1
|
Muñoz Sandoval D, Bach FA, Ivens A, Harding AC, Smith NL, Mazurczyk M, Themistocleous Y, Edwards NJ, Silk SE, Barrett JR, Cowan GJ, Napolitani G, Savill NJ, Draper SJ, Minassian AM, Nahrendorf W, Spence PJ. Plasmodium falciparum infection induces T cell tolerance that is associated with decreased disease severity upon re-infection. J Exp Med 2025; 222:e20241667. [PMID: 40214640 PMCID: PMC11987708 DOI: 10.1084/jem.20241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025] Open
Abstract
Immunity to severe malaria is acquired quickly, operates independently of pathogen load, and represents a highly effective form of disease tolerance. The mechanism that underpins tolerance remains unknown. We used a human rechallenge model of falciparum malaria in which healthy adult volunteers were infected three times over a 12 mo period to track the development of disease tolerance in real-time. We found that parasitemia triggered a hardwired innate immune response that led to systemic inflammation, pyrexia, and hallmark symptoms of clinical malaria across the first three infections of life. In contrast, a single infection was sufficient to reprogram T cell activation and reduce the number and diversity of effector cells upon rechallenge. Crucially, this did not silence stem-like memory cells but instead prevented the generation of cytotoxic effectors associated with autoinflammatory disease. Tolerized hosts were thus able to prevent collateral tissue damage in the absence of antiparasite immunity.
Collapse
Affiliation(s)
- Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Natasha L. Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Michalina Mazurczyk
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Graeme J.M. Cowan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Giorgio Napolitani
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas J. Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Batho-Samblas C, Smith J, Keavey L, Clancy N, McTeir L, Davey MG. Characterisation of the avascular mesenchyme during digit outgrowth. Dev Biol 2025; 523:99-110. [PMID: 40210155 DOI: 10.1016/j.ydbio.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The avascular mesenchyme at the tip of the developing digit contributes to digit outgrowth and patterning, however, it has been poorly characterised. Using newly developed fate mapping approaches, tissue manipulation and single-cell mRNA sequencing data, we explore the transcriptional nature and developmental potential of this tissue. We find that the avascular mesenchyme is essential to normal segmental patterning of the digit and has a distinct transcriptional identity. In addition, we uncover an unexpected relationship between the unspecified tissue of the avascular mesenchyme and the committed phalanx forming region, which controls patterning, but not outgrowth of the digit. This multifaceted approach provides insights into the mechanics and genetic pathways that regulate digit outgrowth and patterning.
Collapse
Affiliation(s)
- Cameron Batho-Samblas
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Jonathan Smith
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lois Keavey
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; UK Dementia Research Institute, University of Edinburgh, EH16 4SB, UK
| | - Noah Clancy
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Lynn McTeir
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Megan G Davey
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; RICE- Roslin Institute Chicken Embryology, UK.
| |
Collapse
|
3
|
Xiao L, Li J, Liao J, Wu M, Lu X, Li J, Zeng Y. BCL2A1‑ and G0S2‑driven neutrophil extracellular traps: A protective mechanism linking preeclampsia to reduced breast cancer risk. Oncol Rep 2025; 53:64. [PMID: 40242964 PMCID: PMC12030921 DOI: 10.3892/or.2025.8897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Preeclampsia has been associated with a reduced risk of breast cancer (BC), but the mechanisms underlying this relationship remain unclear. It has been suggested that neutrophil extracellular traps (NETs), which are released upon neutrophil activation, play a key role in both preeclampsia and BC. To investigate this link, the single‑cell RNA sequencing dataset GSE173193 was analyzed and upregulated genes BCL2A1 and G0/G1 switch gene 2 (G0S2) were identified in neutrophils from preeclamptic placentas. These findings were validated using reverse transcription‑quantitative PCR and western blotting. Combined analyses of preeclampsia and BC tissues, from Gene Expression Omnibus (GSE24129) and The Cancer Genome Atlas databases respectively, identified 2,040 upregulated differentially expressed genes, including BCL2A1 and G0S2. Furthermore, these genes showed clinical relevance to BC, as demonstrated by Receiver Operating Characteristic curve, survival analyses and weighted gene co‑expression network analysis. Functional experiments revealed that overexpression of BCL2A1 and G0S2 increased NET release and inhibited BC cell proliferation, invasion and migration. The present study provides novel insights into the shared molecular pathways of preeclampsia and BC, emphasizing NETs as a potential protective mechanism as increased NET production in preeclampsia may contribute to a reduced BC risk by influencing tumor progression and offer avenues for further research into therapeutic interventions.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiahao Liao
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Min Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiujing Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiehua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yachang Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
4
|
Gao T, Zhao P, Han S. Integrating bulk RNA-seq and scRNA-seq analyses with machine learning to predict platinum response and prognosis in ovarian cancer. Sci Rep 2025; 15:19123. [PMID: 40450069 DOI: 10.1038/s41598-025-99930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/23/2025] [Indexed: 06/03/2025] Open
Abstract
Platinum-based therapy is an integral part of the standard treatment for ovarian cancer. However, despite extensive research spanning several decades, the identification of dependable predictive biomarkers for platinum response in clinical practice has proven to be a formidable challenge. Recently, the development of single-cell technology has enabled more precise investigations into the heterogeneity of cancer. In this study, we isolated cancer cells from the single-cell transcriptomic data of platinum-sensitive and platinum-resistant patients with ovarian cancer. Differential gene analysis of platinum-sensitive and platinum-resistant cancer cells revealed that several of the differentially expressed genes had previously been reported in other studies to be associated with platinum resistant. Gene set enrichment analysis revealed the up-regulation of pathways involved in processes such as autophagy, cell cycle regulation, and DNA damage repair, which are known to promote platinum resistance in ovarian cancer. Based on these findings, we hypothesized that these differentially expressed genes could be used to predict the response of ovarian cancer patients to platinum-based chemotherapy. To validate this hypothesis, we explored 7 different machine learning models for predicting platinum chemotherapy response at varying feature gene counts. Ultimately, the random forest model performed the best, with 5 genes (PAX2, TFPI2, APOA1, ADIRF and CRISP3) and achieve an AUC of 0.993 in test cohort and 0.989 in GSE63885 independent validation cohorts. We named this model GPPS (Genes to Predict Platinum response Signature). Furthermore, we discovered that the GPPS model can also predict patient prognosis.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Peng Zhao
- Oncology Department of Xi'an Daxing Hospital, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Senent Y, Fresquet V, Jiménez V, Valencia K, Exposito F, Martín-Úriz PS, Camps G, Fernández-Pierola E, de Córdoba BRF, González-Huarriz M, Tamayo I, Remírez A, Moreno H, Serrano D, Ajona D, Alonso MM, Lecanda F, Pineda-Lucena A, Prósper F, Sanmamed MF, Calvo A, Martinez-Climent JA, Pio R. Co-targeting of epigenetic regulators and BCL-XL improves efficacy of immune checkpoint blockade therapy in multiple solid tumors. Mol Cancer 2025; 24:154. [PMID: 40442785 PMCID: PMC12123720 DOI: 10.1186/s12943-025-02352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
Epigenetic modulators in combination with proapoptotic drugs have become the standard of care treatment in hematological malignancies. Conversely, these combinations have failed to demonstrate clinical efficacy in solid tumors. To address this discrepancy, we conducted a comprehensive analysis of the anti-tumor activity of epigenetic inhibitors in combination with BH3 mimetics that block anti-apoptotic proteins BCL-XL, BCL2 or MCL1 in a large set of solid tumor cell lines derived from patients and mouse models. Treatment with epigenetic drugs targeting DNA methyltransferase, histone methyltransferase, and histone deacetylase enzymes in combination with a BCL-XL inhibitor resulted in marked synergistic in vitro responses both in human and mouse solid tumor cell lines. This unique BCL-XL dependency was in clear contrast to hematological malignancies, which are largely dependent on BCL2 or MCL1 inhibition under epigenetic drug treatment. Mechanistically, co-targeting of epigenetic regulators and BCL-XL induced expression of endogenous retroelements that led to immunogenic cell death. We thus hypothesized that this response may sensitize tumor cells to immune checkpoint blockade (ICB). Accordingly, treatment with a triple combination of epigenetic and BCL-XL inhibitors with an anti-PD-1 monoclonal antibody in vivo reduced tumor growth and prolonged overall survival in a panel of murine syngeneic and orthotopic models of lung, colorectal and breast carcinomas, melanoma, and glioblastoma, as well as in an immunocompetent human colon cancer model. Using flow cytometry and single-cell RNA sequencing of the tumor microenvironment, we found that the broad activity of the triple therapy relied on the expansion of T and NK cells with cytotoxic potential, an increase in the M1/M2 macrophage ratio, and a reduction of immunosuppressive Treg cells, dendritic cells, and B lymphocytes. In conclusion, we report a novel regimen combining epigenetic and BCL-XL inhibitors with ICB that produces potent anti-tumor responses in multiple preclinical models of solid tumors.
Collapse
Affiliation(s)
- Yaiza Senent
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
| | - Vicente Fresquet
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Program in Hemato-Oncology, Cima Universidad de Navarra, CCUN, Pamplona, Spain
| | - Victoria Jiménez
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Program in Hemato-Oncology, Cima Universidad de Navarra, CCUN, Pamplona, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Francisco Exposito
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Department of Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona, Spain
| | - Patxi San Martín-Úriz
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Program in Hemato-Oncology, Cima Universidad de Navarra, CCUN, Pamplona, Spain
| | - Gracián Camps
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
| | - Eva Fernández-Pierola
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
| | - Borja Ruiz-Fernández de Córdoba
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
| | - Marisol González-Huarriz
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ibon Tamayo
- Bioinformatics Platform, Cima Universidad de Navarra, Pamplona, Spain
| | - Ana Remírez
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Haritz Moreno
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
| | - Diego Serrano
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Department of Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona, Spain
| | - Daniel Ajona
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marta M Alonso
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Department of Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona, Spain
| | | | - Felipe Prósper
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Program in Hemato-Oncology, Cima Universidad de Navarra, CCUN, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Hematology and Cell Therapy Area, CCUN, Pamplona, Spain
| | - Miguel F Sanmamed
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, CCUN, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Department of Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona, Spain
| | - Jose A Martinez-Climent
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.
- Program in Hemato-Oncology, Cima Universidad de Navarra, CCUN, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| | - Ruben Pio
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), CIMA Building, Pio XII 55, 31008, Pamplona, Spain.
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Georgakis S, Orfanakis M, Fenwick C, Brenna C, Burgermeister S, Lindsay H, de Medeiros GX, Bruno FR, Ribeiro SP, Gottardo R, Pantaleo G, Petrovas C. Delineation of the Human Germinal Centre Immune Landscape Using Multiplex Imaging Analysis. Immunology 2025. [PMID: 40421691 DOI: 10.1111/imm.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/29/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Given the role of follicular immune dynamics, especially the germinal centre, for the development of pathogen-specific antibodies, their in situ characterisation is of great importance. We have developed a multiplex immunofluorescence imaging pipeline that allows the analysis of human follicular adaptive and innate immune cell subsets. Our data revealed the in situ phenotypic heterogeneity and differential localisation of follicular helper CD4 T (TFH) cell subsets across follicular areas in tonsils and reactive lymph nodes (LNs). Cell clustering analysis identified specific TFH subsets with differential prevalence between tonsils and LNs. Further, a multiplex RNAscope/protein imaging assay revealed the functional heterogeneity of TFH cells. No significant differences in follicular innate immune cell densities were found between tonsils and LNs. In conclusion, we present a combinatory experimental approach that provides a comprehensive analysis of human follicular and/or germinal centre immune dynamics and could be used to further understand the pathogenesis of diseases such as HIV and lymphomas.
