1
|
Mani V, Chu WT, Yang HJ, Morris CP, Laux J, Byrum R, Cooper K, Liu DX, Wang H, Johnson C, Hadley K, Bernbaum JG, Hart R, Anthony SM, Marketon AE, Bernbaum-Cutler R, Pahar B, Worwa G, Kuhn JH, Crozier I, Calcagno C, Gale E. Reactive oxygen species-related oxidative changes are associated with splenic lymphocyte depletion in Ebola virus infection. NPJ IMAGING 2025; 3:16. [PMID: 40291761 PMCID: PMC12021656 DOI: 10.1038/s44303-025-00079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
The dysregulated production of reactive oxygen species (ROS) during viral infections may lead to immune cell death and ineffective host responses. ROS dynamics have been under-investigated in severe Ebola virus disease (EVD), a condition in which hyperinflammation and excessive immune cell death are well described but poorly understood. Through ex vivo immunohistochemistry and in vivo ROS-sensitive magnetic resonance imaging (MRI) we demonstrate significant ROS-related oxidative changes in the spleens of domestic ferrets exposed to Ebola virus (EBOV). By immunohistochemistry or MRI, detection of splenic ROS was inversely correlated with the number of CD4+/CD8+ T lymphocytes and apoptotic CD8+ lymphocytes, but detection was positively correlated with the frequency of apoptotic CD4+ cells and the number and frequency of apoptotic B lymphocytes. These results suggest that ROS-induced apoptosis may contribute to the loss of splenic CD4+ T lymphocytes in EBOV-exposed ferrets and warrant further investigation of the role of ROS in severe EVD.
Collapse
Affiliation(s)
- Venkatesh Mani
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Winston T. Chu
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Hee-Jeong Yang
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - C. Paul Morris
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Joseph Laux
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - David X. Liu
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Hui Wang
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Cristal Johnson
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Kyra Hadley
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - John G. Bernbaum
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Scott M. Anthony
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Anthony E. Marketon
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Rebecca Bernbaum-Cutler
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Bapi Pahar
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Claudia Calcagno
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD USA
| | - Eric Gale
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| |
Collapse
|
2
|
Abstract
For decades, scientists have relied on traditional animal models to study viral infection and the immune response. However, these models have limitations, and the search for more accurate and reliable ways to study the human-pathogen interphase has led to the development of humanized mouse systems. These revolutionary models have transformed how we understand viral infection and the human immune system's interactions with viruses to control or exacerbate disease. They are also paving the way for new treatments and therapies. In this article, we explore the history and development of humanized mouse systems and their advantages, limitations, and applications in viral immunology research. We describe the different types of humanized mouse models, including their generation and utility for studying human pathogens, with an emphasis on human-specific viruses. In addition, we discuss areas for further refinement and future applications.
Collapse
Affiliation(s)
- Angela Wahl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA ; ,
| | - J Victor Garcia
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA ; ,
| |
Collapse
|
3
|
Rodríguez E, Muñoz-Fontela C, Escudero-Pérez B. Filovirus Infection in Humanized Mouse Models. Methods Mol Biol 2025; 2877:213-226. [PMID: 39585624 DOI: 10.1007/978-1-0716-4256-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Since the discovery of filoviruses in 1967, there have been more than 40 outbreaks with high case-fatality rates causing more than 30,000 deaths in humans. Filovirus disease (FVD) involves the dysregulation of many host physiological processes. While many advances in the field have taken place since the first outbreaks, the dearth of small animal models that translate the features observed during FVD in humans has limited our understanding of the pathology. Here, we describe the generation and use of human immune system (HIS) mice as a preclinical model to investigate FVD in a human-like immune environment.
Collapse
Affiliation(s)
- Estefanía Rodríguez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Hamburg, Germany
| | - Beatriz Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Hamburg, Germany.
| |
Collapse
|
4
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Bodmer BS, Breithaupt A, Heung M, Brunetti JE, Henkel C, Müller-Guhl J, Rodríguez E, Wendt L, Winter SL, Vallbracht M, Müller A, Römer S, Chlanda P, Muñoz-Fontela C, Hoenen T, Escudero-Pérez B. In vivo characterization of the novel ebolavirus Bombali virus suggests a low pathogenic potential for humans. Emerg Microbes Infect 2023; 12:2164216. [PMID: 36580440 PMCID: PMC9858441 DOI: 10.1080/22221751.2022.2164216] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ebolaviruses cause outbreaks of haemorrhagic fever in Central and West Africa. Some members of this genus such as Ebola virus (EBOV) are highly pathogenic, with case fatality rates of up to 90%, whereas others such as Reston virus (RESTV) are apathogenic for humans. Bombali virus (BOMV) is a novel ebolavirus for which complete genome sequences were recently found in free-tailed bats, although no infectious virus could be isolated. Its pathogenic potential for humans is unknown. To address this question, we first determined whether proteins encoded by the available BOMV sequence found in Chaerephon pumilus were functional in in vitro assays. The correction of an apparent sequencing error in the glycoprotein based on these data then allowed us to generate infectious BOMV using reverse genetics and characterize its infection of human cells. Furthermore, we used HLA-A2-transgenic, NOD-scid-IL-2γ receptor-knockout (NSG-A2) mice reconstituted with human haematopoiesis as a model to evaluate the pathogenicity of BOMV in vivo in a human-like immune environment. These data demonstrate that not only does BOMV show a slower growth rate than EBOV in vitro, but it also shows low pathogenicity in humanized mice, comparable to previous studies using RESTV. Taken together, these findings suggest a low pathogenic potential of BOMV for humans.
Collapse
Affiliation(s)
- B. S. Bodmer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - A. Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - M. Heung
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J. E. Brunetti
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - C. Henkel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J. Müller-Guhl
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Leibniz Institute of Virology, Hamburg, Germany
| | - E. Rodríguez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Braunschweig, Germany
| | - L. Wendt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - S. L. Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - M. Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - A. Müller
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - S. Römer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - P. Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - C. Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Braunschweig, Germany
| | - T. Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany, T. Hoenen Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald – Insel Riems, 17493Germany
| | - B. Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Braunschweig, Germany
| |
Collapse
|
6
|
Dupuy LC, Spiropoulou CF, Towner JS, Spengler JR, Sullivan NJ, Montgomery JM. Filoviruses: Scientific Gaps and Prototype Pathogen Recommendation. J Infect Dis 2023; 228:S446-S459. [PMID: 37849404 PMCID: PMC11009505 DOI: 10.1093/infdis/jiad362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.
