1
|
Moon J, Seo K, Kwon JS. Novel two-stage expansion of Streptococcus mutans biofilm supports EPS-targeted prevention strategies for early childhood caries. NPJ Biofilms Microbiomes 2025; 11:65. [PMID: 40274812 PMCID: PMC12022157 DOI: 10.1038/s41522-025-00699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Early childhood caries (ECC) affects nearly half of preschool children worldwide and characterized by rapid progression across multiple teeth. While Streptococcus mutans (S. mutans) is a keystone species in dental caries, its process for rapid biofilm expansion remains unclear. Using an air-solid interface model simulating the oral environment, we uncovered a novel expansion for S. mutans biofilms. Our findings reveal that S. mutans employs a distinct two-step expansion strategy. Through osmotic pressure, extracellular polymeric substances (EPS) spread and transport bacterial clusters to new sites. Subsequently, the hydroxyapatite surface enables new colony formation. Hydroxyapatite's acid-neutralization properties appear critical for bacterial growth and colonization. Despite successful EPS spreading, environments without hydroxyapatite failed to support new colony formation. These results reveal the unique pattern of rapid ECC progression in sugar-rich environments and establish EPS as a promising therapeutic target, advancing understanding of cariogenic biofilm behavior and preventative strategies for ECC prevention.
Collapse
Affiliation(s)
- Jeongmi Moon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyoungjin Seo
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Chen H, Xia A, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100480. [PMID: 39309319 PMCID: PMC11416670 DOI: 10.1016/j.ese.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.
Collapse
Affiliation(s)
- Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Huchao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Sousa AM, Ferreira D, Rodrigues LR, Pereira MO. Aptamer-based therapy for fighting biofilm-associated infections. J Control Release 2024; 367:522-539. [PMID: 38295992 DOI: 10.1016/j.jconrel.2024.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Biofilms are key players in the pathogenesis of most of chronic infections associated with host tissue or fluids and indwelling medical devices. These chronic infections are hard to be treated due to the increased biofilms tolerance towards antibiotics in comparison to planktonic (or free living) cells. Despite the advanced understanding of their formation and physiology, biofilms continue to be a challenge and there is no standardized therapeutic approach in clinical practice to eradicate them. Aptamers offer distinctive properties, including excellent affinity, selectivity, stability, making them valuable tools for therapeutic purposes. This review explores the flexibility and designability of aptamers as antibiofilm drugs but, importantly, as targeting tools for diverse drug and delivery systems. It highlights specific examples of application of aptamers in biofilms of diverse species according to different modes of action including inhibition of motility and adhesion, blocking of quorum sensing molecules, and dispersal of biofilm-cells to planktonic state. Moreover, it discusses the limitations and challenges that impaired an increased success of the use of aptamers on biofilm management, as well as the opportunities related to aptamers modifications that can significantly expand their applicability on the biofilm field.
Collapse
Affiliation(s)
- Ana Margarida Sousa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| | - Débora Ferreira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Lígia Raquel Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
4
|
Santi L, Berger M, Guimarães JA, Calegari-Alves YP, Vainstein MH, Yates JR, Beys-da-Silva WO. Proteomic profile of Cryptococcus gattii biofilm: Metabolic shift and the potential activation of electron chain transport. J Proteomics 2024; 290:105022. [PMID: 37838096 DOI: 10.1016/j.jprot.2023.105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Cryptococcus gattii is a primary pathogenic fungus that causes pneumonia. This species is also responsible for an outbreak in Vancouver, Canada, and spreading to the mainland and United States. The use of medical devices is often complicated by infections with biofilm-forming microbes with increased resistance to antimicrobial agents and host defense mechanisms. This study investigated the comparative proteome of C. gattii R265 (VGIIa) grown under planktonic and biofilm conditions. A brief comparison with C. neoformans H99 biofilm and the use of different culture medium and surface were also evaluated. Using Multidimensional Protein Identification Technology (MudPIT), 1819 proteins were identified for both conditions, where 150 (8.2%) were considered differentially regulated (up- or down-regulated and unique in biofilm cells). Overall, the proteomic approach suggests that C. gattii R265 biofilm cells are maintained by the induction of electron transport chain for reoxidation, and by alternative energy metabolites, such as succinate and acetate. SIGNIFICANCE: Since C. gattii is considered a primary pathogen and is one of the most virulent and less susceptible to antifungals, understanding how biofilms are maintained is fundamental to search for new targets to control this important mode of growth that is difficult to eradicate.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil; Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jorge A Guimarães