Collapse
Affiliation(s)
- Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Cloe Brenna
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Simon Burgermeister
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Helen Lindsay
- Biomedical Data Science Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Giuliana Xavier de Medeiros
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fernanda Romano Bruno
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Susan Pereira Ribeiro
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Raphael Gottardo
- Biomedical Data Science Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
7
|
Hansen M, Grothen JER, Karlsen A, Martinez JM, Sidiropoulos N, Helge JW, Pedersen TÅ, Dela F. The skeletal muscle response to high-intensity training assessed by single-nucleus RNA-sequencing is blunted in individuals with type 2 diabetes. J Physiol 2025. [PMID: 40413649 DOI: 10.1113/jp288368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/17/2025] [Indexed: 05/27/2025] Open
Abstract
Training can improve insulin sensitivity in individuals with type 2 diabetes, but a clear understanding of the mechanisms remains elusive. To further our knowledge in this area, we aimed to examine the effect of type 2 diabetes and of high-intensity interval training (HIIT) on the nuclear transcriptional response in skeletal muscle. We performed single-nucleus RNA-sequencing (snRNA-seq) and immunofluorescence analysis on muscle biopsies from the trained and the untrained legs of participants with and without type 2 diabetes, after 2 weeks of one-legged HIIT on a cycle ergometer. Surprisingly, the type 2 diabetes condition only seemed to have a minor effect on transcriptional activity in myonuclei related to major metabolic pathways when comparing the untrained legs. However, while in particular the type IIA myonuclei in the control group displayed a considerable metabolic response to HIIT, with increases in genes related to glycogen breakdown and glycolysis primarily in the type IIA myonuclei of the trained leg, this response was blunted in the diabetes group, despite a marked increase in glucose clearance in both groups. Additionally, we observed that fibre type distribution assessed by immunofluorescence significantly correlated with the proportion of myonuclei in the snRNA-seq analysis. In conclusion, the type 2 diabetes condition blunts the metabolic transcriptional response to HIIT in the type IIA myonuclei without affecting the improvement in insulin sensitivity. Additionally, our results indicate that snRNA-seq can be used as a surrogate marker for fibre type distribution in sedentary middle-aged adults. KEY POINTS: The study utilized single-nucleus RNA sequencing (snRNA-seq) to analyse 38 skeletal muscle biopsies, revealing distinct transcriptional profiles in myonuclei from individuals with and without type 2 diabetes (T2D) after 2 weeks of HIIT. snRNA-seq identified significant differences in gene expression, with 14 differentially expressed genes (DEGs) in type IIA myonuclei of the control group, specifically related to glycogen breakdown and glycolysis, which were blunted in the T2D group. In the control group, HIIT induced a substantial transcriptional response in type IIA myonuclei, enhancing metabolic pathways associated with insulin sensitivity, while the T2D group showed minimal transcriptional changes despite improved insulin sensitivity. The T2D group exhibited a blunted response in metabolic gene expression, indicating that the training effect on muscle adaptation was significantly impaired compared to healthy controls. Overall, the findings highlight the differential impact of HIIT on muscle metabolism, emphasizing the need for tailored exercise interventions for individuals with T2D.
Collapse
Affiliation(s)
- Maria Hansen
- Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julius E R Grothen
- Global Drug Discovery, Novo Nordisk A/S, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Karlsen
- Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jaime M Martinez
- Computational Biology, AI & Digital Research, Novo Nordisk A/S, Copenhagen, Denmark
| | - Nikos Sidiropoulos
- Computational Biology, AI & Digital Research, Novo Nordisk A/S, Copenhagen, Denmark
| | - Jørn W Helge
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Flemming Dela
- Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Sports and Nutrition Research, Riga Stradins University, Riga, Latvia
| |
Collapse
|
8
|
Hu Y, Zhu Y, Tang G, Shan M, Tan P, Yi Y, Zhang X, Liu M, Li X, Wu L, Chen J, Zheng H, Huang Y, Li Z, Li X, Wang D. Accurate Transcription Factor Activity Inference to Decipher Cell Identity from Single-Cell Transcriptomic Data with MetaTF. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e10745. [PMID: 40397381 DOI: 10.1002/advs.202410745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/21/2025] [Indexed: 05/22/2025]
Abstract
Cellular heterogeneity within cancer tissues determines cancer progression and treatment response. Single-cell RNA sequencing (scRNA-seq) has provided a powerful approach for investigating the cellular heterogeneity of both cancer cells and stroma cells in the tumor microenvironment. However, the common practice to characterize cell identity based on the similarity of their gene expression profiles may not really indicate distinct cellular populations with unique roles. Generally, the cell identity and function are orchestrated by the expression of given specific genes tightly regulated by transcription factors (TFs). Therefore, deciphering TF activity is essential for gaining a better understanding of the uniqueness and functionality of each cell type. Herein, metaTF, a computational framework designed to infer TF activity in scRNA-seq data, is introduced and existing methods are outperformed for estimating TF activity. It presents the improved effectiveness in characterizing cell identity during mouse hematopoietic stem cell development. Furthermore, metaTF provides a superior characterization of the functional identity of breast cancer epithelial cells, and identifies a novel subset of neural-regulated T cells within the tumor immune microenvironment, which potentially activates BCL6 in response to neural-related signals. Overall, metaTF enables robust TF activity analysis from scRNA-seq data, significantly enhancing the characterization of cell identity and function.
Collapse
Affiliation(s)
- Yongfei Hu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yuanyuan Zhu
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Guangjue Tang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ming Shan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150000, China
| | - Puwen Tan
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Yi
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Xiyuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Man Liu
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xinyu Li
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Le Wu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Chen
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hailong Zheng
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuan Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510060, China
| | - Xiaobo Li
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Dong Wang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
9
|
Arya A, Tripathi P, Dubey N, Aier I, Kumar Varadwaj P. Navigating single-cell RNA-sequencing: protocols, tools, databases, and applications. Genomics Inform 2025; 23:13. [PMID: 40382658 DOI: 10.1186/s44342-025-00044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) technology brought about a revolutionary change in the transcriptomic world, paving the way for comprehensive analysis of cellular heterogeneity in complex biological systems. It enabled researchers to see how different cells behaved at single-cell levels, providing new insights into the process. However, despite all these advancements, scRNA-seq also experiences challenges related to the complexity of data analysis, interpretation, and multi-omics data integration. In this review, these complications were discussed in detail, directly pointing at the optimization of scRNA-seq approaches and understanding the world of single-cell and its dynamics. Different protocols and currently functional single-cell databases were also covered. This review highlights different tools for the analysis of scRNA-seq and their methodologies, emphasizing innovative techniques that enhance resolution and accuracy at a single-cell level. Various applications were explored across domains including drug discovery, tumor microenvironment (TME), biomarker discovery, and microbial profiling, and case studies were discussed to explain the importance of scRNA-seq by uncovering novel and rare cell types and their identification. This review underlines a crucial aspect of scRNA-seq in the advancement of personalized medicine and highlights its potential to understand the complexity of biological systems.
Collapse
Affiliation(s)
- Ankish Arya
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India
| | - Prabhat Tripathi
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India
| | - Nidhi Dubey
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India
| | - Imlimaong Aier
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India.
| |
Collapse
|
10
|
Leeke BJ, Varsally W, Ogushi S, Zohren J, Menchero S, Courtois A, Snell DM, Teissandier A, Ojarikre O, Mahadevaiah SK, Decarpentrie F, Oakey RJ, VandeBerg JL, Turner JMA. Divergent DNA methylation dynamics in marsupial and eutherian embryos. Nature 2025:10.1038/s41586-025-08992-2. [PMID: 40369084 DOI: 10.1038/s41586-025-08992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Based on seminal work in placental species (eutherians)1-10, a paradigm of mammalian development has emerged wherein the genome-wide erasure of parental DNA methylation is required for embryogenesis. Whether such DNA methylation reprogramming is, in fact, conserved in other mammals is unknown. Here, to resolve this point, we generated base-resolution DNA methylation maps in gametes, embryos and adult tissues of a marsupial, the opossum Monodelphis domestica, revealing variations from the eutherian-derived model. The difference in DNA methylation level between oocytes and sperm is less pronounced than that in eutherians. Furthermore, unlike the genome of eutherians, that of the opossum remains hypermethylated during the cleavage stages. In the blastocyst, DNA demethylation is transient and modest in the epiblast. However, it is sustained in the trophectoderm, suggesting an evolutionarily conserved function for DNA hypomethylation in the mammalian placenta. Furthermore, unlike that in eutherians, the inactive X chromosome becomes globally DNA hypomethylated during embryogenesis. We identify gamete differentially methylated regions that exhibit distinct fates in the embryo, with some transient, and others retained and that represent candidate imprinted loci. We also reveal a possible mechanism for imprinted X inactivation, through maternal DNA methylation of the Xist-like noncoding RNA RSX11. We conclude that the evolutionarily divergent eutherians and marsupials use DNA demethylation differently during embryogenesis.
Collapse
Affiliation(s)
- Bryony J Leeke
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Imperial College London, London, UK.
| | - Wazeer Varsally
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Sugako Ogushi
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Aurélien Courtois
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Daniel M Snell
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Aurélie Teissandier
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Obah Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - John L VandeBerg
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Xiong L, Diwakarla S, Chatzis R, Artaiz O, Macowan M, Zhang S, Garnham A, Morgan PK, Mellett NA, Meikle PJ, Lancaster GI, Marsland BJ, Nutt SL, Seillet C. Acute exposure to high-fat diet impairs ILC3 functions and gut homeostasis. Immunity 2025; 58:1185-1200.e8. [PMID: 40233759 DOI: 10.1016/j.immuni.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Prolonged exposure to a high-fat diet (HFD) exacerbates intestinal disease pathology, yet the early events preceding the development of gut inflammation remain poorly understood. Here, we show that within 48 h, HFD impairs intestinal group 3 innate lymphoid cells (ILC3s) and their capacity to produce interleukin-22 (IL-22), critical for maintaining gut homeostasis. This loss of function was associated with rapid dysbiosis, increased gut permeability, and reduced production of antimicrobial peptides, mucus, and tight-junction proteins. While saturated fatty acids metabolized through oxidation impaired ILC3 function, unsaturated fatty acids sustained IL-22 secretion by ILC3s through the formation of lipid droplets using diacylglycerol O-acyltransferase (DGAT) enzymes. Upon inflammation, saturated fatty acids impaired IL-22 production by ILC3s and increased the susceptibility of the gut to injury. Our findings reveal the differential acute impact of saturated and unsaturated fatty acids on gut homeostasis through distinct metabolic pathways in ILC3s.
Collapse
Affiliation(s)
- Le Xiong
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shanti Diwakarla
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Roxanne Chatzis
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Olivia Artaiz
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew Macowan
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra Garnham
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
| | - Graeme I Lancaster
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Benjamin J Marsland
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia.
| |
Collapse
|
12
|
Marchingo JM, Spinelli L, Pathak S, Cantrell DA. PIM kinase control of CD8 T cell protein synthesis and cell trafficking. eLife 2025; 13:RP98622. [PMID: 40359130 PMCID: PMC12074636 DOI: 10.7554/elife.98622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Integration of kinase signalling networks co-ordinates the transcriptional, translational, and metabolic changes required for T cell activation and differentiation. This study explores the role of the Serine/Threonine kinases PIM1 and PIM2 in controlling mouse CD8 T lymphocyte antigen receptor-mediated activation and differentiation in response to the cytokines Interleukin-2 (IL-2) or IL-15. We show that the PIM kinases are dispensable for antigen-receptor and IL-15 controlled differentiation programs, but that they play a selective role in IL-2 regulated CD8 T cell fate. One key insight was that PIM kinases controlled the migratory capabilities of effector CD8 T cells, with Pim1/Pim2-deficient CD8 T cells unable to fully switch off the naive T cell chemokine and adhesion receptor program during effector differentiation. PIM kinases were also needed for IL-2 to sustain high expression of the glucose transporters SLC2A1 and SLC2A3 and to maintain activity of the nutrient-sensing kinase mTORc1. Strikingly, PIM kinases did not have a dominant impact on IL-2-driven transcriptional programs but rather selectively modulated protein synthesis to shape cytotoxic T cell proteomes. This study reveals a selective role of PIM kinases in IL-2 control of CD8 T cells and highlights how regulated changes in protein synthesis can impact T cell phenotypes.
