1
|
Valizadeh M, Alimohammadi F, Azarm A, Pourtaghi Z, Derakhshan barjoei MM, Sabri H, Jafari A, Arabpour Z, Razavi P, Mokhtari M, Deravi N. Uses of soybean isoflavonoids in dentistry: A literature review. J Dent Sci 2025; 20:741-753. [PMID: 40224091 PMCID: PMC11993060 DOI: 10.1016/j.jds.2021.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
Soybean isoflavones including genistein, daidzein and glycitein have excellent therapeutic and health properties. In this article, we reviewed soy isoflavones with a specific focus on the role they play in dentistry. In the present article, we reviewed English published articles up to December 2020 and summarized their effectiveness in inflammation, bone effects, disease prevention, and treatment of periodontal tissue and its related diseases, as well as their anti-microbial activity against oral bacteria, oral, head and neck cancers. This study shows that the anti-inflammatory effect of soy isoflavones in periodontal disease is through its inhibitory effect on the production of inflammatory cytokines and inhibition of mitogen-activated protein kinase (MAPK) activity. It has been observed that isoflavones can stop cell division in Staphylococcus aureus and may be helpful to treat salivary gland disorders caused by estrogen deficiency. Genistein and daidzein increase mineral content in bones and protect against bone loss and genistein may be beneficial as preventive chemical agents for head and neck cancers.
Collapse
Affiliation(s)
- Maryam Valizadeh
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnoosh Alimohammadi
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Azarm
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zeynab Pourtaghi
- Student Research Committee, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad moein Derakhshan barjoei
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- USERN Office, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamoun Sabri
- Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Jafari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Arabpour
- Department of Nutrition, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Pouyan Razavi
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kaushik M, Tiku AB. Therapeutic Potential of Phytochemicals as Adjuvants in Head and Neck Cancer. Nutr Rev 2025:nuaf009. [PMID: 40105614 DOI: 10.1093/nutrit/nuaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Owing to the developments in various therapeutic modalities, cancer treatment has come a long way, including the discovery of various anticancer drugs, innovations in delivery technology, and increased personalization of treatments. Despite this, head and neck cancer (HNC) is a cancer that has eluded the current conventional treatments. To improve quality of life and preserve vital organ function in patients with HNC, there is a need for research into therapeutic regimes that would reduce the toxicity of the current therapeutic modalities. The use of a single approach has not been enough to completely eradicate this malignancy. Therefore, the use of adjuvants and combinatorial approaches, using molecules from natural compounds that have no or minimal side effects, is a growing area of research. One objective of this review was to clarify the potentiality of novel therapeutic strategies for HNC, such as the use of phytochemicals as adjuvants with chemotherapy or radiotherapy, and use of nano-formulation for therapeutic delivery. Another objective of this review was to delineate the associated challenges in the clinical application of these therapies in HNC. Possible strategies for overcoming critical issues associated with the clinical application of phytochemicals for HNC are also discussed.
Collapse
Affiliation(s)
- Mahesh Kaushik
- Radiation and Cancer Therapeutics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Sohel M. Comprehensive exploration of Biochanin A as an oncotherapeutics potential in the treatment of multivarious cancers with molecular insights. Phytother Res 2024; 38:489-506. [PMID: 37905329 DOI: 10.1002/ptr.8050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023]
Abstract
Cancer is considered a leading cause of mortality. This rising cancer death rate and several existing limitations like side effects, poor efficacies, and high cost of the present chemotherapeutic agents have increased the demand for more potent and alternative cancer treatments. This review elucidated a brief overview of Biochanin A (BCA) and its potentiality on various cancers with details of anticancer mechanism. According to our review, a number of studies including in silico, in vitro, pre-clinical, and clinical trials have tested to evaluate the efficacy of BCA. This compound is effective against 15 types of cancer, including breast, cervical, colorectal, gastric, glioblastoma, liver, lung, melanoma, oral, osteosarcoma, ovarian, pancreatic, pharynx, prostate, and umbilical vein cancer. The general anticancer activities of this compound are mediated via several molecular processes, including regulation of apoptosis, cell proliferation, metastasis and angiogenesis, signaling, enzymatic pathways, and other mechanisms. Targeting both therapeutic and oncogenic proteins, as well as different pathways, makes up the molecular mechanism underlying the anticancer action. Many signaling networks and their components, such as EFGR, PI3K/Akt/mTOR, MAPK, MMP-2, MMP-9, PARP, Caspase-3/8/9, Bax, Bcl2, PDL-1, NF-κB, TNF-α, IL-6, JAK, STAT3, VEGFR, VEGF, c-MY, Cyclin B1, D1, E1 and CDKs, Snail, and E-cadherin proteins, can be regulated in cancer cells by BCA. Such kind of anticancer properties of BCA could be a result of its correct structural chemistry. The use of BCA-based therapies as nano-carriers for the delivery of chemotherapeutic medicines has the potential to be very effective. This natural compound synergises with other natural compounds and standard drugs, including sorafenib, 5-fluorouracil, temozolomide, doxorubicin, apigenin, and genistein. Moreover, proper use of this compound can reverse multidrug resistance through numerous mechanisms. BCA has better drug-likeness and pharmacokinetic properties and is nontoxic (eye, liver, kidney, skin, cardio) in human bodies. As having a wide range of cancer-fighting mechanisms, synergistic effects, and good pharmacokinetic properties, BCA can be used as a supplementary food until standard drugs are available at pharma markets.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, Bangladesh
- Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|
4
|
Kaushik M, Tiku AB. Molecular pathways modulated by phytochemicals in head and neck cancer. J Cell Commun Signal 2023; 17:469-483. [PMID: 36454443 PMCID: PMC10409696 DOI: 10.1007/s12079-022-00711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
In the last few years, natural dietary phytochemicals have shown immense potential in the suppression and incidence of Head and Neck Cancer (HNC). From various in-vitro, animal, and epidemiological studies it is now clear that intake of foods rich in dietary phytochemicals lower the risk of HNC. These phytochemicals have been reported to target different stages of Head and Neck cancer (initiation to promotion) by modulating many cellular signaling pathways. A single phytochemical may target different pathways simultaneously or a single pathway may be targeted by a diversity of phytochemicals. This review highlights the molecular pathways modulated by a large number of phytochemicals relevant to HNC with an intent to identify specific signaling pathways that could be therapeutically targeted. Therefore, relevant literature was screened and scrutinized for molecular details. We have focused on the complexity of the molecular mechanisms that are modulated by various phytochemicals and the role they can play in better clinical efficacy and management of head and neck cancer. In-depth knowledge of these molecular mechanisms can lead to innovative therapeutic strategies using phytochemicals alone or along with available treatments for various cancers including HNC. Molecular pathways modulated by Phytochemicals.