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| | - Yohana Porto Calegari-Alves
- Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marilene H Vainstein
- Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - Walter O Beys-da-Silva
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Ge Z, Lu X. Impacts of extracellular polymeric substances on the behaviors of micro/nanoplastics in the water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122691. [PMID: 37797922 DOI: 10.1016/j.envpol.2023.122691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Increasing pollution of microplastics (MPs) and nanoplastics (NPs) has caused widespread concern worldwide. Extracellular polymeric substances (EPS) are natural organic polymers mainly produced by microorganisms, the major components of which are polysaccharides and proteins. This review focuses on the interactions that occur between EPS and MPs/NPs in the water environment and evaluates the effects of these interactions on the behaviors of MPs/NPs. EPS-driven formation of eco-corona, biofilm, and "marine snow" can incorporate MPs and NPs into sinking aggregates, resulting in the export of MPs/NPs from the upper water column. EPS coating greatly enhances the adsorption of metals and organic pollutants by MPs due to the larger specific surface area and the abundance of functional groups such as carboxyl, hydroxyl and amide groups. EPS can weaken the physical properties of MPs. Through the synergistic action of different extracellular enzymes, MPs may be decomposed into oligomers and monomers that can enter microbial cells for further mineralization. This review contributes to a comprehensive understanding of the dynamics of MPs and NPs in the water environment and the associated ecological risks.
Collapse
Affiliation(s)
- Zaiming Ge
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Kristensen MF, Lund MB, Schramm A, Lau EF, Schlafer S. Determinants of Microscale pH in In Situ-Grown Dental Biofilms. J Dent Res 2023; 102:1348-1355. [PMID: 37697830 DOI: 10.1177/00220345231190563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Dental biofilm pH is the most important determinant of virulence for the development of caries lesions. Confocal microscopy-based pH ratiometry allows monitoring biofilm pH with high spatial resolution. Experiments performed on simplified biofilm models under static conditions identified steep pH gradients as well as localized acidogenic foci that promote enamel demineralization. The present work used pH ratiometry to perform a comprehensive analysis of the effect of whole saliva flow on the microscale pH in complex, in situ-grown 48-h and 96-h biofilms (n = 54) from 9 healthy participants. pH was monitored in 12 areas at the biofilm bottom and top, and saliva flow with film thicknesses corresponding to those in the oral cavity was provided by an additively manufactured microfluidic flow cell. Biofilm pH was correlated to the bacterial composition, as determined by 16S rRNA gene sequencing. Biofilm acidogenicity varied considerably between participants and individual biofilms but also between different areas inside one biofilm, with pH gradients of up to 2 units. pH drops were more pronounced in 96-h than in 48-h biofilms (P = 0.0121) and virtually unaffected by unstimulated saliva flow (0.8 mm/min). Stimulated flow (8 mm/min) raised average biofilm pH to near-neutral values but it did not equilibrate vertical and horizontal pH gradients in the biofilms. pH was significantly lower at the biofilm base than at the top (P < 0.0001) and lower downstream than upstream (P = 0.0046), due to an accumulation of acids along the flow path. pH drops were positively correlated with biofilm thickness and negatively with the thickness of the saliva film covering the biofilm. Bacterial community composition was significantly different between biofilms with strong and weak pH responses but not their species richness. The present experimental study demonstrates that stimulated saliva flow, saliva film thickness, biofilm age, biofilm thickness, and bacterial composition are important modulators of microscale pH in dental biofilms.
