1
|
Brancaglion GA, de Souza GAP, de Araújo LP, Silva EN, da Silva LL, de Lima Tana F, Corsetti PP, Coelho LFL, de Almeida LA. Sequential macrophage DENV and ZIKV infection shows differential expression of CD86, IFN-β, and regulation of TNF-α and IL-1β depending on DENV serotype. Braz J Microbiol 2025; 56:1083-1094. [PMID: 39969815 PMCID: PMC12095828 DOI: 10.1007/s42770-025-01639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
Dengue virus (DENV) is an RNA virus belonging to the Flaviviridae family, comprising four antigenically distinct serotypes. Dengue is the primary arthropod-transmitted virus globally, posing a significant public health challenge, especially in Brazil, where the largest outbreak of Zika virus (ZIKV) was also recorded in 2016. ZIKV shares genomic and structural similarities with DENV, and their co-circulation in Brazil provides evidence of co-infection. The innate immune response against DENV and ZIKV is mediated by pattern recognition receptors that initiate intracellular signaling, leading to antiviral or inflammatory responses. This study aims to better understand the innate immune response to ZIKV in macrophages previously infected with DENV. To achieve this, bone marrow cells from C57BL/6 mice were differentiated into macrophages (BMDMs) and independently infected with each of the four DENV serotypes for 12 h, followed by ZIKV infection for an additional 12 h. Twenty-four hours post-infection, macrophage activation markers CD86 were assessed using flow cytometry and fluorescence microscopy. Pro-inflammatory and antiviral gene expressions were evaluated by qPCR. IFN-β was found to be down-regulated in all analyzed groups. No differences in CD86 expression were observed in ZIKV-infected BMDMs previously infected with DENV, except for serotype 4, which showed an increase in both activation markers. Conversely, TNF-α and IL-1β were down-regulated compared to non-infected or only DENV4-infected cells, correlating with increased cell viability and decreased production of the cytokine TNF-α. Bioinformatic analysis suggested that the expression of both cytokines might be regulated by miRNAs, including miR-181a-5p, which is also up-regulated in the innate immune response. Taken together, the results indicated that co-infection with DENV serotype 4 and ZIKV in mice BMDMs increases the expression of CD86, promoting macrophage activation, but reduces the expression of pro-inflammatory genes TNF-α and IL-1β, indicating enhanced cell viability what can be modulated by miRNAs.
Collapse
Affiliation(s)
- Gustavo Andrade Brancaglion
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | | | - Leonardo Pereira de Araújo
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | - Evandro Neves Silva
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | - Laura Leone da Silva
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | - Fernanda de Lima Tana
- Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Alfenas, 31270-901, Minas Gerais, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratory of Vaccines, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Leonardo Augusto de Almeida
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Kribs CM, Mays P. Impact of ADE and Dengue Vaccination with Screening on Cost and Disease Burden for Homoserotypic Dengue and Zika. Bull Math Biol 2025; 87:62. [PMID: 40183845 DOI: 10.1007/s11538-025-01440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
The tetravalent dengue vaccine Dengvaxia® may prime dengue-seronegative vaccinees for antibody-dependent enhancement (ADE) of any subsequent dengue (in case of vaccine failure) or Zika infections. Many researchers associate ADE of such cases with more severe outcomes including death. This study uses a mathematical model of transmission dynamics that distinguishes ADE and non-ADE cases for each virus, to identify the potential impact of a dengue screening and vaccination campaign on the economic cost and disease burden of a dual dengue-Zika outbreak, under the hypothesis that severe outcomes are associated with ADE. Results indicate that when all dengue exposure is to a single serotype, in most cases vaccination increases both cost and burden because they are dominated by the high costs associated with complications from ADE Zika cases. However, if per-case ADE Zika costs are lower than estimated (a real possibility given the limited data available), by a factor ranging from 1 to 6 (for cost, except in Vietnam) or 8 (for burden), sufficiently high vaccination coverage can reduce total cost and burden substantially over a year. Analysis also identifies variations across countries, dengue serotypes, and timeframes of evaluation.