Collapse
Affiliation(s)
- Julia M Marchingo
- Cell Signalling and Immunology Division, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Laura Spinelli
- Cell Signalling and Immunology Division, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Molecular Cell and Developmental Biology Division, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Shalini Pathak
- Cell Signalling and Immunology Division, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Doreen A Cantrell
- Cell Signalling and Immunology Division, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
13
|
Bastos J, O'Brien C, Vara-Pérez M, Mampay M, van Olst L, Barry-Carroll L, Kancheva D, Leduc S, Lievens AL, Ali L, Vlasov V, Meysman L, Shakeri H, Roelandt R, Van Hove H, De Vlaminck K, Scheyltjens I, Yaqoob F, Lombroso SI, Breugelmans M, Faron G, Gomez-Nicola D, Gate D, Bennett FC, Movahedi K. Monocytes can efficiently replace all brain macrophages and fetal liver monocytes can generate bona fide SALL1 + microglia. Immunity 2025; 58:1269-1288.e12. [PMID: 40311613 PMCID: PMC12094688 DOI: 10.1016/j.immuni.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Microglia and border-associated macrophages (BAMs) are critical for brain health, and their dysfunction is associated to disease. Replacing brain macrophages holds substantial therapeutic promise but remains challenging. Here, we demonstrate that monocytes can efficiently replace all brain macrophages. Monocytes readily replaced embryonal BAMs upon their depletion and engrafted as monocyte-derived microglia (Mo-Microglia) upon more sustained niche availability. Mo-Microglia expanded comparably to their embryonic counterparts and showed similar longevity. However, monocytes were unable to replicate the distinct identity of embryonically derived BAMs and microglia. Using xenotransplantation, we found that human monocytes exhibited similar behavior, enabling identification of putative Mo-Microglia in Alzheimer's disease individuals. In mice and humans, monocyte ontogeny shaped their identity as brain macrophages. Importantly, mouse fetal liver monocytes exhibited a distinct epigenetic landscape and could develop a bona fide microglial identity. Our results illuminate brain macrophage development and highlight monocytes as an abundant progenitor source for brain macrophage replacement therapies.
Collapse
Affiliation(s)
- Jonathan Bastos
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carleigh O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mónica Vara-Pérez
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Myrthe Mampay
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lynn van Olst
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Liam Barry-Carroll
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK; Nutrineuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, Bordeaux, France
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophia Leduc
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ayla Line Lievens
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leen Ali
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vladislav Vlasov
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura Meysman
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hadis Shakeri
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ria Roelandt
- VIB Single Cell Core, VIB, Ghent/Leuven, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hannah Van Hove
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karen De Vlaminck
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Scheyltjens
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Breugelmans
- Department of Obstetrics and Prenatal Medicine, UZ Brussel, VUB, Brussels, Belgium
| | - Gilles Faron
- Department of Obstetrics and Prenatal Medicine, UZ Brussel, VUB, Brussels, Belgium
| | - Diego Gomez-Nicola
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - David Gate
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
14
|
Moore JR, Nemera MT, D'Souza RD, Hamagami N, Clemens AW, Beard DC, Urman A, Razia Y, Rodriguez Mendoza V, Law TE, Edwards JR, Gabel HW. MeCP2 and non-CG DNA methylation stabilize the expression of long genes that distinguish closely related neuron types. Nat Neurosci 2025:10.1038/s41593-025-01947-w. [PMID: 40355611 DOI: 10.1038/s41593-025-01947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025]
Abstract
The diversity of mammalian neurons is delineated by subtle gene expression differences that may require specialized mechanisms to be maintained. Neurons uniquely express the longest genes in the genome and use non-CG DNA methylation (mCA), together with the Rett syndrome protein methyl-CpG-binding protein 2 (MeCP2), to control gene expression. However, whether these distinctive gene structures and molecular machinery regulate neuronal diversity remains unexplored. Here, we use genomic and spatial transcriptomic analyses to show that MeCP2 maintains transcriptomic diversity across closely related neuron types. We uncover differential susceptibility of neuronal populations to MeCP2 loss according to global mCA levels and dissect methylation patterns driving shared and distinct MeCP2 gene regulation. We show that MeCP2 regulates long, mCA-enriched, 'repeatedly tuned' genes, that is, genes differentially expressed between many closely related neuron types, including across spatially distinct, vision-dependent gene programs in the visual cortex. Thus, MeCP2 maintains neuron type-specific gene programs to facilitate cellular diversity in the brain.
Collapse
Affiliation(s)
- J Russell Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Mati T Nemera
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Rinaldo D D'Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Diana C Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Alaina Urman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | - Yasmin Razia
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Victoria Rodriguez Mendoza
- Opportunities in Genomic Research Program, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Travis E Law
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | - John R Edwards
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Mangiola S, Brown R, Zhan C, Berthelet J, Guleria S, Liyanage C, Ostrouska S, Wilcox J, Merdas M, Fuge-Larsen P, Bell C, Schröder J, Mielke LA, Mariadason JM, Tsao SCH, Chen Y, Yadav VK, Vodala S, Anderson RL, Merino D, Behren A, Yeo B, Papenfuss AT, Pal B. Circulating immune cells exhibit distinct traits linked to metastatic burden in breast cancer. Breast Cancer Res 2025; 27:73. [PMID: 40340807 PMCID: PMC12063295 DOI: 10.1186/s13058-025-01982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/14/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Circulating immune cells play a crucial role in the anti-tumour immune response, yet the systemic immune system in metastatic breast cancers is not fully characterised. Investigating the cellular and molecular changes in peripheral blood mononuclear cells (PBMCs) from breast cancer patients could elucidate the role of circulating immune cells in metastasis and aid in identifying biomarkers for disease burden and progression. METHODS In this study, we characterised the systemic immune landscape associated with varying levels of metastatic burden by analysing the single-cell transcriptomes of PBMCs from breast cancer patients and healthy controls. Our research focused on identifying changes in immune cell composition, transcriptional programs, and immune-cell communication networks linked to metastatic burden. Additionally, we compared these PBMC features onto a single-cell atlas of primary breast tumours to study corresponding traits in tumour-infiltrating immune cells. RESULTS In metastatic breast cancer, PBMCs exhibit a significant downregulation of the adaptive immune system and a decreased number and activity of unconventional T cells, such as γδ T cells. Additionally, metastatic burden is associated with impaired cell communication pathways involved in immunomodulatory functions. We also identified a gene signature derived from myeloid cells shared between tumour immune infiltrates and circulating immune cells in breast cancer patients. CONCLUSIONS Our study provides a comprehensive single-cell molecular profile of the peripheral immune system in breast cancer, offering a valuable resource for understanding metastatic disease in terms of tumour burden. By identifying immune traits linked to metastasis, we have unveiled potential new biomarkers of metastatic disease.
Collapse
Affiliation(s)
- S Mangiola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
- South Australian immunoGENomics Cancer Institute, Adelaide, SA, 5005, Australia.
| | - R Brown
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Zhan
- South Australian immunoGENomics Cancer Institute, Adelaide, SA, 5005, Australia
| | - J Berthelet
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Guleria
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Liyanage
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Ostrouska
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - J Wilcox
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - M Merdas
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - P Fuge-Larsen
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Bell
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - J Schröder
- Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3052, Australia
- The University of Melbourne, Parkville, VIC, 3052, Australia
| | - L A Mielke
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - J M Mariadason
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Chang-Hao Tsao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - Y Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - V K Yadav
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - S Vodala
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, USA
| | - R L Anderson
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - D Merino
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - A Behren
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - B Yeo
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - A T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - B Pal
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
16
|
Pan Q, Ding L, Hladyshau S, Yao X, Zhou J, Yan L, Dhungana Y, Shi H, Qian C, Dong X, Burdyshaw C, Veloso JP, Khatamian A, Xie Z, Risch I, Yang X, Yang J, Huang X, Fang J, Jain A, Jain A, Rusch M, Brewer M, Peng J, Yan KK, Chi H, Yu J. scMINER: a mutual information-based framework for clustering and hidden driver inference from single-cell transcriptomics data. Nat Commun 2025; 16:4305. [PMID: 40341143 PMCID: PMC12062461 DOI: 10.1038/s41467-025-59620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
Single-cell transcriptomics data present challenges due to their inherent stochasticity and sparsity, complicating both cell clustering and cell type-specific network inference. To address these challenges, we introduce scMINER (single-cell Mutual Information-based Network Engineering Ranger), an integrative framework for unsupervised cell clustering, transcription factor and signaling protein network inference, and identification of hidden drivers from single-cell transcriptomic data. scMINER demonstrates superior accuracy in cell clustering, outperforming five state-of-the-art algorithms and excelling in distinguishing closely related cell populations. For network inference, scMINER outperforms three established methods, as validated by ATAC-seq and CROP-seq. In particular, it surpasses SCENIC in revealing key transcription factor drivers involved in T cell exhaustion and Treg tissue specification. Moreover, scMINER enables the inference of signaling protein networks and drivers with high accuracy, which presents an advantage in multimodal single cell data analysis. In addition, we establish scMINER Portal, an interactive visualization tool to facilitate exploration of scMINER results.
Collapse
Affiliation(s)
- Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Siarhei Hladyshau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xiangyu Yao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiayu Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lei Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chenxi Qian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, 201102, P.R. China
| | - Chad Burdyshaw
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Joao Pedro Veloso
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alireza Khatamian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhen Xie
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Isabel Risch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiyuan Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jason Fang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anuj Jain
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Arihant Jain
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael Brewer
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
17
|
Geraghty AC, Acosta-Alvarez L, Rotiroti MC, Dutton S, O'Dea MR, Kim W, Trivedi V, Mancusi R, Shamardani K, Malacon K, Woo PJ, Martinez-Velez N, Pham T, Reche-Ley NN, Otubu G, Castenada EH, Nwangwu K, Xu H, Mulinyawe SB, Zamler DB, Ni L, Cross K, Rustenhoven J, Kipnis J, Liddelow SA, Mackall CL, Majzner RG, Monje M. Immunotherapy-related cognitive impairment after CAR T cell therapy in mice. Cell 2025:S0092-8674(25)00391-5. [PMID: 40359942 DOI: 10.1016/j.cell.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/06/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025]
Abstract
Immunotherapies have revolutionized cancer care for many tumor types, but their potential long-term cognitive impacts are incompletely understood. Here, we demonstrated in mouse models that chimeric antigen receptor (CAR) T cell therapy for both central nervous system (CNS) and non-CNS cancers impaired cognitive function and induced a persistent CNS immune response characterized by white matter microglial reactivity, microglial chemokine expression, and elevated cerebrospinal fluid (CSF) cytokines and chemokines. Consequently, oligodendroglial homeostasis and hippocampal neurogenesis were disrupted. Single-nucleus sequencing studies of human frontal lobe from patients with or without previous CAR T cell therapy for brainstem tumors confirmed reactive states of microglia and oligodendrocytes following treatment. In mice, transient microglial depletion or CCR3 chemokine receptor blockade rescued oligodendroglial deficits and cognitive performance in a behavioral test of attention and short-term memory function following CAR T cell therapy. Taken together, these findings illustrate targetable neural-immune mechanisms underlying immunotherapy-related cognitive impairment.