Collapse
Affiliation(s)
- Lesley C Dupuy
- Virology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Zhang HQ, Zhang QY, Yuan ZM, Zhang B. The potential epidemic threat of Ebola virus and the development of a preventive vaccine. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:67-78. [DOI: 10.1016/j.jobb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
8
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
9
|
Kuhn JH, Schmaljohn CS. Of mice and Mike-An underappreciated Ebola virus disease model may have paved the road for future filovirology. Antiviral Res 2023; 210:105522. [PMID: 36592667 PMCID: PMC9852096 DOI: 10.1016/j.antiviral.2022.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
In 1998, Mike Bray and colleagues published the first immunocompetent laboratory mouse model of Ebola virus disease. Often labeled by peer reviewers as inferior to large nonhuman primate efforts, this model initially laid the foundation for the recent establishment of panel-derived cross-bred and humanized mouse models and a golden hamster model. Nonhuman primate research has always been associated with ethical concerns and is sometimes deemed scientifically questionable due to the necessarily low animal numbers in individual studies. Independent of these concerns, the now-global severe shortage of commercially available large nonhuman primates may pragmatically push research toward increased and improved rodent modeling that may altogether replace nonhuman primate studies in the short term as well as in an optimal future.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
10
|
Widerspick L, Steffen JF, Tappe D, Muñoz-Fontela C. Animal Model Alternatives in Filovirus and Bornavirus Research. Viruses 2023; 15:158. [PMID: 36680198 PMCID: PMC9863967 DOI: 10.3390/v15010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The order Mononegavirales contains a variety of highly pathogenic viruses that may infect humans, including the families Filoviridae, Bornaviridae, Paramyxoviridae, and Rhabodoviridae. Animal models have historically been important to study virus pathogenicity and to develop medical countermeasures. As these have inherent shortcomings, the rise of microphysiological systems and organoids able to recapitulate hallmarks of the diseases caused by these viruses may have enormous potential to add to or partially replace animal modeling in the future. Indeed, microphysiological systems and organoids are already used in the pharmaceutical R&D pipeline because they are prefigured to overcome the translational gap between model systems and clinical studies. Moreover, they may serve to alleviate ethical concerns related to animal research. In this review, we discuss the value of animal model alternatives in human pathogenic filovirus and bornavirus research. The current animal models and their limitations are presented followed by an overview of existing alternatives, such as organoids and microphysiological systems, which might help answering open research questions.
Collapse
Affiliation(s)
- Lina Widerspick
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| | | | - Dennis Tappe
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- National Reference Center for Tropical Pathogens, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| |
Collapse
|
11
|
Valbuena G, Rockx B, Escaffre O. Generation and Characterization of a Humanized Lung Xenograft Mouse Model for Studying Henipavirus Pathogenesis. Methods Mol Biol 2023; 2682:191-204. [PMID: 37610583 DOI: 10.1007/978-1-0716-3283-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The development of humanized mouse models has recently opened new avenues in the field of infectious diseases. These models allow research on many human viruses that were once difficult to study, because finding suitable animal models of infection can be challenging, cost prohibitive, and often do not entirely recapitulate all parameters of the disease. Here, we describe the procedure of human immune system reconstitution (humanization) of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice by the bone marrow, liver, and thymus (BLT) reconstitution method as well as the process of human lung engraftment. We then describe how to infect these human lung grafts with the paramyxovirus Nipah virus (NiV) that can cause lethal respiratory disease in humans, and for which there is only limited understanding of pathogenesis to acute lung injury.
Collapse
Affiliation(s)
| | - Barry Rockx
- Wageningen Bioveterinary Institute, Lelystad and Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Yamaoka S, Ebihara H. Pathogenicity and Virulence of Ebolaviruses with Species- and Variant-specificity. Virulence 2021; 12:885-901. [PMID: 33734027 PMCID: PMC7993122 DOI: 10.1080/21505594.2021.1898169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we aim to define the ebolavirus species-specific virulence on the basis of currently available laboratory and experimental findings. In addition, this review will also cover the variant-specific virulence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant Makona, a new EBOV variant isolated from the 2013-2016 EBOV disease outbreak in West Africa. A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate our comprehensive knowledge on genus Ebolavirus biology, leading to the development of therapeutics against well-focused pathogenic mechanisms of each Ebola disease.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
13
|
Hutson CL, Kondas AV, Ritter JM, Reed Z, Ostergaard SD, Morgan CN, Gallardo-Romero N, Tansey C, Mauldin MR, Salzer JS, Hughes CM, Goldsmith CS, Carroll D, Olson VA. Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus. PLoS Pathog 2021; 17:e1009633. [PMID: 34547055 PMCID: PMC8454956 DOI: 10.1371/journal.ppat.1009633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.
Collapse
Affiliation(s)
- Christina L. Hutson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ashley V. Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jana M. Ritter
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Zachary Reed
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sharon Dietz Ostergaard
- Comparative Medicine Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Clint N. Morgan
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nadia Gallardo-Romero
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cassandra Tansey
- Comparative Medicine Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew R. Mauldin
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Johanna S. Salzer
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christine M. Hughes
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cynthia S. Goldsmith
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Darin Carroll
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Banerjee G, Shokeen K, Chakraborty N, Agarwal S, Mitra A, Kumar S, Banerjee P. Modulation of immune response in Ebola virus disease. Curr Opin Pharmacol 2021; 60:158-167. [PMID: 34425392 DOI: 10.1016/j.coph.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Ebola virus disease targets and destroys immune cells, including macrophages and dendritic cells, leading to impairment of host response. After infection, a combination of strategies including alteration and evasion of immune response culminating in a strong inflammatory response can lead to multi-organ failure and death in most infected patients. This review discusses immune response dynamics, mainly focusing on how Ebola manipulates innate and adaptive immune responses and strategizes to thwart host immune responses. We also discuss the challenges and prospects of developing therapeutics and vaccines against Ebola.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nilanjan Chakraborty
- Department of Microbiology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Saumya Agarwal
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Arindam Mitra
- Department of Microbiology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Longet S, Mellors J, Carroll MW, Tipton T. Ebolavirus: Comparison of Survivor Immunology and Animal Models in the Search for a Correlate of Protection. Front Immunol 2021; 11:599568. [PMID: 33679690 PMCID: PMC7935512 DOI: 10.3389/fimmu.2020.599568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/29/2020] [Indexed: 01/21/2023] Open
Abstract
Ebola viruses are enveloped, single-stranded RNA viruses belonging to the Filoviridae family and can cause Ebola virus disease (EVD), a serious haemorrhagic illness with up to 90% mortality. The disease was first detected in Zaire (currently the Democratic Republic of Congo) in 1976. Since its discovery, Ebola virus has caused sporadic outbreaks in Africa and was responsible for the largest 2013-2016 EVD epidemic in West Africa, which resulted in more than 28,600 cases and over 11,300 deaths. This epidemic strengthened international scientific efforts to contain the virus and develop therapeutics and vaccines. Immunology studies in animal models and survivors, as well as clinical trials have been crucial to understand Ebola virus pathogenesis and host immune responses, which has supported vaccine development. This review discusses the major findings that have emerged from animal models, studies in survivors and vaccine clinical trials and explains how these investigations have helped in the search for a correlate of protection.