Collapse
Affiliation(s)
- M F Kristensen
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - M B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - A Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - E Frandsen Lau
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - S Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Coppens B, Belpaire TE, Pešek J, Steenackers HP, Ramon H, Smeets B. Anomalous diffusion of nanoparticles in the spatially heterogeneous biofilm environment. iScience 2023; 26:106861. [PMID: 37260744 PMCID: PMC10227381 DOI: 10.1016/j.isci.2023.106861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Biofilms contain extracellular polymeric substances (EPS) that provide structural support and restrict penetration of antimicrobial treatment. To overcome limited penetration, functionalized nanoparticles (NPs) have been suggested as carriers for antimicrobial delivery. Using microscopy, we evaluate the diffusion of nanoparticles in function of the structure of Salmonella biofilms. We observe anomalous diffusion and heterogeneous mobility of NPs resulting in distinct NPs distribution that depended on biofilm structure. Through Brownian dynamics modeling with spatially varying viscosity around bacteria, we demonstrated that spatial gradients in diffusivity generate viscous sinks that trap NPs near bacteria. This model replicates the characteristic diffusion signature and vertical distribution of NPs in the biofilm. From a treatment perspective, our work indicates that both biofilm structure and the level of EPS can impact NP drug delivery, where low levels of EPS might benefit delivery by immobilizing NPs closer to bacteria and higher levels hamper delivery due to shielding effects.
Collapse
Affiliation(s)
- Bart Coppens
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Tom E.R. Belpaire
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Jiří Pešek
- Team SIMBIOTX, Inria Saclay, 91120 Palaiseau, France
| | | | - Herman Ramon
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Bart Smeets
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
8
|
Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70-86. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Citation(s) in RCA: 300] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/20/2023]
Abstract
The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Jost Wingender
- University of Duisburg-Essen, Biofilm Centre, Department of Aquatic Microbiology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Neu TR, Kuhlicke U. Matrix glycoconjugate characterization in multispecies biofilms and bioaggregates from the environment by means of fluorescently-labeled lectins. Front Microbiol 2022; 13:940280. [PMID: 36003926 PMCID: PMC9395170 DOI: 10.3389/fmicb.2022.940280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Environmental biofilms represent a complex mixture of different microorganisms. Their identity is usually analyzed by means of nucleic acid-based techniques. However, these biofilms are also composed of a highly complex extracellular matrix produced by the microbes within a particular biofilm system. The biochemical identity of this extracellular matrix remains in many cases an intractable part of biofilms and bioaggregates. Consequently, there is a need for an approach that will give access to the fully hydrated structure of the extracellular matrix or at least a major part of it. A crucial compound of the matrix identified as carbohydrate-based polymers represents major structural and functional constituents. These glycoconjugates can be characterized by using fluorescently-labeled lectins in combination with confocal laser scanning microscopy. The lectin approach is defined previously, as fluorescence lectin barcoding (FLBC) and fluorescence lectin-binding analysis (FLBA), where FLBC is equal to the screening of a particular sample with all the commercially available lectins and FLBA is the actual analysis of the matrix throughout an experiment with a selected panel of lectins. As the application of immune-based techniques in environmental biofilm systems is impossible, the lectin approach is currently the only option for probing lectin-specific glycoconjugates in complex biofilms and bioaggregates. From all the commercially available lectins tested, the lectins such as AAL, HAA, WGA, ConA, IAA, HPA, and LEA showed the highest binding efficiency. Furthermore, 20 of the overall lectins tested showed an intermediate signal intensity, nevertheless very useful for the assessment of matrix glycoconjugates. With the data compiled, we shall virtually shed more light on the dark matter of the extracellular matrix and their 3-dimensional distribution in environmental biofilm systems. The results will be helpful in future studies with a focus on the extracellular matrix glycoconjugates present in environmental microbial communities.
