1
|
Vargas BDO, Carazzolle MF, Galhardo JP, José J, de Souza BC, Correia JBDL, Santos JRD, Pereira GAG, de de Mello FDSB. Engineering Saccharomyces Cerevisiae With Novel Functional Xylose Isomerases From Rumen Microbiota for Enhanced Biofuel Production. Biotechnol J 2025; 20:e70050. [PMID: 40490984 DOI: 10.1002/biot.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/29/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025]
Abstract
Xylose metabolism in Saccharomyces cerevisiae remains a significant bottleneck due to the difficulty in identifying functional and efficient xylose isomerases (XI). In the present study, publicly available metagenomic and metatranscriptomic datasets of rumen microbiota from different herbivorous mammals were used to prospect novel XIs sequences. Seven putative XIs from moose, camel, cow, and sheep were cloned into a strain modified for xylose metabolism. Out of those, five XIs demonstrated activity and efficiently converted xylose into xylulose, resulting in ethanol as the final product. A XI from camel rumen microbiota exhibited a KM of 16.25 mM, indicating high substrate affinity. The strains expressing enzymes XI11 and XI12, obtained from sheep rumen microbiota, were able to deplete 40 g/L of xylose within 72 and 96 h, achieving theoretical ethanol yields of 90% and 88%, respectively. These results are comparable to those obtained with Orpinomyces sp. ukk1 XI, a benchmark enzyme previously reported as highly efficient in S. cerevisiae. This study also provides the first report on the successful expression of XIs mined from the ruminal microbiotas of sheep and camels in S. cerevisiae, expanding the perspectives for the optimization of fermentation processes and the production of lignocellulosic biofuels from xylose.
Collapse
Affiliation(s)
| | | | - Juliana Pimentel Galhardo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, UNICAMP, Campinas, São Paulo, Brazil
| | - Juliana José
- Departamento de Genética, Evolução, Microbiologia e Imunologia, UNICAMP, Campinas, São Paulo, Brazil
| | - Brenda Cristina de Souza
- Departamento de Genética, Evolução, Microbiologia e Imunologia, UNICAMP, Campinas, São Paulo, Brazil
| | | | - Jade Ribeiro Dos Santos
- Departamento de Genética, Evolução, Microbiologia e Imunologia, UNICAMP, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
2
|
Ye H, Li Q, Liu S, Zhou L, Ge X, Gao P, Han J, Guo X, Zhang Y, Yang H. Identification of two conserved linear antigenic epitopes on the 2C protein of Senecavirus A. Virology 2025; 607:110525. [PMID: 40209476 DOI: 10.1016/j.virol.2025.110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Senecavirus A (SVA) is a newly emerging picornavirus threatening the global swine industry, causing vesicular disease and neonatal mortality in pigs. The non-structural protein 2C of SVA is a multifunctional virulence factor. To provide robust tools for a comprehensive study of this protein's function, we successfully generated two monoclonal antibodies (mAbs; 1F9 and 6B4) by immunizing BALB/c mice with the prokaryotically expressed 2C protein as the immunogen. Indirect immunofluorescence assays confirmed that these mAbs specifically recognized the native 2C protein. Western blot analysis further substantiated their reactivity, revealing that the recognized epitopes are linear. Both 1F9 and 6B4 were characterized as IgG1/κ isotypes. Sequence analysis of the heavy and light chain variable regions showed that the framework and complementarity-determining region (CDR) sequences were entirely distinct between the two mAbs. The antigenic epitopes recognized by 1F9 and 6B4 were precisely mapped to amino acids 162DGYKGQF168 and 34LQAWINKE41, respectively, through the expression of a series of truncated forms of 2C protein. Amino acid sequence alignment of the 2C protein from global SVA strains in the GenBank database indicated that these epitopes are highly conserved. Molecular docking revealed that mAbs 1F9 and 6B4 bind to SVA 2C via hydrophobic interactions, hydrogen bonds, and salt bridges involving specific residues in their heavy and light chain CDRs. The successful development of these mAbs provides a powerful tool for the functional investigation of SVA 2C protein.
Collapse
Affiliation(s)
- Huan Ye
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiang Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shuci Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Borodulina OR, Kosushkin SA, Ustyantsev IG, Vassetzky NS, Kramerov DA. Analysis of RNA Transcribed by RNA Polymerase III from B2 SINEs in Mouse Cells. Noncoding RNA 2025; 11:39. [PMID: 40407597 PMCID: PMC12101331 DOI: 10.3390/ncrna11030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/26/2025] Open
Abstract
Background/Objectives: SINEs (short interspersed elements) are eukaryotic non-autonomous retrotransposons. They are transcribed by RNA polymerase III (pol III) and generate non-coding RNAs. The 3' end of many mammalian SINEs contains a polyadenylation signal (AATAAA), a pol III transcription terminator, and an A-rich tail. Studies have shown that, in human HeLa cells that have been transiently transfected with such SINEs, short pol III-generated SINE transcripts undergo polyadenylation, resulting in the addition of a long poly(A)-tail. Notably, this AAUAAA-dependent polyadenylation is not characteristic of any other transcripts synthesized by pol III. B2 SINEs, found in the genomes of mouse-like rodents, exemplify all these features. Methods: In this study, we implemented a novel approach to sequencing pol III-generated B2 transcripts from mouse cell cultures (L929 and 4T1) and organs (brain and testis). Results: Transcription occurred in 16,000-20,000 B2 copies in each cell type, 51-62% of which were transcribed in all four cell types. Effective transcription terminators (e.g., TCT>3 and T≥4) were found in approximately 40% of the transcribed B2 copies. The transcripts of these B2 copies contained a truncated terminator sequence, as pol III transcriptional arrest is known to occur within the terminator, with a poly(A)-tail immediately downstream. Such a tail could only have formed through RNA polyadenylation. Conclusions: These results demonstrate that B2 transcripts synthesized by pol III are capable of polyadenylation in mouse cells. We discuss the transcription of B2 copies with and without moderately efficient pol III terminators (TCTTT) and provide examples of the polyadenylation of such transcripts.
Collapse
Affiliation(s)
- Olga R. Borodulina
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.R.B.); (I.G.U.); (N.S.V.)
| | | | - Ilia G. Ustyantsev
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.R.B.); (I.G.U.); (N.S.V.)
| | - Nikita S. Vassetzky
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.R.B.); (I.G.U.); (N.S.V.)
| | - Dmitri A. Kramerov
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.R.B.); (I.G.U.); (N.S.V.)
| |
Collapse
|
4
|
Zhang K, Lv Y, Zhang Y, Bian C, Wu JH, Shi Q. Genomics comparisons provide new insights into the evolution of karyotype and body patterns in Anguilliformes species. Int J Biol Macromol 2025; 308:142504. [PMID: 40139089 DOI: 10.1016/j.ijbiomac.2025.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Anguilliformes species not only possess distinctive appearance (such as body elongation and absence of pectoral and/or pelvic fins), but also display diversity in chromosome number, supporting them as a suitable model for studying karyotype evolution and related molecular mechanisms of evolutionary body patterns. However, the ancestral chromosomes and evolutionary chromosomal reorganization in various eels have not been reported yet. The most regulatory or related genes of their distinctive appearance are still unknown. Here, we predicted an eel-based ancestral chromosome karyotype for the first time, and revealed multiple chromosomal fusion and fission events that reduced the ancestral chromosome number from haploid n = 21 to the commonly extant n = 19 within the Anguilla lineage. Moreover, we carried out a genome-wide comparison of two significant gene families including homeobox (Hox) and T-box (tbx), revealing genomic loss of some Hox genes (such as HoxB9β and HoxD13α) and variation of certain tbx gene (i.e., tbx5) may be responsible for the evolutionary development of pectoral fins. Interestingly, loss of certain secretory calcium-binding phosphoprotein (SCPP) genes was identified in various eel genomes, which possibly contribute to the common reduction of scales. Overall, our current findings provide new insights into evolutionary karyotype and body pattern evolution across diverse Anguilliformes species.
Collapse
Affiliation(s)
- Kai Zhang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China.
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Yuxuan Zhang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China
| | - Jin-Hui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510225, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China.
| |
Collapse
|
5
|
Tucho A, Mekonnen T, Ghadamgahi F, Ghosh S, Muleta D, Tesfaye K, Wang ES, Alemu T, Vetukuri RR. Analysis of genetic diversity of Zymoseptoria tritici populations in central and south-eastern Ethiopia. FRONTIERS IN PLANT SCIENCE 2025; 16:1505455. [PMID: 40271443 PMCID: PMC12014633 DOI: 10.3389/fpls.2025.1505455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Septoria tritici blotch (STB), caused by the hemibiotrophic fungus Zymoseptoria tritici, is a serious threat to global wheat production, and a major bottleneck to wheat production in Ethiopia. Accurate identification and analysis of the pathogen's genetic structure helps to develop robust STB management strategies. This study aimed at molecular identification and genetic structure analysis of 200 isolates of Z. tritici representing six populations in central and south-eastern regions of Ethiopia. A total of 165 isolates were confirmed by Sanger sequencing of the internal transcribed spacer (ITS) region of nuclear DNA (rDNA) region. The pathogen's genetic structure was further examined using 12 simple sequence repeat (SSR) markers. The microsatellite markers were highly polymorphic and informative, with mean number of alleles (Na), effective alleles (Ne), Nei's gene diversity of 6.23, 2.90, and 0.59, respectively. Analysis of molecular variance (AMOVA) confirmed the presence of low population differentiation (FST = 0.02), high gene flow (Nm = 14.7), with 95% of the total genetic variation residing within populations, and leaving only 5% for the among populations. The highest genetic diversity (Number of allele = 9.33, Effective number of allele = 3.4 and Nei's gene diversity = 0.68) was observed in the Oromia special zone surrounding Finfinnee (OSZ) Z. tritici populations, followed by Arsi and North Shewa populations, indicating that these areas are ideal for multi-location wheat germplasm resistance screening, and also the pathogen genetic and genomic analyses. Cluster analyses did not clearly divide the populations into genetically separate clusters according to their geographic areas of sampling, probably due to high gene flow. The analysis revealed existence of high genetic admixture, and all the individuals shared genomic backgrounds from two subgroups (K=2). Overall, the SSR markers are highly informative and effective genetic tools for unlocking the pathogen's genetic structure. The Z. tritici populations of central and southeast Ethiopia exhibit high genetic diversity, indicating the need to deploy durable and diverse disease management strategies. North Shewa, OSZ, Arsi and West Arsi administrative zones represent hotspots for genetic and genomic analyses of Z. tritici and excellent locations for host-pathogen interaction studies, and wheat germplasm screening for STB resistance.