Collapse
Affiliation(s)
- Mahesh Kaushik
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Molecular Mechanisms of Malignant Transformation of Oral Submucous Fibrosis by Different Betel Quid Constituents-Does Fibroblast Senescence Play a Role? Int J Mol Sci 2022; 23:ijms23031637. [PMID: 35163557 PMCID: PMC8836171 DOI: 10.3390/ijms23031637] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Betel quid (BQ) is a package of mixed constituents that is chewed by more than 600 million people worldwide, particularly in Asia. The formulation of BQ depends on a variety of factors but typically includes areca nut, betel leaf, and slaked lime and may or may not contain tobacco. BQ chewing is strongly associated with the development of potentially malignant and malignant diseases of the mouth such as oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC), respectively. We have shown recently that the constituents of BQ vary geographically and that the capacity to induce disease reflects the distinct chemical composition of the BQ. In this review, we examined the diverse chemical constituents of BQ and their putative role in oral carcinogenesis. Four major areca alkaloids—arecoline, arecaidine, guvacoline and guvacine—together with the polyphenols, were identified as being potentially involved in oral carcinogenesis. Further, we propose that fibroblast senescence, which is induced by certain BQ components, may be a key driver of tumour progression in OSMF and OSCC. Our study emphasizes that the characterization of the detrimental or protective effects of specific BQ ingredients may facilitate the development of targeted BQ formulations to prevent and/or treat potentially malignant oral disorders and oral cancer in BQ users.
Collapse
|
6
|
Ramachandran V, V IK, Hr KK, Tiwari R, Tiwari G. Biochanin-A: A Bioactive Natural Product with Versatile Therapeutic Perspectives. Curr Drug Res Rev 2022; 14:225-238. [PMID: 35579127 DOI: 10.2174/2589977514666220509201804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Biochanin-A (5,7 dihydroxy 4 methoxy isoflavone) is a phytochemical phytoestrogen that is highly effective against various diseases. Biochanin-A is a nutritional and dietary isoflavonoid naturally present in red clover, chickpea, soybeans and other herbs. Biochanin- A possesses numerous biological activities. OBJECTIVE The study focused on collective data of therapeutic activities of Biochanin-A. METHODS According to the literature, biochanin-A revealed a range of activities starting from chemoprevention, by hindering cell growth, activation of tumor cell death, hampering metastasis, angiogenic action, cell cycle regulation, neuroprotection, by controlling microglial activation, balancing antioxidants, elevating the neurochemicals, suppressing BACE-1, NADPH oxidase hindrance to inflammation, by mitigating the MAPK and NF- κB, discharge of inflammatory markers, upregulating the PPAR-γ, improving the function of heme oxygenase-1, erythroid 2 nuclear factors, detoxifying the oxygen radicals and stimulating the superoxide dismutase action, and controlling its production of transcription factors. Against pathogens, biochanin-A acts by dephosphorylating tyrosine kinase proteins, obstructing gram-negative bacteria, suppressing the development of cytokines from viruses, and improving the action of a neuraminidase cleavage of caspase-3, and acts as an efflux pump inhibitor. In metabolic disorders, biochanin-A acts by encouraging transcriptional initiation and inhibition, activating estrogen receptors, and increasing the activity of differentiation, autophagy, inflammation, and blood glucose metabolism. CONCLUSION Therefore, biochanin-A could be used as a therapeutic drug for various pathological conditions and treatments in human beings.
Collapse
Affiliation(s)
- Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Inba Kumar V
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kiran Kumar Hr
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ruchi Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur 208020, India
| | - Gaurav Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur 208020, India
| |
Collapse
|
7
|
Kubina R, Iriti M, Kabała-Dzik A. Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers. Nutrients 2021; 13:nu13030845. [PMID: 33807530 PMCID: PMC7998948 DOI: 10.3390/nu13030845] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonols are ones of the most common phytochemicals found in diets rich in fruit and vegetables. Research suggests that molecular functions of flavonoids may bring a number of health benefits to people, including the following: decrease inflammation, change disease activity, and alleviate resistance to antibiotics as well as chemotherapeutics. Their antiproliferative, antioxidant, anti-inflammatory, and antineoplastic activity has been proved. They may act as antioxidants, while preventing DNA damage by scavenging reactive oxygen radicals, reinforcing DNA repair, disrupting chemical damages by induction of phase II enzymes, and modifying signal transduction pathways. One of such research areas is a potential effect of flavonoids on the risk of developing cancer. The aim of our paper is to present a systematic review of antineoplastic activity of flavonols in general. Special attention was paid to selected flavonols: fisetin, kaempferol, and quercetin in preclinical and in vitro studies. Study results prove antiproliferative and proapoptotic properties of flavonols with regard to head and neck cancer. However, few study papers evaluate specific activities during various processes associated with cancer progression. Moreover, an attempt was made to collect the majority of substantive studies on bioactive potential of the selected flavonols, especially with regard to modulation of a range of signal transduction pathways that participate in cancer development.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-364-13-54
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Sugita Y, Takao K, Uesawa Y, Nagai J, Iijima Y, Sano M, Sakagami H. Development of Newly Synthesized Chromone Derivatives with High Tumor Specificity against Human Oral Squamous Cell Carcinoma. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E50. [PMID: 32858984 PMCID: PMC7555025 DOI: 10.3390/medicines7090050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Since many anticancer drugs show severe adverse effects such as mucositis, peripheral neurotoxicity, and extravasation, it was crucial to explore new compounds with much reduced adverse effects. Comprehensive investigation with human malignant and nonmalignant cells demonstrated that derivatives of chromone, back-bone structure of flavonoid, showed much higher tumor specificity as compared with three major polyphenols in the natural kingdom, such as lignin-carbohydrate complex, tannin, and flavonoid. A total 291 newly synthesized compounds of 17 groups (consisting of 12 chromones, 2 esters, and 3 amides) gave a wide range of the intensity of tumor specificity, possibly reflecting the fitness for the optimal 3D structure and electric state. Among them, 7-methoxy-3-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one (compound 22), which belongs to 3-styrylchromones, showed the highest tumor specificity. 22 induced subG1 and G2 + M cell population in human oral squamous cell carcinoma cell line, with much less keratinocyte toxicity as compared with doxorubicin and 5-FU. However, 12 active compounds selected did not necessarily induce apoptosis and mitotic arrest. This compound can be used as a lead compound to manufacture more active compound.