Collapse
Affiliation(s)
- Christopher M Kribs
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA.
| | - Parker Mays
- Department of Mathematics, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Matos JSS, Demoliner M, Gularte JS, Filippi M, de Abreu Góes Pereira VM, da Silva MS, Weber MN, de Barros MP, Spilki FR. Virome of Terrestrial Mammals and Bats from Southern Brazil: Circulation of New Putative Members of the Togaviridae Family and Other Findings. Pathogens 2025; 14:310. [PMID: 40333054 PMCID: PMC12030598 DOI: 10.3390/pathogens14040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
The surveillance of wildlife viromes is essential for identifying zoonotic threats within the One Health framework. This study analyzed rectal and oral swabs from 88 individuals representing 13 species as felids, wild rodents, marsupials and non-human primates in Southern Brazil using metagenomic sequencing. Akodon montensis (n = 15 individuals) and Coendou spinosus (n = 4) harbored Chikungunya virus (ChikV, Togaviridae), marking its first detection in these hosts. Molossus molossus (n = 17) presented Coronaviridae and Orthoherpesviridae, while Eptesicus furinalis (n = 1) also carried Coronaviridae. A broad virome diversity, including Togaviridae and Adenoviridae members, was identified in Didelphis albiventris (n = 43), with significant relevance to human health. Additional species, such as Callithrix jacchus (n = 1), Leopardus guttulus (n = 1), Myocastor coypus (n = 1), Monodelphis iheringi (n = 1), Thaptomys nigrita (n = 1), Sooretamys angouya (n = 1), Brucepattersonius iheringi (n = 1), and Lasiurus blossevillii (n = 1), contributed to insights into viral reservoirs. These results underscore the importance of virome studies in regions harboring high biodiversity, emphasizing genomic surveillance as a vital tool for monitoring zoonotic viruses and safeguarding global health.
Collapse
Affiliation(s)
- Julyana Sthéfanie Simões Matos
- Environmental Quality Graduate Program, Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil;
| | - Meriane Demoliner
- Virology Master Program, Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil; (M.D.); (M.F.)
| | - Juliana Schons Gularte
- Immunology and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil; (J.S.G.); (M.N.W.)
| | - Micheli Filippi
- Virology Master Program, Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil; (M.D.); (M.F.)
| | | | - Mariana Soares da Silva
- Virology Master Program, Faculty of Veterinary Medicine, Feevale University, Novo Hamburgo 93525-075, Brazil;
| | - Matheus Nunes Weber
- Immunology and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil; (J.S.G.); (M.N.W.)
| | - Marcelo Pereira de Barros
- Environmental Quality Graduate Program, Zoology Laboratory, Faculty of Veterinary Medicine, Feevale University, Novo Hamburgo 93525-075, Brazil;
| | - Fernando Rosado Spilki
- Environmental Quality Graduate Program and Virology Graduate Program, Faculty of Veterinary Medicine, Feevale University, Novo Hamburgo 93525-075, Brazil;
| |
Collapse
|
4
|
Pereira CADM, Mendes RPG, da Silva PG, Chaves EJF, Pena LJ. Vaccines Against Urban Epidemic Arboviruses: The State of the Art. Viruses 2025; 17:382. [PMID: 40143310 PMCID: PMC11945797 DOI: 10.3390/v17030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Arboviruses represent a contemporary global challenge, prompting coordinated efforts from health organizations and governments worldwide. Dengue, chikungunya, and Zika viruses have become endemic in the tropics, resulting in the so-called "triple arbovirus epidemic". These viruses are transmitted typically through the bites of infected mosquitoes, especially A. aegypti and A. albopictus. These mosquito species are distributed across all continents and exhibit a high adaptive capacity in diverse environments. When combined with unplanned urbanization, uncontrolled population growth, and international travel-the so-called "triad of the modern world"-the maintenance and spread of these pathogens to new areas are favored. This review provides updated information on vaccine candidates targeting dengue, chikungunya, and Zika viruses. Additionally, we discuss the challenges, perspectives, and issues associated with their successful production, testing, and deployment within the context of public health.