Collapse
Affiliation(s)
- Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles W. Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
16
|
[The latest research findings on Ebola virus]. Uirusu 2021; 71:137-150. [PMID: 37245976 DOI: 10.2222/jsv.71.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
013-2016 Ebola virus disease (EVD) outbreak was the largest EVD outbreak ever documented that started earlier in Guinea and later widely spread throughout West Africa, ending up a total of > 28,000 human infections. In this review, we outline research findings on Ebola virus (EBOV) variant Makona, a new EBOV variant isolated from the 2013-2016 EVD outbreak, and introduce the unique biological and pathogenic characteristics of Makona variant. We also discuss about the relevance of persistent infection of EBOV in EVD survivors with resurgence of EVD outbreak in Guinea in 2021. Moreover, this review covers a recent case report of EVD relapse and deliberates new interpretations of EBOV biology and EVD outbreak.
Collapse
|
17
|
Kikwit Ebola Virus Disease Progression in the Rhesus Monkey Animal Model. Viruses 2020; 12:v12070753. [PMID: 32674252 PMCID: PMC7411891 DOI: 10.3390/v12070753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
Ongoing Ebola virus disease outbreaks in the Democratic Republic of the Congo follow the largest recorded outbreak in Western Africa (2013–2016). To combat outbreaks, testing of medical countermeasures (therapeutics or vaccines) requires a well-defined, reproducible, animal model. Here we present Ebola virus disease kinetics in 24 Chinese-origin rhesus monkeys exposed intramuscularly to a highly characterized, commercially available Kikwit Ebola virus Filovirus Animal Non-Clinical Group (FANG) stock. Until reaching predetermined clinical disease endpoint criteria, six animals underwent anesthesia for repeated clinical sampling and were compared to six that did not. Groups of three animals were euthanized and necropsied on days 3, 4, 5, and 6 post-exposure, respectively. In addition, three uninfected animals served as controls. Here, we present detailed characterization of clinical and laboratory disease kinetics and complete blood counts, serum chemistries, Ebola virus titers, and disease kinetics for future medical countermeasure (MCM) study design and control data. We measured no statistical difference in hematology, chemistry values, or time to clinical endpoint in animals that were anesthetized for clinical sampling during the acute disease compared to those that were not.
Collapse
|
18
|
Early Transcriptional Changes within Liver, Adrenal Gland, and Lymphoid Tissues Significantly Contribute to Ebola Virus Pathogenesis in Cynomolgus Macaques. J Virol 2020; 94:JVI.00250-20. [PMID: 32213610 DOI: 10.1128/jvi.00250-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV) continues to pose a significant threat to human health, as evidenced by the 2013-2016 epidemic in West Africa and the ongoing outbreak in the Democratic Republic of the Congo. EBOV causes hemorrhagic fever, organ damage, and shock culminating in death, with case fatality rates as high as 90%. This high lethality combined with the paucity of licensed medical countermeasures makes EBOV a critical human pathogen. Although EBOV infection results in significant damage to the liver and the adrenal glands, little is known about the molecular signatures of injury in these organs. Moreover, while changes in peripheral blood cells are becoming increasingly understood, the host responses within organs and lymphoid tissues remain poorly characterized. To address this knowledge gap, we tracked longitudinal transcriptional changes in tissues collected from EBOV-Makona-infected cynomolgus macaques. Following infection, both liver and adrenal glands exhibited significant and early downregulation of genes involved in metabolism, coagulation, hormone synthesis, and angiogenesis; upregulated genes were associated with inflammation. Analysis of lymphoid tissues showed early upregulation of genes that play a role in innate immunity and inflammation and downregulation of genes associated with cell cycle and adaptive immunity. Moreover, transient activation of innate immune responses and downregulation of humoral immune responses in lymphoid tissues were confirmed with flow cytometry. Together, these data suggest that the liver, adrenal gland, and lymphatic organs are important sites of EBOV infection and that dysregulating the function of these vital organs contributes to the development of Ebola virus disease.IMPORTANCE Ebola virus (EBOV) remains a high-priority pathogen since it continues to cause outbreaks with high case fatality rates. Although it is well established that EBOV results in severe organ damage, our understanding of tissue injury in the liver, adrenal glands, and lymphoid tissues remains limited. We begin to address this knowledge gap by conducting longitudinal gene expression studies in these tissues, which were collected from EBOV-infected cynomolgus macaques. We report robust and early gene expression changes within these tissues, indicating they are primary sites of EBOV infection. Furthermore, genes involved in metabolism, coagulation, and adaptive immunity were downregulated, while inflammation-related genes were upregulated. These results indicate significant tissue damage consistent with the development of hemorrhagic fever and lymphopenia. Our study provides novel insight into EBOV-host interactions and elucidates how host responses within the liver, adrenal glands, and lymphoid tissues contribute to EBOV pathogenesis.
Collapse
|
19
|
Ploss A, Kapoor A. Animal Models of Hepatitis C Virus Infection. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036970. [PMID: 31843875 DOI: 10.1101/cshperspect.a036970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ∼71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.