Collapse
|
10
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Niu Y, Zheng Y, Hou L, Gao D, Chen F, Pei C, Dong H, Liang X, Liu M. Microbial dynamics and activity of denitrifying anaerobic methane oxidizers in China's estuarine and coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150425. [PMID: 34560448 DOI: 10.1016/j.scitotenv.2021.150425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Estuarine and coastal wetlands, which act as large sources of methane (CH4) and undergo substantial loading of anthropogenic nitrogen (N), provide ideal conditions for denitrifying anaerobic methane oxidation (DAMO) to occur. Yet the microbial mechanisms governing DAMO and the main driving factors in estuarine and coastal ecosystems remain unclear. This study investigated the spatiotemporal distribution and associated activity of DAMO microorganisms along a wide swath of China's coastline (latitudinal range: 22-41°N) using molecular assays and isotope tracing techniques. We uncovered significant spatial and seasonal variation in DAMO bacterial community structure, whereas DAMO archaeal community structure exhibited no seasonal differences. The abundance of DAMO bacterial pmoA gene (2.2 × 105-1.0 × 107 copies g-1) was almost one order of magnitude higher than that of DAMO archaeal mcrA gene (8.7 × 104 -1.8 × 106 copies g-1). A significant positive correlation between pmoA and mcrA gene abundances (p < 0.01) was observed, indicating that DAMO bacteria and archaea may cooperate closely and thus complete nitrate elimination. Potential DAMO rates, in the range of 0.09-23.4 nmol 13CO2 g-1 day-1 for nitrite-DAMO and 0.03-43.7 nmol 13CO2 g-1 day-1 for nitrate-DAMO, tended to be greater in the relatively warmer low-latitudes. Potential DAMO rates were weakly positively correlated with gene abundances, suggesting that DAMO microbial activity could not be predicted directly by gene abundance alone. The heterogeneous variability of DAMO was shaped by interactions among key environmental characteristics (sediment texture, N availability, TOC, Fe3+, salinity of water, and temperature). On a broader continental scale, potential N removal rates of 0.1-11.2 g N m-2 yr-1 were estimated via nitrite-DAMO activity in China's coastal wetlands. Overall, our results highlight the widespread distribution of DAMO microbes and their potential role in eliminating excess N inputs and reducing CH4 emissions in estuarine and coastal ecosystems, which could help mitigate global warming.
Collapse
Affiliation(s)
- Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chenya Pei
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
12
|
Yasmeen N, Etienne M, Sharma PS, El-Kirat-Chatel S, Helú MB, Kutner W. Molecularly imprinted polymer as a synthetic receptor mimic for capacitive impedimetric selective recognition of Escherichia coli K-12. Anal Chim Acta 2021; 1188:339177. [PMID: 34794582 DOI: 10.1016/j.aca.2021.339177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
We fabricated an electrochemical molecularly imprinted polymer (MIP) chemosensor for rapid identification and quantification of E. coli strain using 2-aminophenyl boronic acid as the functional monomer. This strain is a modified Gram-negative strain of Escherichia coli bacterium, an ordinary human gut component. The E. coli strongly interacts with a boronic acid because of porous and flexible polymers of the cell wall. The SEM imaging showed that the bacteria template was partially entrapped within the polymeric matrix in a single step. Moreover, this imaging confirmed E. coli K-12 cell template extraction effectiveness. The prepared MIP determined the E. coli K-12 strain up to 2.9 × 104 cells mL-1. The interference study performed in the presence of E. coli variants expressing different surface appendages (type 1 fimbriae or Antigen 43 protein) or Shewanella oneidensis MR1, another Gram-negative bacteria, demonstrated that the bacterial surface composition notably impacts sensing properties of the bacteria imprinted polymer.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mathieu Etienne
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | | | | | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815, Warsaw, Poland
| |
Collapse
|
13
|