Collapse
Affiliation(s)
- Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-858, Japan
| | - Junko Nagai
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-858, Japan
| | - Yosuke Iijima
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan
| | - Motohiko Sano
- Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo 142-8501, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
9
|
Xiao Y, Gong Q, Wang W, Liu F, Kong Q, Pan F, Zhang X, Yu C, Hu S, Fan F, Li S, Liu Y. The combination of Biochanin A and SB590885 potentiates the inhibition of tumour progression in hepatocellular carcinoma. Cancer Cell Int 2020; 20:371. [PMID: 32774165 PMCID: PMC7405455 DOI: 10.1186/s12935-020-01463-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most aggressive and frequently diagnosed malignancy of the liver. Despite aggressive therapy, life expectancy of many patients in these cases is extended by only a few months. Hepatocellular carcinoma (HCC) has a particularly poor prognosis and would greatly benefit from more effective therapies. Methods The CCK-8 assay and colony formation assays were used to test the cell proliferation and viability. The effects of combination Biochanin A and SB590885 on apoptosis and cell cycle arrest of HCC cells were analysed by flow cytometry. The expression of ERK MAPK and PI3K/AKT/mTOR signalling as well as apoptosis and cell cycle-related proteins in HCC cells were tested by western blotting. The HCC cell xenograft model was established to test the tumor proliferation. Serum and plasma were tested for liver and kidney safety markers (ALP, ALT, AST, total bilirubin, creatinine, urea nitrogen) by using SpectraMax i3X. Results The combination of natural product Biochanin A with the BRAF inhibitor SB590885 synergistically suppressed proliferation, and promoted cell cycle arrest and apoptosis in vitro. Furthermore, we demonstrated that the combination of Biochanin A and SB590885 led to increased impairment of proliferation and HCC tumour inhibition through disrupting of the ERK MAPK and the PI3K/AKT pathways in vitro. The volumes tumors and the weights of tumours were significantly reduced by the combination treatment compared to the control or single treatments in vivo. In addition, we found that there was no significant hepatorenal toxicity with the drug combination, as indicated by the hepatorenal toxicity test. Conclusion The results identify an effective combination therapy for the most aggressive form of HCC and provide the possibility of therapeutic improvement for patients with advanced HCC.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Department of Biochemistry and Molecular Biology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Qiang Gong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Wenhong Wang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Feng Pan
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Xiaoke Zhang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Shanshan Hu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 China
| | - Fang Fan
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Department of Biochemistry and Molecular Biology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Department of Biochemistry and Molecular Biology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| |
Collapse
|
10
|
Sarfraz A, Javeed M, Shah MA, Hussain G, Shafiq N, Sarfraz I, Riaz A, Sadiqa A, Zara R, Zafar S, Kanwal L, Sarker SD, Rasul A. Biochanin A: A novel bioactive multifunctional compound from nature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137907. [PMID: 32208265 DOI: 10.1016/j.scitotenv.2020.137907] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Natural products (NPs) will continue to serve humans as matchless source of novel drug leads and an inspiration for the synthesis of non-natural drugs. As our scientific understanding of 'nature' is rapidly expanding, it would be worthwhile to illuminate the pharmacological distinctions of NPs to the scientific community and the public. Flavonoids have long fascinated scientists with their remarkable structural diversity as well as biological functions. Consequently, this review aims to shed light on the sources and pharmacological significance of a dietary isoflavone, biochanin A, which has been recently emerged as a multitargeted and multifunctional guardian of human health. Biochanin A possesses anti-inflammatory, anticancer, neuroprotective, antioxidant, anti-microbial, and hepatoprotective properties. It combats cancer development by inducing apoptosis, inhibition of metastasis and arresting cell cycle via targeting several deregulated signaling pathways of cancer. It fights inflammation by blocking the expression and activity of pro-inflammatory cytokines via modulation of NF-κB and MAPKs. Biochanin A acts as a neuroprotective agent by inhibiting microglial activation and apoptosis of neurons. As biochanin A has potential to modulate several biological networks, thus, it can be anticipated that this therapeutically potent compound might serve as a novel lead for drug development in the near future.
Collapse
Affiliation(s)
- Ayesha Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Maria Javeed
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nusrat Shafiq
- Department of Chemistry, Government College Woman University Faisalabad (GCWUF), 38000 Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ayesha Sadiqa
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rabia Zara
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Saba Zafar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Lubna Kanwal
- Institute of Pure and Applied Zoology, University of Okara, Okara, Pakistan
| | - Satyajit D Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England, UK
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| |
Collapse
|
11
|
|
12
|
Chapman S, Mick M, Hall P, Mejia C, Sue S, Abdul Wase B, Nguyen MA, Whisenant EC, Wilcox SH, Winden D, Reynolds PR, Arroyo JA. Cigarette smoke extract induces oral squamous cell carcinoma cell invasion in a receptor for advanced glycation end-products-dependent manner. Eur J Oral Sci 2018; 126:33-40. [PMID: 29226456 DOI: 10.1111/eos.12395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/11/2022]
Abstract
Oral squamous cell carcinoma (OSCC) affects approximately 30,000 people and is associated with tobacco use. Little is known about the mechanistic effects of second-hand smoke in the development of OSSC. The receptor for advanced glycation end-products (RAGE) is a surface receptor that is upregulated by second-hand smoke and inhibited by semi-synthetic glycosaminoglycan ethers (SAGEs). Our objective was to determine the role of RAGE during cigarette smoke extract-induced cellular responses and to use SAGEs as a modulating factor of Ca9-22 OSCC cell invasion. Ca9-22 cells were cultured in the presence or absence of cigarette smoke extract and SAGEs. Cell invasion was determined and cells were lysed for western blot analysis. Ras and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) activation were determined. Treatment of cells with cigarette smoke extract resulted in: (i) increased invasion of OSCC; (ii) increased RAGE expression; (iii) inhibition of cigarette smoke extract-induced OSCC cell invasion by SAGEs; (iv) increased Ras, increased AKT and NF-κB activation, and downregulation by SAGEs; and (v) increased expression of matrix metalloproteinases (MMPs) 2, 9, and 14, and downregulation by SAGEs. We conclude that cigarette smoke extract increases invasion of OSCC cells in a RAGE-dependent manner. Inhibition of RAGE decreases the levels of its signaling molecules, which results in blocking the cigarette smoke extract-induced invasion.
