1
|
da Silva GS, Borges SG, Pozzebon BB, de Souza APD. Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges. Microorganisms 2024; 12:2305. [PMID: 39597694 PMCID: PMC11596275 DOI: 10.3390/microorganisms12112305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory infections, particularly in children and the elderly. This virus primarily infects ciliated epithelial cells and activates alveolar macrophages and dendritic cells, triggering an innate antiviral response that releases pro-inflammatory cytokines. However, immunity generated by infection is limited, often leading to reinfection throughout life. This review focuses on the immune response elicited by newly developed and approved vaccines against RSV. A comprehensive search of clinical studies on RSV vaccine candidates conducted between 2013 and 2024 was performed. There are three primary target groups for RSV vaccines: pediatric populations, infants through maternal immunization, and the elderly. Different vaccine approaches address these groups, including subunit, live attenuated or chimeric, vector-based, and mRNA vaccines. To date, subunit RSV vaccines and the mRNA vaccine have been approved using the pre-fusion conformation of the F protein, which has been shown to induce strong immune responses. Nevertheless, several other vaccine candidates face challenges, such as modest increases in antibody production, highlighting the need for further research. Despite the success of the approved vaccines for adults older than 60 years and pregnant women, there remains a critical need for vaccines that can protect children older than six months, who are still highly vulnerable to RSV infections.
Collapse
Affiliation(s)
| | | | | | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil
| |
Collapse
|
2
|
Wang F, Jiang M, Han Z, Xu Y, Sun Y, Zhu R, Chen D, Guo Q, Zhou Y, Yao Y, Cao L, Qu D, Li M, Zhao L. The Cumulative Variations of Respiratory Syncytial Virus Fusion Protein (F) in Ten Consecutive Years in China. Infect Dis Rep 2024; 16:1017-1029. [PMID: 39452166 PMCID: PMC11507529 DOI: 10.3390/idr16050081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Variations in the fusion (F) protein of respiratory syncytial virus (RSV) with main antigenic sites I-V and Ø may affect the development of RSV vaccines and therapies. METHODS In the study, 30 respiratory specimens positive for RSV were randomly selected from children with acute lower respiratory infections (ALRI) in Beijing every year from 2012 to 2021 for F gene sequencing. Then, 300 F gene sequences and 508 uploaded to GenBank from China were subjected to phylogenetic analysis. RESULTS The results indicated the nucleotide identities were 95.4-100% among 446 sequences of RSV A, and 96.3-100% among 362 of RSV B. The most common variant loci were N80K (100.00%) and R213S (97.76%) for site Ø, and V384I/T (98.43%) for site I among sequences of RSV A, and M152I (100.00%), I185V (100.00%), and L172Q/H (94.48%) for site V, and R202Q (99.45%) for site Ø among sequences of RSV B. N276S appears in 95.29% sequences of RSV A, while S276N and N262 I/S appear in 1.38% and 0.55% sequences of RSV B, respectively. No variation was found in all sequences at the binding sites of 14N4 and motavizumab. CONCLUSIONS There were cumulative variations of the RSV F gene, especially at some binding sites of antigenic sites.
Collapse
Affiliation(s)
- Fengjie Wang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Mingli Jiang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Zhenzhi Han
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Yanpeng Xu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Yu Sun
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Runan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Dongmei Chen
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Qi Guo
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Yutong Zhou
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Yao Yao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| | - Ling Cao
- Department of Respiratory Medicine, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Dong Qu
- Department of Critical Care Medicine, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Muya Li
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (F.W.); (M.J.)
| |
Collapse
|
3
|
Xu Y, Sun F, Chuai Z, Wang J, Bai Z, Bian C, Wang X, Zhao Z, Liu Y, Yang P. Cold-adapted influenza vaccine carrying three repeats of a respiratory syncytial virus (RSV) fusion glycoprotein epitope site protects BALB/c mice and cotton rats against RSV infection. Antiviral Res 2024; 229:105960. [PMID: 38986872 DOI: 10.1016/j.antiviral.2024.105960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Respiratory syncytial virus is the major cause of respiratory viral infections, particularly in infants, immunocompromised populations, and the elderly (over 65 years old), the prevention of RSV infection has become a priority. In this study, we generated a chimeric influenza virus, termed LAIV/RSV/HA-3F, using reverse genetics technology which contained three repeats of the RSV fusion protein neutralizing epitope site II to the N terminal in the background of the hemagglutinin (HA) gene of cold adapted influenza vaccine A/California/7/2009 ca. LAIV/RSV/HA-3F exhibited cold-adapted (ca) and attenuated (att) phenotype. BALB/c mice immunized intranasally with LAIV/RSV/HA-3F showed robust immunogenicity, inducing viral-specific antibody responses against both influenza and RSV, eliciting RSV-specific humoral, cellular and mucosal immune responses. LAIV/RSV/HA-3F also conferred protection as indicated by reduced viral titers and improved lung histopathological alterations against live RSV virus challenge. Mechanismly, single-cell RNA sequencing (scRNA-seq) and single-cell T cell antigen receptor (TCR) sequencing were employed to characterize the immune responses triggered by chimeric RSV vaccine, displaying that LAIV/RSV/HA-3F provided protection mainly via interferon-γ (IFN-γ). Moreover, we found that LAIV/RSV/HA-3F significantly inhibited viral replication in the challenged lung and protected against subsequent RSV challenge in cotton rats without causing lung disease. Taken together, our findings demonstrated that LAIV/RSV/HA-3F has potential as a promising bivalent vaccine with dual purpose candidate for the prevention of influenza and RSV, and preclinical and clinical studies warrant further investigations.
Collapse
Affiliation(s)
- Yongru Xu
- The First Medical Center of Chinese PLA General Hospital, Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Fang Sun
- The First Medical Center of Chinese PLA General Hospital, Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China; Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Zhengran Chuai
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Junyun Wang
- Harbin GenVista Medical Laboratory Co., Ltd, Harbin, 150001, China; Heilongjiang Hulu Institute of Precision Medicine Co., Ltd, Harbin 150001, China
| | - Zhifang Bai
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Chengrong Bian
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yongzhuang Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Penghui Yang
- The First Medical Center of Chinese PLA General Hospital, Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| |
Collapse
|
4
|
Widagdo W, Bastian AR, Jastorff AM, Scheys I, De Paepe E, Comeaux CA, Ligtenberg N, Callendret B, Heijnen E. Concomitant Administration of Ad26.RSV.preF/RSV preF Protein Vaccine and High-Dose Influenza Vaccine in Adults 65 Years and Older: A Noninferiority Trial. J Infect Dis 2024; 230:e374-e383. [PMID: 38134393 PMCID: PMC11326816 DOI: 10.1093/infdis/jiad594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Since influenza and respiratory syncytial virus (RSV) carry significant burden in older adults with overlapping seasonality, vaccines for both pathogens would ideally be coadministered in this population. Here we evaluate the immunogenicity and safety of concomitant administration of Ad26.RSV.preF/RSV preF protein and high-dose seasonal influenza vaccine (Fluzone-HD) in adults ≥65 years old. METHODS Participants were randomized 1:1 to the Coadministration or Control group. The Coadministration group received concomitant Ad26.RSV.preF/RSV preF protein and Fluzone-HD on day 1 and placebo on day 29, while the Control group received Fluzone-HD and placebo on day 1 and Ad26.RSV.preF/RSV preF protein on day 29. Influenza hemagglutination-inhibiting and RSV preF-binding antibody titers were measured postvaccination and tested for noninferiority between both groups. Safety data were collected throughout the study and analyzed descriptively. RESULTS Coadministered Ad26.RSV.preF/RSV preF protein and Fluzone-HD vaccines induced noninferior immune responses compared to each vaccine administered alone. Seroconversion and seroprotection rates against influenza were similar between groups. Both vaccines remained well tolerated upon concomitant administration. CONCLUSIONS Coadministration of Ad26.RSV.preF/RSV preF protein and Fluzone-HD showed an acceptable safety profile and did not hamper the immunogenicity of either vaccine, thus supporting that both vaccines can be concomitantly administered in adults ≥65 years old.
Collapse
Affiliation(s)
- Widagdo Widagdo
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | | | | | | | | | | | | | | | - Esther Heijnen
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| |
Collapse
|
5
|
Buynak R, Cannon K, DeAtkine D, Kirby J, Usdan L, Bhavsar A, Gérard C, Kuznetsova A, Jayadev A, Amare H, Valenciano S, Meyer N. Randomized, Open-Label Phase 3 Study Evaluating Immunogenicity, Safety, and Reactogenicity of RSVPreF3 OA Coadministered with FLU-QIV-HD in Adults Aged ≥ 65. Infect Dis Ther 2024; 13:1789-1805. [PMID: 38981954 PMCID: PMC11266338 DOI: 10.1007/s40121-024-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) and influenza pose major disease burdens in older adults due to an aging immune system and comorbidities; seasonal overlap exists between these infections. In 2023, the RSV prefusion protein F3 older adult (RSVPreF3 OA) vaccine was first approved in the USA as a single dose for prevention of lower respiratory tract disease due to RSV in adults aged ≥ 60 years. The vaccine has since been approved in the European Union and elsewhere. RSVPreF3 OA and FLU-QIV-HD could be coadministered if immunogenicity, safety, and reactogenicity are not affected. METHODS This open-label, randomized (1:1), controlled, phase 3 study in 1029 adults aged ≥ 65 years in the USA evaluated the immunogenicity (up to 1 month after last vaccine dose) and safety (up to 6 months after last vaccine dose) of RSVPreF3 OA coadministered with FLU-QIV-HD (co-ad group) versus FLU-QIV-HD alone followed by RSVPreF3 OA at a separate visit 1 month later (control group). Non-inferiority criterion was defined as an upper limit of the two-sided 95% confidence interval of the geometric mean titer (GMT) group ratio (control/co-ad) ≤ 1.5. Secondary endpoints included safety and reactogenicity. RESULTS Proportions of participants across age categories between groups and proportions of male (50.4%) and female (49.6%) participants were well balanced; most participants were white (68.7%). Group GMT ratios for RSV-A neutralizing titers, hemagglutination inhibition titers for four influenza vaccine strains, and RSV-B neutralizing titers were non-inferior in the co-ad group versus the control group. No clinically meaningful differences in local or systemic solicited and unsolicited adverse events (AEs), serious AEs, and potential immune-mediated diseases were identified. The most common solicited AEs in both groups were injection-site pain and myalgia. CONCLUSION In adults aged ≥ 65 years, coadministration of RSVPreF3 OA and FLU-QIV-HD was immunogenically non-inferior to the sequential administration of both vaccines 1 month apart, and had clinically acceptable safety and reactogenicity profile. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT05559476.