Collapse
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Amit Kapoor
- Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| |
Collapse
|
20
|
The Utility of Human Immune System Mice for High-Containment Viral Hemorrhagic Fever Research. Vaccines (Basel) 2020; 8:vaccines8010098. [PMID: 32098330 PMCID: PMC7157695 DOI: 10.3390/vaccines8010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Human immune system (HIS) mice are a subset of humanized mice that are generated by xenoengraftment of human immune cells or tissues and/or their progenitors into immunodeficient mice. Viral hemorrhagic fevers (VHFs) cause severe disease in humans, typically with high case fatality rates. HIS mouse studies have been performed to investigate the pathogenesis and immune responses to VHFs that must be handled in high-containment laboratory facilities. Here, we summarize studies on filoviruses, nairoviruses, phenuiviruses, and hantaviruses, and discuss the knowledge gained from using various HIS mouse models. Furthermore, we discuss the complexities of designing and interpreting studies utilizing HIS mice while highlighting additional questions about VHFs that can still be addressed using HIS mouse models.
Collapse
|
21
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
22
|
Marzi A, Chadinah S, Haddock E, Feldmann F, Arndt N, Martellaro C, Scott DP, Hanley PW, Nyenswah TG, Sow S, Massaquoi M, Feldmann H. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models. Cell Rep 2019; 23:1806-1816. [PMID: 29742435 DOI: 10.1016/j.celrep.2018.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/01/2017] [Accepted: 04/04/2018] [Indexed: 10/16/2022] Open
Abstract
Ebola virus (EBOV), isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Spencer Chadinah
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Nicolette Arndt
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | | - Samba Sow
- Centre des Operations d'Urgence, Centre pour le Développement des Vaccins (CVD-Mali), Centre National d'Appui à la lutte contre la Maladie, Ministère de la Sante et de l'Hygiène Publique, Bamako, Mali
| | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
23
|
Cytokine Effects on the Entry of Filovirus Envelope Pseudotyped Virus-Like Particles into Primary Human Macrophages. Viruses 2019; 11:v11100889. [PMID: 31547585 PMCID: PMC6832363 DOI: 10.3390/v11100889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Macrophages are one of the first and also a major site of filovirus replication and, in addition, are a source of multiple cytokines, presumed to play a critical role in the pathogenesis of the viral infection. Some of these cytokines are known to induce macrophage phenotypic changes in vitro, but how macrophage polarization may affect the cell susceptibility to filovirus entry remains largely unstudied. We generated different macrophage subsets using cytokine pre-treatment and subsequently tested their ability to fuse with beta-lactamase containing virus-like particles (VLP), pseudotyped with the surface glycoprotein of Ebola virus (EBOV) or the glycoproteins of other clinically relevant filovirus species. We found that pre-incubation of primary human monocyte-derived macrophages (MDM) with interleukin-10 (IL-10) significantly enhanced filovirus entry into cells obtained from multiple healthy donors, and the IL-10 effect was preserved in the presence of pro-inflammatory cytokines found to be elevated during EBOV disease. In contrast, fusion of IL-10-treated macrophages with influenza hemagglutinin/neuraminidase pseudotyped VLPs was unchanged or slightly reduced. Importantly, our in vitro data showing enhanced virus entry are consistent with the correlation established between elevated serum IL-10 and increased mortality in filovirus infected patients and also reveal a novel mechanism that may account for the IL-10-mediated increase in filovirus pathogenicity.
Collapse
|
24
|
Lavender KJ, Williamson BN, Saturday G, Martellaro C, Griffin A, Hasenkrug KJ, Feldmann H, Prescott J. Pathogenicity of Ebola and Marburg Viruses Is Associated With Differential Activation of the Myeloid Compartment in Humanized Triple Knockout-Bone Marrow, Liver, and Thymus Mice. J Infect Dis 2019; 218:S409-S417. [PMID: 30085162 DOI: 10.1093/infdis/jiy269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV) outbreaks are highly lethal, and infection results in a hemorrhagic fever with complex etiology. These zoonotic viruses dysregulate the immune system to cause disease, in part by replicating within myeloid cells that would normally innately control viral infection and shape the adaptive immune response. We used triple knockout (TKO)-bone marrow, liver, thymus (BLT) humanized mice to recapitulate the early in vivo human immune response to filovirus infection. Disease severity in TKO-BLT mice was dissimilar between EBOV and MARV with greater severity observed during EBOV infection. Disease severity was related to increased Kupffer cell infection in the liver, higher levels of myeloid dysfunction, and skewing of macrophage subtypes in EBOV compared with MARV-infected mice. Overall, the TKO-BLT model provided a practical in vivo platform to study the human immune response to filovirus infection and generated a better understanding of how these viruses modulate specific components of the immune system.