Collapse
Affiliation(s)
- Ayantu Tucho
- Biotechnology Research Centre, Institute of Advanced Science and Technology (IAST), Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Science, Salale University, Fitche, Ethiopia
| | - Tilahun Mekonnen
- Biotechnology Research Centre, Institute of Advanced Science and Technology (IAST), Addis Ababa University, Addis Ababa, Ethiopia
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Diriba Muleta
- Biotechnology Research Centre, Institute of Advanced Science and Technology (IAST), Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Ethiopia University, Addis Ababa, Ethiopia
- Department of Microbial Sciences and Genetics, College of Natural and Computational Sciences, Bio and Emerging Technology Institute (BETin), Addis Ababa University, Addis Ababa, Ethiopia
| | - Eu Shang Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Ethiopia University, Addis Ababa, Ethiopia
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
6
|
Liu YF, Yang L, He QP, Xu YL, Zhu YT, Mi YL, Zhou L, Yang SZ, Gu JD, Mu BZ. Gelling and reducing agents are potential carbon and energy sources in culturing of anaerobic microorganisms. Appl Environ Microbiol 2025; 91:e0227624. [PMID: 39936905 PMCID: PMC11921371 DOI: 10.1128/aem.02276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
The majority of microorganisms in the environment have yet to be isolated in pure cultures, and the reasons behind this phenomenon remain elusive. In this study, we investigated the possibility of the commonly used gelling agent including agar and gellan gum as a source of carbon and energy in anaerobic roll-tube cultivation from one mangrove sediment sample and two high-temperature oilfield samples. Based on growth tests and genomic evidence, anaerobic gellan degraders were retrieved from genera of Clostridium, Lacrimispora, and lineages from the rarely cultivated phylum Atribacterota. Anaerobic agarolytic microorganisms were found to be members of Bacillus and Clostridium. We also proved the role of carbon and energy sources of L-cysteine, a routine agent used to make culture media anoxic/anaerobic in both enrichment cultures and isolated strains representing Acetomicrobium, Thermodesulfovibrio, Lacrimispora, Clostridium, Bacillus, Coprothermobacter, Citrobacter, and Enterobacter. Furthermore, the isolates and enriched microbial communities utilizing L-cysteine under anaerobic conditions were mainly through L-cysteine desulfuration to pyruvate, ammonia, and sulfide. This study demonstrates that the widely used gelling and reducing agents in the basal medium can serve as carbon and energy sources for anaerobic microorganisms and thus may bias the enrichment and isolation. IMPORTANCE Most microbial species inhabiting natural environments have not been isolated in pure cultures using conventional media and laboratory conditions, but the reason behind this is unclear. Here, we provided a new explanation for the phenomenon, in that both the gelling agents, like agar and gellan gum, and reducing agent L-cysteine-HCl in the media provide extra carbon and energy sources to microorganisms and therefore decrease the chance in isolation specifically for the supplemented substrate which is supposed to be the sole source of carbon and energy. This result demonstrated that further improvement in the effectiveness of isolation of targeted microorganisms will be facilitated by subtracting the overlooked organic ingredients in the medium and more innovations.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Liu Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Qing-Ping He
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Yi-Lin Xu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Tong Zhu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan-Le Mi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Xu XM, Liao BY, Liao SJ, Qin QM, He CY, Ding X, Wu W, Wang LY, Zhang FQ, Peng LX, Drew BT, Li YQ. Next-generation sequencing-based population genetics unravels the evolutionary history of Rhodomyrtus tomentosa in China. BMC PLANT BIOLOGY 2025; 25:338. [PMID: 40089704 PMCID: PMC11909989 DOI: 10.1186/s12870-025-06364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Rhodomyrtus tomentosa (Ait.) Hassk. is useful for its ornamental, medicinal, and ecological characteristics, and is considered a "Neglected and Underutilized Crop Species". However, our understanding of the geographic structure and evolutionary history of its wild populations is limited. To address this gap, we investigated genomic data from 284 samples of R. tomentosa from 28 wild populations in southern China. RESULTS The genetic diversity of populations in different regions revealed the similar trends using whole-genome and RAD-seq data, and Hainan Island having a higher genetic diversity than other regions. The 28 populations clustered into three distinct groups: (a) GROUP1 on the eastern mainland within Guangdong, Fujian, and Hunan Provinces; (b) GROUP2 on the western mainland within Guangxi and Yunnan Provinces; and (c) GROUP3 on Hainan Island. Mantel tests and redundancy analyses revealed population differentiation was affected by distance and environmental factors such as annual average radiation. Demographic history and gene flow analyses indicated the mainland populations and the Hainan Island populations diverged around 0.93 MYA, with gene flow primarily occurring from Hainan Island and the coastal regions (such as Zhanjiang in Guangdong and Fangchenggang in Guangxi) towards the mainland, reflecting an expansion trend within the species. PSMC' analyses indicated that the populations of the three groups underwent a bottleneck during the Pleistocene due to glacial-interglacial cycles and geological events. Niche analysis revealed that the ice ages caused habitat contraction for the species, and populations with higher genetic diversity are generally distributed in areas with more suitable habitats. CONCLUSIONS This study elucidates the current genetic distribution of the species within China and suggests that drastic Pleistocene climate change and geographical events caused population divergence and fluctuations in effective population size, shaping the current genetic distribution of R. tomentosa. These findings provide a theoretical basis for the genetic conservation and improvement of R. tomentosa.
Collapse
Affiliation(s)
- Xing-Ming Xu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510220, China
| | - Bo-Yong Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510220, China.
- Department of Education of Guangdong Province, Guangdong Provincial Engineering Technology Research Center for High-quality, Rare, and Characteristic Economic Forest and Fruit Trees in Regular Higher Education Institutions, No.501 of Zhongkai Road, Guangzhou, Guangdong, 510225, China.
| | - Su-Jiao Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510220, China
| | - Qiao-Mei Qin
- Guangdong Eco-engineering Polytechnic, Guangzhou, Guangdong, 510630, China
| | - Chun-Yan He
- Guangdong Eco-engineering Polytechnic, Guangzhou, Guangdong, 510630, China
| | - Xin Ding
- Guangdong Eco-engineering Polytechnic, Guangzhou, Guangdong, 510630, China
| | - Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510220, China
| | - Long-Yuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510220, China
| | - Fang-Qiu Zhang
- Guangdong Eco-engineering Polytechnic, Guangzhou, Guangdong, 510630, China
| | - Li-Xia Peng
- Guangdong Eco-engineering Polytechnic, Guangzhou, Guangdong, 510630, China
| | - Bryan T Drew
- Department of Biology, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | - Yong-Quan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510220, China.
- Department of Education of Guangdong Province, Guangdong Provincial Engineering Technology Research Center for High-quality, Rare, and Characteristic Economic Forest and Fruit Trees in Regular Higher Education Institutions, No.501 of Zhongkai Road, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
8
|
Lv Y, Zhang L, Wang X, Zhang Y. Genomic evidence on the distribution and ecological function of Pseudomonas in hadal zone. BMC Microbiol 2025; 25:100. [PMID: 40021978 PMCID: PMC11869652 DOI: 10.1186/s12866-025-03834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
The hadal zone is the deepest region on Earth. It serves as a depositional zone for the sinking matter from surface ocean and continental margin, aided by its unique V-shaped structure. Due to extreme depth (over 6000 m), normally only organic matter with low degradability typically reaches the bottom of the trench. Concurrently, reports have indicated highly active carbon turnover and dense bacterial cells in the Mariana Trench. There remains a cognitive gap in understanding the connection between this phenomenon and the microbial taxa along with their metabolic activities. Here, we surveyed the Pseudomonas, one of the most widely distributed bacterial genera on Earth. The result revealed widespread distribution of Pseudomonas in the hadal zones. We obtained 21 metagenome-assembled genomes (MAGs) from seawater and sediment samples of the Mariana Trench, including three novel species. Comparative genomic analysis showed that hadal Pseudomonas possess more unique ortholog groups of genes related to energy generation and substances transport, distinct from those in other marine zones. These bacteria exhibit the ability to utilize diverse electron acceptors and accumulate compatible solutes, indicating two key strategies for adaptation for high hydrostatic pressure conditions. Furthermore, predicted genomic capabilities suggest that Pseudomonas could decompose various components of organic matter, particularly aromatics, as supported by metatranscriptomic datasets. These findings significantly enhance our understanding of Pseudomonas diversity and metabolic potential, providing valuable insights into the carbon and nitrogen cycles in hadal trench ecosystems.
Collapse
Affiliation(s)
- Yongxin Lv
- Hainan Research Institute, Shanghai Jiao Tong University, Sanya, China
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangyu Wang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Zhang
- Hainan Research Institute, Shanghai Jiao Tong University, Sanya, China.
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Hagiwara Y, Mihara Y, Motoyama T, Ito S, Nakano S. Design of ancestral mammalian alkaline phosphatase bearing high stability and productivity. Appl Environ Microbiol 2024; 90:e0183124. [PMID: 39545738 PMCID: PMC11653730 DOI: 10.1128/aem.01831-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024] Open
Abstract
Mammalian alkaline phosphatase (AP) is widely used in diagnostics and molecular biology but its widespread use is impaired because it is difficult to express in Escherichia coli and has low thermostability. To overcome these challenges, we employed sequence-based protein redesign methods, specifically full consensus design (FCD) and ancestral sequence reconstruction (ASR), to create APs with enhanced properties. Biochemical analyses revealed that these newly designed APs exhibited improved levels of expression in their active form and increased thermostability compared to bovine intestinal AP isozyme II (bIAPII), without impeding enzymatic activity. Notably, the activity in culture broth of the designed APs was an order of magnitude higher than that of bIAPII, and their thermal stability increased by 13°C-17°C (measured as T50). We also assessed 28 single-point mutants of bIAPII to identify regions influencing thermostability and expression level; these mutations were common in the engineered APs but not in bIAPII. Specific mutations, such as T413E and G402S, enhanced thermostability, whereas increasing the expression level required multiple mutations. This suggests that a synergistic effect is required to enhance the expression level. Mutations enhancing thermostability were located in the crown domain, while those improving expression were close to the dimer interface, indicating distinct mechanisms underpinning these enhancements. IMPORTANCE Sequence-based protein redesign methods, such as full consensus design (FCD) and ancestral sequence reconstruction (ASR), have the potential to construct new enzymes utilizing protein sequence data registered in a rapidly expanding sequence database. The high thermostability of these enzymes would expand their application in diagnostics and molecular biology. These enzymes have also demonstrated a high level of active expression by Escherichia coli. These characteristics make these APs attractive candidates for industrial application. In addition, different amino acid residues are primarily responsible for thermal stability and active expression, suggesting important implications for strategies for designing enzymes by FCD and ASR.
Collapse
Affiliation(s)
- Yusuke Hagiwara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yasuhiro Mihara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Shizuoka, Japan
| |
Collapse
|
10
|
Bircan A, Kuru N, Dereli O, Selçuk B, Adebali O. Evolutionary history of calcium-sensing receptors unveils hyper/hypocalcemia-causing mutations. PLoS Comput Biol 2024; 20:e1012591. [PMID: 39531485 PMCID: PMC11584096 DOI: 10.1371/journal.pcbi.1012591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Despite advancements in understanding the structure and functions of the Calcium Sensing Receptor (CaSR), gaps persist in our knowledge of the specific functions of its residues. In this study, we used phylogeny-based techniques to identify functionally equivalent orthologs of CaSR, predict residue significance, and compute specificity-determining position (SDP) scores to understand its evolutionary basis. The analysis revealed exceptional conservation of the CaSR subfamily, emphasizing the critical role of residues with high SDP scores in receptor activation and pathogenicity. To further enhance the findings, gradient-boosting trees were applied to differentiate between gain- and loss-of-function mutations responsible for hypocalcemia and hypercalcemia. Lastly, we investigated the importance of these mutations in the context of receptor activation dynamics. In summary, through comprehensive exploration of the evolutionary history of the CaSR subfamily, coupled with innovative phylogenetic methodologies, we identified activating and inactivating residues, providing valuable insights into the regulation of calcium homeostasis and its connections to associated disorders.