Collapse
Affiliation(s)
| | - Kevin Cannon
- Accellacare Clinical Research, Wilmington, NC, USA
| | | | - John Kirby
- Summit Medical Group, Jefferson City, TN, USA
| | - Lisa Usdan
- Clinical Neuroscience Solution Healthcare, Memphis, TN, USA
| | - Amit Bhavsar
- GSK Vaccines, Avenue Fleming 20, 1300, Wavre, Belgium
| | | | | | | | - Hiwot Amare
- GSK Vaccines, Avenue Fleming 20, 1300, Wavre, Belgium
| | | | - Nadia Meyer
- GSK Vaccines, Avenue Fleming 20, 1300, Wavre, Belgium
| |
Collapse
|
6
|
Eto T, Okubo Y, Momose A, Tamura H, Zheng R, Callendret B, Bastian A, Comeaux C. A Randomized, Double-Blind, Placebo-Controlled, Phase 1 Study to Evaluate the Safety, Reactogenicity, and Immunogenicity of Single Vaccination of Ad26.RSV.preF-Based Regimen in Japanese Adults Aged 60 Years and Older. Influenza Other Respir Viruses 2024; 18:e13336. [PMID: 38880785 PMCID: PMC11180550 DOI: 10.1111/irv.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is increasingly recognized as a significant cause of lower respiratory tract disease (LRTD) in older adults. The Ad26.RSV.preF/RSV preF protein vaccine demonstrated protective efficacy against RSV related LRTD in a Phase 2b study in the United States. Hence, Ad26.RSV.preF/RSV preF protein vaccine candidate was evaluated in the Japanese older adult population. METHODS This Phase 1 study evaluated safety, reactogenicity, and immunogenicity of Ad26.RSV.preF/RSV preF protein vaccine at dose level of 1 × 1011 vp/150 μg in Japanese healthy adult aged ≥60 years. The study included a screening Phase, vaccination, 28-day follow up Phase, a 182-day follow-up period, and final visit on Day 183. A total of 36 participants were randomized in a 2:1 ratio to receive Ad26.RSV.preF/RSV preF protein vaccine (n = 24) or placebo (n = 12). After study intervention administration, the safety and immunogenicity analysis were performed as per planned schedule. Immune responses including virus-neutralizing and preF-specific binding antibodies were measured on Days 1, 15, 29, and 183. RESULTS There were no deaths, SAEs, or AEs leading to discontinuation reported during the study. The Ad26.RSV.preF/RSV preF protein vaccine had acceptable safety and tolerability profile with no safety concern in Japanese older adults. The Ad26.RSV.preF/RSV preF protein vaccine induced RSV-specific humoral immunity, with increase in antibody titers on Days 15 and 29 compared with baseline which was well maintained until Day 183. CONCLUSIONS A single dose of Ad26.RSV.preF/RSV preF protein vaccine had an acceptable safety and tolerability profile and induced RSV-specific humoral immunity in Japanese healthy adults. TRIAL REGISTRATION NCT number: NCT04354480; Clinical Registry number: CR108768.
Collapse
|
7
|
Pang Y, Lu H, Cao D, Zhu X, Long Q, Tian F, Long X, Li Y. Efficacy, immunogenicity and safety of respiratory syncytial virus prefusion F vaccine: systematic review and meta-analysis. BMC Public Health 2024; 24:1244. [PMID: 38711074 PMCID: PMC11075318 DOI: 10.1186/s12889-024-18748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE A notable research gap exists in the systematic review and meta-analysis concerning the efficacy, immunogenicity, and safety of the respiratory syncytial virus (RSV) prefusion F vaccine. METHODS We conducted a comprehensive search across PubMed, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov to retrieve articles related to the efficacy, immunogenicity, and safety of RSV prefusion F vaccines, published through September 8, 2023. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS A total of 22 randomized controlled trials involving 78,990 participants were included in this systematic review and meta-analysis. The RSV prefusion F vaccine exhibited a vaccine effectiveness of 68% (95% CI: 59-75%) against RSV-associated acute respiratory illness, 70% (95% CI: 60-77%) against medically attended RSV-associated lower respiratory tract illness, and 87% (95% CI: 71-94%) against medically attended severe RSV-associated lower respiratory tract illness. Common reported local adverse reactions following RSV prefusion F vaccination include pain, redness, and swelling at the injection site, and systemic reactions such as fatigue, headache, myalgia, arthralgia, nausea, and chills. CONCLUSIONS Our meta-analysis suggests that vaccines using the RSV prefusion F protein as antigen exhibit appears broadly acceptable efficacy, immunogenicity, and safety in the population. In particular, it provides high protective efficiency against severe RSV-associated lower respiratory tract disease.
Collapse
Affiliation(s)
- Yi Pang
- Youjiang Medical University for Nationalities, Baise, China
| | - Haishan Lu
- Clinicopathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Demin Cao
- Clinicopathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Xiaoying Zhu
- Clinicopathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Qinqin Long
- Clinicopathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Fengqin Tian
- Clinicopathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Xidai Long
- Clinicopathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China.
| | - Yulei Li
- Clinicopathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China.
| |
Collapse
|
8
|
Leroux-Roels I, Van Ranst M, Vandermeulen C, Abeele CV, De Schrevel N, Salaun B, Verheust C, David MP, Kotb S, Hulstrøm V. Safety and Immunogenicity of a Revaccination With a Respiratory Syncytial Virus Prefusion F Vaccine in Older Adults: A Phase 2b Study. J Infect Dis 2024; 229:355-366. [PMID: 37699064 PMCID: PMC10873183 DOI: 10.1093/infdis/jiad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND In the previous (parent) study, 2 doses of different formulations of an investigational vaccine against respiratory syncytial virus (RSVPreF3 OA) were well tolerated and immunogenic in older adults. This multicenter phase 2b extension study assessed safety and immunogenicity of a revaccination (third) dose of the 120 μg RSVPreF3-AS01E formulation. METHODS In total, 122 older adults (60-80 years), previously vaccinated with 2 doses of RSVPreF3-AS01E formulations (containing 30, 60, or 120 μg RSVPreF3 antigen), received an additional 120 μg RSVPreF3-AS01E dose 18 months after dose 2. Vaccine safety was evaluated in all participants up to 6 months and immunogenicity in participants who received 120 μg RSVPreF3-AS01E doses until 1 month after dose 3. RESULTS Similar to the parent study, mostly mild-to-moderate solicited adverse events and no vaccine-related serious adverse events or potential immune-mediated disorders were reported. Neutralizing titers and cell-mediated immune responses persisted for 18 months after 2-dose vaccination. Dose 3 increased RSV-specific neutralizing titers against RSV-A and RSV-B and median CD4+ T-cell frequencies. After dose 3, RSV-specific neutralizing titers but not CD4+ T-cell frequencies were below levels detected 1 month after dose 1. CONCLUSIONS Revaccination with 120 μg RSVPreF3-AS01E 18 months after dose 2 is well tolerated and immunogenic in older adults. CLINICAL TRIALS REGISTRATION NCT04657198; EudraCT, 2020-000692-21.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Centre for Vaccinology, Ghent University and Ghent University HospitalGhent, Belgium
| | - Marc Van Ranst
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Corinne Vandermeulen
- Leuven University Vaccinology Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Comeaux CA, Bart S, Bastian AR, Klyashtornyy V, De Paepe E, Omoruyi E, van der Fits L, van Heesbeen R, Heijnen E, Callendret B, Sadoff J. Safety, Immunogenicity, and Regimen Selection of Ad26.RSV.preF-Based Vaccine Combinations: A Randomized, Double-blind, Placebo-Controlled, Phase 1/2a Study. J Infect Dis 2024; 229:19-29. [PMID: 37433021 PMCID: PMC10786248 DOI: 10.1093/infdis/jiad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Ad26.RSV.preF is an adenovirus serotype 26 vector-based respiratory syncytial virus (RSV) vaccine encoding a prefusion conformation-stabilized RSV fusion protein (preF) that demonstrated robust humoral and cellular immunogenicity and showed promising efficacy in a human challenge study in younger adults. Addition of recombinant RSV preF protein might enhance RSV-specific humoral immune responses, especially in older populations. METHODS This randomized, double-blind, placebo-controlled, phase 1/2a study compared the safety and immunogenicity of Ad26.RSV.preF alone and varying doses of Ad26.RSV.preF-RSV preF protein combinations in adults aged ≥60 years. This report includes data from cohort 1 (initial safety, n = 64) and cohort 2 (regimen selection, n = 288). Primary immunogenicity and safety analyses were performed 28 days postvaccination (cohort 2) for regimen selection. RESULTS All vaccine regimens were well tolerated, with similar reactogenicity profiles among them. Combination regimens induced greater humoral immune responses (virus-neutralizing and preF-specific binding antibodies) and similar cellular ones (RSV-F-specific T cells) as compared with Ad26.RSV.preF alone. Vaccine-induced immune responses remained above baseline up to 1.5 years postvaccination. CONCLUSIONS All Ad26.RSV.preF-based regimens were well tolerated. A combination regimen comprising Ad26.RSV.preF, which elicits strong humoral and cellular responses, and RSV preF protein, which increases humoral responses, was selected for further development. Clinical Trials Registration. NCT03502707.