Mosselhy DA, Assad M, Sironen T, Elbahri M. Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E82. [PMID: 33401760 PMCID: PMC7824312 DOI: 10.3390/nano11010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant S. aureus (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement. Nanoparticles (NPs) and nanofibers could combat superbugs and biofilms and rapidly diagnose MRSA. Nanotheranostics combine diagnostics and therapeutics into a single agent. This comprehensive review is interpretative, utilizing mainly recent literature (since 2016) besides the older remarkable studies sourced via Google Scholar and PubMed. We unravel the molecular S. aureus resistance and complex biofilm. The diagnostic properties and detailed antibacterial and antibiofilm NP mechanisms are elucidated in exciting stories. We highlight the challenges of bacterial infections nanotheranostics. Finally, we discuss the literature and provide "three action appraisals". (i) The first appraisal consists of preventive actions (two wings), avoiding unnecessary hospital visits, hand hygiene, and legislations against over-the-counter antibiotics as the general preventive wing. Our second recommended preventive wing includes preventing the adverse side effects of the NPs from resistance and toxicity by establishing standard testing procedures. These standard procedures should provide breakpoints of bacteria's susceptibility to NPs and a thorough toxicological examination of every single batch of synthesized NPs. (ii) The second appraisal includes theranostic actions, using nanotheranostics to diagnose and treat MRSA, such as what we call "multifunctional theranostic nanofibers. (iii) The third action appraisal consists of collaborative actions.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, Dokki, Giza 12618, Egypt
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mhd Assad
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Center for Nanotechnology, Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, Egypt
| |
Collapse
|
14
|
Hiebner DW, Barros C, Quinn L, Vitale S, Casey E. Surface functionalization-dependent localization and affinity of SiO 2 nanoparticles within the biofilm EPS matrix. Biofilm 2020; 2:100029. [PMID: 33447814 PMCID: PMC7798476 DOI: 10.1016/j.bioflm.2020.100029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
The contribution of the biofilm extracellular polymeric substance (EPS) matrix to reduced antimicrobial susceptibility in biofilms is widely recognised. As such, the direct targeting of the EPS matrix is a promising biofilm control strategy that allows for the disruption of the matrix, thereby allowing a subsequent increase in susceptibility to antimicrobial agents. To this end, surface-functionalized nanoparticles (NPs) have received considerable attention. However, the fundamental understanding of the interactions occurring between engineered NPs and the biofilm EPS matrix has not yet been fully elucidated. An insight into the underlying mechanisms involved when a NP interacts with the EPS matrix will aid in the design of more efficient NPs for biofilm control. Here we demonstrate the use of highly specific fluorescent probes in confocal laser scanning microscopy (CLSM) to illustrate the distribution of EPS macromolecules within the biofilm. Thereafter, a three-dimensional (3D) colocalization analysis was used to assess the affinity of differently functionalized silica NPs (SiNPs) and EPS macromolecules from Pseudomonas fluorescens biofilms. Results show that both the charge and surface functional groups of SiNPs dramatically affected the extent to which SiNPs interacted and localized with EPS macromolecules, including proteins, polysaccharides and DNA. Hypotheses are also presented about the possible physicochemical interactions which may be dominant in EPS matrix-NP interactions. This research not only develops an innovative CLSM-based methodology for elucidating biofilm-nanoparticle interactions but also provides a platform on which to build more efficient NP systems for biofilm control.
Collapse
Affiliation(s)
- Dishon Wayne Hiebner
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Caio Barros
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Laura Quinn
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Stefania Vitale
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Eoin Casey
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| |
Collapse
|
15
|
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol 2020; 28:668-681. [PMID: 32663461 DOI: 10.1016/j.tim.2020.03.016] [Citation(s) in RCA: 698] [Impact Index Per Article: 139.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Biofilms consist of microbial communities embedded in a 3D extracellular matrix. The matrix is composed of a complex array of extracellular polymeric substances (EPS) that contribute to the unique attributes of biofilm lifestyle and virulence. This ensemble of chemically and functionally diverse biomolecules is termed the 'matrixome'. The composition and mechanisms of EPS matrix formation, and its role in biofilm biology, function, and microenvironment are being revealed. This perspective article highlights recent advances about the multifaceted role of the 'matrixome' in the development, physical-chemical properties, and virulence of biofilms. We emphasize that targeting biofilm-specific conditions such as the matrixome could lead to precise and effective antibiofilm approaches. We also discuss the limited knowledge in the context of polymicrobial biofilms, and the need for more in-depth analyses of the EPS matrix in mixed communities that are associated with many human infectious diseases.