Collapse
Affiliation(s)
- Aylin Bircan
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Nurdan Kuru
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Onur Dereli
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Berkay Selçuk
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
- TÜBİTAK Research Institute for Fundamental Sciences, Gebze, Türkiye
| |
Collapse
|
11
|
Singh G, Pasinato A, Yriarte ALC, Pizarro D, Divakar PK, Schmitt I, Dal Grande F. Are there conserved biosynthetic genes in lichens? Genome-wide assessment of terpene biosynthetic genes suggests ubiquitous distribution of the squalene synthase cluster. BMC Genomics 2024; 25:936. [PMID: 39375591 PMCID: PMC11457338 DOI: 10.1186/s12864-024-10806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Lichen-forming fungi (LFF) are prolific producers of functionally and structurally diverse secondary metabolites, most of which are taxonomically exclusive and play lineage-specific roles. To date, widely distributed, evolutionarily conserved biosynthetic pathways in LFF are not known. However, this idea stems from polyketide derivatives, since most biochemical research on lichens has concentrated on polyketide synthases (PKSs). Here, we present the first systematic identification and comparison of terpene biosynthetic genes of LFF using all the available Lecanoromycete reference genomes and 22 de novo sequenced ones (111 in total, representing 60 genera and 23 families). We implemented genome mining and gene networking approaches to identify and group the biosynthetic gene clusters (BGCs) into networks of similar BGCs. Our large-scale analysis led to the identification of 724 terpene BGCs with varying degrees of pairwise similarity. Most BGCs in the dataset were unique with no similarity to a previously known fungal or bacterial BGC or among each other. Remarkably, we found two BGCs that were widely distributed in LFF. Interestingly, both conserved BGCs contain the same core gene, i.e., putatively a squalene/phytoene synthase (SQS), involved in sterol biosynthesis. This indicates that early gene duplications, followed by gene losses/gains and gene rearrangement are the major evolutionary factors shaping the composition of these widely distributed SQS BGCs across LFF. We provide an in-depth overview of these BGCs, including the transmembrane, conserved, variable and LFF-specific regions. Our study revealed that lichenized fungi do have a highly conserved BGC, providing the first evidence that a biosynthetic gene may constitute essential genes in lichens.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy.
- Botanical Garden of Padova, University of Padova, Padua, Italy.
| | - Anna Pasinato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy
| | | | - David Pizarro
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, 28040, Spain
| | - Pradeep K Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, 28040, Spain
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt Am Main, 60325, Germany
- Department of Biosciences, Institute of Ecology Evolution and Diversity, Goethe UniversityFrankfurt,, Max-Von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt Am Main, 60325, Germany
| | - Francesco Dal Grande
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy
- Botanical Garden of Padova, University of Padova, Padua, Italy
| |
Collapse
|
12
|
Olagunju TA, Rosen BD, Neibergs HL, Becker GM, Davenport KM, Elsik CG, Hadfield TS, Koren S, Kuhn KL, Rhie A, Shira KA, Skibiel AL, Stegemiller MR, Thorne JW, Villamediana P, Cockett NE, Murdoch BM, Smith TPL. Telomere-to-telomere assemblies of cattle and sheep Y-chromosomes uncover divergent structure and gene content. Nat Commun 2024; 15:8277. [PMID: 39333471 PMCID: PMC11436988 DOI: 10.1038/s41467-024-52384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. Here, we assemble complete and gapless telomere to telomere (T2T) Y chromosomes for these species. We find that the pseudo-autosomal regions are similar in length, but the total chromosome size is substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity is accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 19MYA. The centromeres also differ dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosomes have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.
Collapse
Affiliation(s)
- Temitayo A Olagunju
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory (AGIL), ARS, USDA, Beltsville, MD, USA
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Christine G Elsik
- Divisions of Animal Sciences and Plant Science & Technology, University of Missouri, Columbia, MO, USA
| | - Tracy S Hadfield
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen L Kuhn
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katie A Shira
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Patricia Villamediana
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Noelle E Cockett
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA.
| | - Timothy P L Smith
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA.
| |
Collapse
|
13
|
Chekli Y, Thiriet-Rupert S, Caillet C, Quilès F, Le Cordier H, Deshayes E, Bardiaux B, Pédron T, Titecat M, Debarbieux L, Ghigo JM, Francius G, Duval JFL, Beloin C. Biophysical insights into sugar-dependent medium acidification promoting YfaL protein-mediated Escherichia coli self-aggregation, biofilm formation and acid stress resistance. NANOSCALE 2024; 16:17567-17584. [PMID: 39225712 DOI: 10.1039/d4nr01884b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The ability of bacteria to interact with their environment is crucial to form aggregates and biofilms, and develop a collective stress resistance behavior. Despite its environmental and medical importance, bacterial aggregation is poorly understood and mediated by few known adhesion structures. Here, we identified a new role for a surface-exposed Escherichia coli protein, YfaL, which can self-recognize and induce bacterial autoaggregation. This process occurs only under acidic conditions generated during E. coli growth in the presence of fermentable sugars. These findings were supported by electrokinetic and atomic force spectroscopy measurements, which revealed changes in the electrostatic, hydrophobic, and structural properties of YfaL-decorated cell surface upon sugar consumption. Furthermore, YfaL-mediated autoaggregation promotes biofilm formation and enhances E. coli resistance to acid stress. The prevalence and conservation of YfaL in environmental and clinical E. coli suggest strong evolutionary selection for its function inside or outside the host. Overall, our results emphasize the importance of environmental parameters such as low pH as physicochemical cues influencing bacterial adhesion and aggregation, affecting E. coli and potentially other bacteria's resistance to environmental stress.
Collapse
Affiliation(s)
- Yankel Chekli
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, 75015 Paris, France
| | | | - Céline Caillet
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-54000 Nancy, France
| | - Fabienne Quilès
- Université de Lorraine, CNRS, LCPME UMR 7564, F-54000 Nancy, France.
| | - Hélène Le Cordier
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-54000 Nancy, France
| | - Emilie Deshayes
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, 75015 Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Thierry Pédron
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, 75015 Paris, France
| | - Grégory Francius
- Université de Lorraine, CNRS, LCPME UMR 7564, F-54000 Nancy, France.
| | - Jérôme F L Duval
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-54000 Nancy, France
| | - Christophe Beloin
- Université de Lorraine, CNRS, LCPME UMR 7564, F-54000 Nancy, France.
| |
Collapse
|
14
|
Villanueva-Pérez D, Tataje-Lavanda L, Montalván-Avalos A, Paredes-Inofuente D, Montoya-Ortiz S, Isasi-Rivas G, Fernández MF, Fernández-Sánchez M, Fernández-Díaz M. Detection and Molecular Characterization of GI-1 and GI-23 Avian Infectious Bronchitis Virus in Broilers Indicate the Emergence of New Genotypes in Bolivia. Viruses 2024; 16:1463. [PMID: 39339939 PMCID: PMC11437422 DOI: 10.3390/v16091463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Infectious Bronchitis Virus (IBV) is a major threat to the poultry industry worldwide, causing significant economic losses. While the virus's genetic structure is well understood, the specific strains circulating in Bolivia have remained uncharacterized until now. This study aimed to identify and characterize new IBV strains in Bolivia. Tissue samples from broilers exhibiting clinical signs of Infectious Bronchitis were screened to detect IBV using real-time RT-PCR (RT-qPCR). Positive samples with low cycle threshold (Ct) values were selected for sequencing the full S1 gene. Of the 12 samples analyzed, 10 were determined to be positive for IBV. However, only four samples yielded sufficient genetic material for sequencing and subsequent phylogenetic analysis. The results revealed the presence of GI-1 and GI-23 lineages, both belonging to genotype I (GI). The GI-1 lineage showed >99% sequence identity to the H120 and Massachusetts vaccine strains, suggesting a close relationship. In contrast, the GI-23 lineage clustered with other IBV strains, showing a distinct subclade that is genetically distant from Brazilian strains. No evidence of recombination was found. Furthermore, amino acid substitution analysis identified specific mutations in the S1 subunit, particularly in the hypervariable regions 1, 2, and 3. These mutations could potentially alter the virus's antigenicity, leading to reduced vaccine efficacy. The findings of this study highlight the importance of continued and broad genomic surveillance of circulating IBV strains and the need to improve vaccination strategies in Bolivia.
Collapse
Affiliation(s)
- Doris Villanueva-Pérez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
| | - Luis Tataje-Lavanda
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima 15067, Peru
| | - Angela Montalván-Avalos
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
| | - Diego Paredes-Inofuente
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
| | - Suly Montoya-Ortiz
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
| | - Gisela Isasi-Rivas
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
| | - María F. Fernández
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
| | - Manolo Fernández-Sánchez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
| | - Manolo Fernández-Díaz
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta 11702, Peru; (L.T.-L.); (A.M.-A.); (D.P.-I.); (S.M.-O.); (G.I.-R.); (M.F.F.); (M.F.-S.)
| |
Collapse
|
15
|
Becker F, Stanke M. learnMSA2: deep protein multiple alignments with large language and hidden Markov models. Bioinformatics 2024; 40:ii79-ii86. [PMID: 39230690 PMCID: PMC11373405 DOI: 10.1093/bioinformatics/btae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
MOTIVATION For the alignment of large numbers of protein sequences, tools are predominant that decide to align two residues using only simple prior knowledge, e.g. amino acid substitution matrices, and using only part of the available data. The accuracy of state-of-the-art programs declines with decreasing sequence identity and when increasingly large numbers of sequences are aligned. Recently, transformer-based deep-learning models started to harness the vast amount of protein sequence data, resulting in powerful pretrained language models with the main purpose of generating high-dimensional numerical representations, embeddings, for individual sites that agglomerate evolutionary, structural, and biophysical information. RESULTS We extend the traditional profile hidden Markov model so that it takes as inputs unaligned protein sequences and the corresponding embeddings. We fit the model with gradient descent using our existing differentiable hidden Markov layer. All sequences and their embeddings are jointly aligned to a model of the protein family. We report that our upgraded HMM-based aligner, learnMSA2, combined with the ProtT5-XL protein language model aligns on average almost 6% points more columns correctly than the best amino acid-based competitor and scales well with sequence number. The relative advantage of learnMSA2 over other programs tends to be greater when the sequence identity is lower and when the number of sequences is larger. Our results strengthen the evidence on the rich information contained in protein language models' embeddings and their potential downstream impact on the field of bioinformatics. Availability and implementation: https://github.com/Gaius-Augustus/learnMSA, PyPI and Bioconda, evaluation: https://github.com/felbecker/snakeMSA.
Collapse
Affiliation(s)
- Felix Becker
- Institute of Mathematics and Computer Science, University of Greifswald, 17489 Greifswald, Germany
| | - Mario Stanke
- Institute of Mathematics and Computer Science, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
16
|
Chumová Z, Havlíčková E, Zeisek V, Šemberová K, Mandáková T, Euston-Brown D, Trávníček P. Deciphering Pteronia's evolution in the Cape Floristic Region: A comprehensive study disputes polyploid deficiency and affirms diploid radiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2236-2254. [PMID: 38981008 DOI: 10.1111/tpj.16914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/04/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024]
Abstract
The Greater Cape Floristic Region (GCFR) is renowned for its exceptional biodiversity, accommodating over 11 000 plant species, notable degree of endemism, and substantial diversification within limited plant lineages, a phenomenon ascribed to historical radiation events. While both abiotic and biotic factors contribute to this diversification, comprehensive genomic alterations, recognized as pivotal in the diversification of angiosperms, are perceived as uncommon. This investigation focuses on the genus Pteronia, a prominent representative of the Asteraceae family in the GCFR. Employing NGS-based HybSeq and RADSeq methodologies, flow cytometry, karyology, and ecological modeling, we scrutinize the intricacies of its polyploid evolution. Phylogenetic reconstructions using 951 low-copy nuclear genes confirm Pteronia as a well-supported, distinct clade within the tribe Astereae. The ingroup displays a structure indicative of rapid radiation likely antedating polyploid establishment, with the two main groups demarcated by their presence or absence in the fynbos biome. Genome size analysis encompasses 1293 individuals across 347 populations, elucidating significant variation ranging from 6.1 to 34.2 pg (2C-value). Pteronia demonstrates substantially large genome sizes within Astereae and phanerophytes. Polyploidy is identified in 31% of the studied species, with four discerned ploidy levels (2x, 4x, 6x, 8x). Cytotypes exhibit marked distinctions in environmental traits, influencing their distribution across biomes and augmenting their niche differentiation. These revelations challenge the presumed scarcity of polyploidy in the Cape flora, underscoring the imperative need for detailed population studies. The intricate evolutionary history of Pteronia, characterized by recent polyploidy and genome size variation, contributes substantially to the comprehension of diversification patterns within the GCFR biodiversity hotspot.