Collapse
Affiliation(s)
- Anna C Geraghty
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Lehi Acosta-Alvarez
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Maria C Rotiroti
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Selena Dutton
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wonju Kim
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Vrunda Trivedi
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karen Malacon
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Pamelyn J Woo
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | - Theresa Pham
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Noemi N Reche-Ley
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Gabriel Otubu
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Enrique H Castenada
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kamsi Nwangwu
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Haojun Xu
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Sara B Mulinyawe
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Daniel B Zamler
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Lijun Ni
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kevin Cross
- Brain immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Justin Rustenhoven
- Brain immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Jonathan Kipnis
- Brain immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA; Center for Cancer Cellular Therapy, Stanford School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA; Center for Cancer Cellular Therapy, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA; Center for Cancer Cellular Therapy, Stanford School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Broomfield BJ, Tan CW, Qin RZ, Abberger H, Duckworth BC, Alvarado C, Dalit L, Lee CL, Shandre Mugan R, Mazrad ZA, Muramatsu H, Mackiewicz L, Williams BE, Chen J, Takanashi A, Fabb S, Pellegrini M, Rogers KL, Moon WJ, Pouton CW, Davis MJ, Nutt SL, Pardi N, Wimmer VC, Groom JR. Transient inhibition of type I interferon enhances CD8+ T cell stemness and vaccine protection. J Exp Med 2025; 222:e20241148. [PMID: 40062995 PMCID: PMC11893171 DOI: 10.1084/jem.20241148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/25/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Developing vaccines that promote CD8+ T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1+ stem cell-like memory CD8+ T (TSCM) cells are important determinants of long-lived memory. Yet, the developmental requirements for TSCM cell formation are unclear. Here, we identify the temporal window for type I interferon receptor (IFNAR) blockade to drive TSCM cell generation following viral infection and mRNA-lipid nanoparticle vaccination. We reveal a reversible developmental trajectory where transcriptionally distinct TSCM cells emerged from a transitional precursor of exhausted T cellular state concomitant with viral clearance. TSCM cell differentiation correlated with T cell retention within the lymph node paracortex due to disrupted CXCR3 chemokine gradient formation. These effects were linked to increased antigen load and a counterintuitive increase in IFNγ, which controlled cell location. Vaccination with the IFNAR blockade promoted TSCM cell differentiation and enhanced protection against chronic infection. These findings propose an approach to vaccine design whereby modulation of inflammation promotes memory formation and function.
Collapse
Affiliation(s)
- Benjamin J. Broomfield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chin Wee Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Raymond Z. Qin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hanna Abberger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Brigette C. Duckworth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carolina Alvarado
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Lennard Dalit
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Rekha Shandre Mugan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Zihnil A.I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bailey E. Williams
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jinjin Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Asuka Takanashi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Stewart Fabb
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Marc Pellegrini
- Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | | - Colin W. Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Melissa J. Davis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Stephen L. Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Verena C. Wimmer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Garner H, Martinovic M, Liu NQ, Bakker NAM, Velilla IQ, Hau CS, Vrijland K, Kaldenbach D, Kok M, de Wit E, de Visser KE. Understanding and reversing mammary tumor-driven reprogramming of myelopoiesis to reduce metastatic spread. Cancer Cell 2025:S1535-6108(25)00166-7. [PMID: 40345190 DOI: 10.1016/j.ccell.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/11/2024] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Tumor-induced systemic accumulation and polarization of neutrophils to an immunosuppressive phenotype is a potent driver of metastasis formation. Yet, how mammary tumors reprogram granulopoiesis at the molecular level and when tumor imprinting occurs during neutrophil development remains underexplored. Here, we combined single-cell, chromatin and functional analyses to unravel the tumor-driven reprogramming of granulopoiesis in the bone marrow, along with intervention studies aimed at reversing this process. We observe that mammary tumors accelerate commitment to the neutrophil lineage at the expense of lymphopoiesis and erythropoiesis without stimulating the development of a novel myeloid lineage. Moreover, tumor-directed immunosuppressive imprinting of neutrophils starts early in hematopoiesis. Treatment with anti-IL-1β normalizes tumor-induced granulopoiesis, reducing neutrophil immunosuppressive phenotype and mitigating metastatic spread. Together, these data provide molecular insights into the aberrant, tumor-driven neutrophil differentiation pathway leading to metastasis-promoting chronic inflammation and how it can be reversed to reduce metastatic spread.
Collapse
Affiliation(s)
- Hannah Garner
- Department of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Moreno Martinovic
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ning Qing Liu
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Noor A M Bakker
- Department of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Immunology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Irene Querol Velilla
- Department of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Immunology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Cheei-Sing Hau
- Department of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Kim Vrijland
- Department of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Daphne Kaldenbach
- Department of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Marleen Kok
- Department of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Karin E de Visser
- Department of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Immunology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
20
|
Lütge M, Kurz L, Stanossek Y, Meili S, Cheng HW, De Martin A, Brandstadter J, Maillard I, Robinson MD, Stoeckli SJ, Pikor NB, Onder L, Ludewig B. Fibroblastic reticular cells form reactive myeloid cell niches in human lymph nodes. Sci Immunol 2025; 10:eads6820. [PMID: 40315298 DOI: 10.1126/sciimmunol.ads6820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/07/2025] [Indexed: 05/04/2025]
Abstract
Lymph nodes play a key role in maintaining fluid balance in homeostatic and inflamed tissues and provide fibroblastic niche environments for optimal immune cell positioning and interaction. Here, we used single-cell and spatial transcriptomic analyses in combination with high-resolution imaging to molecularly define and functionally characterize niche-forming cells that control inflammation-driven remodeling in human lymph nodes. Fibroblastic reticular cells responded to inflammatory perturbation with activation and expansion of poised niche environments. Inflammation-induced adaptation of lymph node infrastructure and topography included the expansion of peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) networks that enwrap the perivenular conduit system. Interactome analyses indicated that macrophage-derived oncostatin M directs PI16+ RC activation in inflamed lymph nodes and thereby promotes immune cell aggregation in the perivenular space. In conclusion, these data demonstrate that the inflammatory remodeling of human lymph nodes results in the formation of reactive myeloid cell niches by PI16+ RCs.
Collapse
Affiliation(s)
- Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lisa Kurz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Samuel Meili
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Joshua Brandstadter
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Sandro J Stoeckli
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Hugaboom MB, Wirth LV, Street K, Ruthen N, Jegede OA, Schindler NR, Shah V, Zaemes JP, Ahmar NE, Matar S, Savla V, Choueiri TK, Denize T, West DJ, McDermott DF, Plimack ER, Sosman JA, Haas NB, Stein MN, Alter R, Bilen MA, Hurwitz ME, Hammers H, Signoretti S, Atkins MB, Wu CJ, Braun DA. Presence of Tertiary Lymphoid Structures and Exhausted Tissue-Resident T Cells Determines Clinical Response to PD-1 Blockade in Renal Cell Carcinoma. Cancer Discov 2025; 15:948-968. [PMID: 39992403 PMCID: PMC12048281 DOI: 10.1158/2159-8290.cd-24-0991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/08/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
SIGNIFICANCE We describe a paradigm wherein combined high TLS and low tissue-resident exhausted CD8+ T cells are required for optimal response to PD-1 blockade in RCC. This analysis identifies key determinants of response to PD-1 blockade in advanced RCC and suggests avenues for future immune modulation through rational combination therapy strategies.
Collapse
Affiliation(s)
- Miya B. Hugaboom
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Lena V. Wirth
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Street
- Division of Biostatistics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Neil Ruthen
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Opeyemi A. Jegede
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Valisha Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacob P. Zaemes
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Nourhan El Ahmar
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sayed Matar
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Varunika Savla
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas Denize
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Destiny J. West
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - David F. McDermott
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Jeffrey A. Sosman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Naomi B. Haas
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark N. Stein
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Robert Alter
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael E. Hurwitz
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Hans Hammers
- Department of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael B. Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A. Braun
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Franck MCM, Weman HM, Ceder MM, Ahemaiti A, Henriksson K, Bengtsson E, Magnusson KA, Koning HK, Öhman-Mägi C, Lagerström MC. Spinal lumbar Urocortin 3-expressing neurons are associated with both scratching and Compound 48/80-induced sensations. Pain 2025; 166:1070-1087. [PMID: 39432740 PMCID: PMC12004988 DOI: 10.1097/j.pain.0000000000003435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Urocortin 3 is a neuropeptide that belongs to the corticotropin-releasing hormone family and is involved in mechanosensation and stress regulation. In this study, we show that Urocortin 3 marks a population of excitatory neurons in the mouse spinal cord, divided into 2 nonoverlapping subpopulations expressing protein kinase C gamma or calretinin/calbindin 2, populations previously associated with mechanosensation. Electrophysiological experiments demonstrated that lumbar spinal Urocortin 3 neurons receive both glycinergic and GABAergic local tonic inhibition, and monosynaptic inputs from both Aβ and C fibers, which could be confirmed by retrograde trans-synaptic rabies tracing. Furthermore, fos analyses showed that subpopulations of lumbar Urocortin 3 neurons are activated by artificial scratching or Compound 48/80-induced sensations. Chemogenetic activation of lumbar Urocortin 3-Cre neurons evoked a targeted biting/licking behavior towards the corresponding dermatome and chemogenetic inhibition decreased Compound 48/80-induced behavior. Hence, spinal lumbar Urocortin 3 neurons represent a mechanically associated population with roles in both scratching and Compound 48/80-induced sensations.
Collapse
Affiliation(s)
- Marina C. M. Franck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hannah M. Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mikaela M. Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Aikeremu Ahemaiti
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Erica Bengtsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kajsa A. Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Harmen K. Koning
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Malin C. Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Sant C, Mucke L, Corces MR. CHOIR improves significance-based detection of cell types and states from single-cell data. Nat Genet 2025; 57:1309-1319. [PMID: 40195561 DOI: 10.1038/s41588-025-02148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
Clustering is a critical step in the analysis of single-cell data, enabling the discovery and characterization of cell types and states. However, most popular clustering tools do not subject results to statistical inference testing, leading to risks of overclustering or underclustering data and often resulting in ineffective identification of cell types with widely differing prevalence. To address these challenges, we present CHOIR (cluster hierarchy optimization by iterative random forests), which applies a framework of random forest classifiers and permutation tests across a hierarchical clustering tree to statistically determine clusters representing distinct populations. We demonstrate the performance of CHOIR through extensive benchmarking against 15 existing clustering methods across 230 simulated and five real single-cell RNA sequencing, assay for transposase-accessible chromatin sequencing, spatial transcriptomic and multi-omic datasets. CHOIR can be applied to any single-cell data type and provides a flexible, scalable and robust solution to the challenge of identifying biologically relevant cell groupings within heterogeneous single-cell data.
Collapse
Affiliation(s)
- Cathrine Sant
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
24
|
Guo B, Ling W, Kwon SH, Panwar P, Ghazanfar S, Martinowich K, Hicks SC. Integrating Spatially-Resolved Transcriptomics Data Across Tissues and Individuals: Challenges and Opportunities. SMALL METHODS 2025; 9:e2401194. [PMID: 39935130 PMCID: PMC12103234 DOI: 10.1002/smtd.202401194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/13/2024] [Indexed: 02/13/2025]
Abstract
Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. The lowering cost of SRT data generation presents an unprecedented opportunity to create large-scale spatial atlases and enable population-level investigation, integrating SRT data across multiple tissues, individuals, species, or phenotypes. Here, unique challenges are described in the SRT data integration, where the analytic impact of varying spatial and biological resolutions is characterized and explored. A succinct review of spatially-aware integration methods and computational strategies is provided. Exciting opportunities to advance computational algorithms amenable to atlas-scale datasets along with standardized preprocessing methods, leading to improved sensitivity and reproducibility in the future are further highlighted.