Collapse
Affiliation(s)
- L Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland
| | - Z Ren
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - H Koo
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Center for Innovation and Precision Dentistry, University of Pennsylvania School of Dental Medicine, School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | - T Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Gao L, Lu X, Liu H, Li J, Li W, Song R, Wang R, Zhang D, Zhu J. Mediation of Extracellular Polymeric Substances in Microbial Reduction of Hematite by Shewanella oneidensis MR-1. Front Microbiol 2019; 10:575. [PMID: 30984128 PMCID: PMC6449630 DOI: 10.3389/fmicb.2019.00575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
Extracellular electron transfer (EET) plays a fundamental role in microbial reduction/oxidation of minerals. Extracellular polymeric substances (EPS) surrounding the cells constitute a matrix that separates the cell's outer membrane from insoluble minerals and environmental fluid. This study investigated the effects of EPS on EET processes during microbial reduction of hematite by the iron-reducing strain Shewanella oneidensis MR-1 (MR-1). Electrochemical characterization techniques were employed to determine the influence of EPS components on the redox ability of MR-1. Cells with removed EPS exhibited approximately 30% higher hematite reduction than regular MR-1 cells, and produced a current density of 56 μA cm-2, corresponding to 3-4 fold that of regular MR-1. The superior EET of EPS-deprived cells could be attributed to direct contact between outer membrane proteins and hematite surface, as indicated by more redox peaks being detected by cyclic voltammetry and differential pulse voltammetry. The significantly reduced current density of MR-1 cells treated with proteinase K and deoxyribonuclease suggests that the electron transfer capacity across the EPS layer depends mainly on the spatial distribution of specific proteins and electron shuttles. Exopolysaccharides in EPS tend to inhibit electron transfer, however they also favor the attachment of cells onto hematite surfaces. Consistently, the charge transfer resistance of cells lacking EPS was only 116.3 Ω, approximately 44 times lower than that of regular cells (5,139.1 Ω). These findings point to a negative influence of EPS on EET processes for microbial reduction/oxidation of minerals.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Xiancai Lu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing University, Nanjing, China
| | - Huan Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Juan Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Weijie Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Rongbin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ruiyong Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongmei Zhang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Junjie Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Lawrence JR, Swerhone GDW, Neu TR. Visualization of the Sorption of Nickel within Exopolymer Microdomains of Bacterial Microcolonies Using Confocal and Scanning Electron Microscopy. Microbes Environ 2019; 34:76-82. [PMID: 30799318 PMCID: PMC6440736 DOI: 10.1264/jsme2.me18134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The sorption and distribution of nickel, a common metal contaminant in aquatic systems, were assessed in bacterial microcolonies using a combination of fluorescent staining with Newport Green and confocal laser scanning microscopy (CLSM) with confirmation by scanning electron microscopy (SEM) and X-ray microprobe analyses. CLSM with Newport Green, selected fluor-conjugated lectins, and DNA staining allowed for the discrimination of the microdomains present in the microcolony exopolymeric matrix and detection of bound nickel. This approach avoided the artefacts associated with drying and fixation required by analytical electron microscopy. The results obtained indicated that specific microcolonies within river biofilms sorbed nickel within limited microdomains present in the complex tripartite exopolymeric matrix surrounding bacterial cells. Sorption occurred such that nickel was concentrated within the exopolymeric matrix, but not directly associated with cells. These microdomains appeared to have neutral pH and be dominated by negatively charged residues favoring the sorption of nickel and other cations. These results also suggest an important role for specific community members in the sorption and concentration of metals in aquatic biofilm communities.