Collapse
Affiliation(s)
- Kerry J Lavender
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Brandi N Williamson
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Cynthia Martellaro
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Amanda Griffin
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Joseph Prescott
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| |
Collapse
|
25
|
Brunton B, Rogers K, Phillips EK, Brouillette RB, Bouls R, Butler NS, Maury W. TIM-1 serves as a receptor for Ebola virus in vivo, enhancing viremia and pathogenesis. PLoS Negl Trop Dis 2019; 13:e0006983. [PMID: 31242184 PMCID: PMC6615641 DOI: 10.1371/journal.pntd.0006983] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/09/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023] Open
Abstract
Background T cell immunoglobulin mucin domain-1 (TIM-1) is a phosphatidylserine (PS) receptor, mediating filovirus entry into cells through interactions with PS on virions. TIM-1 expression has been implicated in Ebola virus (EBOV) pathogenesis; however, it remains unclear whether this is due to TIM-1 serving as a filovirus receptor in vivo or, as others have suggested, TIM-1 induces a cytokine storm elicited by T cell/virion interactions. Here, we use a BSL2 model virus that expresses EBOV glycoprotein to demonstrate the importance of TIM-1 as a virus receptor late during in vivo infection. Methodology/Principal findings Infectious, GFP-expressing recombinant vesicular stomatitis virus encoding either full length EBOV glycoprotein (EBOV GP/rVSV) or mucin domain deleted EBOV glycoprotein (EBOV GPΔO/rVSV) was used to assess the role of TIM-1 during in vivo infection. GFP-expressing rVSV encoding its native glycoprotein G (G/rVSV) served as a control. TIM-1-sufficient or TIM-1-deficient BALB/c interferon α/β receptor-/- mice were challenged with these viruses. While G/rVSV caused profound morbidity and mortality in both mouse strains, TIM-1-deficient mice had significantly better survival than TIM-1-expressing mice following EBOV GP/rVSV or EBOV GPΔO/rVSV challenge. EBOV GP/rVSV or EBOV GPΔO/rVSV in spleen of infected animals was high and unaffected by expression of TIM-1. However, infectious virus in serum, liver, kidney and adrenal gland was reduced late in infection in the TIM-1-deficient mice, suggesting that virus entry via this receptor contributes to virus load. Consistent with higher virus loads, proinflammatory chemokines trended higher in organs from infected TIM-1-sufficient mice compared to the TIM-1-deficient mice, but proinflammatory cytokines were more modestly affected. To assess the role of T cells in EBOV GP/rVSV pathogenesis, T cells were depleted in TIM-1-sufficient and -deficient mice and the mice were challenged with virus. Depletion of T cells did not alter the pathogenic consequences of virus infection. Conclusions Our studies provide evidence that at late times during EBOV GP/rVSV infection, TIM-1 increased virus load and associated mortality, consistent with an important role of this receptor in virus entry. This work suggests that inhibitors which block TIM-1/virus interaction may serve as effective antivirals, reducing virus load at late times during EBOV infection. T cell immunoglobulin mucin domain-1 (TIM-1) is one of a number of phosphatidylserine (PS) receptors that mediate clearance of apoptotic bodies by binding PS on the surface of dead or dying cells. Enveloped viruses mimic apoptotic bodies by exposing PS on the outer leaflet of the viral membrane. While TIM-1 has been shown to serve as an adherence factor/receptor for filoviruses in tissue culture, limited studies have investigated the role of TIM-1 as a receptor in vivo. Here, we sought to determine if TIM-1 was critical for Ebola virus glycoprotein-mediated infection using a BSL2 model virus. We demonstrate that loss of TIM-1 expression results in decreased virus load late during infection and significantly reduced virus-elicited mortality. These findings provide evidence that TIM-1 serves as an important receptor for Ebola virus in vivo. Blocking TIM-1/EBOV interactions may be effective antiviral strategy to reduce viral load and pathogenicity at late times of EBOV infection.
Collapse
Affiliation(s)
- Bethany Brunton
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kai Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Elisabeth K. Phillips
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rachel B. Brouillette
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ruayda Bouls
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah S. Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
26
|
Olejnik J, Hume AJ, Leung DW, Amarasinghe GK, Basler CF, Mühlberger E. Filovirus Strategies to Escape Antiviral Responses. Curr Top Microbiol Immunol 2019; 411:293-322. [PMID: 28685291 PMCID: PMC5973841 DOI: 10.1007/82_2017_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher F Basler
- Microbial Pathogenesis, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
27
|
Abstract
Filovirus small animal disease models have so far been developed in laboratory mice, guinea pigs, and hamsters. Since immunocompetent rodents do not exhibit overt signs of disease following infection with wild-type filoviruses isolated from humans, rodent models have been established using adapted viruses produced through sequential passage in rodents. Rodent-adapted viruses target the same cells/tissues as the wild-type viruses, making rodents invaluable basic research tools for studying filovirus pathogenesis. Moreover, comparative analyses using wild-type and rodent-adapted viruses have provided beneficial insights into the molecular mechanisms of pathogenicity and acquisition of species-specific virulence. Additionally, wild-type filovirus infections in immunodeficient rodents have provided a better understanding of the host factors required for resistance to filovirus infection and of the immune response against the infection. This chapter provides comprehensive information on the filovirus rodent models and rodent-adapted filoviruses. Specifically, we summarize the clinical and pathological features of filovirus infections in all rodent models described to date, including the recently developed humanized and collaborative cross (CC) resource recombinant inbred (RI) intercrossed (CC-RIX) mouse models. We also cover the molecular determinants responsible for adaptation and virulence acquisition in a number of rodent-adapted filoviruses. This chapter clearly defines the characteristic and advantages/disadvantages of rodent models, helping to evaluate the practical use of rodent models in future filovirus studies.
Collapse
|
28
|
Role of Type I Interferons on Filovirus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7010022. [PMID: 30791589 PMCID: PMC6466283 DOI: 10.3390/vaccines7010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.
Collapse
|
29
|
Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S, Khademhosseini A. Organ-on-a-Chip for Cancer and Immune Organs Modeling. Adv Healthc Mater 2019; 8:e1801363. [PMID: 30605261 PMCID: PMC6424124 DOI: 10.1002/adhm.201801363] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Bridging the gap between findings in preclinical 2D cell culture models and in vivo tissue cultures has been challenging; the simple microenvironment of 2D monolayer culture systems may not capture the cellular response to drugs accurately. Three-dimensional organotypic models have gained increasing interest due to their ability to recreate precise cellular organizations. These models facilitate investigation of the interactions between different sub-tissue level components through providing physiologically relevant microenvironments for cells in vitro. The incorporation of human-sourced tissues into these models further enables personalized prediction of drug responses. Integration of microfluidic units into the 3D models can be used to control their local environment, dynamic simulation of cell behaviors, and real-time readout of drug testing data. Cancer and immune system related diseases are severe burdens to our health care system and have created an urgent need for high-throughput, and effective drug development plans. This review focuses on recent progress in the development of "cancer-on-a-chip" and "immune organs-on-a-chip" systems designed to study disease progression and predict drug-induced responses. Future challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Wujin Sun
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Zhimin Luo
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junmin Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - KangJu Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Peyton Tebon
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Yudi Feng
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mehmet R. Dokmeci
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Shiladitya Sengupta
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, ; Harvard – MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90024, USA.; Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA; Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Modeling Arboviral Infection in Mice Lacking the Interferon Alpha/Beta Receptor. Viruses 2019; 11:v11010035. [PMID: 30625992 PMCID: PMC6356211 DOI: 10.3390/v11010035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Arboviruses are arthropod-borne viruses that exhibit worldwide distribution and are a constant threat, not only for public health but also for wildlife, domestic animals, and even plants. To study disease pathogenesis and to develop efficient and safe therapies, the use of an appropriate animal model is a critical concern. Adult mice with gene knockouts of the interferon α/β (IFN-α/β) receptor (IFNAR(-/-)) have been described as a model of arbovirus infections. Studies with the natural hosts of these viruses are limited by financial and ethical issues, and in some cases, the need to have facilities with a biosafety level 3 with sufficient space to accommodate large animals. Moreover, the number of animals in the experiments must provide results with statistical significance. Recent advances in animal models in the last decade among other gaps in knowledge have contributed to the better understanding of arbovirus infections. A tremendous advantage of the IFNAR(-/-) mouse model is the availability of a wide variety of reagents that can be used to study many aspects of the immune response to the virus. Although extrapolation of findings in mice to natural hosts must be done with care due to differences in the biology between mouse and humans, experimental infections of IFNAR(-/-) mice with several studied arboviruses closely mimics hallmarks of these viruses in their natural host. Therefore, IFNAR(-/-) mice are a good model to facilitate studies on arbovirus transmission, pathogenesis, virulence, and the protective efficacy of new vaccines. In this review article, the most important arboviruses that have been studied using the IFNAR(-/-) mouse model will be reviewed.