Collapse
Affiliation(s)
- Steven Chapman
- Lung and Placenta Research Laboratory, Brigham Young University, Physiology and Developmental Biology, Provo, UT, USA
| | - Madison Mick
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, USA
| | - Parker Hall
- Lung and Placenta Research Laboratory, Brigham Young University, Physiology and Developmental Biology, Provo, UT, USA
| | - Camilo Mejia
- Lung and Placenta Research Laboratory, Brigham Young University, Physiology and Developmental Biology, Provo, UT, USA
| | - Stephanie Sue
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, USA
| | - Bihishta Abdul Wase
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, USA
| | - Margaret A Nguyen
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, USA
| | - Evan C Whisenant
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, USA
| | - Shalene H Wilcox
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, USA
| | - Duane Winden
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, USA
| | - Paul R Reynolds
- Lung and Placenta Research Laboratory, Brigham Young University, Physiology and Developmental Biology, Provo, UT, USA
| | - Juan A Arroyo
- Lung and Placenta Research Laboratory, Brigham Young University, Physiology and Developmental Biology, Provo, UT, USA
| |
Collapse
|
13
|
Ardito F, Pellegrino MR, Perrone D, Troiano G, Cocco A, Lo Muzio L. In vitro study on anti-cancer properties of genistein in tongue cancer. Onco Targets Ther 2017; 10:5405-5415. [PMID: 29180873 PMCID: PMC5692202 DOI: 10.2147/ott.s133632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Tongue cancer is an extremely aggressive disease and is characterized by a poor prognosis. It is a complex disease to treat and current therapies have produced mediocre results with many side effects. Some facts suggest that natural essences can support traditional cancer therapy by carrying out a synergistic function with chemotherapy. Therefore, we evaluated the antitumor effects of genistein on tongue carcinoma cells. Methods Genistein 20, 50 and 100 µM were used for 24, 48 and 72 hours on 3 tongue carcinoma cell lines. xCELLigence system was used to evaluate the effects on cell adhesion, proliferation and to calculate IC50 values. Both MTT assay and Trypan blue assay were used to evaluate alterations in cell viability, scratch assay for cell migration and Western blot analysis for expression of some proteins. Results Cell adhesion was inhibited especially between 20 and 50 µM of genistein treatment. Proliferation was reduced by 50% for treatments with 20 µM at 24 hours, with 20 or 50 µM at 48 and 50 µM at 72 hours (P<0.0001). Viability tests confirmed a proportional reduction in concentration of genistein and duration of treatments. Even cell migration was reduced significantly (P<0.001). Genistein down-regulates vitronectin, OCT4 and survivin. Conclusion This in vitro study clarifies the anti-tumor effect of genistein on tongue carcinoma. In vivo studies are needed to confirm these data and develop a suitable delivery system that is capable of acting directly on tumor.
Collapse
Affiliation(s)
- Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - Mario R Pellegrino
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - Armando Cocco
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| |
Collapse
|
14
|
Sudha N, Sameena Y, Enoch IVMV. β-Cyclodextrin Encapsulates Biochanin A and Influences its Binding to Bovine Serum Albumin: Alteration of the Binding Strength. J SOLUTION CHEM 2016. [DOI: 10.1007/s10953-016-0446-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Phang CW, Karsani SA, Sethi G, Abd Malek SN. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells. PLoS One 2016; 11:e0148775. [PMID: 26859847 PMCID: PMC4747580 DOI: 10.1371/journal.pone.0148775] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/22/2016] [Indexed: 01/05/2023] Open
Abstract
Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
Collapse
Affiliation(s)
- Chung-Weng Phang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore, Singapore
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
16
|
Jain A, Lai JCK, Bhushan A. Biochanin A inhibits endothelial cell functions and proangiogenic pathways: implications in glioma therapy. Anticancer Drugs 2015; 26:323-30. [PMID: 25501542 DOI: 10.1097/cad.0000000000000189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Malignant gliomas, such as glioblastoma multiforme, are highly vascularized tumors of the central nervous system. A rich network of angiogenic vessels supporting glioma growth is an important therapeutic target in glioma therapy. In the past few years, small molecules have gained interest as multitargeting therapies for cancer. Biochanin A is a small, natural dietary isoflavone known for its anticancer potential. Previously, we have found that biochanin A inhibits invasion in human glioblastoma cells. In this study, we elucidated the antiangiogenic mechanisms of biochanin A using rat brain tumor (C6) and murine brain endothelial (bEnd.3) cells and an ex-vivo chick chorioallantoic membrane model. Biochanin A inhibited endothelial cell functions such as cell viability, migration, and invasion, as analyzed using MTT, scratch wound, and gelatin zymography assays. Activation of proangiogenic proteins (ERK/AKT/mTOR) was inhibited. Biochanin A also inhibited chemical hypoxia-inducible factor-1α and vascular endothelial growth factor in C6 cells. Results of chick chorioallantoic membrane assay showed that biochanin A inhibited blood vessel formation ex vivo. As these results suggest that biochanin A directly targets different facets of angiogenesis in vitro and ex vivo, this study provides a rationale for future preclinical evaluation of its efficacy against angiogenic gliomas.