Collapse
Affiliation(s)
- Zuzana Chumová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| | - Eliška Havlíčková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Vojtěch Zeisek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Kristýna Šemberová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | | | - Pavel Trávníček
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| |
Collapse
|
17
|
Hesketh-Best PJ, Fowler PD, Odogwu NM, Milbrath MO, Schroeder DC. Sacbrood viruses and select Lake Sinai virus variants dominated Apis mellifera colonies symptomatic for European foulbrood. Microbiol Spectr 2024; 12:e0065624. [PMID: 38980019 PMCID: PMC11302354 DOI: 10.1128/spectrum.00656-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
European foulbrood (EFB) is a prevalent disease in the European honey bee (Apis mellifera) in the United States, which can lead to colony decline and collapse. The bacterial components of EFB are well-studied, but the diversity of viral infections within infected colonies has not been explored. In this study, we use meta-transcriptomics sequencing of 12 honey bee hives, symptomatic (+, n = 6) and asymptomatic (-, n = 6) for EFB, to investigate viral infection associated with the disease. We assembled 41 viral genomes, belonging to three families (Iflaviridae, Dicistroviridae, and Sinhaliviridae), all previously reported in honey bees, including Lake Sinai virus, deformed wing virus, sacbrood virus, Black queen cell virus, and Israeli acute paralysis virus. In colonies with severe EFB, we observed a higher occurrence of viral genomes (34 genomes) in contrast to fewer recovered from healthy colonies (seven genomes) and a complete absence of Dicistroviridae genomes.We observed specific Lake Sinai virus clades associated exclusively with EFB + or EFB - colonies, in addition to EFB-afflicted colonies that exhibited an increase in relative abundance of sacbrood viruses. Multivariate analyses highlighted that a combination of site and EFB disease status influenced RNA virome composition, while EFB status alone did not significantly impact it, presenting a challenge for comparisons between colonies kept in different yards. These findings contribute to the understanding of viral dynamics in honey bee colonies compromised by EFB and underscore the need for future investigations to consider viral composition when investigating EFB.IMPORTANCEThis study on the viromes of honey bee colonies affected by European foulbrood (EFB) sheds light on the dynamics of viral populations in bee colonies in the context of a prevalent bacterial brood disease. The identification of distinct Lake Sinai virus and sacbrood virus clades associated with colonies affected by severe EFB suggests a potential connection between viral composition and disease status, emphasizing the need for further investigation into the role of viruses during EFB infection. The observed increase in sacbrood viruses during EFB infection suggests a potential viral dysbiosis, with potential implications for honey bee brood health. These findings contribute valuable insights related to beekeeping practices, offering a foundation for future research aimed at understanding and mitigating the impact of bacterial and viral infection in commercial honey bee operations and the management of EFB.
Collapse
Affiliation(s)
- Poppy J. Hesketh-Best
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter D. Fowler
- Department of Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Nkechi M. Odogwu
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Meghan O. Milbrath
- Department of Entomology, Michigan State University, Pollinator Performance Center, Lansing, Michigan, USA
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
18
|
Diaby M, Wu H, Gao B, Shi S, Wang B, Wang S, Wang Y, Wu Z, Chen C, Wang X, Song C. A Naturally Active Spy Transposon Discovered from the Insect Genome of Colletes gigas as a Promising Novel Gene Transfer Tool. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400969. [PMID: 38774947 PMCID: PMC11304231 DOI: 10.1002/advs.202400969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Novel active DNA transposons, such as Spy transposons from the PHIS superfamily, are identified through bioinformatics in this study. The native transposases cgSpy and cvSpy displayed transposition activities of approximately 85% and 35% compared to the hyperactive piggyBac transposase (hyPB). The cgSpy transposon showed unique characteristics, including a lack of overproduction inhibition and reduced efficiency for insertion sizes between 3.1 to 8.5 kb. Integration preferences of cgSpy are found in genes and regulatory regions, making it suitable for genetic manipulation. Evaluation in T-cell engineering demonstrated that cgSpy-mediated chimeric antigen receptor (CAR) modification is comparable to the PB system, indicating its potential utility in cell therapy. This study unveils the promising application of the active native transposase, Spy, from Colletes gigas, as a valuable tool for genetic engineering, particularly in T-cell manipulation.
Collapse
Affiliation(s)
- Mohamed Diaby
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Han Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Bo Gao
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Shasha Shi
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Bingqing Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Saisai Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Yali Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Zherui Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Cai Chen
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Xiaoyan Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Chengyi Song
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| |
Collapse
|
19
|
Ritsch M, Eulenfeld T, Lamkiewicz K, Schoen A, Weber F, Hölzer M, Marz M. Endogenous Bornavirus-like Elements in Bats: Evolutionary Insights from the Conserved Riboviral L-Gene in Microbats and Its Antisense Transcription in Myotis daubentonii. Viruses 2024; 16:1210. [PMID: 39205184 PMCID: PMC11360350 DOI: 10.3390/v16081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Bats are ecologically diverse vertebrates characterized by their ability to host a wide range of viruses without apparent illness and the presence of numerous endogenous viral elements (EVEs). EVEs are well preserved, expressed, and may affect host biology and immunity, but their role in bat immune system evolution remains unclear. Among EVEs, endogenous bornavirus-like elements (EBLs) are bornavirus sequences integrated into animal genomes. Here, we identified a novel EBL in the microbat Myotis daubentonii, EBLL-Cultervirus.10-MyoDau (short name is CV.10-MyoDau) that shows protein-level conservation with the L-protein of a Cultervirus (Wuhan sharpbelly bornavirus). Surprisingly, we discovered a transcript on the antisense strand comprising three exons, which we named AMCR-MyoDau. The active transcription in Myotis daubentonii tissues of AMCR-MyoDau, confirmed by RNA-Seq analysis and RT-PCR, highlights its potential role during viral infections. Using comparative genomics comprising 63 bat genomes, we demonstrate nucleotide-level conservation of CV.10-MyoDau and AMCR-MyoDau across various bat species and its detection in 22 Yangochiropera and 12 Yinpterochiroptera species. To the best of our knowledge, this marks the first occurrence of a conserved EVE shared among diverse bat species, which is accompanied by a conserved antisense transcript. This highlights the need for future research to explore the role of EVEs in shaping the evolution of bat immunity.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Tom Eulenfeld
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Andreas Schoen
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University, 35392 Gießen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University, 35392 Gießen, Germany
| | - Martin Hölzer
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Genome Competence Center (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Fritz Lipmann Institute-Leibniz Institute on Aging, 07745 Jena, Germany
| |
Collapse
|
20
|
Lee J, Miyagishima SY, Bhattacharya D, Yoon HS. From dusk till dawn: cell cycle progression in the red seaweed Gracilariopsis chorda (Rhodophyta). iScience 2024; 27:110190. [PMID: 38984202 PMCID: PMC11231608 DOI: 10.1016/j.isci.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
The conserved eukaryotic functions of cell cycle genes have primarily been studied using animal/plant models and unicellular algae. Cell cycle progression and its regulatory components in red (Rhodophyta) seaweeds are poorly understood. We analyzed diurnal gene expression data to investigate the cell cycle in the red seaweed Gracilariopsis chorda. We identified cell cycle progression and transitions in G. chorda which are induced by interactions of key regulators such as E2F/DP, RBR, cyclin-dependent kinases, and cyclins from dusk to dawn. However, several typical CDK inhibitor proteins are absent in red seaweeds. Interestingly, the G1-S transition in G. chorda is controlled by delayed transcription of GINS subunit 3. We propose that the delayed S phase entry in this seaweed may have evolved to minimize DNA damage (e.g., due to UV radiation) during replication. Our results provide important insights into cell cycle-associated physiology and its molecular mechanisms in red seaweeds.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
21
|
Zhang Y, Tang J, Zheng Y, Guo W, Guo Y, Chang M, Wang H, Li Y, Chang Z, Xu Y, Wang Z. Evolutionary and Expression Analysis of the Pig MAGE Gene Family. Animals (Basel) 2024; 14:2095. [PMID: 39061557 PMCID: PMC11274276 DOI: 10.3390/ani14142095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The melanoma-associated antigen (MAGE) family found in eukaryotes plays a crucial role in cell proliferation and differentiation, spermatogenesis, neural development, etc. This study explored the validation and evolution of MAGE genes in eukaryotic genomes and their distribution and expression patterns in pigs. In total, 249 MAGE genes were found on 13 eukaryotic species. In total, 33, 25, and 18 genes were located on human, mouse, and pig genomes, respectively. We found eight, four, and three tandemly duplicated gene clusters on the human, mouse, and pig genomes, respectively. The majority of MAGE genes in mammals are located on the X chromosome. According to the phylogenetic analysis, the MAGE family genes were classified into 11 subfamilies. The NDN gene in zebrafish (DreNDN) was the root of this evolutionary tree. In total, 10 and 11 MAGE genes on human and mouse genomes, respectively, exhibited a collinearity relationship with the MAGE genes on pig genomes. Taking the MAGE family genes in pigs, the MAGE subfamilies had similar gene structures, protein motifs, and biochemical attributes. Using the RNA-seq data of Duroc pigs and Rongchang pigs, we detected that the expression of type I MAGE genes was higher in reproductive tissues, but type II MAGE genes were predominantly expressed in the brain tissue. These findings are a valuable resource for gaining insight into the evolution and expression of the MAGE family genes.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Jian Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Yiwen Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Wanshu Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Minghang Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Hui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Yanyan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoyue Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
22
|
Zhang T, Tan S, Tang N, Li Y, Zhang C, Sun J, Guo Y, Gao H, Cai Y, Sun W, Wang C, Fu L, Ma H, Wu Y, Hu X, Zhang X, Gee P, Yan W, Zhao Y, Chen Q, Guo B, Wang H, Zhang YE. Heterologous survey of 130 DNA transposons in human cells highlights their functional divergence and expands the genome engineering toolbox. Cell 2024; 187:3741-3760.e30. [PMID: 38843831 DOI: 10.1016/j.cell.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 07/14/2024]
Abstract
Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuanqing Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Gao
- Rengene Biotechnology Co., Ltd., Beijing 100036, China
| | - Yujia Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liangzheng Fu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yachao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Peter Gee
- MaxCyte Inc., Rockville, MD 20850, USA
| | - Weihua Yan
- Cold Spring Biotech Corp., Beijing 100031, China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baocheng Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Ustyantsev IG, Kosushkin SA, Borodulina OR, Vassetzky NS, Kramerov DA. Ere, a Family of Short Interspersed Elements in the Genomes of Odd-Toed Ungulates (Perissodactyla). Animals (Basel) 2024; 14:1982. [PMID: 38998094 PMCID: PMC11240701 DOI: 10.3390/ani14131982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Short Interspersed Elements (SINEs) are eukaryotic retrotransposons transcribed by RNA polymerase III (pol III). Many mammalian SINEs (T+ SINEs) contain a polyadenylation signal (AATAAA), a pol III transcription terminator, and an A-rich tail in their 3'-end. The RNAs of such SINEs have the capacity for AAUAAA-dependent polyadenylation, which is unique to pol III-generated transcripts. The structure, evolution, and polyadenylation of the Ere SINE of ungulates (horses, rhinos, and tapirs) were investigated in this study. A bioinformatics analysis revealed the presence of up to ~4 × 105 Ere copies in representatives of all three families. These copies can be classified into two large subfamilies, EreA and EreB, the former distinguished by an additional 60 bp sequence. The 3'-end of numerous EreA and all EreB copies exhibit a 50 bp sequence designated as a terminal domain (TD). The Ere family can be further subdivided into subfamilies EreA_0TD, EreA_1TD, EreB_1TD, and EreB_2TD, depending on the presence and number of terminal domains (TDs). Only EreA_0TD copies can be assigned to T+ SINEs as they contain the AATAAA signal and the TCTTT transcription terminator. The analysis of young Ere copies identified by comparison with related perissodactyl genomes revealed that EreA_0TD and, to a much lesser extent, EreB_2TD have retained retrotranspositional activity in the recent evolution of equids and rhinoceroses. The targeted mutagenesis and transfection of HeLa cells were used to identify sequences in equine EreA_0TD that are critical for the polyadenylation of its pol III transcripts. In addition to AATAAA and the transcription terminator, two sites in the 3' half of EreA, termed the β and τ signals, were found to be essential for this process. The evolution of Ere, with a particular focus on the emergence of T+ SINEs, as well as the polyadenylation signals are discussed in comparison with other T+ SINEs.