Collapse
Affiliation(s)
- Boyi Guo
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMD21205USA
| | - Wodan Ling
- Division of BiostatisticsDepartment of Population Health SciencesWeill Cornell MedicineNew YorkNY10065USA
| | - Sang Ho Kwon
- Lieber Institute for Brain DevelopmentJohns Hopkins Medical CampusBaltimoreMD21205USA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins School of MedicineBaltimoreMD21205USA
- Biochemistry, Cellular, and Molecular Biology Graduate ProgramJohns Hopkins School of MedicineBaltimoreMD21205USA
| | - Pratibha Panwar
- School of Mathematics and StatisticsThe University of SydneyCamperdownNSW2006Australia
- Sydney Precision Data Science CentreUniversity of SydneyCamperdownNSW2006Australia
- Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Shila Ghazanfar
- School of Mathematics and StatisticsThe University of SydneyCamperdownNSW2006Australia
- Sydney Precision Data Science CentreUniversity of SydneyCamperdownNSW2006Australia
- Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Keri Martinowich
- Lieber Institute for Brain DevelopmentJohns Hopkins Medical CampusBaltimoreMD21205USA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins School of MedicineBaltimoreMD21205USA
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMDUSA
- Johns Hopkins Kavli Neuroscience Discovery InstituteJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Stephanie C. Hicks
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMD21205USA
- Center for Computational BiologyJohns Hopkins UniversityBaltimoreMD21218USA
- Malone Center for Engineering in HealthcareJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
25
|
Li T, Wang Z, Liu Y, He S, Zou Q, Zhang Y. An overview of computational methods in single-cell transcriptomic cell type annotation. Brief Bioinform 2025; 26:bbaf207. [PMID: 40347979 PMCID: PMC12065632 DOI: 10.1093/bib/bbaf207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
The rapid accumulation of single-cell RNA sequencing data has provided unprecedented computational resources for cell type annotation, significantly advancing our understanding of cellular heterogeneity. Leveraging gene expression profiles derived from transcriptomic data, researchers can accurately infer cell types, sparking the development of numerous innovative annotation methods. These methods utilize a range of strategies, including marker genes, correlation-based matching, and supervised learning, to classify cell types. In this review, we systematically examine these annotation approaches based on transcriptomics-specific gene expression profiles and provide a comprehensive comparison and categorization of these methods. Furthermore, we focus on the main challenges in the annotation process, especially the long-tail distribution problem arising from data imbalance in rare cell types. We discuss the potential of deep learning techniques to address these issues and enhance model capability in recognizing novel cell types within an open-world framework.
Collapse
Affiliation(s)
- Tianhao Li
- School of Computer Science, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, 610225 Chengdu, China
| | - Zixuan Wang
- College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, 610065 Chengdu, China
| | - Yuhang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, 999078 Macao, China
| | - Sihan He
- School of Computer Science, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, 610225 Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Shahe Campus: No. 4, Section 2, North Jianshe Road, 611731 Chengdu, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, 610225 Chengdu, China
| |
Collapse
|
26
|
Maden SK, Huuki-Myers LA, Kwon SH, Collado-Torres L, Maynard KR, Hicks SC. lute: estimating the cell composition of heterogeneous tissue with varying cell sizes using gene expression. BMC Genomics 2025; 26:433. [PMID: 40312738 PMCID: PMC12045009 DOI: 10.1186/s12864-025-11508-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/19/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Relative cell type fraction estimates in bulk RNA-sequencing data are important to control for cell composition differences across heterogenous tissue samples. While there exist algorithms to estimate the cell type proportions in tissues, a major challenge is the algorithms can show reduced performance if using tissues that have varying cell sizes, such as in brain tissue. In this way, without adjusting for differences in cell sizes, computational algorithms estimate the relative fraction of RNA attributable to each cell type, rather than the relative fraction of cell types, leading to potentially biased estimates in cellular composition. Furthermore, these tools were built on different frameworks with non-uniform input data formats while addressing different types of systematic errors or unwanted bias. RESULTS We present lute, a software tool to accurately deconvolute cell types with varying sizes. Our package lute wraps existing deconvolution algorithms in a flexible and extensible framework to enable easy benchmarking and comparison of existing deconvolution algorithms. Using simulated and real datasets, we demonstrate how lute adjusts for differences in cell sizes to improve the accuracy of cell composition. CONCLUSIONS Our software ( https://bioconductor.org/packages/lute ) can be used to enhance and improve existing deconvolution algorithms and can be used broadly for any type of tissue containing cell types with varying cell sizes.
Collapse
Affiliation(s)
- Sean K Maden
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Louise A Huuki-Myers
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge, UK
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Leonardo Collado-Torres
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
27
|
Ahmad H, Gopakumar J, Nachun DC, Ma L, D’Addabbo J, Huang X, Koyano T, Boyd J, Woo YPJ, Fong R, Aalami O, Nguyen PK, Jaiswal S. Single cell RNA sequencing of haematopoietic cells in fresh and frozen human atheroma tissue. Cardiovasc Res 2025; 121:396-404. [PMID: 39907372 PMCID: PMC12038232 DOI: 10.1093/cvr/cvaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2024] [Accepted: 12/05/2024] [Indexed: 02/06/2025] Open
Abstract
AIMS Single-cell RNA sequencing (scRNA-seq) is a powerful method for exploring the cellular heterogeneity within human atheroma but typically requires fresh tissue to preserve cell membrane integrity, limiting the feasibility of large-scale biobanking for later analysis. The aim of this study was to determine whether cryopreservation of fragile and necrotic atheroma tissue affects the viability and transcriptomic profiles of haematopoietic cells in subsequent scRNA-seq analysis, enabling the use of cryopreserved atheroma samples for future research. METHODS AND RESULTS We performed scRNA-seq on five paired fresh and cryopreserved atheroma samples-three from coronary arteries and two from carotid arteries. Each sample was enzymatically digested, sorted for CD45+ haematopoietic cells, and processed using the 10× Genomics scRNA-seq workflow. Half of each sample was processed immediately, while the other half was cryopreserved in liquid nitrogen for an average of 5 weeks before thawing and processing. In carotid artery samples, we noted the absence of LYVE1+ macrophages, likely due to the loss of the adventitial layer during endarterectomy procedures. Our results indicated that cryopreservation modestly affected cellular integrity, leading to an increase in the relative abundance of mitochondrial RNA in frozen samples. Minimal differences were observed between fresh and cryopreserved samples in uniquely detected transcripts, cell clustering, or transcriptional profiles within haematopoietic populations. CONCLUSIONS Our study demonstrates that cryopreserved human atheroma samples can be successfully profiled using scRNA-seq, with comparable transcriptomic data to that obtained from fresh samples. These findings suggest that cryopreservation is a viable method for biobanking atheroma tissues, facilitating large-scale studies without the need for immediate sample processing.
Collapse
Affiliation(s)
- Herra Ahmad
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Department of Cardiology, Charité Universitätsmedizin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jayakrishnan Gopakumar
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Lisa Ma
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Jessica D’Addabbo
- Department of Medicine (Cardiovascular Medicine), Stanford University, Stanford, CA, USA
| | - Xianxi Huang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yi-Ping Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Oliver Aalami
- Department of Surgery, Division of Vascular Surgery, Stanford University, Stanford, CA, USA
| | - Patricia K Nguyen
- Department of Medicine (Cardiovascular Medicine), Stanford University, Stanford, CA, USA
- School of Medicine and the School of Engineering, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Cardiovascular Medicine), Palo Alto VA Medical Center, Palo Alto, CA, USA
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- School of Medicine and the School of Engineering, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford Cancer Institute (SCI), Stanford University, Stanford, CA, USA
| |
Collapse
|
28
|
Newton F, Halachev M, Nguyen L, McKie L, Mill P, Megaw R. Autophagy disruption and mitochondrial stress precede photoreceptor necroptosis in multiple mouse models of inherited retinal disorders. Nat Commun 2025; 16:4024. [PMID: 40301324 PMCID: PMC12041483 DOI: 10.1038/s41467-025-59165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness worldwide. One of the greatest barriers to developing treatments for IRDs is the heterogeneity of these disorders, with causative mutations identified in over 280 genes. It is therefore a priority to find therapies applicable to a broad range of genetic causes. To do so requires a greater understanding of the common or overlapping molecular pathways that lead to photoreceptor death in IRDs and the molecular processes through which they converge. Here, we characterise the contribution of different cell death mechanisms to photoreceptor degeneration and loss throughout disease progression in humanised mouse models of IRDs. Using single-cell transcriptomics, we identify common transcriptional signatures in degenerating photoreceptors. Further, we show that in genetically and functionally distinct IRD models, common early defects in autophagy and mitochondrial damage exist, triggering photoreceptor cell death by necroptosis in later disease stages. These results suggest that, regardless of the underlying genetic cause, these pathways likely contribute to cell death in IRDs. These insights provide potential therapeutic targets for novel, gene-agnostic treatments for IRDs applicable to the majority of patients.
Collapse
Affiliation(s)
- Fay Newton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Mihail Halachev
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Linda Nguyen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Lisa McKie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Roly Megaw
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, EH3 9HA, UK.
| |
Collapse
|
29
|
Dhenni R, Hoppé AC, Reynaldi A, Kyaw W, Handoko NT, Grootveld AK, Keith YH, Bhattacharyya ND, Ahel HI, Telfser AJ, McCorkindale AN, Yazar S, Bui CHT, Smith JT, Khoo WH, Boyd M, Obeid S, Milner B, Starr M, Brilot F, Milogiannakis V, Akerman A, Aggarwal A, Davenport MP, Deenick EK, Chaffer CL, Croucher PI, Brink R, Goldstein LD, Cromer D, Turville SG, Kelleher AD, Venturi V, Munier CML, Phan TG. Macrophages direct location-dependent recall of B cell memory to vaccination. Cell 2025:S0092-8674(25)00407-6. [PMID: 40300604 DOI: 10.1016/j.cell.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/31/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
Vaccines generate long-lived plasma cells and memory B cells (Bmems) that may re-enter secondary germinal centers (GCs) to further mutate their B cell receptor upon boosting and re-exposure to antigen. We show in mouse models that lymph nodes draining the site of primary vaccination harbor a subset of Bmems that reside in the subcapsular niche, generate larger recall responses, and are more likely to re-enter GCs compared with circulating Bmems in non-draining lymph nodes. This location-dependent recall of Bmems into the GC in the draining lymph node was dependent on CD169+ subcapsular sinus macrophages (SSMs) in the subcapsular niche. In human participants, boosting of the BNT162b2 vaccine in the same arm generated more rapid secretion of broadly neutralizing antibodies, GC participation, and clonal expansion of SARS-CoV-2-specific B cells than boosting of the opposite arm. These data reveal an unappreciated role for primed draining lymph node SSMs in Bmem cell fate determination.
Collapse
Affiliation(s)
- Rama Dhenni
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Alexandra Carey Hoppé
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Wunna Kyaw
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Nathalie Tricia Handoko
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Abigail K Grootveld
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Yuki Honda Keith
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Nayan Deger Bhattacharyya
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Holly I Ahel
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Aiden Josiah Telfser
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Andrew N McCorkindale
- Data Science Platform, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Seyhan Yazar
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Christina H T Bui
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - James T Smith
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Weng Hua Khoo
- Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Mollie Boyd
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Solange Obeid
- St. Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Brad Milner
- St. Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Mitchell Starr
- St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa Milogiannakis
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anouschka Akerman
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anupriya Aggarwal
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Elissa K Deenick
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Christine L Chaffer
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Peter I Croucher
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Robert Brink
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; Immune Biotherapies Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Leonard D Goldstein
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Data Science Platform, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Stuart G Turville
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia; St. Vincent's Hospital Sydney, Sydney, NSW, Australia.
| | - Vanessa Venturi
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.
| | - Tri Giang Phan
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Tseng TY, Hsieh CH, Liu JY, Huang HC, Juan HF. Single-cell and multi-omics integration reveals cholesterol biosynthesis as a synergistic target with HER2 in aggressive breast cancer. Comput Struct Biotechnol J 2025; 27:1719-1731. [PMID: 40391299 PMCID: PMC12088767 DOI: 10.1016/j.csbj.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
Breast cancer stands as one of the most prevalent malignancies affecting women. Alterations in molecular pathways in cancer cells represent key regulatory disruptions that drive malignancy, influencing cancer cell survival, proliferation, and potentially modulating therapeutic responsiveness. Therefore, decoding the intricate molecular mechanisms and identifying novel therapeutic targets through systematic computational approaches are essential steps toward advancing effective breast cancer treatments. In this study, we developed an integrative computational framework that combines single-cell RNA sequencing (scRNA-seq) and multi-omics analyses to delineate the functional characteristics of malignant cell subsets in breast cancer patients. Our analyses revealed a significant correlation between cholesterol biosynthesis and HER2 expression in malignant breast cancer cells, supported by proteomics data, gene expression profiles, drug treatment scores, and cell-surface HER2 intensity measurements. Given previous evidence linking cholesterol biosynthesis to HER2 membrane dynamics, we proposed a combinatorial strategy targeting both pathways. Experimental validation through clonogenic and viability assays demonstrated that simultaneous inhibition of cholesterol biosynthesis (via statins) and HER2 (via Neratinib) synergistically reduced malignant breast cancer cells, even in HER2-negative contexts. Through systematic analysis of scRNA-seq and multi-omics data, our study computationally identified and experimentally validated cholesterol biosynthesis and HER2 as novel combinatorial therapeutic targets in breast cancer. This data-driven approach highlights the potential of leveraging multiple molecular profiling techniques to uncover previously unexplored treatment strategies.