Collapse
|
31
|
Schindell BG, Webb AL, Kindrachuk J. Persistence and Sexual Transmission of Filoviruses. Viruses 2018; 10:E683. [PMID: 30513823 PMCID: PMC6316729 DOI: 10.3390/v10120683] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
Abstract
There is an increasing frequency of reports regarding the persistence of the Ebola virus (EBOV) in Ebola virus disease (EVD) survivors. During the 2014⁻2016 West African EVD epidemic, sporadic transmission events resulted in the initiation of new chains of human-to-human transmission. Multiple reports strongly suggest that these re-emergences were linked to persistent EBOV infections and included sexual transmission from EVD survivors. Asymptomatic infection and long-term viral persistence in EVD survivors could result in incidental introductions of the Ebola virus in new geographic regions and raise important national and local public health concerns. Alarmingly, although the persistence of filoviruses and their potential for sexual transmission have been documented since the emergence of such viruses in 1967, there is limited knowledge regarding the events that result in filovirus transmission to, and persistence within, the male reproductive tract. Asymptomatic infection and long-term viral persistence in male EVD survivors could lead to incidental transfer of EBOV to new geographic regions, thereby generating widespread outbreaks that constitute a significant threat to national and global public health. Here, we review filovirus testicular persistence and discuss the current state of knowledge regarding the rates of persistence in male survivors, and mechanisms underlying reproductive tract localization and sexual transmission.
Collapse
Affiliation(s)
- Brayden G Schindell
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Andrew L Webb
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Jason Kindrachuk
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
32
|
Douam F, Ziegler CGK, Hrebikova G, Fant B, Leach R, Parsons L, Wang W, Gaska JM, Winer BY, Heller B, Shalek AK, Ploss A. Selective expansion of myeloid and NK cells in humanized mice yields human-like vaccine responses. Nat Commun 2018; 9:5031. [PMID: 30487575 PMCID: PMC6262001 DOI: 10.1038/s41467-018-07478-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
Mice engrafted with components of a human immune system have become widely-used models for studying aspects of human immunity and disease. However, a defined methodology to objectively measure and compare the quality of the human immune response in different models is lacking. Here, by taking advantage of the highly immunogenic live-attenuated yellow fever virus vaccine YFV-17D, we provide an in-depth comparison of immune responses in human vaccinees, conventional humanized mice, and second generation humanized mice. We demonstrate that selective expansion of human myeloid and natural killer cells promotes transcriptomic responses akin to those of human vaccinees. These enhanced transcriptomic profiles correlate with the development of an antigen-specific cellular and humoral response to YFV-17D. Altogether, our approach provides a robust scoring of the quality of the human immune response in humanized mice and highlights a rational path towards developing better pre-clinical models for studying the human immune response and disease.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Carly G K Ziegler
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02139, USA
- Graduate Program in Biophysics, Harvard Medical School, Boston, MA, 02139, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Bruno Fant
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert Leach
- Lewis Sigler Institute for Integrative Genomics, Genomics Core, Carl Icahn Laboratory, Princeton University, Princeton, NJ, 19104, USA
| | - Lance Parsons
- Lewis Sigler Institute for Integrative Genomics, Genomics Core, Carl Icahn Laboratory, Princeton University, Princeton, NJ, 19104, USA
| | - Wei Wang
- Lewis Sigler Institute for Integrative Genomics, Genomics Core, Carl Icahn Laboratory, Princeton University, Princeton, NJ, 19104, USA
| | - Jenna M Gaska
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Benjamin Y Winer
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Brigitte Heller
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Alex K Shalek
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02139, USA
- Graduate Program in Biophysics, Harvard Medical School, Boston, MA, 02139, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
33
|
Humanized Mouse Models for the Study of Infection and Pathogenesis of Human Viruses. Viruses 2018; 10:v10110643. [PMID: 30453598 PMCID: PMC6266013 DOI: 10.3390/v10110643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
The evolution of infectious pathogens in humans proved to be a global health problem. Technological advancements over the last 50 years have allowed better means of identifying novel therapeutics to either prevent or combat these infectious diseases. The development of humanized mouse models offers a preclinical in vivo platform for further characterization of human viral infections and human immune responses triggered by these virus particles. Multiple strains of immunocompromised mice reconstituted with a human immune system and/or human hepatocytes are susceptible to infectious pathogens as evidenced by establishment of full viral life cycles in hope of investigating viral–host interactions observed in patients and discovering potential immunotherapies. This review highlights recent progress in utilizing humanized mice to decipher human specific immune responses against viral tropism.