Collapse
Affiliation(s)
| | - Stephan Bart
- Trial Professionals Consultant Group, Inc., Woodstock, Maryland
| | | | | | | | | | | | | | - Esther Heijnen
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | | | - Jerald Sadoff
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| |
Collapse
|
10
|
Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi O. MA, Tovar-Rosero YY, Oñate AA, O'Ryan M. Two centuries of vaccination: historical and conceptual approach and future perspectives. Front Public Health 2024; 11:1326154. [PMID: 38264254 PMCID: PMC10803505 DOI: 10.3389/fpubh.2023.1326154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two centuries, vaccines have been critical for the prevention of infectious diseases and are considered milestones in the medical and public health history. The World Health Organization estimates that vaccination currently prevents approximately 3.5-5 million deaths annually, attributed to diseases such as diphtheria, tetanus, pertussis, influenza, and measles. Vaccination has been instrumental in eradicating important pathogens, including the smallpox virus and wild poliovirus types 2 and 3. This narrative review offers a detailed journey through the history and advancements in vaccinology, tailored for healthcare workers. It traces pivotal milestones, beginning with the variolation practices in the early 17th century, the development of the first smallpox vaccine, and the continuous evolution and innovation in vaccine development up to the present day. We also briefly review immunological principles underlying vaccination, as well as the main vaccine types, with a special mention of the recently introduced mRNA vaccine technology. Additionally, we discuss the broad benefits of vaccines, including their role in reducing morbidity and mortality, and in fostering socioeconomic development in communities. Finally, we address the issue of vaccine hesitancy and discuss effective strategies to promote vaccine acceptance. Research, collaboration, and the widespread acceptance and use of vaccines are imperative for the continued success of vaccination programs in controlling and ultimately eradicating infectious diseases.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan P. Torres
- Departamento de Pediatría y Cirugía Pediátrica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel A. Benachi O.
- Área de Biotecnología, Tecnoacademia Neiva, Servicio Nacional de Aprendizaje, Regional Huila, Neiva, Colombia
| | - Yenifer-Yadira Tovar-Rosero
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia
| | - Angel A. Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Miguel O'Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Lu D, Han Y, Xu R, Qin M, Shi J, Zhang C, Zhang J, Ye F, Luo Z, Wang Y, Wang C, Wang C. Evaluation of the efficacy, safety and influencing factors of concomitant and sequential administration of viral respiratory infectious disease vaccines: a systematic review and meta-analysis. Front Immunol 2023; 14:1259399. [PMID: 38179050 PMCID: PMC10764558 DOI: 10.3389/fimmu.2023.1259399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Background There is no clear conclusion on the immunogenicity and adverse events of concomitant administration the viral respiratory infectious disease vaccines. We aimed to evaluate the impact of concomitant administering viral respiratory infectious disease vaccines on efficiencies, safety and influencing factors. Methods This meta-analysis included studies from PubMed, Embase, Cochrane Central Register of Clinical Trials, Web of Science, WHO COVID-19 Research, and ClinicalTrials.gov databases. Randomized controlled trials of the adult participants concomitant administered with viral respiratory infectious disease vaccine and other vaccines were included. The main outcomes were the seroconversion rate and seroprotection rate of each vaccine. Used the Mantel-Haenszel fixed effects method as the main analysis to estimate the pooled RRs and the corresponding 95% confidence intervals. The risk of bias for each trial was assessed using the Cochrane Handbook for Systematic Reviews of Interventions, while evidence certainty was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation system. Results A total of 21 studies comprising 14060 participants with two types of vaccines were retained for the meta-analysis. Concomitant immunization reduced the geometric mean titer (RR: 0.858, 95% CI: (0.785 to 0.939)) and the geometric mean fold rise (0.754 (0.629 to 0.902)) in the SARS-COV-2 vaccine group but increased the seroconversion rate (1.033 (1.0002 to 1.067)) in the seasonal influenza vaccine group. Concomitant administration were influenced by the type of vaccine, adjuvant content, booster immunization, and age and gender of the recipient. Conclusion This meta-analysis suggested that the short-term protection and safety of concomitant administered were effective. Appropriate adjuvants, health promotion and counselling and booster vaccines could improve the efficiency and safety of Concomitant vaccination. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022343709.
Collapse
Affiliation(s)
- Dafeng Lu
- Department of Infectious Disease Prevention and Control, Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
- Department of Infectious Disease Prevention and Control, Quzhou Center for Disease Prevention and Control, Quzhou, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifang Han
- Department of Infectious Disease Prevention and Control, Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Ruowei Xu
- Department of Infectious Disease Prevention and Control, Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Mingke Qin
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jianwei Shi
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Caihong Zhang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jinhai Zhang
- Department of Infectious Disease Prevention and Control, Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Fuqiang Ye
- Department of Infectious Disease Prevention and Control, Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Zhenghan Luo
- Department of Infectious Disease Prevention and Control, Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Yuhe Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunfang Wang
- Department of Infectious Disease Prevention and Control, Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Wang
- Department of Infectious Disease Prevention and Control, Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| |
Collapse
|
12
|
Trivedi PD, Byrne BJ, Corti M. Evolving Horizons: Adenovirus Vectors' Timeless Influence on Cancer, Gene Therapy and Vaccines. Viruses 2023; 15:2378. [PMID: 38140619 PMCID: PMC10747483 DOI: 10.3390/v15122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Efficient and targeted delivery of a DNA payload is vital for developing safe gene therapy. Owing to the recent success of commercial oncolytic vector and multiple COVID-19 vaccines, adenovirus vectors are back in the spotlight. Adenovirus vectors can be used in gene therapy by altering the wild-type virus and making it replication-defective; specific viral genes can be removed and replaced with a segment that holds a therapeutic gene, and this vector can be used as delivery vehicle for tissue specific gene delivery. Modified conditionally replicative-oncolytic adenoviruses target tumors exclusively and have been studied in clinical trials extensively. This comprehensive review seeks to offer a summary of adenovirus vectors, exploring their characteristics, genetic enhancements, and diverse applications in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing cancer therapy and the latest breakthroughs in vaccine clinical trials for various diseases. Additionally, we tackle current challenges and future avenues for optimizing adenovirus vectors, promising to open new frontiers in the fields of cell and gene therapies.
Collapse
Affiliation(s)
| | | | - Manuela Corti
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA; (P.D.T.); (B.J.B.)
| |
Collapse
|
13
|
See KC. Vaccination for Respiratory Syncytial Virus: A Narrative Review and Primer for Clinicians. Vaccines (Basel) 2023; 11:1809. [PMID: 38140213 PMCID: PMC10747850 DOI: 10.3390/vaccines11121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) poses a significant burden on public health, causing lower respiratory tract infections in infants, young children, older adults, and immunocompromised individuals. Recent development and licensure of effective RSV vaccines provide a promising approach to lessening the associated morbidity and mortality of severe infections. This narrative review aims to empower clinicians with the necessary knowledge to make informed decisions regarding RSV vaccination, focusing on the prevention and control of RSV infections, especially among vulnerable populations. The paper explores the available RSV vaccines and existing evidence regarding their efficacy and safety in diverse populations. Synthesizing this information for clinicians can help the latter understand the benefits and considerations associated with RSV vaccination, contributing to improved patient care and public health outcomes.