Collapse
Affiliation(s)
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ
| |
Collapse
|
18
|
Lawrence JR, Winkler M, Neu TR. Multi-Parameter Laser Imaging Reveals Complex Microscale Biofilm Matrix in a Thick (4,000 μm) Aerobic Methanol Oxidizing Community. Front Microbiol 2018; 9:2186. [PMID: 30333795 PMCID: PMC6176653 DOI: 10.3389/fmicb.2018.02186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
Although methanol has frequently been used as an inexpensive supplementary carbon source to support treatment processes, knowledge of the resultant microbial biofilms, their 3D architecture, microenvironments, exopolymer chemistry and populations remains limited. We supplied methanol as a supplementary carbon source to biofilms developing in rotating annular reactors. Analysis of circulation waters (1.0 l d-1) indicated that dissolved organic carbon was reduced by 25%, NO3-nitrogen by 95%, and total phosphorus by 70%. Analyses of populations using culture based techniques and fluorescence in situ hybridization indicated enrichment of nitrifiers, denitrifiers, and methylotrophic bacteria relative to reference biofilms not receiving methanol. The biofilms that developed were up to 4,000 μm thick. Staining with fluor conjugated lectins in combination with nucleic acid stains, revealed the presence of discrete bacterial cells inside complex globular polymeric structures. These structures were in turn surrounded by an interstitial polymer containing a variety of bacterial cell types. The globular structures bound FITC-conjugated lectins, from Canavalia ensiformis and Ulex europeaus. The FITC-lectin of Phaseolus vulgaris bound the surface of the globular structures and more generally within the matrix. Chemical analyses of the polymer paralleled the results of lectin analyses indicating that the dominant neutral sugars were glucose, galactose, mannose, rhamnose, with fucose and ribose as minor constituents. Amino sugars were not detected. Dual channel imaging with pH sensitive probes indicated that pH gradients from pH 4 to 7 occurred across the globular microcolonies. Critically for the maintenance of aerobic conditions throughout the thick biofilm it was extensively penetrated by a fine fissure network revealed by the location of fluorescent latex microbeads as detected by confocal laser scanning microscopy. Microelectrode studies confirmed the absence of any detectable Eh gradients within the biofilm. However, mobility of various size-fractionated fluorescent probes indicated that the basal region was only penetrated by the lowest molecular weight probes with a hydrated radius of 2.2 nm or less. These observations indicate the selection of a unique, thick (>4,000 μm) microbial community in which a self-organized architecture promotes the maintenance of optimal conditions and metabolism throughout the biofilm community.
Collapse
Affiliation(s)
- John R Lawrence
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research, Magdeburg, Germany
| |
Collapse
|
19
|
Schlafer S, Baelum V, Dige I. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions. J Microbiol Methods 2018; 152:194-200. [PMID: 30144480 DOI: 10.1016/j.mimet.2018.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Confocal microscopy-based monitoring of pH in biofilms is gaining increasing interest, as it allows for a quick assessment of horizontal pH gradients without mechanically perturbing the biofilm. Ratiometric monitoring of pH with the fluorescent dye C-SNARF-4 has been used to reliably map extracellular pH in the basal layers of biofilms, but only under static conditions. Here, we expand this methodology to measurements of vertical gradients in multispecies in vitro-grown and in situ-grown dental biofilms of different age, and to pH measurements in in vitro-grown biofilms under flow conditions. After static incubation with glucose, young in vitro-grown biofilms (30h) were more acidogenic than older biofilms (120h). However, under dynamic conditions mimicking the oral salivary flow, low pH was only preserved in older biofilms. As both types of biofilm were of similar thickness (~20 μm), these findings highlight the importance of cell density and biofilm matrix maturation for pH developments. In both in vitro-grown and in in situ-grown biofilms, horizontal and vertical pH gradients were observed. Under static conditions, the surface layer of the biofilms tended to be more acidic, whereas the bottom layer became more acidic under dynamic conditions. Compared to in vitro-grown biofilms, 120 h in situ-grown biofilms showed higher acidogenicity during static incubation. This study shows that pH ratiometry with C-SNARF-4 is well-suited to monitor extracellular pH in thin biofilms in all three dimensions. The different pH dynamics observed under static and dynamic conditions argue for the implementation of flow during real-time assessment of biofilm pH.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Vibeke Baelum
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Irene Dige
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| |
Collapse
|
20
|
Zhang P, Chen YP, Qiu JH, Dai YZ, Feng B. Imaging the Microprocesses in Biofilm Matrices. Trends Biotechnol 2018; 37:214-226. [PMID: 30075862 DOI: 10.1016/j.tibtech.2018.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