Collapse
|
34
|
Cross RW, Fenton KA, Geisbert TW. Small animal models of filovirus disease: recent advances and future directions. Expert Opin Drug Discov 2018; 13:1027-1040. [DOI: 10.1080/17460441.2018.1527827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A. Fenton
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
35
|
Abstract
The development of novel therapeutics and vaccines to treat or prevent disease caused by filoviruses, such as Ebola and Marburg viruses, depends on the availability of animal models that faithfully recapitulate clinical hallmarks of disease as it is observed in humans. In particular, small animal models (such as mice and guinea pigs) are historically and frequently used for the primary evaluation of antiviral countermeasures, prior to testing in nonhuman primates, which represent the gold-standard filovirus animal model. In the past several years, however, the filovirus field has witnessed the continued refinement of the mouse and guinea pig models of disease, as well as the introduction of the hamster and ferret models. We now have small animal models for most human-pathogenic filoviruses, many of which are susceptible to wild type virus and demonstrate key features of disease, including robust virus replication, coagulopathy, and immune system dysfunction. Although none of these small animal model systems perfectly recapitulates Ebola virus disease or Marburg virus disease on its own, collectively they offer a nearly complete set of tools in which to carry out the preclinical development of novel antiviral drugs.
Collapse
Affiliation(s)
- Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Street, Winnipeg, MB R3E 0J9, Canada
| | - Gary Wong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Street, Winnipeg, MB R3E 0J9, Canada
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, 29 Bulan Road, Longgang District, Shenzhen, China, 518000
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Street, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
36
|
Skelton JK, Ortega-Prieto AM, Dorner M. A Hitchhiker's guide to humanized mice: new pathways to studying viral infections. Immunology 2018; 154:50-61. [PMID: 29446074 PMCID: PMC5904706 DOI: 10.1111/imm.12906] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
Humanized mice are increasingly appreciated as an incredibly powerful platform for infectious disease research. The often very narrow species tropism of many viral infections, coupled with the sometimes misleading results from preclinical studies in animal models further emphasize the need for more predictive model systems based on human cells rather than surrogates. Humanized mice represent such a model and have been greatly enhanced with regards to their immune system reconstitution as well as immune functionality in the past years, resulting in their recommendation as a preclinical model by the US Food and Drug Administration. This review aims to give a detailed summary of the generation of human peripheral blood lymphocyte-, CD34+ haematopoietic stem cell- and bone marrow/liver/thymus-reconstituted mice and available improved models (e.g. myeloid- or T-cell-only mice, MISTRG, NSG-SGM3). Additionally, we summarize human-tropic viral infections, for which humanized mice offer a novel approach for the study of disease pathogenesis as well as future perspectives for their use in biomedical, drug and vaccine research.
Collapse
Affiliation(s)
- Jessica Katy Skelton
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | | | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
37
|
Durost PA, Aryee KE, Manzoor F, Tisch RM, Mueller C, Jurczyk A, Shultz LD, Brehm MA. Gene Therapy with an Adeno-Associated Viral Vector Expressing Human Interleukin-2 Alters Immune System Homeostasis in Humanized Mice. Hum Gene Ther 2018; 29:352-365. [DOI: 10.1089/hum.2017.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Philip A. Durost
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ken-Edwin Aryee
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Fatima Manzoor
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Roland M. Tisch
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christian Mueller
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Michael A. Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
38
|
Yong KSM, Her Z, Chen Q. Humanized Mice as Unique Tools for Human-Specific Studies. Arch Immunol Ther Exp (Warsz) 2018; 66:245-266. [PMID: 29411049 PMCID: PMC6061174 DOI: 10.1007/s00005-018-0506-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
With an increasing human population, medical research is pushed to progress into an era of precision therapy. Humanized mice are at the very heart of this new forefront where it is acutely required to decipher human-specific disease pathogenesis and test an array of novel therapeutics. In this review, “humanized” mice are defined as immunodeficient mouse engrafted with functional human biological systems. Over the past decade, researchers have been conscientiously making improvements on the development of humanized mice as a model to closely recapitulate disease pathogenesis and drug mechanisms in humans. Currently, literature is rife with descriptions of novel and innovative humanized mouse models that hold a significant promise to become a panacea for drug innovations to treat and control conditions such as infectious disease and cancer. This review will focus on the background of humanized mice, diseases, and human-specific therapeutics tested on this platform as well as solutions to improve humanized mice for future clinical use.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
39
|
|
40
|
Schönrich G, Raftery MJ. Exploring the Immunopathogenesis of Viral Hemorrhagic Fever in Mice with a Humanized Immune System. Front Immunol 2017; 8:1202. [PMID: 29018450 PMCID: PMC5622932 DOI: 10.3389/fimmu.2017.01202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 01/23/2023] Open
Abstract
Viral hemorrhagic fever (VHF) as a disease entity was first codified in the 1930s by soviet scientists investigating patients suffering from hantavirus infection. The group of hemorrhagic fever viruses (HFVs) has since expanded to include members from at least four different virus families: Arenaviridae, Bunyaviridae, Filoviridae, and Flaviviridae, all enveloped single-stranded RNA viruses. After infection, the natural hosts of HFVs do not develop symptoms, whereas humans can be severely affected. This observation and other evidence from experimental data suggest that the human immune system plays a crucial role in VHF pathogenesis. For this reason mice with a human immune system, referred to here as humanized mice (humice), are valuable tools that provide insight into disease mechanisms and allow for preclinical testing of novel vaccinations approaches as well as antiviral agents. In this article, we review the impact of humice in VHF research.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
41
|
Speranza E, Connor JH. Host Transcriptional Response to Ebola Virus Infection. Vaccines (Basel) 2017; 5:E30. [PMID: 28930167 PMCID: PMC5620561 DOI: 10.3390/vaccines5030030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023] Open
Abstract
Ebola virus disease (EVD) is a serious illness that causes severe disease in humans and non-human primates (NHPs) and has mortality rates up to 90%. EVD is caused by the Ebolavirus and currently there are no licensed therapeutics or vaccines to treat EVD. Due to its high mortality rates and potential as a bioterrorist weapon, a better understanding of the disease is of high priority. Multiparametric analysis techniques allow for a more complete understanding of a disease and the host response. Analysis of RNA species present in a sample can lead to a greater understanding of activation or suppression of different states of the immune response. Transcriptomic analyses such as microarrays and RNA-Sequencing (RNA-Seq) have been important tools to better understand the global gene expression response to EVD. In this review, we outline the current knowledge gained by transcriptomic analysis of EVD.