Collapse
Affiliation(s)
- Tzu-Yang Tseng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chiao-Hui Hsieh
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jie-Yu Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei, Taiwan
- Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Ni Q, Yu J, Niu Y, Han Z, Hu B, Wang Y, Zhu J. Single-cell transcriptomic data reveal the cellular heterogeneity of glutamine metabolism in gastric premalignant lesions and early gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40264416 DOI: 10.3724/abbs.2025061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Glutamine metabolism is a hallmark of cancer metabolism. This study aims to perform a comprehensive and systematic single-cell profile of glutamine metabolism in premalignant and malignant gastric lesions. We use single-cell transcriptomics data from chronic atrophic gastritis (CAG) and early gastric cancer (EGC) lesions and investigate glutamine metabolism features at the single-cell level. Experiments are implemented to validate the expression and biological role of ERO1LB in gastric cancer (GC). A single-cell atlas based on 22511 cells from premalignant and early-malignant gastric lesions is established. Among these cells, epithelial cells constitute the dominant cell population in both CAG and EGC lesions. The activity of glutamine metabolism is higher in epithelial cells from EGC lesions than in those from CAG lesions. Among the epithelial cell subpopulations, glutamine metabolism is more active in the epithelial cell subpopulation cluster_4 in EGCs than in CAG lesions. As a key marker gene of this subpopulation, ERO1LB is experimentally proven to be overexpressed in human GC tissue lesions. In both in vitro and in vivo experiments, overexpression of ERO1LB in GC cells increases glutamine metabolism, facilitates cell growth and migration and prevents cell apoptosis, and vice versa. This study provides insight into the cellular heterogeneityof glutamine metabolism within the gastric mucosa in premalignant and malignant gastric lesions and identifies ERO1LB as a key orchestrator of glutamine metabolism, which may help to identify markers for GC prevention and contribute to our understanding of GC pathogenesis.
Collapse
|
32
|
Nicholas CA, Tensun FA, Evans SA, Toole KP, Prendergast JE, Broncucia H, Hesselberth JR, Gottlieb PA, Wells KL, Smith MJ. Activated polyreactive B cells are clonally expanded in autoantibody positive and patients with recent-onset type 1 diabetes. Cell Rep 2025; 44:115425. [PMID: 40117290 PMCID: PMC12068228 DOI: 10.1016/j.celrep.2025.115425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). We isolated pancreatic islet antigen-reactive B cells from the peripheral blood of non-diabetic autoantibody-negative first-degree relatives, autoantibody-positive, and recent-onset T1D donors. Single-cell RNA sequencing analysis revealed that islet antigen-reactive B cells from autoantibody-positive and T1D donors had altered gene expression in pathways associated with B cell signaling and inflammation. Additionally, BCR sequencing uncovered a similar shift in islet antigen-reactive B cell repertoires among autoantibody-positive and T1D donors where greater clonal expansion was also observed. Notably, a substantial fraction of islet antigen-reactive B cells in autoantibody-positive and T1D donors appeared to be polyreactive, which was corroborated by analysis of recombinant monoclonal antibodies. These results expand our understanding of autoreactive B cell phenotypes during T1D and identify unique BCR repertoire changes that may serve as biomarkers for increased disease risk.
Collapse
Affiliation(s)
- Catherine A Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Fatima A Tensun
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Spencer A Evans
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin P Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica E Prendergast
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Mia J Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
33
|
Azami T, Theeuwes B, Nu Ton ML, Mansfield W, Harland L, Kinoshita M, Gottgens B, Nichols J. STAT3 signaling enhances tissue expansion during postimplantation mouse development. Cell Rep 2025; 44:115506. [PMID: 40188437 DOI: 10.1016/j.celrep.2025.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/08/2025] Open
Abstract
Signal transducer and activator of transcription (STAT)3 signaling has been studied extensively using mouse embryonic stem cells. Zygotic deletion of Stat3 enables embryo implantation, but thereafter, mutants resemble non-affected littermates from the previous day until around mid-gestation. This probably results from the loss of serine-phosphorylated STAT3, the predominant form in early postimplantation embryonic tissues associated with mitochondrial activity. Bulk RNA sequencing of isolated mouse epiblasts confirmed developmental delay transcriptionally. Single-cell RNA sequencing revealed the exclusion of derivatives of Stat3 null embryonic stem cells exclusively from the erythroid lineage of mid-gestation chimeras. We show that Stat3 null embryonic stem cells can differentiate into erythroid and hematopoietic lineages in vitro but become outcompeted when mixed with wild-type cells. Our results implicate a role for STAT3 in the temporal control of embryonic progression, particularly in tissues requiring rapid cell division, such as postimplantation epiblast and hematopoietic lineages. Interestingly, mutations in STAT3 are associated with short stature in humans.
Collapse
Affiliation(s)
- Takuya Azami
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Bart Theeuwes
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Mai-Linh Nu Ton
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - William Mansfield
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Luke Harland
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Masaki Kinoshita
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Berthold Gottgens
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Peng H, Jabbari JS, Tian L, Wang C, You Y, Chua CC, Anstee NS, Amin N, Wei AH, Davidson NM, Roberts AW, Huang DCS, Ritchie ME, Thijssen R. Single-cell Rapid Capture Hybridization sequencing reliably detects isoform usage and coding mutations in targeted genes. Genome Res 2025; 35:942-955. [PMID: 39794120 PMCID: PMC12047256 DOI: 10.1101/gr.279322.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage, thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrates high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest. The method includes creating a probe panel for transcript capture, using barcoded primers for pooling and efficient sequencing via Oxford Nanopore Technologies platforms. scRaCH-seq is applicable to stored and indexed single-cell cDNA, which allows analysis to be combined with existing short-read RNA-seq data sets. In our investigation of BTK and SF3B1 genes in samples from patients with chronic lymphocytic leukemia (CLL), we detect SF3B1 isoforms and mutations with high sensitivity. Integration with short-read single-cell RNA sequencing (scRNA-seq) data reveals significant gene expression differences in SF3B1-mutated CLL cells, although it does not impact the sensitivity of the anticancer drug venetoclax. scRaCH-seq's capability to study long-read transcripts of multiple genes makes it a powerful tool for single-cell genomics.
Collapse
Affiliation(s)
- Hongke Peng
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Jafar S Jabbari
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Luyi Tian
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Changqing Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Yupei You
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Chong Chyn Chua
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Monash Haematology, Monash Health, Melbourne 3168, Australia
- Clinical Haematology, Northern Health, Melbourne 3076, Australia
| | - Natasha S Anstee
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Noorul Amin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Andrew H Wei
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne 3052, Australia
| | - Nadia M Davidson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Andrew W Roberts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Rachel Thijssen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Department of Hematology, Amsterdam UMC, Amsterdam 1081HV, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam 1081HV, the Netherlands
| |
Collapse
|
35
|
Ernst KJ, Okonechnikov K, Bageritz J, Perera AA, Mallm JP, Wittmann A, Maaß KK, Leible S, Boutros M, Pfister SM, Zuckermann M, Jones DTW. A simplified preparation method for single-nucleus RNA-sequencing using long-term frozen brain tumor tissues. Sci Rep 2025; 15:12849. [PMID: 40229354 PMCID: PMC11997191 DOI: 10.1038/s41598-025-97053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Single-cell RNA-sequencing has provided intriguing new insights into research areas such as developmental processes and tumor heterogeneity. Most approaches, however, rely on the availability of fresh surgical specimens, thereby dramatically reducing the ability to profile particularly rare tissue types. Here, we optimized a method to isolate intact nuclei from long-term frozen pediatric glioma tissues. We performed a technical comparison between different single-nucleus RNA-sequencing (snRNA-seq) systems and applied the established nucleus isolation method to analyze frozen primary glioma tissues. The results show that our fast, simple and low-cost nuclear isolation protocol provides intact nuclei, which can be used in both droplet- and plate-based single-cell sequencing platforms - allowing the identification of distinct tumor cell populations and infiltrating microglia. Additional optimization to include shorter RNA fragments in the 3' sequencing library improved gene detection and cell type annotation. Taken together, the method dramatically increases the potential of studying rare tumor entities and is specifically tailored for using frozen brain tumor tissue.
Collapse
Affiliation(s)
- Kati J Ernst
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - Josephine Bageritz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashwyn A Perera
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-Cell Open Lab; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Wittmann
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kendra K Maaß
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - Svenja Leible
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Zuckermann
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Garton T, Smith MD, Kesharwani A, Gharagozloo M, Oh S, Na CH, Absinta M, Reich DS, Zack DJ, Calabresi PA. Myeloid lineage C3 induces reactive gliosis and neuronal stress during CNS inflammation. Nat Commun 2025; 16:3481. [PMID: 40216817 PMCID: PMC11992029 DOI: 10.1038/s41467-025-58708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Complement component C3 mediates pathology in CNS neurodegenerative diseases. Here we use scRNAseq of sorted C3-reporter positive cells from mouse brain and optic nerve to characterize C3 producing glia in experimental autoimmune encephalomyelitis (EAE), a model in which peripheral immune cells infiltrate the CNS, causing reactive gliosis and neuro-axonal pathology. We find that C3 expression in the early inflammatory stage of EAE defines disease-associated glial subtypes characterized by increased expression of genes associated with mTOR activation and cell metabolism. This pro-inflammatory subtype is abrogated with genetic C3 depletion, a finding confirmed with proteomic analyses. In addition, early optic nerve axonal injury and retinal ganglion cell oxidative stress, but not loss of post-synaptic density protein 95, are ameliorated by selective deletion of C3 in myeloid cells. These data suggest that in addition to C3b opsonization of post synaptic proteins leading to neuronal demise, C3 activation is a contributor to reactive glia in the optic nerve.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ajay Kesharwani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sungtaek Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chan-Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Reserach Hospital, Milan, Italy
| | - Daniel S Reich
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Jagadesan S, Guda C. MetaDAVis: An R shiny application for metagenomic data analysis and visualization. PLoS One 2025; 20:e0319949. [PMID: 40193328 PMCID: PMC11975103 DOI: 10.1371/journal.pone.0319949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/11/2025] [Indexed: 04/09/2025] Open
Abstract
The human microbiome exerts tremendous influence on maintaining a balance between human health and disease. High-throughput sequencing has enabled the study of microbial communities at an unprecedented resolution. Generation of massive amounts of sequencing data has also presented novel challenges to analyzing and visualizing data to make biologically relevant interpretations. We have developed an interactive Metagenome Data Analysis and Visualization (MetaDAVis) tool for 16S rRNA as well as the whole genome sequencing data analysis and visualization to address these challenges using an R Shiny application. MetaDAVis can perform six different types of analyses that include: i) Taxonomic abundance distribution; ii) Alpha and beta diversity analyses; iii) Dimension reduction tasks using PCA, t-SNE, and UMAP; iv) Correlation analysis using taxa- or sample-based data; v) Heatmap generation; and vi) Differential abundance analysis. MetaDAVis creates interactive and dynamic figures and tables from multiple methods enabling users to easily understand their data using different variables. Our program is user-friendly and easily customizable allowing those without any programming background to perform comprehensive data analyses using a standalone or web-based interface.