Collapse
Affiliation(s)
- Aditi Jain
- aDepartment of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky bDepartment of Biomedical and Pharmaceutical Sciences, Division of Health Sciences, College of Pharmacy, ISU Biomedical Research Institute, Idaho State University, Pocatello, Idaho cDepartment of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
17
|
Deng W, Wang L, Xiong Y, Li J, Wang Y, Shi T, Ma D. The novel secretory protein CGREF1 inhibits the activation of AP-1 transcriptional activity and cell proliferation. Int J Biochem Cell Biol 2015; 65:32-9. [PMID: 26022276 DOI: 10.1016/j.biocel.2015.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/08/2015] [Accepted: 05/15/2015] [Indexed: 01/30/2023]
Abstract
The transcription factor AP-1 plays an important role in inflammation and cell survival. Using a dual-luciferase reporter assay system and a library of 940 candidate human secretory protein cDNA clones, we identified that CGREF1 can inhibit the transcriptional activity of AP-1. We demonstrated that CGREF1 is secreted via the classical secretory pathway through the ER-to-Golgi apparatus. Functional investigations revealed that overexpression of CGREF1 can significantly inhibit the phosphorylation of ERK and p38 MAPK, and suppress the proliferation of HEK293T and HCT116 cells. Conversely, specific siRNAs against CGREF1 can increase the transcriptional activity of AP-1. These results clearly indicated that CGREF1 is a novel secretory protein, and plays an important role in regulation of AP-1 transcriptional activity and cell proliferation.
Collapse
Affiliation(s)
- Weiwei Deng
- Chinese National Human Genome Center, Beijing 100176, China; Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Lan Wang
- Department of Biopharmaceuticals, National Institutes of Food and Drug Control, Beijing 100050, China
| | - Ying Xiong
- Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Jing Li
- Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Ying Wang
- Chinese National Human Genome Center, Beijing 100176, China; Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China
| | - Taiping Shi
- Chinese National Human Genome Center, Beijing 100176, China; Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China.
| | - Dalong Ma
- Chinese National Human Genome Center, Beijing 100176, China; Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China
| |
Collapse
|
18
|
Hajrezaie M, Salehen N, Karimian H, Zahedifard M, Shams K, Batran RA, Majid NA, Khalifa SAM, Ali HM, El-Seedi H, Abdulla MA. Biochanin a gastroprotective effects in ethanol-induced gastric mucosal ulceration in rats. PLoS One 2015; 10:e0121529. [PMID: 25811625 PMCID: PMC4374864 DOI: 10.1371/journal.pone.0121529] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/03/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Biochanin A notable bioactive compound which is found in so many traditional medicinal plant. In vivo study was conducted to assess the protective effect of biochanin A on the gastric wall of Spraguedawley rats` stomachs. METHODOLOGY The experimental set included different animal groups. Specifically, four groups with gastric mucosal lesions were receiving either a) Ulcer control group treated with absolute ethanol (5 ml/kg), b) 20 mg/kg of omeprazole as reference group, c) 25 of biochanin A, d) 50 mg/kg of biochanin A. Histopathological sectioning followed by immunohistochemistry staining were undertaken to evaluate the influence of the different treatments on gastric wall mucosal layer. The gastric secretions were collected in the form of homogenate and exposed to superoxide dismutase (SOD) and nitric oxide enzyme (NO) and the level of malondialdehyde (MDA) and protein content were measured. Ulceration and patchy haemorrhage were clearly observed by light microscopy. The morphology of the gastric wall as confirmed by immunohistochemistry and fluorescent microscopic observations, exhibited sever deformity with notable thickness, oedematous and complete loss of the mucosal coverage however the biochanin-pretreated animals, similar to the omeprazole-pretreated animals, showed less damage compared to the ulcer control group. Moreover, up-regulation of Hsp70 protein and down-regulation of Bax protein were detected in the biochanin A pre-treated groups and the gastric glandular mucosa was positively stained with Periodic Acid Schiff (PAS) staining and the Leucocytes infiltration was commonly seen. Biochanin A displayed a great increase in SOD and NO levels and decreased the release of MDA. CONCLUSIONS This gastroprotective effect of biochanin A could be attributed to the enhancement of cellular metabolic cycles perceived as an increase in the SOD, NO activity, and decrease in the level of MDA, and also decrease in level of Bax expression and increase the Hsp70 expression level.
Collapse
Affiliation(s)
- Maryam Hajrezaie
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - NurAin Salehen
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Maryam Zahedifard
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Shams
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rami Al Batran
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shaden A. M. Khalifa
- Department of Experimental Hematology, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Hapipah Mohd Ali
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hesham El-Seedi
- Department of Experimental Hematology, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, SE-75 123, Uppsala, Sweden
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Lu X, Zhao J, Li T, Huang M, Liang J, Wei W. 5,7-Dihydroxy-4'-methoxyisoflavone induces apoptosis by inhibiting the ERK and Akt pathways in human osteosarcoma cells. Connect Tissue Res 2015; 56:59-64. [PMID: 25363142 DOI: 10.3109/03008207.2014.984064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phytoestrogens are known to prevent tumor progression by inhibiting proliferation and inducing apoptosis in cancer cells. In this study we determine the effect of 5,7-dihydroxy-4'-methoxyisoflavone, a phytoestrogen, on proliferation and apoptosis in the human osteosarcoma (OS) cell line U2OS. 5,7-Dihydroxy-4'-methoxyisoflavone dose-dependently inhibited proliferation in U2OS cells, which was accompanied by an increase of early apoptotic cells. However, 5,7-dihydroxy-4'-methoxyisoflavone had little effect on the growth and apoptosis of normal human skin fibroblast (HSF) cells. This may indicate that 5,7-dihydroxy-4'-methoxyisoflavone can selectively inhibit the proliferation of cancerous cells. Meanwhile, 5,7-dihydroxy-4'-methoxyisoflavone decreased the protein levels of phosphorylated ERK and Akt. Inactivation of these pathways was confirmed by upregulation of Bax expression and downregulation of Bcl-2 expression. Phosphorylated Akt protein levels were decreased in HSF cells only at a high concentration (80 μM) of 5,7-dihydroxy-4'-methoxyisoflavone. Together, we suggest that 5,7-dihydroxy-4'-methoxyisoflavone promotes cell death of human OS cells U2OS by induction of apoptosis, which is associated with the inhibition of ERK and Akt signaling. Thus, 5,7-dihydroxy-4'-methoxyisoflavone may have less toxicity compared to normal tissue and could be a potential therapy for OS.