Collapse
Affiliation(s)
- Kay Choong See
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
14
|
Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol 2023; 21:734-749. [PMID: 37438492 DOI: 10.1038/s41579-023-00919-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
The large global burden of respiratory syncytial virus (RSV) respiratory tract infections in young children and older adults has gained increased recognition in recent years. Recent discoveries regarding the neutralization-specific viral epitopes of the pre-fusion RSV glycoprotein have led to a shift from empirical to structure-based design of RSV therapeutics, and controlled human infection model studies have provided early-stage proof of concept for novel RSV monoclonal antibodies, vaccines and antiviral drugs. The world's first vaccines and first monoclonal antibody to prevent RSV among older adults and all infants, respectively, have recently been approved. Large-scale introduction of RSV prophylactics emphasizes the need for active surveillance to understand the global impact of these interventions over time and to timely identify viral mutants that are able to escape novel prophylactics. In this Review, we provide an overview of RSV interventions in clinical development, highlighting global disease burden, seasonality, pathogenesis, and host and viral factors related to RSV immunity.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
15
|
Wang Y, Fekadu G, You JHS. Comparative Cost-Effectiveness Analysis of Respiratory Syncytial Virus Vaccines for Older Adults in Hong Kong. Vaccines (Basel) 2023; 11:1605. [PMID: 37897008 PMCID: PMC10610694 DOI: 10.3390/vaccines11101605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Two respiratory syncytial virus (RSV) vaccines (AREXVY® and ABRYSVO®) were recently approved for older adults in the US. This study aimed to evaluate the cost-effectiveness of AREXVY® and ABRYSVO® from the Hong Kong public healthcare provider's perspective. A two-year decision-analytical model was developed to examine the outcomes of a single RSV vaccination (AREXVY® or ABRYSVO®) compared to no vaccination. Primary outcomes included RSV-related health outcomes, direct medical costs, quality-adjusted life-year (QALY) loss, and incremental cost per QALY (ICER). RSV vaccines are not yet marketed in Hong Kong, base-case analysis, therefore, benchmarked US RSV vaccine prices at 4 levels (25%, 50%, 75%, 100%). AREXVY® and ABRYSVO® (versus no vaccination) gained 0.000568 QALY and 0.000647 QALY, respectively. ICERs of ABRYSVO® (26,209 USD/QALY) and AREXVY® (47,485 USD/QALY) were lower than the willingness-to-pay threshold (49,594 USD/QALY) at 25% US vaccine price. The RSV attack rate was a common influential factor at all vaccine price levels. The probabilities of AREXVY® and ABRYSVO® to be most cost-effective were 0.10% and 97.68%, respectively, at 25% US vaccine price. Single vaccination of ABRYSVO® or AREXVY® for older adults appears to gain QALYs over 2 years in Hong Kong. The cost-effectiveness of AREXVY® and ABRYSVO® is subject to vaccine price and RSV attack rate.
Collapse
Affiliation(s)
| | | | - Joyce H. S. You
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Y.W.); (G.F.)
| |
Collapse
|
16
|
Amai M, Nojima M, Yuki Y, Kiyono H, Nagamura F. A review of criteria strictness in "Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials". Vaccine 2023; 41:5622-5629. [PMID: 37532612 DOI: 10.1016/j.vaccine.2023.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
To assess safety in vaccine development, stricter grading scales, such as the "Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials" issued by the U.S. Food and Drug Administration (FDA grading scale), are required. However, concern exists that their strictness may lead to an overestimation of some adverse events (AEs). We analyzed the details of AEs in a phase I clinical trial of a preventive vaccine for infectious diseases. In this trial, we observed the high occurrence of Grade 1 or greater AEs in hemoglobin changes from baseline value, and hypernatremia, and hypokalemia by FDA grading scale. The range considered as non-AE according to the FDA grading scale shifted or became narrower when compared to reference intervals, especially for a Japanese cohort. For sodium grading, the criterion for hypernatremia was around 2 to mEq/L lower than the upper limit of most standards in several countries. Also, the criterion for hypokalemia was around 0.2 mEq/L higher than the lower limit of most standards. Regarding a decrease in hemoglobin from baseline, the criterion of "any decrease" used for a Grade 1 AE was too strict and we suggest this be omitted. Upper and lower limits of AE criteria for sodium and potassium should be equal to, or 10-20% above, the reference interval consistent with other toxicities determined by laboratory tests. Consideration should be given to the issues surrounding the criteria that determine AEs before conducting clinical trials.
Collapse
Affiliation(s)
- Motoki Amai
- Center for Translational Research, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masanori Nojima
- Center for Translational Research, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Advanced Medicine Promotion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; HanaVax Inc., Chiba, Japan
| | - Hiroshi Kiyono
- HanaVax Inc., Chiba, Japan; Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Future Medicine Education and Research Organization, Chiba University, Chiba, Japan; CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine (cMAV), Departments of Medicine and Pathology, University of California, San Diego, CA, USA
| | - Fumitaka Nagamura
- Center for Translational Research, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Advanced Medicine Promotion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Kotb S, Haranaka M, Folschweiller N, Nakanwagi P, Verheust C, De Schrevel N, David MP, Mesaros N, Hulstrøm V. Safety and immunogenicity of a respiratory syncytial virus prefusion F protein (RSVPreF3) candidate vaccine in older Japanese adults: A phase I, randomized, observer-blind clinical trial. Respir Investig 2023; 61:261-269. [PMID: 36641341 DOI: 10.1016/j.resinv.2022.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) causes lower respiratory tract infection, with a high burden of disease among adults ≥60 years. This study assessed the safety, reactogenicity, and immunogenicity of an investigational adjuvanted RSV vaccine (RSVPreF3/AS01B) in Japanese adults aged 60-80 years. METHODS Forty participants were randomized to receive two doses of RSVPreF3/AS01B or the placebo, in a 1:1 ratio, two months apart, in this placebo-controlled study. Solicited administration-site and systemic adverse events (AEs) were collected within 7 days and unsolicited AEs within 30 days post-vaccination. Serious AEs (SAEs) and potential immune-mediated diseases (pIMDs) were collected throughout the study (12 months post-dose 2). RSVPreF3-specific immunoglobulin G (IgG) antibody concentrations and neutralizing antibody (nAb) titers against RSV-A were evaluated on day (D)1, D31, D61, D91 and those against RSV-B on D1, D31, D91. RESULTS Solicited AEs were reported more frequently in RSVPreF3/AS01B recipients (80.0%-90.0%) than in placebo recipients (10.0%-20.0%). Two RSVPreF3/AS01B recipients experienced grade 3 solicited AEs. Rate of unsolicited AEs were similar (30.0%-35.0%) in both groups. No RSVPreF3/AS01B recipient reported SAEs/pIMDs, while one placebo recipient reported two SAEs that were unrelated to vaccination. Baseline RSVPreF3-specific IgG and RSV-A/-B nAb levels were above the assay cut-off values. In the RSVPreF3/AS01B group, RSVPreF3-specific IgG concentrations increased 12.8-fold on D31 and 9.2-fold on D91 versus baseline while nAb titers increased 7.3-fold (RSV-A) and 8.4-fold (RSV-B) on D31 and 6.3-fold (RSV-A) and 9.9-fold (RSV-B) on D91. CONCLUSIONS The RSVPreF3/AS01B vaccine was well tolerated and immunogenic in older Japanese adults. CLINICAL TRIAL REGISTRATION NUMBER NCT04090658.
Collapse
Affiliation(s)
- Shady Kotb
- GSK, Avenue Flemming 20, 1300 Wavre, Belgium.
| | - Miwa Haranaka
- SOUSEIKAI PS Clinic, Random Square 8th Fl, 6-18, Tenyamachi, Hakata-Ku, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Falsey AR, Williams K, Gymnopoulou E, Bart S, Ervin J, Bastian AR, Menten J, De Paepe E, Vandenberghe S, Chan EKH, Sadoff J, Douoguih M, Callendret B, Comeaux CA, Heijnen E. Efficacy and Safety of an Ad26.RSV.preF-RSV preF Protein Vaccine in Older Adults. N Engl J Med 2023; 388:609-620. [PMID: 36791161 DOI: 10.1056/nejmoa2207566] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) can cause serious lower respiratory tract disease in older adults, but no licensed RSV vaccine currently exists. An adenovirus serotype 26 RSV vector encoding a prefusion F (preF) protein (Ad26.RSV.preF) in combination with RSV preF protein was previously shown to elicit humoral and cellular immunogenicity. METHODS We conducted a randomized, double-blind, placebo-controlled, phase 2b, proof-of-concept trial to evaluate the efficacy, immunogenicity, and safety of an Ad26.RSV.preF-RSV preF protein vaccine. Adults who were 65 years of age or older were randomly assigned in a 1:1 ratio to receive vaccine or placebo. The primary end point was the first occurrence of RSV-mediated lower respiratory tract disease that met one of three case definitions: three or more symptoms of lower respiratory tract infection (definition 1), two or more symptoms of lower respiratory tract infection (definition 2), and either two or more symptoms of lower respiratory tract infection or one or more symptoms of lower respiratory tract infection plus at least one systemic symptom (definition 3). RESULTS Overall, 5782 participants were enrolled and received an injection. RSV-mediated lower respiratory tract disease meeting case definitions 1, 2, and 3 occurred in 6, 10, and 13 vaccine recipients and in 30, 40, and 43 placebo recipients, respectively. Vaccine efficacy was 80.0% (94.2% confidence interval [CI], 52.2 to 92.9), 75.0% (94.2% CI, 50.1 to 88.5), and 69.8% (94.2% CI, 43.7 to 84.7) for case definitions 1, 2, and 3, respectively. After vaccination, RSV A2 neutralizing antibody titers increased by a factor of 12.1 from baseline to day 15, a finding consistent with other immunogenicity measures. Percentages of participants with solicited local and systemic adverse events were higher in the vaccine group than in the placebo group (local, 37.9% vs. 8.4%; systemic, 41.4% vs. 16.4%); most adverse events were mild to moderate in severity. The frequency of serious adverse events was similar in the vaccine group and the placebo group (4.6% and 4.7%, respectively). CONCLUSIONS In adults 65 years of age or older, Ad26.RSV.preF-RSV preF protein vaccine was immunogenic and prevented RSV-mediated lower respiratory tract disease. (Funded by Janssen Vaccines and Prevention; CYPRESS ClinicalTrials.gov number, NCT03982199.).