Collapse
Affiliation(s)
- Ilia G. Ustyantsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey A. Kosushkin
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga R. Borodulina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikita S. Vassetzky
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitri A. Kramerov
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
24
|
Xu G, Qiao Z, Schraauwen R, Avan A, Peppelenbosch MP, Bijvelds MJC, Jiang S, Li P. Evidence for cross-species transmission of human coronavirus OC43 through bioinformatics and modeling infections in porcine intestinal organoids. Vet Microbiol 2024; 293:110101. [PMID: 38718529 DOI: 10.1016/j.vetmic.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024]
Abstract
Cross-species transmission of coronaviruses has been continuously posing a major challenge to public health. Pigs, as the major animal reservoirs for many zoonotic viruses, frequently mediate viral transmission to humans. This study comprehensively mapped the relationship between human and porcine coronaviruses through in-depth bioinformatics analysis. We found that human coronavirus OC43 and porcine coronavirus PHEV share a close phylogenetic relationship, evidenced by high genomic homology, similar codon usage patterns and comparable tertiary structure in spike proteins. Inoculation of infectious OC43 viruses in organoids derived from porcine small and large intestine demonstrated that porcine intestinal organoids (pIOs) are highly susceptible to human coronavirus OC43 infection and support infectious virus production. Using transmission electron microscopy, we visualized OC43 viral particles in both intracellular and extracellular compartments, and observed abnormalities of multiple organelles in infected organoid cells. Robust OC43 infections in pIOs result in a significant reduction of organoids viability and widespread cell death. This study bears essential implications for better understanding the evolutionary origin of human coronavirus OC43, and provides a proof-of-concept for using pIOs as a model to investigate cross-species transmission of human coronavirus.
Collapse
Affiliation(s)
- Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Zhiwen Qiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Rick Schraauwen
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Amine Avan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Napolitano JM, Srikanth S, Noorai RE, Wilson S, Williams KE, Rosales-Garcia RA, Krueger B, Emerson C, Parker S, Pruitt J, Dango R, Iyer L, Shafi A, Jayawardena I, Parkinson CL, McMahan C, Rennert L, Peng CA, Dean D. SARS-CoV-2 variant introduction following spring break travel and transmission mitigation strategies. PLoS One 2024; 19:e0301225. [PMID: 38722935 PMCID: PMC11081374 DOI: 10.1371/journal.pone.0301225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/12/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND University spring break carries a two-pronged SARS-CoV-2 variant transmission risk. Circulating variants from universities can spread to spring break destinations, and variants from spring break destinations can spread to universities and surrounding communities. Therefore, it is critical to implement SARS-CoV-2 variant surveillance and testing strategies to limit community spread before and after spring break to mitigate virus transmission and facilitate universities safely returning to in-person teaching. METHODS We examined the SARS-CoV-2 positivity rate and changes in variant lineages before and after the university spring break for two consecutive years. 155 samples were sequenced across four time periods: pre- and post-spring break 2021 and pre- and post-spring break 2022; following whole genome sequencing, samples were assigned clades. The clades were then paired with positivity and testing data from over 50,000 samples. RESULTS In 2021, the number of variants in the observed population increased from four to nine over spring break, with variants of concern being responsible for most of the cases; Alpha percent composition increased from 22.2% to 56.4%. In 2022, the number of clades in the population increased only from two to three, all of which were Omicron or a sub-lineage of Omicron. However, phylogenetic analysis showed the emergence of distantly related sub-lineages. 2022 saw a greater increase in positivity than 2021, which coincided with a milder mitigation strategy. Analysis of social media data provided insight into student travel destinations and how those travel events may have impacted spread. CONCLUSIONS We show the role that repetitive testing can play in transmission mitigation, reducing community spread, and maintaining in-person education. We identified that distantly related lineages were brought to the area after spring break travel regardless of the presence of a dominant variant of concern.
Collapse
Affiliation(s)
- Justin M. Napolitano
- Clemson University, Research and Education in Disease Diagnostics and Intervention Clemson, Clemson, South Carolina, United States of America
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Sujata Srikanth
- Clemson University, Research and Education in Disease Diagnostics and Intervention Clemson, Clemson, South Carolina, United States of America
| | - Rooksana E. Noorai
- Clemson University, Clemson University Genomics and Bioinformatics Facility, Clemson, South Carolina, United States of America
| | - Stevin Wilson
- Clemson University, Clemson University Genomics and Bioinformatics Facility, Clemson, South Carolina, United States of America
- Illumina, San Diego, California, United States of America
| | - Kaitlyn E. Williams
- Clemson University, Clemson University Genomics and Bioinformatics Facility, Clemson, South Carolina, United States of America
- Clemson University, Center for Human Genetics, Greenwood, South Carolina, United States of America
| | - Ramses A. Rosales-Garcia
- Clemson University, Clemson University Genomics and Bioinformatics Facility, Clemson, South Carolina, United States of America
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Brian Krueger
- Labcorp, Burlington, North Carolina, United States of America
| | - Chloe Emerson
- Clemson University, Research and Education in Disease Diagnostics and Intervention Clemson, Clemson, South Carolina, United States of America
| | - Scott Parker
- Labcorp, Burlington, North Carolina, United States of America
| | - John Pruitt
- Labcorp, Burlington, North Carolina, United States of America
| | - Rachel Dango
- Labcorp, Burlington, North Carolina, United States of America
| | - Lax Iyer
- Labcorp, Burlington, North Carolina, United States of America
| | - Adib Shafi
- Labcorp, Burlington, North Carolina, United States of America
| | - Iromi Jayawardena
- Department of Public Health Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Christopher L. Parkinson
- Clemson University, Clemson University Genomics and Bioinformatics Facility, Clemson, South Carolina, United States of America
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Christopher McMahan
- Clemson University, School of Mathematical and Statistical Sciences, Clemson, South Carolina, United States of America
| | - Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, South Carolina, United States of America
- Clemson University, Center for Public Health Modeling and Response, Clemson, South Carolina, United States of America
| | - Congyue Annie Peng
- Clemson University, Research and Education in Disease Diagnostics and Intervention Clemson, Clemson, South Carolina, United States of America
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Delphine Dean
- Clemson University, Research and Education in Disease Diagnostics and Intervention Clemson, Clemson, South Carolina, United States of America
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
26
|
Ren K, Zhou F, Zhang F, Yin M, Zhu Y, Wang S, Chen Y, Huang T, Wu Z, He J, Zhang A, Guo C, Huang Z. Discovery and structural mechanism of DNA endonucleases guided by RAGATH-18-derived RNAs. Cell Res 2024; 34:370-385. [PMID: 38575718 PMCID: PMC11061315 DOI: 10.1038/s41422-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/09/2024] [Indexed: 04/06/2024] Open
Abstract
CRISPR-Cas systems and IS200/IS605 transposon-associated TnpBs have been utilized for the development of genome editing technologies. Using bioinformatics analysis and biochemical experiments, here we present a new family of RNA-guided DNA endonucleases. Our bioinformatics analysis initially identifies the stable co-occurrence of conserved RAGATH-18-derived RNAs (reRNAs) and their upstream IS607 TnpBs with an average length of 390 amino acids. IS607 TnpBs form programmable DNases through interaction with reRNAs. We discover the robust dsDNA interference activity of IS607 TnpB systems in bacteria and human cells. Further characterization of the Firmicutes bacteria IS607 TnpB system (ISFba1 TnpB) reveals that its dsDNA cleavage activity is remarkably sensitive to single mismatches between the guide and target sequences in human cells. Our findings demonstrate that a length of 20 nt in the guide sequence of reRNA achieves the highest DNA cleavage activity for ISFba1 TnpB. A cryo-EM structure of the ISFba1 TnpB effector protein bound by its cognate RAGATH-18 motif-containing reRNA and a dsDNA target reveals the mechanisms underlying reRNA recognition by ISFba1 TnpB, reRNA-guided dsDNA targeting, and the sensitivity of the ISFba1 TnpB system to base mismatches between the guide and target DNA. Collectively, this study identifies the IS607 TnpB family of compact and specific RNA-guided DNases with great potential for application in gene editing.
Collapse
Affiliation(s)
- Kuan Ren
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Mingyu Yin
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Shouyu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zixuan Wu
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiale He
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- New Cornerstone Science Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Li Y, Ru B, Zhang Y, Wan D. The complete mitochondrial genome of Hypsipetes amaurotis (Passeriformes: Pycnonotidae). Mitochondrial DNA B Resour 2024; 9:483-487. [PMID: 38617815 PMCID: PMC11011232 DOI: 10.1080/23802359.2024.2338266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brown-eared bulbul (Hypsipetes amaurotis) is a medium-sized songbird native to East Asia and characterized by its prominent reddish-brown ear-coverts. Previous studies on it have primarily been from the taxonomic and morphological aspects, with limited research in the realm of molecular biology. In this study, we sequenced and annotated the complete mitochondrial genome of H. amaurotis, which was the first reported complete mitogenome of the genus Hypsipetes. The mitogenome of H. amaurotis is 17,871 bp in length and was predicted to encode 37 typical mitochondrial genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs). Specifically, this mitogenome contains two D-loop control regions that are of similar length and sequencing pattern. A total of 8 Pycnonotidae and six outgroup taxa were used to determine the phylogenetic placement with two methods: Maximum Likelihood Approximation (IQ-TREE) and Bayesian inference (MrBayes). Our findings reveal that H. amaurotis is phylogenetically closely related to Ixos mcclellandii. The outcomes are generally consistent with the phylogenetic trees constructed in previous studies. The data gathered from this research provides valuable insights for future genomic investigations into the evolution, ecology, and conservation of this species.
Collapse
Affiliation(s)
- Yanze Li
- School of Life Sciences, Liaoning University, Liaoning, China
| | - Bingyi Ru
- School of Life Sciences, Liaoning University, Liaoning, China
| | - Yuan Zhang
- School of Life Sciences, Liaoning University, Liaoning, China
| | - Dongmei Wan
- School of Life Sciences, Liaoning University, Liaoning, China
| |
Collapse
|
28
|
Flores KA, Pérez-Moreno JL, Durica DS, Mykles DL. Phylogenetic and transcriptomic characterization of insulin and growth factor receptor tyrosine kinases in crustaceans. Front Endocrinol (Lausanne) 2024; 15:1379231. [PMID: 38638139 PMCID: PMC11024359 DOI: 10.3389/fendo.2024.1379231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.
Collapse
Affiliation(s)
- Kaylie A. Flores
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - David S. Durica
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, United States
| |
Collapse
|
29
|
Smith T, Olagunju T, Rosen B, Neibergs H, Becker G, Davenport K, Elsik C, Hadfield T, Koren S, Kuhn K, Rhie A, Shira K, Skibiel A, Stegemiller M, Thorne J, Villamediana P, Cockett N, Murdoch B. The first complete T2T Assemblies of Cattle and Sheep Y-Chromosomes uncover remarkable divergence in structure and gene content. RESEARCH SQUARE 2024:rs.3.rs-4033388. [PMID: 38712074 PMCID: PMC11071540 DOI: 10.21203/rs.3.rs-4033388/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. We assembled complete and gapless telomere to telomere (T2T) Y chromosomes for these species. The pseudo-autosomal regions were similar in length, but the total chromosome size was substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity was accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 18MYA. The centromeres also differed dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosome have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.