Biofilms, which are aggregates of microorganisms and extracellular matrices, widely colonize natural water bodies, wastewater treatment systems, and body tissues, and have vital roles in water purification, biofouling, and infectious diseases. Recently, multiple imaging modalities have been developed to visualize the morphological structure and material distribution within biofilms and to probe the microprocesses in biofilm matrices, including biofilm formation, transfer and metabolism of substrates, and cell-cell communication. These technologies have improved our understanding of biofilm control and the fates of substrates in biofilms. In this review, we describe the principles of various imaging techniques and discuss the advantages and limitations of each approach to characterizing microprocesses in biofilm matrices.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| | - Ju-Hui Qiu
- College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
21
|
Decho AW, Gutierrez T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front Microbiol 2017; 8:922. [PMID: 28603518 PMCID: PMC5445292 DOI: 10.3389/fmicb.2017.00922] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Microbial cells (i.e., bacteria, archaea, microeukaryotes) in oceans secrete a diverse array of large molecules, collectively called extracellular polymeric substances (EPSs) or simply exopolymers. These secretions facilitate attachment to surfaces that lead to the formation of structured 'biofilm' communities. In open-water environments, they also lead to formation of organic colloids, and larger aggregations of cells, called 'marine snow.' Secretion of EPS is now recognized as a fundamental microbial adaptation, occurring under many environmental conditions, and one that influences many ocean processes. This relatively recent realization has revolutionized our understanding of microbial impacts on ocean systems. EPS occur in a range of molecular sizes, conformations and physical/chemical properties, and polysaccharides, proteins, lipids, and even nucleic acids are actively secreted components. Interestingly, however, the physical ultrastructure of how individual EPS interact with each other is poorly understood. Together, the EPS matrix molecules form a three-dimensional architecture from which cells may localize extracellular activities and conduct cooperative/antagonistic interactions that cannot be accomplished efficiently by free-living cells. EPS alter optical signatures of sediments and seawater, and are involved in biogeomineral precipitation and the construction of microbial macrostructures, and horizontal-transfers of genetic information. In the water-column, they contribute to the formation of marine snow, transparent exopolymer particles (TEPs), sea-surface microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during later-stages of phytoplankton blooms as an excess metabolic by product and releases a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some EPS are highly labile carbon forms, while other forms appear quite refractory to degradation. Emerging studies suggest that EPS contribute to efficient trophic-transfer of environmental contaminants, and may provide a protective refugia for pathogenic cells within marine systems; one that enhances their survival/persistence. Finally, these secretions are prominent in 'extreme' environments ranging from sea-ice communities to hypersaline systems to the high-temperatures/pressures of hydrothermal-vent systems. This overview summarizes some of the roles of exopolymer in oceans.
Collapse
Affiliation(s)
- Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, ColumbiaSC, United States
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, United Kingdom
| |
Collapse
|
22
|
Neu TR, Kuhlicke U. Fluorescence Lectin Bar-Coding of Glycoconjugates in the Extracellular Matrix of Biofilm and Bioaggregate Forming Microorganisms. Microorganisms 2017; 5:microorganisms5010005. [PMID: 28208623 PMCID: PMC5374382 DOI: 10.3390/microorganisms5010005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems. Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular.
Collapse
Affiliation(s)
- Thomas R Neu
- Helmholtz Centre for Environmental Research - UFZ, 39114 Magdeburg, Germany.
| | - Ute Kuhlicke
- Helmholtz Centre for Environmental Research - UFZ, 39114 Magdeburg, Germany.
| |
Collapse
|
23
|
Abstract
“Slime” played a brief and spectacular role in the 19th century founded by the theory of primordial slime by Ernst Haeckel. However, that substance was never found and eventually abandoned. Further scientific attention slowly began in the 1930s referring to slime as a microbial product and then was inspired by “How bacteria stick” by Costerton et al. in 1978, and the matrix material was considered to be polysaccharides. Later, it turned out that proteins, nucleic acids and lipids were major other constituents of the extracellular polymeric substances (EPS), an acronym which was highly discussed. The role of the EPS matrix turns out to be fundamental for biofilms, in terms of keeping cells in proximity and allowing for extended interaction, resource capture, mechanical strength and other properties, which emerge from the life of biofilm organisms, including enhanced tolerance to antimicrobials and other stress. The EPS components are extremely complex and dynamic and fulfil many functional roles, turning biofilms into the most ubiquitous and successful form of life on Earth.
Collapse
|