Collapse
Affiliation(s)
- Ann R Falsey
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Kristi Williams
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Efi Gymnopoulou
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Stephan Bart
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - John Ervin
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Arangassery R Bastian
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Joris Menten
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Els De Paepe
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Sjouke Vandenberghe
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Eric K H Chan
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Jerald Sadoff
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Macaya Douoguih
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Benoit Callendret
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Christy A Comeaux
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Esther Heijnen
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| |
Collapse
|
19
|
Wang SY, Liu WQ, Li YQ, Li JX, Zhu FC. A China-developed adenovirus vector-based COVID-19 vaccine: review of the development and application of Ad5-nCov. Expert Rev Vaccines 2023; 22:704-713. [PMID: 37501516 DOI: 10.1080/14760584.2023.2242528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION The global spread of COVID-19 has prompted the development of vaccines. A recombinant adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chinese scientists has been authorized for use as a prime and booster dose in China and several other countries. AREAS COVERED We searched published articles as of 4 May 2023, on PubMed using keywords related to Adenovirus vector, vaccine, and SARS-CoV-2. We reported the progress and outcomes of Ad5-nCov, including vaccine efficacy, safety, immunogenicity based on pre-clinical trials, clinical trials, and real-world studies for primary and booster doses. EXPERT OPINION Ad5-nCoV is a significant advancement in Chinese vaccine development technology. Evidence from clinical trials and real-world studies has demonstrated well-tolerated, highly immunogenic, and efficacy of Ad5-nCoV in preventing severe/critical COVID-19. Aerosolized Ad5-nCoV, given via a novel route, could elicit mucosal immunity and improve the vaccine efficacy, enhance the production capacity and availability, and reduce the potential negative impact of preexisting antibodies. However, additional research is necessary to evaluate the long-term safety and immunogenicity of Ad5-nCoV, its efficacy against emerging variants, its effectiveness in a real-world context of hybrid immunity, and its cost-effectiveness, particularly with respect to aerosolized Ad5-nCoV.
Collapse
Affiliation(s)
- Shen-Yu Wang
- Department of Immunization Programe, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Qing Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Qing Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing-Xin Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- NHC Key Laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention), Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng-Cai Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- NHC Key Laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention), Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Mazur NI, Terstappen J, Baral R, Bardají A, Beutels P, Buchholz UJ, Cohen C, Crowe JE, Cutland CL, Eckert L, Feikin D, Fitzpatrick T, Fong Y, Graham BS, Heikkinen T, Higgins D, Hirve S, Klugman KP, Kragten-Tabatabaie L, Lemey P, Libster R, Löwensteyn Y, Mejias A, Munoz FM, Munywoki PK, Mwananyanda L, Nair H, Nunes MC, Ramilo O, Richmond P, Ruckwardt TJ, Sande C, Srikantiah P, Thacker N, Waldstein KA, Weinberger D, Wildenbeest J, Wiseman D, Zar HJ, Zambon M, Bont L. Respiratory syncytial virus prevention within reach: the vaccine and monoclonal antibody landscape. THE LANCET. INFECTIOUS DISEASES 2023; 23:e2-e21. [PMID: 35952703 PMCID: PMC9896921 DOI: 10.1016/s1473-3099(22)00291-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Respiratory syncytial virus is the second most common cause of infant mortality and a major cause of morbidity and mortality in older adults (aged >60 years). Efforts to develop a respiratory syncytial virus vaccine or immunoprophylaxis remain highly active. 33 respiratory syncytial virus prevention candidates are in clinical development using six different approaches: recombinant vector, subunit, particle-based, live attenuated, chimeric, and nucleic acid vaccines; and monoclonal antibodies. Nine candidates are in phase 3 clinical trials. Understanding the epitopes targeted by highly neutralising antibodies has resulted in a shift from empirical to rational and structure-based vaccine and monoclonal antibody design. An extended half-life monoclonal antibody for all infants is likely to be within 1 year of regulatory approval (from August, 2022) for high-income countries. Live-attenuated vaccines are in development for older infants (aged >6 months). Subunit vaccines are in late-stage trials for pregnant women to protect infants, whereas vector, subunit, and nucleic acid approaches are being developed for older adults. Urgent next steps include ensuring access and affordability of a respiratory syncytial virus vaccine globally. This review gives an overview of respiratory syncytial virus vaccines and monoclonal antibodies in clinical development highlighting different target populations, antigens, and trial results.
Collapse
Affiliation(s)
- Natalie I Mazur
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jonne Terstappen
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ranju Baral
- PATH, Center for Vaccine Innovation & Access, Seattle, WA, USA
| | - Azucena Bardají
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Centro de Investigaçao em Saúde de Manhiça, Maputo, Mozambique; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Philippe Beutels
- Centre for Health Economics Research & Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; School of Public Health, The University of New South Wales, Sydney, NSW, Australia
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Cheryl Cohen
- University of the Witwatersrand, Centre for Respiratory Disease and Meningitis at the National Institute for Communicable Diseases, Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James E Crowe
- Vanderbilt Vaccine Center, Pediatrics & Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clare L Cutland
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda Eckert
- Obstetrics & Gynecology, Global Health, University of Washington, Seattle, WA, USA
| | - Daniel Feikin
- Department of Immunisations, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Tiffany Fitzpatrick
- Yale School of Public Health Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Youyi Fong
- Vaccine & Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Deborah Higgins
- PATH, Center for Vaccine Innovation & Access, Seattle, WA, USA
| | | | - Keith P Klugman
- Pneumonia Program, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Philippe Lemey
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Yvette Löwensteyn
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Flor M Munoz
- Department of Pediatrics, Division of Infectious Disease, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Patrick K Munywoki
- Kenyan Medical Research Institute-Wellcome Trust Research Program, Kilifi, Kenya
| | | | - Harish Nair
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Marta C Nunes
- South African Medical Research Council, Wits Vaccines & Infectious Diseases Analytics Research Unit and Department of Science and Technology and National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Octavio Ramilo
- Nationwide Children's Hospital Columbus, Columbus, OH, USA
| | - Peter Richmond
- School of Medicine, Division of Paediatrics, University of Western Australia, Perth, WA, Australia
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Charles Sande
- Kenyan Medical Research Institute-Wellcome Trust Research Program, Kilifi, Kenya; Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - Padmini Srikantiah
- Respiratory Syncytial Virus Program and Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Naveen Thacker
- Deep Children Hospital & Research Centre, Gandhidham, India
| | - Kody A Waldstein
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa, IA, USA
| | - Dan Weinberger
- Yale School of Public Health Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dexter Wiseman
- National Heart & Lung Institute, Imperial College, London, UK
| | - Heather J Zar
- Department of Pediatrics & Child Health, Red Cross Children's Hospital and SA-MRC unit of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Maria Zambon
- Reference Microbiology, Public Health England, Faculty of Medicine, Imperial College, London, UK
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; ReSViNET Foundation, Julius Clinical, Zeist, Netherlands.
| |
Collapse
|
21
|
Montesinos-Guevara C, Buitrago-Garcia D, Felix ML, Guerra CV, Hidalgo R, Martinez-Zapata MJ, Simancas-Racines D. Vaccines for the common cold. Cochrane Database Syst Rev 2022; 12:CD002190. [PMID: 36515550 PMCID: PMC9749450 DOI: 10.1002/14651858.cd002190.pub6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The common cold is a spontaneously remitting infection of the upper respiratory tract, characterised by a runny nose, nasal congestion, sneezing, cough, malaise, sore throat, and fever (usually < 37.8 ºC). Whilst the common cold is generally not harmful, it is a cause of economic burden due to school and work absenteeism. In the United States, economic loss due to the common cold is estimated at more than USD 40 billion per year, including an estimate of 70 million workdays missed by employees, 189 million school days missed by children, and 126 million workdays missed by parents caring for children with a cold. Additionally, data from Europe show that the total cost per episode may be up to EUR 1102. There is also a large expenditure due to inappropriate antimicrobial prescription. Vaccine development for the common cold has been difficult due to antigenic variability of the common cold viruses; even bacteria can act as infective agents. Uncertainty remains regarding the efficacy and safety of interventions for preventing the common cold in healthy people, thus we performed an update of this Cochrane Review, which was first published in 2011 and updated in 2013 and 2017. OBJECTIVES To assess the clinical effectiveness and safety of vaccines for preventing the common cold in healthy people. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (April 2022), MEDLINE (1948 to April 2022), Embase (1974 to April 2022), CINAHL (1981 to April 2022), and LILACS (1982 to April 2022). We also searched three trials registers for ongoing studies, and four websites for additional trials (April 2022). We did not impose any language or date restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs) of any virus vaccine compared with placebo to prevent the common cold in healthy people. DATA COLLECTION AND ANALYSIS We used Cochrane's Screen4Me workflow to assess the initial search results. Four review authors independently performed title and abstract screening to identify potentially relevant studies. We retrieved the full-text articles for those studies deemed potentially relevant, and the review authors independently screened the full-text reports for inclusion in the review, recording reasons for exclusion of the excluded studies. Any disagreements were resolved by discussion or by consulting a third review author when needed. Two review authors independently collected data on a data extraction form, resolving any disagreements by consensus or by involving a third review author. We double-checked data transferred into Review Manager 5 software. Three review authors independently assessed risk of bias using RoB 1 tool as outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We carried out statistical analysis using Review Manager 5. We did not conduct a meta-analysis, and we did not assess publication bias. We used GRADEpro GDT software to assess the certainty of the evidence and to create a summary of findings table. MAIN RESULTS: We did not identify any new RCTs for inclusion in this update. This review includes one RCT conducted in 1965 with an overall high risk of bias. The RCT included 2307 healthy young men in a military facility, all of whom were included in the analyses, and compared the effect of three adenovirus vaccines (live, inactivated type 4, and inactivated type 4 and 7) against a placebo (injection of physiological saline or gelatin capsule). There were 13 (1.14%) events in 1139 participants in the vaccine group, and 14 (1.19%) events in 1168 participants in the placebo group. Overall, we do not know if there is a difference between the adenovirus vaccine and placebo in reducing the incidence of the common cold (risk ratio 0.95, 95% confidence interval 0.45 to 2.02; very low-certainty evidence). Furthermore, no difference in adverse events when comparing live vaccine preparation with placebo was reported. We downgraded the certainty of the evidence to very low due to unclear risk of bias, indirectness because the population of this study was only young men, and imprecision because confidence intervals were wide and the number of events was low. The included study did not assess vaccine-related or all-cause mortality. AUTHORS' CONCLUSIONS: This Cochrane Review was based on one study with very low-certainty evidence, which showed that there may be no difference between the adenovirus vaccine and placebo in reducing the incidence of the common cold. We identified a need for well-designed, adequately powered RCTs to investigate vaccines for the common cold in healthy people. Future trials on interventions for preventing the common cold should assess a variety of virus vaccines for this condition, and should measure such outcomes as common cold incidence, vaccine safety, and mortality (all-cause and related to the vaccine).
