomodulatory treatment approaches for SD patients targeting IL23/Th17 and/or Th22 pathways.
Collapse
Affiliation(s)
- Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Meredith Manson
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Madeline Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Digpal Gour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Panipak Temboonnark
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ragasruti Metukuru
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel Correa Da Rosa
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yeriel Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jesús Gay-Mimbrera
- Department of Dermatology, IMIBIC/Reina Sofía University Hospital/University of Cordoba, Córdoba, Spain
| | - Pedro J Gómez-Arias
- Department of Dermatology, IMIBIC/Reina Sofía University Hospital/University of Cordoba, Córdoba, Spain
| | - Juan Ruano
- Department of Dermatology, IMIBIC/Reina Sofía University Hospital/University of Cordoba, Córdoba, Spain
| | - Avner Shemer
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
| | - Diane Hanna
- Arcutis Biotherapeutics, Inc., Westlake Village, California
| | | | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|