Collapse
|
20
|
Abstract
Pancreatic cancer has dismally low mean survival rates worldwide. Only a few chemotherapeutic agents including gemcitabine have been shown to improve the survival of pancreatic cancer patients. Biochanin A, an isoflavone, is known to exert an anticancer effect on various cancer types. In this study, we examined the anticancer properties of biochanin A on pancreatic cancer cells. The effect of biochanin A on cellular survival, apoptosis, and proliferation was analyzed using MTT, flow cytometry, and colony formation assay. The effect of biochanin A on pancreatic cancer's mitogenic signaling was determined using western blot analysis. Migration assay and zymography were used to determine biochanin A's effect on pancreatic cancer progression. Biochanin A induced dose-dependent toxicity on pancreatic cancer cells (Panc1 and AsPC-1). It reduced colony formation ability of Panc1 cells and induced dose-dependent apoptosis. Activation of Akt and MAPK was inhibited. Furthermore, the migratory and invasive potential of the cancer cells was also reduced. The results suggest that biochanin A is effective in reducing pancreatic cancer cell survival by inhibiting their proliferation and inducing apoptosis. It affects mitogenic, migratory, and invasive processes involved in cancer progression. These findings may lead to novel approaches to treat pancreatic cancer using isoflavones in combination with other therapeutic drugs.
Collapse
|
21
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 2014; 12:208. [PMID: 25048361 PMCID: PMC4110933 DOI: 10.1186/1479-5876-12-208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
XUE LI, LI MING, CHEN TENG, SUN HAIFENG, ZHU JIE, LI XIA, WU FENG, WANG BIAO, LI JUPING, CHEN YANJIONG. PE‑induced apoptosis in SMMC‑7721 cells: involvement of Erk and Stat signalling pathways. Int J Mol Med 2014; 34:119-29. [PMID: 24821075 PMCID: PMC4072400 DOI: 10.3892/ijmm.2014.1777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/30/2014] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence indicates that the redistribution of phosphatidylethanolamine (PE) across the bilayer of the plasma membrane is an important molecular marker for apoptosis. However, the effect of PE on apoptosis and the underlying mechanism of PE remain unclear. In the current study, MTT and flow cytometric assays were used to examine the effects of PE on apoptosis in SMMC‑7721 cells. The level of mitochondrial membrane potential (ΔΨm) and the expression of Bax, Bcl‑2, caspase‑3, phospho‑Erk and phospho‑Stat1/2 in SMMC‑7721 cells that were exposed to PE were also investigated. The results showed that PE inhibited proliferation, caused G0/G1 phase cell cycle arrest and induced apoptosis in SMMC‑7721 cells in a dose‑dependent manner. Rhodamine 123 staining showed that the treatment of SMMC‑7721 cells with different concentrations of PE for 24 h significantly decreased the level of ΔΨm and exerted dose‑dependent effects. Using immunofluorescence and western blotting, we found that the expression of Bax was upregulated, whereas that of Bcl‑2 was downregulated in PE‑induced apoptotic cells. In addition, these events were accompanied by an increase in caspase‑3 expression in a dose‑dependent manner following PE treatment. PE‑induced apoptosis was accompanied by a decrease in Erk phospho-rylation and by the activation of Stat1/2 phosphorylation in SMMC‑7721 cells. In conclusion, the results suggested that PE‑induced apoptosis is involved in upregulating the Bax/Bcl‑2 protein ratio and decreasing the ΔΨm. Moreover, the results showed that the Erk and Stat1/2 signalling pathways may be involved in the process of PE‑induced apoptosis.
Collapse
Affiliation(s)
- LI XUE
- Forensic Medicine College of Xi’an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi’an, Shaanxi 710061, P.R. China
- Department of Immunology and Pathogenic Biology, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi 710061, P.R. China
| | - MING LI
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - TENG CHEN
- Forensic Medicine College of Xi’an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi’an, Shaanxi 710061, P.R. China
| | - HAIFENG SUN
- Tumour Hospital of Shaanxi Province, Xi’an, Shaanxi 710061, P.R. China
| | - JIE ZHU
- Forensic Medicine College of Xi’an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi’an, Shaanxi 710061, P.R. China
| | - XIA LI
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - FENG WU
- Graduate Teaching and Experimental Centre, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi 710061, P.R. China
| | - BIAO WANG
- Department of Immunology and Pathogenic Biology, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi 710061, P.R. China
| | - JUPING LI
- School of Public Security, Northwest University of Politics and Law, Xi’an, Shaanxi 710063, P.R. China
| | - YANJIONG CHEN
- Department of Immunology and Pathogenic Biology, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi 710061, P.R. China
| |
Collapse
|
23
|
Dong Y, Li Z, Gao M, Liu C, Liu H, Chen Z, Xiao J. Immunohistochemical Detection of Aurora A and ERK Pathway in Oral Leukoplakia and Oral Squamous Cell Carcinoma. J HARD TISSUE BIOL 2014. [DOI: 10.2485/jhtb.23.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Hayashi K, Handa K, Koike T, Saito T. The possibility of genistein as a new direct pulp capping agent. Dent Mater J 2013; 32:976-85. [PMID: 24240903 DOI: 10.4012/dmj.2013-091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genistein, kind of soy isoflavones, is well-known as natural ingredients and consumed as health foods and supplements. They are expected to improve renal function. They have high-affinity to estrogen receptor β expressed predominantly in bone tissue, they prevent osteoporosis specifically and safely. We examined whether genistein can be a new direct capping agent. In this study, we examined the effect of genistein for the proliferation and differentiation of rat dental pulp cells in vitro and the ability of tertiary dentin formation in vivo. As a result, rat dental pulp cells with genistein were increased activity of ALPase and showed alizarin red positive-staining. Calcification-related genes expression has been confirmed by the addition of genistein. From in vivo study, high quality of tertiary dentin formation and minor pulp reaction were observed. From these findings, it was suggested that genistein may be useful agent for direct pulp capping.