Collapse
Affiliation(s)
- Camila Montesinos-Guevara
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Diana Buitrago-Garcia
- Institute of Social and Preventive Medicine (ISPM), Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | - Maria L Felix
- Departamento de Neonatología, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Claudia V Guerra
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ricardo Hidalgo
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Maria José Martinez-Zapata
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Daniel Simancas-Racines
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
22
|
Qiu X, Xu S, Lu Y, Luo Z, Yan Y, Wang C, Ji J. Development of mRNA vaccines against respiratory syncytial virus (RSV). Cytokine Growth Factor Rev 2022; 68:37-53. [PMID: 36280532 DOI: 10.1016/j.cytogfr.2022.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is a single-stranded negative-sense RNA virus that is the primary etiologic pathogen of bronchitis and pneumonia in infants and the elderly. Currently, no preventative vaccine has been approved for RSV infection. However, advances in the characterization, and structural resolution, of the RSV surface fusion glycoprotein have revolutionized RSV vaccine development by providing a new target for preventive interventions. In general, six different approaches have been adopted in the development of preventative RSV therapeutics, namely, particle-based vaccines, vector-based vaccines, live-attenuated or chimeric vaccines, subunit vaccines, mRNA vaccines, and monoclonal antibodies. Among these preventive interventions, MVA-BN-RSV, RSVpreF3, RSVpreF, Ad26. RSV.preF, nirsevimab, clesrovimab and mRNA-1345 is being tested in phase 3 clinical trials, and displays the most promising in infant or elderly populations. Accompanied by the huge success of mRNA vaccines in COVID-19, mRNA vaccines have been rapidly developed, with many having entered clinical studies, in which they have demonstrated encouraging results and acceptable safety profiles. In fact, Moderna has received FDA approval, granting fast-track designation for an investigational single-dose mRNA-1345 vaccine against RSV in adults over 60 years of age. Hence, mRNA vaccines may represent a new, more successful, chapter in the continued battle to develop effective preventative measures against RSV. This review discusses the structure, life cycle, and brief history of RSV, while also presenting the current advancements in RSV preventatives, with a focus on the latest progress in RSV mRNA vaccine development. Finally, future prospects for this field are presented.
Collapse
Affiliation(s)
- Xirui Qiu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangtian Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuyue Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
23
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Chu KB, Lee SH, Kim MJ, Kim AR, Moon EK, Quan FS. Virus-like particles coexpressing the PreF and Gt antigens of respiratory syncytial virus confer protection in mice. Nanomedicine (Lond) 2022; 17:1159-1171. [DOI: 10.2217/nnm-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: The purpose of this study was to assess the protective efficacy of virus-like particles (VLPs) co-expressing the pre-fusogenic (PreF) and G protein with tandem repeats (Gt) antigens of respiratory syncytial virus (RSV) in mice. Materials & methods: VLP constructs expressing PreF, Gt or both were used to immunize mice, and the protective efficacies were evaluated using antibody responses, neutralizing antibody titers, T-cell responses, histopathological assessment and plaque assay. Results: PreF+Gt VLP immunization elicited strong RSV-specific antibody responses and pulmonary T-cell responses that contributed to lessening virus titer and inflammation. Conclusion: Our findings suggest that coexpressing PreF and Gt antigens elicits better protection than either one alone. This combinatorial approach could assist in future RSV vaccine development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ah-Ra Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
25
|
Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein. Immunity 2022; 55:1710-1724.e8. [DOI: 10.1016/j.immuni.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
|
26
|
Simões EAF. Respiratory Syncytial Virus Disease in Young Children and Older Adults in Europe: A Burden and Economic Perspective. J Infect Dis 2022; 226:S1-S9. [PMID: 35822854 DOI: 10.1093/infdis/jiac252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Eric A F Simões
- Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA, and Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| |
Collapse
|
27
|
Johnston SC, Ricks KM, Lakhal-Naouar I, Jay A, Subra C, Raymond JL, King HAD, Rossi F, Clements TL, Fetterer D, Tostenson S, Cincotta CM, Hack HR, Kuklis C, Soman S, King J, Peachman KK, Kim D, Chen WH, Sankhala RS, Martinez EJ, Hajduczki A, Chang WC, Choe M, Thomas PV, Peterson CE, Anderson A, Swafford I, Currier JR, Paquin-Proulx D, Jagodzinski LL, Matyas GR, Rao M, Gromowski GD, Peel SA, White L, Smith JM, Hooper JW, Michael NL, Modjarrad K, Joyce MG, Nalca A, Bolton DL, Pitt MLM. A SARS-CoV-2 Spike Ferritin Nanoparticle Vaccine Is Protective and Promotes a Strong Immunological Response in the Cynomolgus Macaque Coronavirus Disease 2019 (COVID-19) Model. Vaccines (Basel) 2022; 10:vaccines10050717. [PMID: 35632473 PMCID: PMC9145473 DOI: 10.3390/vaccines10050717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.
Collapse
Affiliation(s)
- Sara C. Johnston
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (J.M.S.); (J.W.H.)
- Correspondence:
| | - Keersten M. Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (K.M.R.); (T.L.C.)
| | - Ines Lakhal-Naouar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Alexandra Jay
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (A.J.); (F.R.); (D.F.); (L.W.)
| | - Caroline Subra
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Jo Lynne Raymond
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Hannah A. D. King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Franco Rossi
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (A.J.); (F.R.); (D.F.); (L.W.)
| | - Tamara L. Clements
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (K.M.R.); (T.L.C.)
| | - David Fetterer
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (A.J.); (F.R.); (D.F.); (L.W.)
| | - Samantha Tostenson
- Core Laboratory Services Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Camila Macedo Cincotta
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Holly R. Hack
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Kristina K. Peachman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Dohoon Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
| | - Wei-Hung Chen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Rajeshwer S. Sankhala
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Elizabeth J. Martinez
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Agnes Hajduczki
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - William C. Chang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Misook Choe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Paul V. Thomas
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Caroline E. Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Alexander Anderson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (S.S.); (J.K.); (J.R.C.); (G.D.G.)
| | - Sheila A. Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.K.P.); (L.L.J.); (S.A.P.)
| | - Lauren White
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (A.J.); (F.R.); (D.F.); (L.W.)
| | - Jeffrey M. Smith
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (J.M.S.); (J.W.H.)
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (J.M.S.); (J.W.H.)
| | - Nelson L. Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - M. Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Aysegul Nalca
- Core Support Directorate, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Diane L. Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (I.L.-N.); (C.S.); (H.A.D.K.); (C.M.C.); (H.R.H.); (D.K.); (W.-H.C.); (R.S.S.); (E.J.M.); (A.H.); (W.C.C.); (M.C.); (P.V.T.); (C.E.P.); (A.A.); (I.S.); (D.P.-P.); (M.G.J.); (D.L.B.)
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (G.R.M.); (M.R.)
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Margaret L. M. Pitt
- Office of the Science Advisor, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| |
Collapse
|
28
|
Villanueva DDH, Arcega V, Rao M. Review of respiratory syncytial virus infection among older adults and transplant recipients. Ther Adv Infect Dis 2022; 9:20499361221091413. [PMID: 35464624 PMCID: PMC9019318 DOI: 10.1177/20499361221091413] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of pulmonary infection among children and has been increasingly recognized as an important respiratory pathogen in older adults and immunocompromised hosts. Among older adults, RSV can lead to exacerbations of underlying lung and cardiac disease. It is also associated with significant morbidity and mortality in hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT) recipients and may be associated with acute rejection and chronic lung allograft dysfunction among lung transplant recipients (LTRs). Current treatment options for severe RSV disease are limited, and there is a paucity of guidance on RSV treatment among older adults. This narrative review provides a comprehensive overview of RSV disease in older adults, HSCT recipients, and SOT recipients. Nosocomial spread has been reported, thus highlighting the importance of infection prevention and control measures to prevent outbreaks. Antivirals, monoclonal antibodies for immunoprophylaxis, and vaccine development are underway; however, future research is still needed in these critical areas.