Collapse
Affiliation(s)
- Timothy Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC)
| | | | | | | | | | | | | | | | - Sergey Koren
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health
| | | | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kfoury B, Rodrigues WFC, Kim SJ, Brandizzi F, Del-Bem LE. Multiple horizontal gene transfer events have shaped plant glycosyl hydrolase diversity and function. THE NEW PHYTOLOGIST 2024; 242:809-824. [PMID: 38417454 DOI: 10.1111/nph.19595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/15/2024] [Indexed: 03/01/2024]
Abstract
Plant glycosyl hydrolases (GHs) play a crucial role in selectively breaking down carbohydrates and glycoconjugates during various cellular processes, such as reserve mobilization, pathogen defense, and modification/disassembly of the cell wall. In this study, we examined the distribution of GH genes in the Archaeplastida supergroup, which encompasses red algae, glaucophytes, and green plants. We identified that the GH repertoire expanded from a few tens of genes in early archaeplastidians to over 400 genes in modern angiosperms, spanning 40 GH families in land plants. Our findings reveal that major evolutionary transitions were accompanied by significant changes in the GH repertoire. Specifically, we identified at least 23 GH families acquired by green plants through multiple horizontal gene transfer events, primarily from bacteria and fungi. We found a significant shift in the subcellular localization of GH activity during green plant evolution, with a marked increase in extracellular-targeted GH proteins associated with the diversification of plant cell wall polysaccharides and defense mechanisms against pathogens. In conclusion, our study sheds light on the macroevolutionary processes that have shaped the GH repertoire in plants, highlighting the acquisition of GH families through horizontal transfer and the role of GHs in plant adaptation and defense mechanisms.
Collapse
Affiliation(s)
- Beatriz Kfoury
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Wenderson Felipe Costa Rodrigues
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Graduate Program in Plant Biology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Sang-Jin Kim
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Luiz-Eduardo Del-Bem
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Graduate Program in Plant Biology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
31
|
Peng L, Yang F, Shi J, Pan L, Liu Y, Mao D, Luo Y. Molecular characterization of human bocavirus in municipal wastewaters using amplicon target sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170674. [PMID: 38316309 DOI: 10.1016/j.scitotenv.2024.170674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Human bocavirus (HBoV) is an emerging health concern worldwide, associated with range of clinical manifestations, including gastroenteritis and respiratory infections. Therefore, it is crucial to comprehend and minimize their prevalence in different systems. In this study, we conducted regular sampling throughout the year in two different sizes and work processes of wastewater treatment plants (WWTPs) in Tianjin, China. Our objective was to investigate the occurrence, prevalence, and endurance of HBoV in wastewater, while also evaluating the efficacy of amplicon target sequencing in directly detecting HBoV in wastewater. At two WWTPs, HBoV2 (45.51 %-45.67 %) and HBoV3 (38.30 %-40.25 %) were the most common genotypes identified, and the mean concentration range of HBoV was 2.54-7.40 log10 equivalent copies/l as determined by multiplex real-time quantitative PCR assay. A positive rate of HBoV was found in 96.6 % (29/30) samples of A-WWTP, and 96.6 % (26/27) samples of B-WWTP. The phylogenetic analysis indicated that the nucleotide similarity between the HBoV DNA sequences to the reference HBoV sequences published globally ranged from 90.14 %-100 %. A significant variation in the read abundance of HBoV2 and HBoV3 in two wastewater treatment plants (p < 0.05) was detected, specifically in the Winter and Summer seasons. The findings revealed a strong correlation between the genotypes detected in wastewater and the clinical data across various regions in China. In addition, it is worth mentioning that HBoV4 was exclusively detected in wastewater and not found in the clinical samples from patients. This study highlights the high prevalence of human bocavirus in municipal wastewater. This finding illustrates that amplicon target sequencing can amplify a wide variety of viruses, enabling the identification of newly discovered viruses.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Liuzhu Pan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yixin Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource reuse, School of the Environment, Nanjing university, Nanjing 210093, China.
| |
Collapse
|
32
|
Moawad AS, Wang F, Zheng Y, Chen C, Saleh AA, Hou J, Song C. Evolution of Endogenous Retroviruses in the Subfamily of Caprinae. Viruses 2024; 16:398. [PMID: 38543763 PMCID: PMC10975924 DOI: 10.3390/v16030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024] Open
Abstract
The interest in endogenous retroviruses (ERVs) has been fueled by their impact on the evolution of the host genome. In this study, we used multiple pipelines to conduct a de novo exploration and annotation of ERVs in 13 species of the Caprinae subfamily. Through analyses of sequence identity, structural organization, and phylogeny, we defined 28 ERV groups within Caprinae, including 19 gamma retrovirus groups and 9 beta retrovirus groups. Notably, we identified four recent and potentially active groups prevalent in the Caprinae genomes. Additionally, our investigation revealed that most long noncoding genes (lncRNA) and protein-coding genes (PC) contain ERV-derived sequences. Specifically, we observed that ERV-derived sequences were present in approximately 75% of protein-coding genes and 81% of lncRNA genes in sheep. Similarly, in goats, ERV-derived sequences were found in approximately 74% of protein-coding genes and 75% of lncRNA genes. Our findings lead to the conclusion that the majority of ERVs in the Caprinae genomes can be categorized as fossils, representing remnants of past retroviral infections that have become permanently integrated into the genomes. Nevertheless, the identification of the Cap_ERV_20, Cap_ERV_21, Cap_ERV_24, and Cap_ERV_25 groups indicates the presence of relatively recent and potentially active ERVs in these genomes. These particular groups may contribute to the ongoing evolution of the Caprinae genome. The identification of putatively active ERVs in the Caprinae genomes raises the possibility of harnessing them for future genetic marker development.
Collapse
Affiliation(s)
- Ali Shoaib Moawad
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Fengxu Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (F.W.); (J.H.)
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
| | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City 11865, Egypt
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (F.W.); (J.H.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (A.S.M.); (Y.Z.); (C.C.); (A.A.S.)
| |
Collapse
|
33
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
34
|
Becken BA, Lamson DM, Gonzalez G, Patel S, St. George K, Kajon AE. A Fulminant Case of Adenovirus Genotype C108 Infection in a Pediatric Stem Cell Transplant Recipient with x-Linked Lymphoproliferative Syndrome Type 1. Viruses 2024; 16:137. [PMID: 38257837 PMCID: PMC10819400 DOI: 10.3390/v16010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
A 3-year-old male with X-linked lymphoproliferative syndrome type 1 underwent an unrelated umbilical cord blood transplant (UUCBT). The week prior to transplant the patient tested positive for adenovirus (HAdV) with a viral load of <190 copies/mL and was started on cidofovir. UUCBT proceeded as scheduled, and the patient engrafted on day +19. The patient's HAdV load in serum continued to rise with resulting hepatic dysfunction, despite ongoing therapy with cidofovir and HAdV specific T-cell infusions. The patient died 6 months after transplantation having never cleared the virus. Next generation whole genome sequencing and sequence data analyses identified an intertypic recombinant HAdV-C P1H2F2 closely related (99.6% similarity) to genotype C108 in the isolates from three blood specimens obtained during the last week of life. Incidentally, the de novo assembly strategy enabled the detection of an adeno-associated virus type 2 (AAV2) genome in the DNA purified from the plasma isolates. Proteotyping analysis revealed minor differences in the predicted amino acid sequences for E1A, E1B 19K, E1B 55K, DNA polymerase, penton base, and fiber. None of the mutations previously described for HAdV-C5 variants resistant to cidofovir were identified. In silico restriction enzyme analysis revealed a distinct Sac I profile for the identified virus, supporting its designation as a C108 variant.
Collapse
Affiliation(s)
- Bradford A. Becken
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.A.B.); (S.P.)
| | - Daryl M. Lamson
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (D.M.L.); (K.S.G.)
| | - Gabriel Gonzalez
- UCD National Virus Reference Laboratory, Dublin, Ireland;
- Japan Initiative for World-Leading Vaccine Research and Development Centers, Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Sachit Patel
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.A.B.); (S.P.)
| | - Kirsten St. George
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (D.M.L.); (K.S.G.)
| | - Adriana E. Kajon
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| |
Collapse
|
35
|
Kozma MT, Pérez-Moreno JL, Gandhi NS, Hernandez Jeppesen L, Durica DS, Ventura T, Mykles DL. In silico analysis of crustacean hyperglycemic hormone family G protein-coupled receptor candidates. Front Endocrinol (Lausanne) 2024; 14:1322800. [PMID: 38298185 PMCID: PMC10828670 DOI: 10.3389/fendo.2023.1322800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024] Open
Abstract
Ecdysteroid molting hormone synthesis is directed by a pair of molting glands or Y-organs (YOs), and this synthesis is inhibited by molt-inhibiting hormone (MIH). MIH is a member of the crustacean hyperglycemic hormone (CHH) neuropeptide superfamily, which includes CHH and insect ion transport peptide (ITP). It is hypothesized that the MIH receptor is a Class A (Rhodopsin-like) G protein-coupled receptor (GPCR). The YO of the blackback land crab, Gecarcinus lateralis, expresses 49 Class A GPCRs, three of which (Gl-CHHR-A9, -A10, and -A12) were provisionally assigned as CHH-like receptors. CrusTome, a transcriptome database assembled from 189 crustaceans and 12 ecdysozoan outgroups, was used to deorphanize candidate MIH/CHH GPCRs, relying on sequence homology to three functionally characterized ITP receptors (BNGR-A2, BNGR-A24, and BNGR-A34) in the silk moth, Bombyx mori. Phylogenetic analysis and multiple sequence alignments across major taxonomic groups revealed extensive expansion and diversification of crustacean A2, A24, and A34 receptors, designated CHH Family Receptor Candidates (CFRCs). The A2 clade was divided into three subclades; A24 clade was divided into five subclades; and A34 was divided into six subclades. The subclades were distinguished by conserved motifs in extracellular loop (ECL) 2 and ECL3 in the ligand-binding region. Eleven of the 14 subclades occurred in decapod crustaceans. In G. lateralis, seven CFRC sequences, designated Gl-CFRC-A2α1, -A24α, -A24β1, -A24β2, -A34α2, -A34β1, and -A34β2, were identified; the three A34 sequences corresponded to Gl-GPCR-A12, -A9, and A10, respectively. ECL2 in all the CFRC sequences had a two-stranded β-sheet structure similar to human Class A GPCRs, whereas the ECL2 of decapod CFRC-A34β1/β2 had an additional two-stranded β-sheet. We hypothesize that this second β-sheet on ECL2 plays a role in MIH/CHH binding and activation, which will be investigated further with functional assays.
Collapse
Affiliation(s)
- Mihika T. Kozma
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Neha S. Gandhi
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - David S. Durica
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tomer Ventura
- Centre for BioInnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Coastal and Marine Sciences Institute, University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
36
|
Guo M, Addy GA, Yang N, Asare E, Wu H, Saleh AA, Shi S, Gao B, Song C. PiggyBac Transposon Mining in the Small Genomes of Animals. BIOLOGY 2023; 13:24. [PMID: 38248455 PMCID: PMC10813416 DOI: 10.3390/biology13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
TEs, including DNA transposons, are major contributors of genome expansions, and have played a very significant role in shaping the evolution of animal genomes, due to their capacity to jump from one genomic position to the other. In this study, we investigated the evolution landscapes of PB transposons, including their distribution, diversity, activity and structure organization in 79 species of small (compact) genomes of animals comprising both vertebrate and invertebrates. Overall, 212 PB transposon types were detected from almost half (37) of the total number of the small genome species (79) investigated. The detected PB transposon types, which were unevenly distributed in various genera and phyla, have been classified into seven distinct clades or families with good bootstrap support (>80%). The PB transposon types that were identified have a length ranging from 1.23 kb to 9.51 kb. They encode transposases of approximately ≥500 amino acids in length, and possess terminal inverted repeats (TIRs) ranging from 4 bp to 24 bp. Though some of the transposon types have long TIRs (528 bp), they still maintain the consistent and reliable 4 bp target site duplication (TSD) of TTAA. However, PiggyBac-2_Cvir transposon originating from the Crassostrea virginica species exhibits a unique TSD of TATG. The TIRs of the transposons in all the seven families display high divergence, with a highly conserved 5' end motif. The core transposase domains (DDD) were better conserved among the seven different families compared to the other protein domains, which were less prevalent in the vertebrate genome. The divergent evolution dynamics analysis also indicated that the majority of the PB transposon types identified in this study are either relatively young or old, with some being active. Additionally, numerous invasions of PB transposons were found in the genomes of both vertebrate and invertebrate animals. The data reveals that the PB superfamily is widely distributed in these species. PB transposons exhibit high diversity and activity in the small genomes of animals, and might play a crucial role in shaping the evolution of these small genomes of animals.