Collapse
Affiliation(s)
- Keijiro Hayashi
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido
| | | | | | | |
Collapse
|
25
|
Lim TG, Kim JE, Jung SK, Li Y, Bode AM, Park JS, Yeom MH, Dong Z, Lee KW. MLK3 is a direct target of biochanin A, which plays a role in solar UV-induced COX-2 expression in human keratinocytes. Biochem Pharmacol 2013; 86:896-903. [PMID: 23948065 PMCID: PMC4241970 DOI: 10.1016/j.bcp.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
Abstract
Solar UV (sUV) is an important environmental carcinogen. Recent studies have shown that sUV is associated with numerous human skin disorders, such as wrinkle formation and inflammation. In this study, we found that the isoflavone, biochanin A, inhibited the expression of sUV-induced COX-2, which is a well-characterized sUV-induced enzyme, in both human HaCaT keratinocytes and JB6 P+ mouse skin epidermal cells. Several studies have demonstrated the beneficial effects of biochanin A. However, its direct molecular target is unknown. We found that biochanin A inhibited sUV-induced phosphorylation of MKK4/JNK/c-Jun and MKK3/6/p38/MSK1. Mixed-lineage kinase 3 (MLK3) is an upstream kinase of MKK4 and MKK3/6. Thus, we evaluated the effect of biochanin A on MLK3. We found that sUV-induced MLK3 phosphorylation was not affected, whereas MLK3 kinase activity was significantly suppressed by biochanin A. Furthermore, direct binding of biochanin A in the MLK3 ATP-binding pocket was detected using pull-down assays. Computer modeling supported our observation that MLK3 is a novel target of biochanin A. These results suggest that biochanin A exerts chemopreventive effects by suppressing sUV-induced COX-2 expression mediated through MLK3 inhibition.
Collapse
Affiliation(s)
- Tae-Gyu Lim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jong-Eun Kim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sung Keun Jung
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Yan Li
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Jun-Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 341-1, Republic of Korea
| | - Myeong Hun Yeom
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 341-1, Republic of Korea
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
26
|
Iriti M, Varoni EM. Chemopreventive potential of flavonoids in oral squamous cell carcinoma in human studies. Nutrients 2013; 5:2564-76. [PMID: 23857227 PMCID: PMC3738988 DOI: 10.3390/nu5072564] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 01/12/2023] Open
Abstract
Evidence available from nutritional epidemiology has indicated an inverse association between regular consumption of fruits and vegetables and the risk of developing certain types of cancer. In turn, preclinical studies have attributed the health-promoting effects of plant foods to some groups of phytochemicals, by virtue of their many biological activities. In this survey, we briefly examine the chemopreventive potential of flavonoids and flavonoid-rich foods in human oral carcinogenesis. Despite the paucity of data from clinical trials and epidemiological studies, in comparison to in vitro/in vivo investigations, a high level of evidence has been reported for epigallocatechin gallate (EGCG) and anthocyanins. These flavonoids, abundant in green tea and black raspberries, respectively, represent promising chemopreventive agents in human oral cancer.
Collapse
Affiliation(s)
- Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy
| | - Elena Maria Varoni
- Department of Mining and Materials Engineering, McGill University, University Street 3610, Montreal, QC H3A 2B2, Canada; E-Mail:
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan 20133, Italy
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, Novara 28100, Italy
| |
Collapse
|
27
|
Breikaa RM, Algandaby MM, El-Demerdash E, Abdel-Naim AB. Biochanin A protects against acute carbon tetrachloride-induced hepatotoxicity in rats. Biosci Biotechnol Biochem 2013; 77:909-916. [PMID: 23649249 DOI: 10.1271/bbb.120675] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biochanin A (BCA) is an isoflavone found in red clover possessing multiple pharmacological activities including antimicrobial, antioxidant, and anticancer ones. The present study aimed to assess its hepatoprotective potential at different doses in a carbon tetrachloride (CCl4)-induced hepatotoxicity model in rats. The effects on hepatic injury were explored by measuring serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. Furthermore, the serum levels of glucose, urea, creatinine, total bilirubin, total proteins, triglycerides, and total cholesterol were determined. The metabolic capacity of the liver was assessed by measuring changes in cytochrome P450 2E1 activity. The underlying mechanisms were substantiated by measuring oxidative stress markers as catalase, superoxide dismutase, glutathione peroxidase, glutathione transferase, glutathione reductase, reduced glutathione, total antioxidant capacity, and lipid peroxidation, as well as inflammation markers such as nitric oxide, inducible nitric oxide synthase, cyclooxygenase2, tumor necrosis factor-α, and leukocyte-common antigen. The results were confirmed by histopathological examination, and the median lethal dose was determined to confirm the safety of the drug. BCA successively protected against CCl4-induced damage, normalizing many parameters to that of the control group. The study indicates that BCA possesses multimechanistic hepatoprotective activity that can be attributed to its antioxidant, anti-inflammatory, and immunomodulatory actions.
Collapse
Affiliation(s)
- Randa M Breikaa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | |
Collapse
|
28
|
Powers AD, Liu B, Lee AG, Palecek SP. Macroporous hydrogel micropillars for quantifying Met kinase activity in cancer cell lysates. Analyst 2012; 137:4052-61. [PMID: 22814332 PMCID: PMC3438145 DOI: 10.1039/c2an35464k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Overactive and overexpressed kinases have been implicated in the cause and progression of many cancers. Kinase inhibitors offer a targeted approach for treating cancers associated with increased or deregulated kinase activity. Often, however, cancer cells exhibit initial resistance to these inhibitors or evolve to develop resistance during treatment. Additionally, cancers of any one tissue type are typically heterogeneous in their oncogenesis mechanisms, and thus diagnosis of a particular type of cancer does not necessarily provide insight into what kinase therapies may be effective. For example, while some lung cancer cells that overexpress the epidermal growth factor receptor (EFGR) respond to treatment with EGFR kinase inhibitors, overexpression or hyperactivity of Met kinase correlates with resistance to EGFR kinase inhibitors. Here we describe a microfluidic-based assay for quantifying Met kinase activity in cancer cell lysates with the eventual goals of predicting cancer cell responsiveness to kinase inhibitors and monitoring development of resistance to these inhibitors. In this assay, we immobilized a phosphorylation substrate for Met kinase into macroporous hydrogel micropillars. We then exposed the micropillars to a cancer cell lysate and detected substrate phosphorylation using a fluorescently conjugated antibody. This assay is able to quantify Met kinase activity in whole cell lysate from as few as 150 cancer cells. It can also detect cells expressing overactive Met kinase in a background of up to 75% non-cancerous cells. Additionally, the assay can quantify kinase inhibition by the Met-specific kinase inhibitors SU11274 and PHA665752, suggesting predictive capability for cellular response to kinase inhibitors.