Collapse
Affiliation(s)
- Sankarasubramanian Jagadesan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
38
|
Jia Y, Peng Z, Tian X, Guan Y, Han Y, Ji D, Lan B, Xu B, Fan Y. Single-cell sequencing exposes mast cell-derived CD52's anti-tumor action in breast cancer through the IL-6/JAK/STAT3 axis. Int J Biol Macromol 2025; 310:142879. [PMID: 40194575 DOI: 10.1016/j.ijbiomac.2025.142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The aggressive nature and rapid progression of triple-negative breast cancer (TNBC), coupled with a high likelihood of recurrence and mortality, underscore the critical need for effective treatments. While immunotherapy presents promising advantages for those with triple-negative breast cancer (TNBC), its efficacy is not universal. This disparity highlights the importance of investigating survival outcomes and prognostic factors for those TNBC patients who don't respond well to immunotherapy. Our study leverages both bulk and single-cell RNA sequencing data to conduct an in-depth analysis, revealing that genes associated with mast cells (PCMT1, VDAC1, YWHAB, BRD4, BTG1, and CD52) are pivotal in prognostication for TNBC patients. Laboratory experiments have further substantiated our findings, demonstrating that the overexpression of CD52 in mast cells impedes the proliferation, invasion, and metastasis of breast cancer cells. Further anti-CD52 treatment inhibiting breast tumor growth in vivo. Additionally, we have discovered that CD52 elicits its antitumor effects by meditating the IL-6/JAK/STAT3 signaling pathway. These insights not only enhance the prognostic significance of mast cells in TNBC but also pave the way for the development of novel targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Yueran Jia
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zexi Peng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinzhu Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuhang Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dangyang Ji
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
39
|
Skribbe M, Soneson C, Stadler MB, Schwaiger M, Suma Sreechakram VN, Iesmantavicius V, Hess D, Moreno EPF, Braun S, Seebacher J, Smallwood SA, Bühler M. A comprehensive Schizosaccharomyces pombe atlas of physical transcription factor interactions with proteins and chromatin. Mol Cell 2025; 85:1426-1444.e8. [PMID: 40015273 DOI: 10.1016/j.molcel.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/16/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Transcription factors (TFs) are key regulators of gene expression, yet many of their targets and modes of action remain unknown. In Schizosaccharomyces pombe, one-third of TFs are solely homology predicted, with few experimentally validated. We created a comprehensive library of 89 endogenously tagged S. pombe TFs, mapping their protein and chromatin interactions using immunoprecipitation-mass spectrometry and chromatin immunoprecipitation sequencing. Our study identified protein interactors for half the TFs, with over a quarter potentially forming stable complexes. We discovered DNA-binding sites for most TFs across 2,027 unique genomic regions, revealing motifs for 38 TFs and uncovering a complex network of extensive TF cross- and autoregulation. Characterization of the largest TF family revealed conserved DNA sequence preferences but diverse binding patterns and identified a repressive heterodimer, Ntu1/Ntu2, linked to perinuclear gene localization. Our TFexplorer webtool makes all data interactively accessible, offering insights into TF interactions and regulatory mechanisms with broad biological relevance.
Collapse
Affiliation(s)
- Merle Skribbe
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; University of Basel, Petersplatz 10, Basel, Switzerland.
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; University of Basel, Petersplatz 10, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | | | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | | | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Sebastien A Smallwood
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; University of Basel, Petersplatz 10, Basel, Switzerland.
| |
Collapse
|
40
|
Lyu M, Iida H, Eekhout T, Mäkelä M, Muranen S, Ye L, Vatén A, Wybouw B, Wang X, De Rybel B, Mähönen AP. The dynamic and diverse nature of parenchyma cells in the Arabidopsis root during secondary growth. NATURE PLANTS 2025; 11:878-890. [PMID: 40140531 PMCID: PMC12014502 DOI: 10.1038/s41477-025-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
During secondary growth, the vascular cambium produces conductive xylem and phloem cells, while the phellogen (cork cambium) deposits phellem (cork) as the outermost protective barrier. Although most of the secondary tissues are made up of parenchyma cells, which are also produced by both cambia, their diversity and function are poorly understood. Here we combined single-cell RNA sequencing analysis with lineage tracing to recreate developmental trajectories of the cell types in the Arabidopsis root undergoing secondary growth. By analysing 93 reporter lines, we were able to identify 20 different cell types or cell states, many of which have not been described before. We additionally observed distinct transcriptome signatures of parenchyma cells depending on their maturation state and proximity to the conductive cell types. Our data show that both xylem and phloem parenchyma tissues are required for normal formation of conductive tissue cell types. Furthermore, we show that mature phloem parenchyma gradually obtains periderm identity, and this transformation can be accelerated by jasmonate treatment or wounding. Our study thus reveals the diversity of parenchyma cells and their capacity to undergo considerable identity changes during secondary growth.
Collapse
Affiliation(s)
- Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Hiroyuki Iida
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent, Belgium
- VIB Single Cell Core, VIB, Leuven, Belgium
| | - Meeri Mäkelä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Sampo Muranen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Anne Vatén
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Centre for Plant Systems Biology, Ghent, Belgium.
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
41
|
Canizo JR, Zhao C, Petropoulos S. The guinea pig serves as an alternative model to study human preimplantation development. Nat Cell Biol 2025; 27:696-710. [PMID: 40185949 PMCID: PMC11991919 DOI: 10.1038/s41556-025-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Preimplantation development is an important window of human embryogenesis. However, ethical constraints and the limitations involved in studying human embryos often necessitate the use of alternative model systems. Here we identify the guinea pig as a promising small animal model to study human preimplantation development. Using single-cell RNA-sequencing, we generated an atlas of guinea pig preimplantation development, revealing its close resemblance to early human embryogenesis in terms of the timing of compaction, early-, mid- and late-blastocyst formation, and implantation, and the spatio-temporal expression of key lineage markers. We also show conserved roles of Hippo, MEK-ERK and JAK-STAT signalling. Furthermore, multi-species analysis highlights the spatio-temporal expression of conserved and divergent genes during preimplantation development and pluripotency. The guinea pig serves as a valuable animal model for advancing preimplantation development and stem cell research, and can be leveraged to better understand the longer-term impact of early exposures on offspring outcomes.
Collapse
Affiliation(s)
- Jesica Romina Canizo
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada.
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada.
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
42
|
Thiel V, Renders S, Panten J, Dross N, Bauer K, Azorin D, Henriques V, Vogel V, Klein C, Leppä AM, Barriuso Ortega I, Schwickert J, Ourailidis I, Mochayedi J, Mallm JP, Müller-Tidow C, Monyer H, Neoptolemos J, Hackert T, Stegle O, Odom DT, Offringa R, Stenzinger A, Winkler F, Sprick M, Trumpp A. Characterization of single neurons reprogrammed by pancreatic cancer. Nature 2025; 640:1042-1051. [PMID: 39961335 PMCID: PMC12018453 DOI: 10.1038/s41586-025-08735-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/31/2025] [Indexed: 04/04/2025]
Abstract
The peripheral nervous system (PNS) orchestrates organ function in health and disease. Most cancers, including pancreatic ductal adenocarcinoma (PDAC), are infiltrated by PNS neurons, and this contributes to the complex tumour microenvironment (TME)1,2. However, neuronal cell bodies reside in various PNS ganglia, far from the tumour mass. Thus, cancer-innervating or healthy-organ-innervating neurons are lacking in current tissue-sequencing datasets. To molecularly characterize pancreas- and PDAC-innervating neurons at single-cell resolution, we developed Trace-n-Seq. This method uses retrograde tracing of axons from tissues to their respective ganglia, followed by single-cell isolation and transcriptomic analysis. By characterizing more than 5,000 individual sympathetic and sensory neurons, with about 4,000 innervating PDAC or healthy pancreas, we reveal novel neuronal cell types and molecular networks that are distinct to the pancreas, pancreatitis, PDAC or melanoma metastasis. We integrate single-cell datasets of innervating neurons and the TME to establish a neuron-cancer-microenvironment interactome, delineate cancer-driven neuronal reprogramming and generate a pancreatic-cancer nerve signature. Pharmacological denervation induces a pro-inflammatory TME and increases the effectiveness of immune-checkpoint inhibitors. The taxane nab-paclitaxel causes intratumoral neuropathy, which attenuates PDAC growth and, in combination with sympathetic denervation, results in synergistic tumour regression. Our multi-dimensional data provide insights into the networks and functions of PDAC-innervating neurons, and support the inclusion of denervation in future therapies.
Collapse
Affiliation(s)
- Vera Thiel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Simon Renders
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Jasper Panten
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicolas Dross
- Nikon Imaging Center, University of Heidelberg, Heidelberg, Germany
| | | | - Daniel Azorin
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vanessa Henriques
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Vanessa Vogel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Aino-Maija Leppä
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Isabel Barriuso Ortega
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Schwickert
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Iordanis Ourailidis
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Mochayedi
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Hannah Monyer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Stegle
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albrecht Stenzinger
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Winkler
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany.
| |
Collapse
|
43
|
Cui L, Nie X, Guo Y, Ren P, Guo Y, Wang X, Li R, Hotaling JM, Cairns BR, Guo J. Single-cell transcriptomic atlas of the human testis across the reproductive lifespan. NATURE AGING 2025; 5:658-674. [PMID: 40033047 PMCID: PMC12003174 DOI: 10.1038/s43587-025-00824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Testicular aging is associated with declining reproductive health, but the molecular mechanisms are unclear. Here we generate a dataset of 214,369 single-cell transcriptomes from testicular cells of 35 individuals aged 21-69, offering a resource for studying testicular aging and physiology. Machine learning analysis reveals a stronger aging response in somatic cells compared to germ cells. Two waves of aging-related changes are identified: the first in peritubular cells of donors in their 30s, marked by increased basement membrane thickness, indicating a priming state for aging. In their 50s, testicular cells exhibit functional changes, including altered steroid metabolism in Leydig cells and immune responses in macrophages. Further analyses reveal the impact of body mass index on spermatogenic capacity as age progresses, particularly after age 45. Altogether, our findings illuminate molecular alterations during testis aging and their relationship with body mass index, providing a foundation for future research and offering potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Cui
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xichen Nie
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- Division of Urology, Department of Surgery, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Yixuan Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Pengcheng Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yifei Guo
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ran Li
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - James M Hotaling
- Division of Urology, Department of Surgery, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Jingtao Guo
- State Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Petrohilos C, Peel E, Batley KC, Fox S, Hogg CJ, Belov K. No Evidence for Distinct Transcriptomic Subgroups of Devil Facial Tumor Disease (DFTD). Evol Appl 2025; 18:e70091. [PMID: 40177324 PMCID: PMC11961399 DOI: 10.1111/eva.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Contagious cancers represent one of the least understood types of infections in wildlife. Devil Facial Tumor Disease (comprised of two different contagious cancers, DFT1 and DFT2) has led to an 80% decline in the Tasmanian devil (Sarcophilus harrisii ) population at the regional level since it was first observed in 1996. There are currently no treatment options for the disease, and research efforts are focused on vaccine development. Although DFT1 is clonal, phylogenomic studies have identified different genetic variants of the pathogen. We postulated that different genetic strains may have different gene expression profiles and would therefore require different vaccine components. Here, we aimed to test this hypothesis by applying two types of unsupervised clustering (hierarchical and k-means) to 35 DFT1 transcriptomes selected from the disease's four major phylogenetic clades. The two algorithms produced conflicting results, and there was low support for either method individually. Validation metrics, such as the Gap statistic method, the Elbow method, and the Silhouette method, were ambiguous, contradictory, or indicated that our dataset only consisted of a single cluster. Collectively, our results show that the different phylogenetic clades of DFT1 all have similar gene expression profiles. Previous studies have suggested that transcriptomic differences exist between tumours from different locations. However, our study differs in that it considers both tumor purity and genotypic clade when analysing differences between DFTD biopsies. These results have important implications for therapeutic development, as they indicate that a single vaccine or treatment approach has the potential to be effective for a large cross-section of DFT1 tumors. As one of the largest studies to use transcriptomics to investigate phenotypic variation within a single contagious cancer, it also provides novel insight into this unique group of diseases.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Emma Peel
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Kimberley C. Batley
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Samantha Fox
- Save the Tasmanian Devil ProgramDepartment of Natural Resources and EnvironmentHobartTasmaniaAustralia
| | - Carolyn J. Hogg
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Katherine Belov
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
45
|
Rafi FR, Heya NR, Hafiz MS, Jim JR, Kabir MM, Mridha MF. A systematic review of single-cell RNA sequencing applications and innovations. Comput Biol Chem 2025; 115:108362. [PMID: 39919386 DOI: 10.1016/j.compbiolchem.2025.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Bulk RNA sequencing is one type of RNA sequencing technique, as well as targeted RNA sequencing and whole transcriptome sequencing. It provides valuable insights into gene expression in specific cell populations or regions. However, these methods often miss the diversity of cells within complex tissues. This restriction is overcome by single-cell RNA sequencing, which records gene expression at the single-cell level. It offers a detailed picture of the diversity of cells. It is essential to study glucose homeostasis. It offers thorough explanations of cellular variation. Networks and Governance Dynamics The use of scRNA-seq in islet cells is reviewed in this study, along with sample preparation, sequencing, and computational analysis. It highlights advances in understanding cell types. Gene activity and cell interactions. Along with the challenges and limitations of scRNA-seq, this review highlights the importance of scRNA-seq in understanding complex biological processes and diseases. It is an essential resource for future research and method development in this field, which will help to build personalized treatment.