Collapse
Affiliation(s)
- Mengke Guo
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - George A. Addy
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Naisu Yang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Emmanuel Asare
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Han Wu
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Ahmed A. Saleh
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City 11865, Egypt
| | - Shasha Shi
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (M.G.); (G.A.A.); (N.Y.); (E.A.); (A.A.S.); (S.S.); (B.G.)
| |
Collapse
|
37
|
Tan X, Qi J, Liu Z, Fan P, Liu G, Zhang L, Shen Y, Li J, Roos C, Zhou X, Li M. Phylogenomics Reveals High Levels of Incomplete Lineage Sorting at the Ancestral Nodes of the Macaque Radiation. Mol Biol Evol 2023; 40:msad229. [PMID: 37823401 PMCID: PMC10638670 DOI: 10.1093/molbev/msad229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
The genus Macaca includes 23 species assigned into 4 to 7 groups. It exhibits the largest geographic range and represents the most successful example of adaptive radiation of nonhuman primates. However, intrageneric phylogenetic relationships among species remain controversial and have not been resolved so far. In this study, we conducted a phylogenomic analysis on 16 newly generated and 8 published macaque genomes. We found strong evidence supporting the division of this genus into 7 species groups. Incomplete lineage sorting (ILS) was the primary factor contributing to the discordance observed among gene trees; however, we also found evidence of hybridization events, specifically between the ancestral arctoides/sinica and silenus/nigra lineages that resulted in the hybrid formation of the fascicularis/mulatta group. Combined with fossil data, our phylogenomic data were used to establish a scenario for macaque radiation. These findings provide insights into ILS and potential ancient introgression events that were involved in the radiation of macaques, which will lead to a better understanding of the rapid speciation occurring in nonhuman primates.
Collapse
Affiliation(s)
- Xinxin Tan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing 100049, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
Ye H, Fan J, Hou Y, Yue H, Ruan R, Li S, Hu C, Xie Y, Li C. Chromosome-level genome assembly of the largefin longbarbel catfish ( Hemibagrus macropterus). Front Genet 2023; 14:1297119. [PMID: 38028621 PMCID: PMC10646426 DOI: 10.3389/fgene.2023.1297119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The largefin longbarbel catfish, Hemibagrus macropterus, is an economically important fish species in southwestern China, with males growing faster than females. This study presents a high-quality chromosome-level genome assembly of the largefin longbarbel catfish, generated by integrating Illumina short reads, PacBio HiFi long reads, and Hi-C data. The assembled genome size was 858.5 Mb, with a contig and scaffold N50 of 5.8 Mb and 28.4 Mb, respectively. A total of 656 contigs were successfully anchored to 30 pseudochromosomes with a BUSCO score of 97.7%, consistent with the number of chromosomes analyzed by karyotype. The genome contained 29.5% repeat sequences, and a predicted total of 26,613 protein-coding genes, of which 25,769 (96.8%) were functionally annotated in different databases. Evolutionary analysis showed that H. macropterus was most closely related to H. wyckioides, with a divergence time of approximately 16.3 million years. Chromosomal syntenic relationships among H. macropterus, H. wyckioides, and Pelteobagrus fulvidraco revealed a one-to-one relationship for most chromosomes, except for break, fission, and inversion of some chromosomes. The first high-quality reference genome will not only provide a valuable genetic resource for the study of sex determination mechanisms and genetic breeding of largefin longbarbel catfish, but also contribute to comparative analyses of genome and chromosome evolution within Siluriformes.
Collapse
Affiliation(s)
- Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jiahui Fan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yanling Hou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Shuang Li
- Chongqing Fishery Sciences Research Institute, Chongqing, China
| | - Chongjiang Hu
- Chongqing Fishery Sciences Research Institute, Chongqing, China
| | - Yong Xie
- Chongqing Fishery Sciences Research Institute, Chongqing, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
39
|
Kawamura Y, Ishida C, Miyata R, Miyata A, Hayashi S, Fujinami D, Ito S, Nakano S. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction. Commun Chem 2023; 6:200. [PMID: 37737277 PMCID: PMC10517122 DOI: 10.1038/s42004-023-01005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Production of D-amino acids (D-AAs) on a large-scale enables to provide precursors of peptide therapeutics. In this study, we designed a novel L-amino acid oxidase, HTAncLAAO2, by ancestral sequence reconstruction, exhibiting high thermostability and long-term stability. The crystal structure of HTAncLAAO2 was determined at 2.2 Å by X-ray crystallography, revealing that the enzyme has an octameric form like a "ninja-star" feature. Enzymatic property analysis demonstrated that HTAncLAAO2 exhibits three-order larger kcat/Km values towards four L-AAs (L-Phe, L-Leu, L-Met, and L-Ile) than that of L-Trp. Through screening the variants, we obtained the HTAncLAAO2(W220A) variant, which shows a > 6-fold increase in kcat value toward L-Trp compared to the original enzyme. This variant applies to synthesizing enantio-pure D-Trp derivatives from L- or rac-forms at a preparative scale. Given its excellent properties, HTAncLAAO2 would be a starting point for designing novel oxidases with high activity toward various amines and AAs.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Chiharu Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryo Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Azusa Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- PREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
40
|
Ritsch M, Cassman NA, Saghaei S, Marz M. Navigating the Landscape: A Comprehensive Review of Current Virus Databases. Viruses 2023; 15:1834. [PMID: 37766241 PMCID: PMC10537806 DOI: 10.3390/v15091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are abundant and diverse entities that have important roles in public health, ecology, and agriculture. The identification and surveillance of viruses rely on an understanding of their genome organization, sequences, and replication strategy. Despite technological advancements in sequencing methods, our current understanding of virus diversity remains incomplete, highlighting the need to explore undiscovered viruses. Virus databases play a crucial role in providing access to sequences, annotations and other metadata, and analysis tools for studying viruses. However, there has not been a comprehensive review of virus databases in the last five years. This study aimed to fill this gap by identifying 24 active virus databases and included an extensive evaluation of their content, functionality and compliance with the FAIR principles. In this study, we thoroughly assessed the search capabilities of five database catalogs, which serve as comprehensive repositories housing a diverse array of databases and offering essential metadata. Moreover, we conducted a comprehensive review of different types of errors, encompassing taxonomy, names, missing information, sequences, sequence orientation, and chimeric sequences, with the intention of empowering users to effectively tackle these challenges. We expect this review to aid users in selecting suitable virus databases and other resources, and to help databases in error management and improve their adherence to the FAIR principles. The databases listed here represent the current knowledge of viruses and will help aid users find databases of interest based on content, functionality, and scope. The use of virus databases is integral to gaining new insights into the biology, evolution, and transmission of viruses, and developing new strategies to manage virus outbreaks and preserve global health.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Noriko A. Cassman
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Shahram Saghaei
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
41
|
Puzakov MV, Puzakova LV, Shi S, Cheresiz SV. maT and mosquito transposons in cnidarians: evolutionary history and intraspecific differences. Funct Integr Genomics 2023; 23:244. [PMID: 37454326 DOI: 10.1007/s10142-023-01175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Transposable elements exert a significant effect on the size and structure of eukaryotic genomes. Tc1/mariner superfamily elements represent the widely distributed and highly variable group of DNA transposons. Tc1/mariner elements include TLE/DD34-38E, MLE/DD34D, maT/DD37D, Visitor/DD41D, Guest/DD39D, mosquito/DD37E, and L18/DD37E families, all of which are well or less scarcely studied. However, more detailed research into the patterns of prevalence and diversity of Tc1/mariner transposons enables one to better understand the coevolution of the TEs and the eukaryotic genomes. We performed a detailed analysis of the maT/DD37D family in Cnidaria. The study of 77 genomic assemblies demonstrated that maT transposons are found in a limited number of cnidarian species belonging to classes Cubozoa (1 species), Hydrozoa (3 species) и Scyphozoa (5 species) only. The identified TEs were classified into 5 clades, with the representatives from Pelagiidae (class Scyphozoa) forming a separate clade of maT transposons, which has never been described previously. The potentially functional copies of maT transposons were identified in the hydrae. The phylogenetic analysis and the studies of distribution among the taxons and the evolutionary dynamics of the elements suggest that maT transposons of the cnidarians are the descendants of several independent invasion events occurring at different periods of time. We also established that the TEs of mosquito/DD37E family are found in Hydridae (class Hydrozoa) only. A comparison of maT and mosquito prevalence in two genomic assemblies of Hydra viridissima revealed obvious differences, thus demonstrating that each individual organism might carry a unique mobilome pattern. The results of the presented research make us better understand the diversity and evolution of Tc1/mariner transposons and their effect on the eukaryotic genomes.
Collapse
Affiliation(s)
- Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky Eve., 38, Moscow, Russia, 119991.
| | - Lyudmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky Eve., 38, Moscow, Russia, 119991
| | - Shasha Shi
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sergey V Cheresiz
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova st., 1, Novosibirsk, Russia, 630090
- State Scientific Research Institute of Physiology and Basic Medicine, P.O. Box 237, Novosibirsk, Russia, 630117
| |
Collapse
|
42
|
Pichard-Kostuch A, Da Cunha V, Oberto J, Sauguet L, Basta T. The universal Sua5/TsaC family evolved different mechanisms for the synthesis of a key tRNA modification. Front Microbiol 2023; 14:1204045. [PMID: 37415821 PMCID: PMC10321239 DOI: 10.3389/fmicb.2023.1204045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
TsaC/Sua5 family of enzymes catalyzes the first step in the synthesis of N6-threonyl-carbamoyl adenosine (t6A) one of few truly ubiquitous tRNA modifications important for translation accuracy. TsaC is a single domain protein while Sua5 proteins contains a TsaC-like domain and an additional SUA5 domain of unknown function. The emergence of these two proteins and their respective mechanisms for t6A synthesis remain poorly understood. Here, we performed phylogenetic and comparative sequence and structure analysis of TsaC and Sua5 proteins. We confirm that this family is ubiquitous but the co-occurrence of both variants in the same organism is rare and unstable. We further find that obligate symbionts are the only organisms lacking sua5 or tsaC genes. The data suggest that Sua5 was the ancestral version of the enzyme while TsaC arose via loss of the SUA5 domain that occurred multiple times in course of evolution. Multiple losses of one of the two variants in combination with horizontal gene transfers along a large range of phylogenetic distances explains the present day patchy distribution of Sua5 and TsaC. The loss of the SUA5 domain triggered adaptive mutations affecting the substrate binding in TsaC proteins. Finally, we identified atypical Sua5 proteins in Archaeoglobi archaea that seem to be in the process of losing the SUA5 domain through progressive gene erosion. Together, our study uncovers the evolutionary path for emergence of these homologous isofunctional enzymes and lays the groundwork for future experimental studies on the function of TsaC/Sua5 proteins in maintaining faithful translation.