Collapse
Affiliation(s)
| | - Victor Arcega
- West Virginia University, Morgantown, WV, USA
- West Virginia University, Wheeling, WV, USA
| | - Mana Rao
- Essen Medical Associates, Bronx, NY, USA
- Archcare, New York, NY, USA
| |
Collapse
|
29
|
Majhen D. Human adenovirus type 26 basic biology and its usage as vaccine vector. Rev Med Virol 2022; 32:e2338. [PMID: 35278248 DOI: 10.1002/rmv.2338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022]
Abstract
Due to their nature, adenoviruses have been recognised as promising candidates for vaccine vector development. Since they mimic natural infection, recombinant adenovirus vectors have been proven as ideal shuttles to deliver foreign transgenes aiming at inducing both humoral and cellular immune response. In addition, a potent adjuvant effect can be exerted due to the adenovirus inherent stimulation of various elements of innate and adaptive immunity. Due to its low seroprevalence in humans as well as induction of favourable immune response to inserted transgene, human adenovirus type 26 (HAdV-D26) has been recognised as a promising platform for vaccine vector development and is studied in number of completed or ongoing clinical studies. Very recently HAdV-D26 based Ebola and Covid-19 vaccines were approved for medical use. In this review, current state of the art regarding HAdV-D26 basic biology and its usage as vaccine vector will be discussed.
Collapse
Affiliation(s)
- Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
30
|
Saeland E, van der Fits L, Bolder R, Heemskerk-van der Meer M, Drijver J, van Polanen Y, Vaneman C, Tettero L, Serroyen J, Schuitemaker H, Callendret B, Langedijk JPM, Zahn RC. Immunogenicity and protective efficacy of adenoviral and subunit RSV vaccines based on stabilized prefusion F protein in pre-clinical models. Vaccine 2021; 40:934-944. [PMID: 34973849 DOI: 10.1016/j.vaccine.2021.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Respiratory Syncytial Virus (RSV) remains a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously described the derivation of an RSV Fusion protein (F) stabilized in its prefusion conformation (preF) as vaccine immunogen and demonstrated superior immunogenicity in naive mice of preF versus wild type RSV F protein, both as protein and when expressed from an Ad26 vaccine vector. Here we address the question if there are qualitative differences between the two vaccine platforms for induction of protective immunity. In naïve mice, both Ad26.RSV.preF and preF protein induced humoral responses, whereas cellular responses were only elicited by Ad26.RSV.preF. In RSV pre-exposed mice, a single dose of either vaccine induced cellular responses and strong humoral responses. Ad26-induced RSV-specific cellular immune responses were detected systemically and locally in the lungs. Both vaccines showed protective efficacy in the cotton rat model, but Ad26.RSV.preF conferred protection at lower virus neutralizing titers in comparison to RSV preF protein. Factors that may contribute to the protective capacity of Ad26.RSV.preF elicited immunity are the induced IgG2a antibodies that are able to engage Fcγ receptors mediating Antibody Dependent Cellular Cytotoxicity (ADCC), and the induction of systemic and lung resident RSV specific CD8 + T cells. These data demonstrate qualitative improvement of immune responses elicited by an adenoviral vector based vaccine encoding the RSV preF antigen compared to the subunit vaccine in small animal models which may inform RSV vaccine development.
Collapse
Affiliation(s)
| | | | - Renske Bolder
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | - Joke Drijver
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | | | - Jan Serroyen
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | | | - Roland C Zahn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| |
Collapse
|
31
|
Shang Z, Tan S, Ma D. Respiratory syncytial virus: from pathogenesis to potential therapeutic strategies. Int J Biol Sci 2021; 17:4073-4091. [PMID: 34671221 PMCID: PMC8495404 DOI: 10.7150/ijbs.64762] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/18/2021] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most important viral pathogens causing respiratory tract infection in infants, the elderly and people with poor immune function, which causes a huge disease burden worldwide every year. It has been more than 60 years since RSV was discovered, and the palivizumab monoclonal antibody, the only approved specific treatment, is limited to use for passive immunoprophylaxis in high-risk infants; no other intervention has been approved to date. However, in the past decade, substantial progress has been made in characterizing the structure and function of RSV components, their interactions with host surface molecules, and the host innate and adaptive immune response to infection. In addition, basic and important findings have also piqued widespread interest among researchers and pharmaceutical companies searching for effective interventions for RSV infection. A large number of promising monoclonal antibodies and inhibitors have been screened, and new vaccine candidates have been designed for clinical evaluation. In this review, we first briefly introduce the structural composition, host cell surface receptors and life cycle of RSV virions. Then, we discuss the latest findings related to the pathogenesis of RSV. We also focus on the latest clinical progress in the prevention and treatment of RSV infection through the development of monoclonal antibodies, vaccines and small-molecule inhibitors. Finally, we look forward to the prospects and challenges of future RSV research and clinical intervention.
Collapse
Affiliation(s)
- Zifang Shang
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Dongli Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China
| |
Collapse
|
32
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
33
|
Pollet J, Chen WH, Versteeg L, Keegan B, Zhan B, Wei J, Liu Z, Lee J, Kundu R, Adhikari R, Poveda C, Villar MJ, de Araujo Leao AC, Altieri Rivera J, Momin Z, Gillespie PM, Kimata JT, Strych U, Hotez PJ, Bottazzi ME. SARS‑CoV-2 RBD219-N1C1: A yeast-expressed SARS-CoV-2 recombinant receptor-binding domain candidate vaccine stimulates virus neutralizing antibodies and T-cell immunity in mice. Hum Vaccin Immunother 2021; 17:2356-2366. [PMID: 33847226 PMCID: PMC8054496 DOI: 10.1080/21645515.2021.1901545] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here, we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast (Pichia pastoris), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel® containing formulation and possibly in combination with other immunostimulants.
Collapse
Affiliation(s)
- Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Wen-Hsiang Chen
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Brian Keegan
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Junfei Wei
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Zhuyun Liu
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jungsoon Lee
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rahki Kundu
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rakesh Adhikari
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Cristina Poveda
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Jose Villar
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | | | | | - Zoha Momin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
34
|
Stephens LM, Varga SM. Considerations for a Respiratory Syncytial Virus Vaccine Targeting an Elderly Population. Vaccines (Basel) 2021; 9:vaccines9060624. [PMID: 34207770 PMCID: PMC8228432 DOI: 10.3390/vaccines9060624] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is most commonly associated with acute lower respiratory tract infections in infants and children. However, RSV also causes a high disease burden in the elderly that is often under recognized. Adults >65 years of age account for an estimated 80,000 RSV-associated hospitalizations and 14,000 deaths in the United States annually. RSV infection in aged individuals can result in more severe disease symptoms including pneumonia and bronchiolitis. Given the large disease burden caused by RSV in the aged, this population remains an important target for vaccine development. Aging results in lowered immune responsiveness characterized by impairments in both innate and adaptive immunity. This immune senescence poses a challenge when developing a vaccine targeting elderly individuals. An RSV vaccine tailored towards an elderly population will need to maximize the immune response elicited in order to overcome age-related defects in the immune system. In this article, we review the hurdles that must be overcome to successfully develop an RSV vaccine for use in the elderly, and discuss the vaccine candidates currently being tested in this highly susceptible population.
Collapse
Affiliation(s)
- Laura M. Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
35
|
Safety, tolerability, and immunogenicity of the respiratory syncytial virus prefusion F subunit vaccine DS-Cav1: a phase 1, randomised, open-label, dose-escalation clinical trial. THE LANCET RESPIRATORY MEDICINE 2021; 9:1111-1120. [PMID: 33864736 DOI: 10.1016/s2213-2600(21)00098-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Multiple active vaccination approaches have proven ineffective in reducing the substantial morbidity and mortality caused by respiratory syncytial virus (RSV) in infants and older adults (aged ≥65 years). A vaccine conferring a substantial and sustainable boost in neutralising activity is required to protect against severe RSV disease. To that end, we evaluated the safety and immunogenicity of DS-Cav1, a prefusion F subunit vaccine. METHODS In this randomised, open-label, phase 1 clinical trial, the stabilised prefusion F vaccine DS-Cav1 was evaluated for dose, safety, tolerability, and immunogenicity in healthy adults aged 18-50 years at a single US site. Participants were assigned to receive escalating doses of either 50 μg, 150 μg, or 500 μg DS-Cav1 at weeks 0 and 12, and were randomly allocated in a 1:1 ratio within each dose group to receive the vaccine with or without aluminium hydroxide (AlOH) adjuvant. After 71 participants had been randomised, the protocol was amended to allow some participants to receive a single vaccination at week 0. The primary objectives evaluated the safety and tolerability at every dose within 28 days following each injection. Neutralising activity and RSV F-binding antibodies were evaluated from week 0 to week 44 as secondary and exploratory objectives. Safety was assessed in all participants who received at least one vaccine dose; secondary and exploratory immunogenicity analysis included all participants with available data at a given visit. The trial is registered with ClinicalTrials.gov, NCT03049488, and is complete and no longer recruiting. FINDINGS Between Feb 21, 2017, and Nov 29, 2018, 244 participants were screened for eligibility and 95 were enrolled to receive DS-Cav1 at the 50 μg (n=30, of which n=15 with AlOH), 150 μg (n=35, of which n=15 with AlOH), or 500 μg (n=30, of which n=15 with AlOH) doses. DS-Cav1 was safe and well tolerated and no serious vaccine-associated adverse events deemed related to the vaccine were identified. DS-Cav1 vaccination elicited robust neutralising activity and binding antibodies by 4 weeks after a single vaccination (p<0·0001 for F-binding and neutralising antibodies). In analyses of exploratory endpoints at week 44, pre-F-binding IgG and neutralising activity were significantly increased compared with baseline in all groups. At week 44, RSV A neutralising activity was 3·1 fold above baseline in the 50 μg group, 3·8 fold in the 150 μg group, and 4·5 fold in the 500 μg group (p<0·0001). RSV B neutralising activity was 2·8 fold above baseline in the 50 μg group, 3·4 fold in the 150 μg group, and 3·7 fold in the 500 μg group (p<0·0001). Pre-F-binding IgG remained significantly 3·2 fold above baseline in the 50 μg group, 3·4 fold in the 150 μg group, and 4·0 fold in the 500 μg group (p<0·0001). Pre-F-binding serum IgA remained 4·1 fold above baseline in the 50 μg group, 4·3 fold in the 150 μg group, and 4·8 fold in the 500 μg group (p<0·0001). Although a higher vaccine dose or second immunisation elicited a transient advantage compared with lower doses or a single immunisation, neither significantly impacted long-term neutralisation. There was no long-term effect of dose, number of vaccinations, or adjuvant on neutralising activity. INTERPRETATION In this phase 1 study, DS-Cav1 vaccination was safe and well tolerated. DS-Cav1 vaccination elicited a robust boost in RSV F-specific antibodies and neutralising activity that was sustained above baseline for at least 44 weeks. A single low-dose of pre-F immunisation of antigen-experienced individuals might confer protection that extends throughout an entire RSV season. FUNDING The National Institutes of Allergy and Infectious Diseases.