Collapse
Affiliation(s)
- Fahamidur Rahaman Rafi
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Nafeya Rahman Heya
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Md Sadman Hafiz
- Institute of Information and Communication Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Jamin Rahman Jim
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| | - Md Mohsin Kabir
- Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka 1216, Bangladesh.
| | - M F Mridha
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| |
Collapse
|
46
|
Yan S, Zhao W, Du J, Teng L, Yu T, Xu P, Liu J, Yang R, Dong Y, Wang H, Lu L, Tao W. C-FOS promotes the formation of neutrophil extracellular traps and the recruitment of neutrophils in lung metastasis of triple-negative breast cancer. J Exp Clin Cancer Res 2025; 44:108. [PMID: 40148973 PMCID: PMC11951605 DOI: 10.1186/s13046-025-03370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are composed of DNA chains from neutrophils and associated proteolytic enzymes, which play an important role in cancer metastasis. However, the molecular mechanism of NET-mediated lung metastasis in triple-negative breast cancer (TNBC) remains unclear. METHODS The expression levels of NETs in breast cancer specimens and serum were analyzed and compared with normal samples. Single-cell sequencing bioinformatics analysis was conducted to identify differentially expressed genes and functional enrichment related to NET formation in patients with breast cancer. The effects of c-FOS on neutrophil recruitment and NET formation in TNBC were investigated. The upstream and downstream regulatory mechanisms mediated by c-FOS were explored through in vitro and in vivo experiments. Therapeutic approaches targeting c-FOS for treating TNBC were further studied. RESULTS Inhibition of c-FOS can suppress tumor growth and lung metastasis in TNBC. Mechanistically, c-FOS promotes transcription by binding to the PAD4 promoter region, facilitating the formation of NETs. Additionally, the activation of the ROS-p38 pathway further enhances c-FOS expression. High expression of c-FOS also promotes the expression of inflammatory factors, facilitating neutrophil recruitment. Both in vitro and in vivo experiments demonstrated that the application of T5224 effectively inhibits the formation of NETs, suppressing lung metastasis and tumor growth. CONCLUSION In summary, this study demonstrates that the ROS-p38-cFOS-PAD4 axis can increase NET formation in TNBC and promote the expression of inflammatory factors, facilitating neutrophil recruitment. Therefore, targeting this pathway may help inform new therapeutic strategies and provide new insights for immunotherapy in TNBC.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Wenxi Zhao
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Juntong Du
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lizhi Teng
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Tong Yu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Peng Xu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Jiangnan Liu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Ru Yang
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Yuhan Dong
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Hongyue Wang
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lingran Lu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Weiyang Tao
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
47
|
Du MRM, Wang C, Law CW, Amann-Zalcenstein D, Anttila CJA, Ling L, Hickey PF, Sargeant CJ, Chen Y, Ioannidis LJ, Rajasekhar P, Yip RKH, Rogers KL, Hansen DS, Bowden R, Ritchie ME. Benchmarking spatial transcriptomics technologies with the multi-sample SpatialBenchVisium dataset. Genome Biol 2025; 26:77. [PMID: 40156041 PMCID: PMC11954323 DOI: 10.1186/s13059-025-03543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Spatial transcriptomics allows gene expression to be measured within complex tissue contexts. Among the array of spatial capture technologies available is 10x Genomics' Visium platform, a popular method which enables transcriptome-wide profiling of tissue sections. Visium offers a range of sample handling and library construction methods which introduces a need for benchmarking to compare data quality and assess how well the technology can recover expected tissue features and biological signatures. RESULTS Here we present SpatialBenchVisium, a unique reference dataset generated from spleen tissue of mice responding to malaria infection spanning several tissue preparation protocols (both fresh frozen and FFPE, with either manual or CytAssist tissue placement). We note better quality control metrics in reference samples prepared using probe-based capture methods, particularly those processed with CytAssist, validating the improvement in data quality produced with the platform. Our analysis of replicate samples extends to explore spatially variable gene detection, the outcomes of clustering and cell deconvolution using matched single-cell RNA-sequencing data and publicly available reference data to identify cell types and tissue regions expected in the spleen. Multi-sample differential expression analysis recovered known gene signatures related to biological sex or gene knockout.
Collapse
Affiliation(s)
- Mei R M Du
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Changqing Wang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Charity W Law
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniela Amann-Zalcenstein
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Casey J A Anttila
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Ling Ling
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Callum J Sargeant
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Yunshun Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pradeep Rajasekhar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Raymond K H Yip
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Diana S Hansen
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Rory Bowden
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
48
|
Kaiser J, Patel P, Fedde S, Lammers A, Kenwood MR, Iqbal A, Goldberg M, Sahni V. Developmental molecular signatures define de novo cortico-brainstem circuit for skilled forelimb movement. RESEARCH SQUARE 2025:rs.3.rs-6150344. [PMID: 40196004 PMCID: PMC11975033 DOI: 10.21203/rs.3.rs-6150344/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Skilled movement relies on descending cortical projections to the brainstem and spinal cord. While corticospinal neurons (CSN) have long been recognized for their role in fine motor control, the contribution of cortical projections to the brainstem remains poorly understood. Here, we identify a previously unrecognized direct cortico-brainstem circuit that emerges early in development and persists into adulthood. A subset of subcerebral projection neurons (SCPN) limit their projections to the brainstem from the earliest stages of axon extension without ever extending to the spinal cord. Using FACS purification and single-cell RNA sequencing, we show that these cortico-brainstem neurons (CBN) can be prospectively identified by the expression of Neuropeptide Y (Npy) in development. Functional silencing of Npy+ CBN in adulthood leads to impaired skilled forelimb reaching, demonstrating their essential role in adult motor control. Npy+ CBN project preferentially to rostral brainstem regions, including the midbrain reticular formation. These findings reveal developmental molecular signatures that define cortico-brainstem pathways for adult skilled movement. Our work provides new insights into the developmental logic that establishes descending cortical circuits and opens avenues for targeted investigation of their roles in motor function and recovery after injury.
Collapse
Affiliation(s)
- Julia Kaiser
- Burke Neurological Institute, White Plains, NY, 10605
| | - Payal Patel
- Burke Neurological Institute, White Plains, NY, 10605
| | - Sam Fedde
- Burke Neurological Institute, White Plains, NY, 10605
| | | | | | - Asim Iqbal
- Burke Neurological Institute, White Plains, NY, 10605
- Tibbling Technologies, Redmond, WA, 98052
| | - Mark Goldberg
- Department of Neurology, UT Health Sciences Center San Antonio, San Antonio, TX, USA
| | - Vibhu Sahni
- Burke Neurological Institute, White Plains, NY, 10605
- Department of Neurology, UT Health Sciences Center San Antonio, San Antonio, TX, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, NY, 10065
| |
Collapse
|
49
|
Kahn OI, Dominguez SL, Glock C, Hayne M, Vito S, Sengupta Ghosh A, Adrian M, Burgess BL, Meilandt WJ, Friedman BA, Hoogenraad CC. Secreted neurofilament light chain after neuronal damage induces myeloid cell activation and neuroinflammation. Cell Rep 2025; 44:115382. [PMID: 40056413 DOI: 10.1016/j.celrep.2025.115382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
Neurofilament light chain (NfL) is a neuron-specific cytoskeletal protein that provides structural support for axons and is released into the extracellular space following neuronal injury. While NfL has been extensively studied as a disease biomarker, the underlying release mechanisms and role in neurodegeneration remain poorly understood. Here, we find that neurons secrete low baseline levels of NfL, while neuronal damage triggers calpain-driven proteolysis and release of fragmented NfL. Secreted NfL activates microglial cells, which can be blocked with anti-NfL antibodies. We utilize in vivo single-cell RNA sequencing to profile brain cells after injection of recombinant NfL into the mouse hippocampus and find robust macrophage and microglial responses. Consistently, NfL knockout mice ameliorate microgliosis and delay symptom onset in the SOD1 mouse model of amyotrophic lateral sclerosis (ALS). Our results show that released NfL can activate myeloid cells in the brain and is, thus, a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sara L Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Caspar Glock
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Margaret Hayne
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steve Vito
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Braydon L Burgess
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Brad A Friedman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
50
|
Theunis K, Vanuytven S, Claes I, Geurts J, Rambow F, Brown D, Van Der Haegen M, Marin-Bejar O, Rogiers A, Van Raemdonck N, Leucci E, Demeulemeester J, Sifrim A, Marine JC, Voet T. Single-cell genome and transcriptome sequencing without upfront whole-genome amplification reveals cell state plasticity of melanoma subclones. Nucleic Acids Res 2025; 53:gkaf173. [PMID: 40138718 PMCID: PMC11941470 DOI: 10.1093/nar/gkaf173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Single-cell multi-omics methods enable the study of cell state diversity, which is largely determined by the interplay of the genome, epigenome, and transcriptome. Here, we describe Gtag&T-seq, a genome-and-transcriptome sequencing (G&T-seq) protocol of the same single cells that omits whole-genome amplification (WGA) by using direct genomic tagmentation (Gtag). Gtag drastically decreases the cost and improves coverage uniformity at single-cell and pseudo-bulk levels compared to WGA-based G&T-seq. We also show that transcriptome-based DNA copy number inference has limited resolution and accuracy, underlining the importance of affordable multi-omic approaches. Applying Gtag&T-seq to a melanoma xenograft model before treatment and at minimal residual disease revealed differential cell state plasticity and treatment response between cancer subclones. In summary, Gtag&T-seq is a low-cost and accurate single-cell multi-omics method that explores genetic alterations and their functional consequences in single cells at scale.
Collapse
Affiliation(s)
- Koen Theunis
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sebastiaan Vanuytven
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Irene Claes
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| | - Jarne Geurts
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Daniel Brown
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Australia
| | - Michiel Van Der Haegen
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Nina Van Raemdonck
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Trace, Leuven Cancer Institute, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jonas Demeulemeester
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| | - Alejandro Sifrim
- Laboratory of Multi-omic Integrative Bioinformatics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|