Collapse
Affiliation(s)
- Emily Speranza
- Department of Microbiology, Bioinformatics Program, National Emerging Infectious Disease Laboratories, Boston University, Boston, MA 02118, USA.
| | - John H Connor
- Department of Microbiology, Bioinformatics Program, National Emerging Infectious Disease Laboratories, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
42
|
Olson VA, Shchelkunov SN. Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence? Viruses 2017; 9:E242. [PMID: 32962316 PMCID: PMC5618008 DOI: 10.3390/v9090242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.
Collapse
Affiliation(s)
- Victoria A. Olson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sergei N. Shchelkunov
- Department of Genomic Research and Development of DNA Diagnostics of Poxviruses, State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk Region, Russia
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
43
|
Spengler JR, Prescott J, Feldmann H, Spiropoulou CF. Human immune system mouse models of Ebola virus infection. Curr Opin Virol 2017; 25:90-96. [PMID: 28810165 DOI: 10.1016/j.coviro.2017.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 11/28/2022]
Abstract
Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Joseph Prescott
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
44
|
Escaffre O, Saito TB, Juelich TL, Ikegami T, Smith JK, Perez DD, Atkins C, Levine CB, Huante MB, Nusbaum RJ, Endsley JJ, Freiberg AN, Rockx B. Contribution of Human Lung Parenchyma and Leukocyte Influx to Oxidative Stress and Immune System-Mediated Pathology following Nipah Virus Infection. J Virol 2017; 91:e00275-17. [PMID: 28539439 PMCID: PMC5651721 DOI: 10.1128/jvi.00275-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets.IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - David D Perez
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Corri B Levine
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rebecca J Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Barry Rockx
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
45
|
|
46
|
Fujiwara S. Humanized mice: A brief overview on their diverse applications in biomedical research. J Cell Physiol 2017; 233:2889-2901. [PMID: 28543438 DOI: 10.1002/jcp.26022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Model animals naturally differ from humans in various respects and results from the former are not directly translatable to the latter. One approach to address this issue is humanized mice that are defined as mice engrafted with functional human cells or tissues. In humanized mice, we can investigate the development and function of human cells or tissues (including their products encoded by human genes) in the in vivo context of a small animal. As such, humanized mouse models have played important roles that cannot be substituted by other animal models in various areas of biomedical research. Although there are obvious limitations in humanized mice and we may need some caution in interpreting the results obtained from them, it is reasonably expected that they will be utilized in increasingly diverse areas of biomedical research, as the technology for preparing humanized mice are rapidly improved. In this review, I will describe the methodology for generating humanized mice and overview their recent applications in various disciplines including immunology, infectious diseases, drug metabolism, and neuroscience.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
47
|
Nogueira RT, Sahi V, Huang J, Tsuji M. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice. Immunol Lett 2017; 188:46-52. [PMID: 28610800 DOI: 10.1016/j.imlet.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/17/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022]
Abstract
Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination.
Collapse
Affiliation(s)
- Raquel Tayar Nogueira
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Vincent Sahi
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
48
|
St Claire MC, Ragland DR, Bollinger L, Jahrling PB. Animal Models of Ebolavirus Infection. Comp Med 2017; 67:253-262. [PMID: 28662754 PMCID: PMC5482517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/29/2016] [Accepted: 01/26/2017] [Indexed: 06/07/2023]
Abstract
Ebola virus is a highly pathogenic member of the family Filoviridae that causes a severe hemorrhagic disease in humans and NHP. The 2013-2016 West African outbreak has increased interest in the development and refinement of animal models of Ebola virus disease. These models are used to test countermeasures and vaccines, gain scientific insights into the mechanisms of disease progression and transmission, and study key correlates of immunology. Ebola virus is classified as a BSL4 pathogen and Category A agent, for which the United States government requires preparedness in case of bioterrorism. Rodents, such as Syrian golden hamsters (Mesocricetus auratus), mice (Mus musculus), and guinea pigs (Cavia porcellus), are the most common research species. However, NHP, especially macaques, are favored for Ebola virus disease research due to similarities with humans regarding the pathogenesis, clinical presentation, laboratory findings, and causes of fatality. To satisfy the regulatory requirements for approval of countermeasures against high-consequence pathogens, the FDA instituted the Animal Rule, which permits efficacy studies in animal models in place of human clinical data when such studies are not feasible or ethical. This review provides a comprehensive summary of various animal models and their use in Ebola virus disease research.
Collapse
Affiliation(s)
- Marisa C St Claire
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland;,
| | - Dan R Ragland
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Laura Bollinger
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Peter B Jahrling
- Integrated Research Facility, Division of Clinical Research, Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
49
|
Crawford LB, Tempel R, Streblow DN, Kreklywich C, Smith P, Picker LJ, Nelson JA, Caposio P. Human Cytomegalovirus Induces Cellular and Humoral Virus-specific Immune Responses in Humanized BLT Mice. Sci Rep 2017; 7:937. [PMID: 28428537 PMCID: PMC5430540 DOI: 10.1038/s41598-017-01051-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022] Open
Abstract
The strict species specificity of Human Cytomegalovirus (HCMV) has impeded our understanding of antiviral adaptive immune responses in the context of a human immune system. We have previously shown that HCMV infection of human hematopoietic progenitor cells engrafted in immune deficient mice (huNSG) results in viral latency that can be reactivated following G-CSF treatment. In this study, we characterized the functional human adaptive immune responses in HCMV latently-infected huBLT (humanized Bone marrow-Liver-Thymus) mice. Following infection, huBLT mice generate human effector and central memory CD4+ and CD8+ T-cell responses reactive to peptides corresponding to both IE and pp65 proteins. Additionally, both HCMV specific IgM and IgG B-cell responses with the ability to neutralize virus were detected. These results indicate that the HCMV huBLT mouse model may provide a valuable tool to study viral latency and reactivation as well as evaluate HCMV vaccines and immune responses in the context of a functional human immune system.
Collapse
Affiliation(s)
- Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Rebecca Tempel
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Patricia Smith
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, 97006, USA.
| |
Collapse
|
50
|
A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry. J Virol 2017; 91:JVI.00177-17. [PMID: 28228590 DOI: 10.1128/jvi.00177-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells.IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells. In contrast, the epidemic virus showed a reduced ability to enter cells of nonhuman primates compared to the virus circulating in 1976, and a single amino acid exchange in the internal fusion loop of the viral glycoprotein was found to account for this phenotype.
Collapse
|