Collapse
|
36
|
Billard MN, Bont LJ. Live-attenuated Respiratory Syncytial Virus Vaccines: Time for the Next Step. Am J Respir Crit Care Med 2021; 203:538-539. [PMID: 32986467 PMCID: PMC7924581 DOI: 10.1164/rccm.202009-3431ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Marie-Noëlle Billard
- Departments of Pediatrics University Medical Center Utrecht Utrecht, the Netherlands
| | - Louis J Bont
- Departments of Pediatrics University Medical Center Utrecht Utrecht, the Netherlands
| |
Collapse
|
37
|
Shan J, Britton PN, King CL, Booy R. The immunogenicity and safety of respiratory syncytial virus vaccines in development: A systematic review. Influenza Other Respir Viruses 2021; 15:539-551. [PMID: 33764693 PMCID: PMC8189192 DOI: 10.1111/irv.12850] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory infection globally. There are vaccine candidates in development, but a systematic review on immunogenicity and safety of vaccine is lacking. Methods This systematic review of RSV vaccine clinical trials was undertaken using four databases. Searches were conducted using both controlled vocabulary terms such as “Respiratory Syncytial Virus, Human,” “Respiratory Syncytial Virus Infections,” “Respiratory Syncytial Virus Vaccines,” “Immunization,” “Immunization Programs” and “Vaccines” and corresponding text word terms. The included studies were limited to clinical trials published from January 2000 to 31 December 2020. RSV infection case was defined as RSV‐associated medically attended acute respiratory illness (MAARI) or RSV infection by serologically confirmed test (Western blot) during the RSV surveillance period. We calculated the relative risk of each vaccine trial with RSV infection case. Results Of 6306 publications, 38 were included and data were extracted covering four major types of RSV vaccine candidates, these being live‐attenuated/chimeric (n = 14), recombinant‐vector (n = 6), subunit (n = 12) and nanoparticle vaccines (n = 6). For RSV infection cases, nine trials were involved and none of them showed a vaccine‐related increased MAARI during RSV surveillance season. Conclusion LID ∆M2‐2, MEDI M2‐2, RSVcps2 and LID/∆M2‐2 /1030s (live‐attenuated) were considered the most promising vaccine candidates in infant and children. In the elderly, a nanoparticle F vaccine candidate and Ad26.RSV.preF were considered as two potential effective vaccines. A promising maternal vaccine candidate is still lacking.
Collapse
Affiliation(s)
- Jing Shan
- Anhui Provincial Children Hospital, Hefei, China.,The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Philip N Britton
- The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Catherine L King
- National Centre for Immunisation Research and Surveillance (NCIRS), The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Robert Booy
- The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
38
|
Abstract
Most viral vaccines are based on inducing neutralizing antibodies (NAbs) against the virus envelope or spike glycoproteins. Many viral surface proteins exist as trimers that transition from a pre-fusion state when key NAb epitopes are exposed to a post-fusion form in which the potential for virus-cell fusion no longer exists. For optimal vaccine performance, these viral proteins are often engineered to enhance stability and presentation of these NAb epitopes. The method involves the structure-guided introduction of proline residues at key positions that maintain the trimer in the pre-fusion configuration. We review how this technique emerged during HIV-1 Env vaccine development and its subsequent wider application to other viral vaccines including SARS-CoV-2.
Collapse
Affiliation(s)
- Rogier W Sanders
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
39
|
Kim YI, Kim D, Yu KM, Seo HD, Lee SA, Casel MAB, Jang SG, Kim S, Jung W, Lai CJ, Choi YK, Jung JU. Development of Spike Receptor-Binding Domain Nanoparticles as a Vaccine Candidate against SARS-CoV-2 Infection in Ferrets. mBio 2021; 12:e00230-21. [PMID: 33653891 PMCID: PMC8092224 DOI: 10.1128/mbio.00230-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the CoV disease 2019 (COVID-19) pandemic, enters host cells via the interaction of its receptor-binding domain (RBD) of the spike protein with host angiotensin-converting enzyme 2 (ACE2). Therefore, the RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of an RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling Helicobacter pylori-bullfrog ferritin nanoparticles as an antigen delivery system. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. Sixteen- to 20-month-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss, or clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious virus in nasal washes and lungs as well as of viral RNA in respiratory organs. This study demonstrates that spike RBD-nanoparticles are an effective protein vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Young-Il Kim
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Dokyun Kim
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kwang-Min Yu
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hogyu David Seo
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shin-Ae Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mark Anthony B Casel
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Stephanie Kim
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - WooRam Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chih-Jen Lai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Young Ki Choi
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae U Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021; 170:71-82. [PMID: 33421475 PMCID: PMC7788321 DOI: 10.1016/j.addr.2021.01.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
With the COVID-19 pandemic now ongoing for close to a year, people all over the world are still waiting for a vaccine to become available. The initial focus of accelerated global research and development efforts to bring a vaccine to market as soon as possible was on novel platform technologies that promised speed but had limited history in the clinic. In contrast, recombinant protein vaccines, with numerous examples in the clinic for many years, missed out on the early wave of investments from government and industry. Emerging data are now surfacing suggesting that recombinant protein vaccines indeed might offer an advantage or complement to the nucleic acid or viral vector vaccines that will likely reach the clinic faster. Here, we summarize the current public information on the nature and on the development status of recombinant subunit antigens and adjuvants targeting SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America.
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| |
Collapse
|
41
|
Pollet J, Chen WH, Versteeg L, Keegan B, Zhan B, Wei J, Liu Z, Lee J, Kundu R, Adhikari R, Poveda C, Villar MJ, de Araujo Leao AC, Rivera JA, Momin Z, Gillespie PM, Kimata JT, Strych U, Hotez PJ, Bottazzi ME. SARS-CoV-2 RBD219-N1C1: A Yeast-Expressed SARS-CoV-2 Recombinant Receptor-Binding Domain Candidate Vaccine Stimulates Virus Neutralizing Antibodies and T-cell Immunity in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.04.367359. [PMID: 33173864 PMCID: PMC7654852 DOI: 10.1101/2020.11.04.367359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast ( Pichia pastoris ), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel ® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ, IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel ® containing formulation and possibly in combination with other immunostimulants.
Collapse
|
42
|
Kim YI, Kim D, Yu KM, Seo HD, Lee SA, Casel MAB, Jang SG, Kim S, Jung W, Lai CJ, Choi YK, Jung JU. Development of spike receptor-binding domain nanoparticle as a vaccine candidate against SARS-CoV-2 infection in ferrets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.28.428743. [PMID: 33532767 PMCID: PMC7852231 DOI: 10.1101/2021.01.28.428743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori -bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Dokyun Kim
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hogyu David Seo
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Stephanie Kim
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - WooRam Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chih-Jen Lai
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
43
|
Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines. Vaccines (Basel) 2020; 8:vaccines8040672. [PMID: 33187337 PMCID: PMC7711987 DOI: 10.3390/vaccines8040672] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/01/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of acute respiratory tract infections in infants and it also induces significant disease in the elderly. The clinical course may be severe, especially in high-risk populations (infants and elderly), with a large number of deaths in developing countries and of intensive care hospitalizations worldwide. To date, prevention strategies against RSV infection is based on hygienic measures and passive immunization with humanized monoclonal antibodies, limited to selected high-risk children due to their high costs. The development of a safe and effective vaccine is a global health need and an important objective of research in this field. A growing number of RSV vaccine candidates in different formats (particle-based vaccines, vector-based vaccines, subunit vaccines and live-attenuated vaccines) are being developed and are now at different stages, many of them already being in the clinical stage. While waiting for commercially available safe and effective vaccines, immune prophylaxis in selected groups of high-risk populations is still mandatory. This review summarizes the state-of-the-art of the RSV vaccine research and its implications for clinical practice, focusing on the characteristics of the vaccines that reached the clinical stage of development.
Collapse
|