Collapse
Affiliation(s)
- Adeline Pichard-Kostuch
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Violette Da Cunha
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Oberto
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Tamara Basta
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
43
|
Chen J, Wang Z, Tan K, Huang W, Shi J, Li T, Hu J, Wang K, Wang C, Xin B, Zhao H, Song W, Hufford MB, Schnable JC, Jin W, Lai J. A complete telomere-to-telomere assembly of the maize genome. Nat Genet 2023:10.1038/s41588-023-01419-6. [PMID: 37322109 DOI: 10.1038/s41588-023-01419-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
A complete telomere-to-telomere (T2T) finished genome has been the long pursuit of genomic research. Through generating deep coverage ultralong Oxford Nanopore Technology (ONT) and PacBio HiFi reads, we report here a complete genome assembly of maize with each chromosome entirely traversed in a single contig. The 2,178.6 Mb T2T Mo17 genome with a base accuracy of over 99.99% unveiled the structural features of all repetitive regions of the genome. There were several super-long simple-sequence-repeat arrays having consecutive thymine-adenine-guanine (TAG) tri-nucleotide repeats up to 235 kb. The assembly of the entire nucleolar organizer region of the 26.8 Mb array with 2,974 45S rDNA copies revealed the enormously complex patterns of rDNA duplications and transposon insertions. Additionally, complete assemblies of all ten centromeres enabled us to precisely dissect the repeat compositions of both CentC-rich and CentC-poor centromeres. The complete Mo17 genome represents a major step forward in understanding the complexity of the highly recalcitrant repetitive regions of higher plant genomes.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Zijian Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Junpeng Shi
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Tong Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jiang Hu
- Grandomics Biosciences, Wuhan, P. R. China
| | - Kai Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Chao Wang
- Grandomics Biosciences, Wuhan, P. R. China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
- Sanya Institute of China Agricultural University, Sanya, P. R. China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China.
| |
Collapse
|
44
|
Santus L, Garriga E, Deorowicz S, Gudyś A, Notredame C. Towards the accurate alignment of over a million protein sequences: Current state of the art. Curr Opin Struct Biol 2023; 80:102577. [PMID: 37012200 DOI: 10.1016/j.sbi.2023.102577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
Large-scale genomics requires highly scalable and accurate multiple sequence alignment methods. Results collected over this last decade suggest accuracy loss when scaling up over a few thousand sequences. This issue has been actively addressed with a number of innovative algorithmic solutions that combine low-level hardware optimization with novel higher-level heuristics. This review provides an extensive critical overview of these recent methods. Using established reference datasets we conclude that albeit significant progress has been achieved, a unified framework able to consistently and efficiently produce high-accuracy large-scale multiple alignments is still lacking.
Collapse
|
45
|
Li X, Guan Z, Wang F, Wang Y, Asare E, Shi S, Lin Z, Ji T, Gao B, Song C. Evolution of piggyBac Transposons in Apoidea. INSECTS 2023; 14:402. [PMID: 37103217 PMCID: PMC10140906 DOI: 10.3390/insects14040402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
In this study, we investigated the presence of piggyBac (PB) transposons in 44 bee genomes from the Apoidea order, which is a superfamily within the Hymenoptera, which includes a large number of bee species crucial for pollination. We annotated the PB transposons in these 44 bee genomes and examined their evolution profiles, including structural characteristics, distribution, diversity, activity, and abundance. The mined PB transposons were divided into three clades, with uneven distribution in each genus of PB transposons in Apoidea. The complete PB transposons we discovered are around 2.23-3.52 kb in length and encode transposases of approximately 580 aa, with terminal inverted repeats (TIRs) of about 14 bp and 4 bp (TTAA) target-site duplications. Long TIRs (200 bp, 201 bp, and 493 bp) were also detected in some species of bees. The DDD domains of the three transposon types were more conserved, while the other protein domains were less conserved. Generally, most PB transposons showed low abundance in the genomes of Apoidea. Divergent evolution dynamics of PB were observed in the genomes of Apoidea. PB transposons in some identified species were relatively young, whiles others were older and with some either active or inactive. In addition, multiple invasions of PB were also detected in some genomes of Apoidea. Our findings highlight the contribution of PB transposons to genomic variation in these species and suggest their potential as candidates for future gene transfer tools.
Collapse
|
46
|
Singh P, Taborsky M, Peichel CL, Sturmbauer C. Genomic basis of Y-linked dwarfism in cichlids pursuing alternative reproductive tactics. Mol Ecol 2023; 32:1592-1607. [PMID: 36588349 DOI: 10.1111/mec.16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
Sexually antagonistic selection, which favours different optima in males and females, is predicted to play an important role in the evolution of sex chromosomes. Body size is a sexually antagonistic trait in the shell-brooding cichlid fish Lamprologous callipterus, as "bourgeois" males must be large enough to carry empty snail shells to build nests whereas females must be small enough to fit into shells for breeding. In this species, there is also a second male morph: smaller "dwarf" males employ an alternative reproductive strategy by wriggling past spawning females into shells to fertilize eggs. L. callipterus male morphology is passed strictly from father to son, suggesting Y-linkage. However, sex chromosomes had not been previously identified in this species, and the genomic basis of size dimorphism was unknown. Here we used whole-genome sequencing to identify a 2.4-Mb sex-linked region on scaffold_23 with reduced coverage and single nucleotide polymorphism density in both male morphs compared to females. Within this sex region, distinct Y-haplotypes delineate the two male morphs, and candidate genes for body size (GHRHR, a known dwarfism gene) and sex determination (ADCYAP1R1) are in high linkage disequilibrium. Because differences in body size between females and males are under strong selection in L. callipterus, we hypothesize that sexual antagonism over body size initiated early events in sex chromosome evolution, followed by Y divergence to give rise to bourgeois and dwarf male reproductive strategies. Our results are consistent with the hypothesis that sexually antagonistic traits should be linked to young sex chromosomes.
Collapse
Affiliation(s)
- Pooja Singh
- Institute of Biology, University of Graz, Graz, Austria
- Aquatic Ecology Division, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Michael Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Switzerland
- Max Planck Institute of Animal Behavior, Constance, Germany
- Institute for Advanced Study (Wissenschaftskolleg) Berlin, Berlin, Germany
| | - Catherine L Peichel
- Evolutionary Ecology Division, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | |
Collapse
|
47
|
Kronen M, Vázquez-Campos X, Wilkins MR, Lee M, Manefield MJ. Evidence for a Putative Isoprene Reductase in Acetobacterium wieringae. mSystems 2023; 8:e0011923. [PMID: 36943133 PMCID: PMC10134865 DOI: 10.1128/msystems.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Recent discoveries of isoprene-metabolizing microorganisms suggest they might play an important role in the global isoprene budget. Under anoxic conditions, isoprene can be used as an electron acceptor and is reduced to methylbutene. This study describes the proteogenomic profiling of an isoprene-reducing bacterial culture to identify organisms and genes responsible for the isoprene hydrogenation reaction. A metagenome-assembled genome (MAG) of the most abundant (89% relative abundance) lineage in the enrichment, Acetobacterium wieringae, was obtained. Comparative proteogenomics and reverse transcription-PCR (RT-PCR) identified a putative five-gene operon from the A. wieringae MAG upregulated during isoprene reduction. The operon encodes a putative oxidoreductase, three pleiotropic nickel chaperones (2 × HypA, HypB), and one 4Fe-4S ferredoxin. The oxidoreductase is proposed as the putative isoprene reductase with a binding site for NADH, flavin adenine dinucleotide (FAD), two pairs of canonical [4Fe-4S] clusters, and a putative iron-sulfur cluster site in a Cys6-bonding environment. Well-studied Acetobacterium strains, such as A. woodii DSM 1030, A. wieringae DSM 1911, or A. malicum DSM 4132, do not encode the isoprene-regulated operon but encode, like many other bacteria, a homolog of the putative isoprene reductase (~47 to 49% amino acid sequence identity). Uncharacterized homologs of the putative isoprene reductase are observed across the Firmicutes, Spirochaetes, Tenericutes, Actinobacteria, Chloroflexi, Bacteroidetes, and Proteobacteria, suggesting the ability of biohydrogenation of unfunctionalized conjugated doubled bonds in other unsaturated hydrocarbons. IMPORTANCE Isoprene was recently shown to act as an electron acceptor for a homoacetogenic bacterium. The focus of this study is the molecular basis for isoprene reduction. By comparing a genome from our isoprene-reducing enrichment culture, dominated by Acetobacterium wieringae, with genomes of other Acetobacterium lineages that do not reduce isoprene, we shortlisted candidate genes for isoprene reduction. Using comparative proteogenomics and reverse transcription-PCR we have identified a putative five-gene operon encoding an oxidoreductase referred to as putative isoprene reductase.
Collapse
Affiliation(s)
- Miriam Kronen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
48
|
Usui M, Yoshii Y, Thiriet-Rupert S, Ghigo JM, Beloin C. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance. Commun Biol 2023; 6:275. [PMID: 36928386 PMCID: PMC10020551 DOI: 10.1038/s42003-023-04601-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial antibiotic resistance is a global health concern of increasing importance and intensive study. Although biofilms are a common source of infections in clinical settings, little is known about the development of antibiotic resistance within biofilms. Here, we use experimental evolution to compare selection of resistance mutations in planktonic and biofilm Escherichia coli populations exposed to clinically relevant cycles of lethal treatment with the aminoglycoside amikacin. Consistently, mutations in sbmA, encoding an inner membrane peptide transporter, and fusA, encoding the essential elongation factor G, are rapidly selected in biofilms, but not in planktonic cells. This is due to a combination of enhanced mutation rate, increased adhesion capacity and protective biofilm-associated tolerance. These results show that the biofilm environment favors rapid evolution of resistance and provide new insights into the dynamic evolution of antibiotic resistance in biofilms.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan.
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| | - Yutaka Yoshii
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Stanislas Thiriet-Rupert
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| |
Collapse
|
49
|
Zhang H, Dong Y, Jin P, Hu J, Lamour K, Yang Z. Genome Resources for Four Clarireedia Species Causing Dollar Spot on Diverse Turfgrasses. PLANT DISEASE 2023; 107:929-934. [PMID: 36265142 DOI: 10.1094/pdis-08-22-1921-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dollar spot (DS) is a destructive fungal disease impacting almost all warm- and cool-season turfgrasses worldwide. Multiple fungal species in the genus Clarireedia are causal agents of DS. Here, we present whole-genome assemblies of nine fungal isolates in the genus Clarireedia, including four species (C. paspali, C. hainanense, C. jacksonii, and C. monteithiana) causing DS on seashore paspalum (Paspalum vaginatum Sw.), creeping bentgrass (Agrostis stolonifera L.), and Kentucky bluegrass (Poa pratensis L.) in China. This work provides valuable baseline genomic data to support further research and management of DS pathogens on turfgrasses.
Collapse
Affiliation(s)
- Huangwei Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Yinglu Dong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Peiyuan Jin
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
50
|
Wang S, Gao B, Miskey C, Guan Z, Sang Y, Chen C, Wang X, Ivics Z, Song C. Passer, a highly active transposon from a fish genome, as a potential new robust genetic manipulation tool. Nucleic Acids Res 2023; 51:1843-1858. [PMID: 36688327 PMCID: PMC9976928 DOI: 10.1093/nar/gkad005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
The discovery of new, active DNA transposons can expand the range of genetic tools and provide more options for genomic manipulation. In this study, a bioinformatics analysis suggested that Passer (PS) transposons, which are members of the pogo superfamily, show signs of recent and current activity in animals and may be active in some species. Cell-based transposition assays revealed that the native PS transposases from Gasterosteus aculeatus and Danio rerio displayed very high activity in human cells relative to the Sleeping Beauty transposon. A typical overproduction inhibition phenomenon was observed for PS, and transposition capacity was decreased by ∼12% with each kilobase increase in the insertion size. Furthermore, PS exhibited a pronounced integration preference for genes and their transcriptional regulatory regions. We further show that two domesticated human proteins derived from PS transposases have lost their transposition activity. Overall, PS may represent an alternative with a potentially efficient genetic manipulation tool for transgenesis and mutagenesis applications.
Collapse
Affiliation(s)
- Saisai Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, D-63225 Langen, Germany
| | - Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, D-63225 Langen, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|