Collapse
Affiliation(s)
- Alicia D. Powers
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison
| | - Bi Liu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison
| | - Andrew G. Lee
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison
| |
Collapse
|
29
|
Yen CY, Chiu CC, Haung RW, Yeh CC, Huang KJ, Chang KF, Hseu YC, Chang FR, Chang HW, Wu YC. Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction. Mutat Res 2012; 747:253-8. [PMID: 22721813 DOI: 10.1016/j.mrgentox.2012.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 06/05/2012] [Accepted: 06/10/2012] [Indexed: 01/10/2023]
Abstract
Goniothalamin (GTN), a plant bioactive styryl-lactone, is a natural product with potent anti-tumorigenesis effects for several types of cancer. Nonetheless, the anticancer effect of GTN has not been examined in oral cancer. The present study was designed to evaluate its potential anticancer effects in an oral squamous cell carcinoma (OSCC) model and to determine the possible mechanisms with respect to apoptosis, DNA damage, reactive oxygen species (ROS) induction, and mitochondrial membrane potential. Our data demonstrated that cell proliferation was significantly inhibited by GTN in Ca9-22 OSCC cancer cells in concentration- and time-dependent manners (p<0.05). For cell cycle and apoptotic effects of GTN-treated Ca9-22 cancer cells, the sub-G1 population and annexin V-intensity significantly increased in a concentration-dependent manner (p<0.001). For the analysis of DNA double strand breaks, γH2AX intensity significantly increased in GTN-treated Ca9-22 cancer cells in concentration-response relationship (p<0.05). Moreover, GTN significantly induced intracellular ROS levels in Ca9-22 cancer cells in a concentration- and time-dependent manner (p<0.05). For membrane depolarization of mitochondria, the DiOC(2)(3) (3,3'-diethyloxacarbocyanine iodide) intensity of GTN-treated Ca9-22 cancer cells was significantly decreased in concentration- and time-dependent relationships (p<0.001). Taken together, these results suggest that the anticancer effect of GTN against oral cancer cells is valid and GTN-induced growth inhibition and apoptosis influence the downstream cascade including ROS induction, DNA damage, and mitochondria membrane depolarization. Therefore, GTN has potential as a chemotherapeutic agent against oral cancer.
Collapse
Affiliation(s)
- Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Regulation of the human catalytic subunit of telomerase (hTERT). Gene 2012; 498:135-46. [PMID: 22381618 DOI: 10.1016/j.gene.2012.01.095] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been much interest in the regulation of telomerase, the enzyme responsible for maintaining the integrity of chromosomal ends, and its crucial role in cellular immortalization, tumorigenesis, and the progression of cancer. Telomerase activity is characterized by the expression of the telomerase reverse transcriptase (TERT) gene, suggesting that TERT serves as the major limiting agent for telomerase activity. Recent discoveries have led to characterization of various interactants that aid in the regulation of human TERT (hTERT), including numerous transcription factors; further supporting the pivotal role that transcription plays in both the expression and repression of telomerase. Several studies have suggested that epigenetic modulation of the hTERT core promoter region may provide an additional level of regulation. Although these studies have provided essential information on the regulation of hTERT, there has been ambiguity of the role of methylation within the core promoter region and the subsequent binding of various activating and repressive agents. As a result, we found it necessary to consolidate and summarize these recent developments and elucidate these discrepancies. In this review, we focus on the co-regulation of hTERT via transcriptional regulation, the presence or absence of various activators and repressors, as well as the epigenetic pathways of DNA methylation and histone modifications.
Collapse
|
31
|
Bronikowska J, Szliszka E, Czuba ZP, Zwolinski D, Szmydki D, Krol W. The combination of TRAIL and isoflavones enhances apoptosis in cancer cells. Molecules 2010; 15:2000-15. [PMID: 20336028 PMCID: PMC6257263 DOI: 10.3390/molecules15032000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/09/2010] [Accepted: 03/19/2010] [Indexed: 01/24/2023] Open
Abstract
Isoflavones are a class of bioactive polyphenols with cancer chemopreventive properties. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a naturally occurring antitumor agent that selectively induces programmed death (apoptosis) in cancer cells. Polyphenols can modulate TRAIL-mediated apoptosis in cancer cells. We examined the cytotoxic and apoptotic activities of isoflavones in combination with TRAIL on HeLa cancer cells. The apoptosis was detected by fluorescence microscopy with annexin V-FITC. The cytotoxicity was evaluated by MTT and LDH assays. The tested isoflavones: genistein, biochanin-A and neobavaisoflavone enhance TRAIL-induced apoptosis in HeLa cells. Our study indicated that isoflavones augmented TRAIL-cytotoxicity against cancer cells and confirmed potential role of those polyphenols in chemoprevention.
Collapse
Affiliation(s)
- Joanna Bronikowska
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | | | | | | | | | | |
Collapse
|
32
|
Biochanin A Modulates Cell Viability, Invasion, and Growth Promoting Signaling Pathways in HER-2-Positive Breast Cancer Cells. JOURNAL OF ONCOLOGY 2010; 2009:121458. [PMID: 20169097 PMCID: PMC2821773 DOI: 10.1155/2009/121458] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
Overexpression of HER-2 receptor is associated with poor prognosis and aggressive forms of breast cancer. Scientific literature indicates a preventive role of isoflavones in cancer. Since activation of HER-2 receptor initiates growth-promoting events in cancer cells, we studied the effect of biochanin A (an isoflavone) on associated signaling events like receptor activation, downstream signaling, and invasive pathways. HER-2-positive SK-BR-3 breast cancer cells, MCF-10A normal breast epithelial cells, and NIH-3T3 normal fibroblast cells were treated with biochanin A (2–100 μM) for 72 hours. Subsequently cell viability assay, western blotting and zymography were carried out. The data indicate that biochanin A inhibits cell viability, signaling pathways, and invasive enzyme expression and activity in SK-BR-3 cancer cells. Biochanin A did not inhibit MCF-10A and NIH-3T3 cell viability. Therefore, biochanin A could be a unique natural anticancer agent which can selectively target cancer cells and inhibit multiple signaling pathways in HER-2-positive breast cancer cells.
Collapse
|