Collapse
Affiliation(s)
| | | | | | | | - Lindomar José Pena
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Brazil; (C.A.d.M.P.); (R.P.G.M.); (P.G.d.S.); (E.J.F.C.)
| |
Collapse
|
5
|
Cecilio P, Iniguez E, Huffcutt P, Ribeiro SP, Kamhawi S, Valenzuela JG, Serafim TD. The impact of blood on vector-borne diseases with emphasis on mosquitoes and sand flies. Trends Parasitol 2025; 41:196-209. [PMID: 39979193 PMCID: PMC11998667 DOI: 10.1016/j.pt.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
The impact of blood and its factors on vector-borne diseases is significant and multifaceted yet understudied. While blood is expected to play a central role in transmission, pathogen development, vector behavior, and vector competence, in experimental settings, most studies are developed in the frame of a single, infected blood meal. To effectively combat vector-borne diseases, we need to determine what is the influence of insect blood-feeding behavior on transmission and development of pathogens, toward translation to natural field settings. This review summarizes current findings, highlights key gaps, and outlines future research directions to enhance our understanding of the role of blood in vector-borne disease transmission.
Collapse
Affiliation(s)
- Pedro Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Patrick Huffcutt
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Servio P Ribeiro
- Laboratory of Ecology of Diseases & Forests, NUPEB/ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
6
|
Kribs CM. Estimating per-infection cost and burden for dengue and Zika as a function of antibody-dependent enhancement. PLoS Negl Trop Dis 2025; 19:e0012876. [PMID: 40014622 PMCID: PMC11906165 DOI: 10.1371/journal.pntd.0012876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 03/13/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
The complex immune interactions produced by the tetravalent dengue vaccine Dengvaxia have foregrounded the important role of antibody-dependent enhancement (ADE) in dengue infection. Some evidence exists that ADE may extend beyond the four dengue serotypes to Zika, a closely related flavivirus transmitted by the same mosquito species as dengue, and may also account for the increased severity of some cases. Estimates of the public health impact of dengue vaccination may then need to include its effects on the transmission of Zika in addition to dengue. This study gathers primary references to build estimates of per-case economic cost and disease burden for dengue and Zika infection with and without ADE in the ten countries where clinical trials were held for Dengvaxia, under the hypothesis that severe outcomes are associated with ADE of disease. From these estimates, per-infection weighted averages are developed (without assumptions on transmission dynamics or case totals) which will facilitate population-level estimates of the potential impact of dengue vaccination on a dual outbreak using mathematical modeling. Results estimate that ADE amplifies the per-case toll of dengue by a factor of 2-16 but increases that of a Zika case by more than two orders of magnitude due to the greater risk of severe consequences. As expected, dengue vaccination affects per-infection dengue toll much more when high prior dengue seropositivity involves a different serotype than the one(s) circulating, but that same high dengue seropositivity makes vaccination exacerbate Zika toll less.
Collapse
Affiliation(s)
- Christopher M. Kribs
- Departments of Mathematics and Teacher & Administrator Preparation, University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
7
|
Gallichotte EN, Fitzmeyer EA, Williams L, Spangler MC, Bosco-Lauth AM, Ebel GD. WNV and SLEV coinfection in avian and mosquito hosts: impact on viremia, antibody responses, and vector competence. J Virol 2024; 98:e0104124. [PMID: 39324792 PMCID: PMC11495067 DOI: 10.1128/jvi.01041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted by Culex, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (Turdus migratorius), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, in Culex cells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and two Culex species with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk.
Collapse
Affiliation(s)
- Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Landon Williams
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mark Cole Spangler
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Angela M. Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Peng J, Zhang M, Wang G, Zhang D, Zheng X, Li Y. Biased virus transmission following sequential coinfection of Aedes aegypti with dengue and Zika viruses. PLoS Negl Trop Dis 2024; 18:e0012053. [PMID: 38557981 PMCID: PMC10984552 DOI: 10.1371/journal.pntd.0012053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Mosquito-borne arboviruses are expanding their territory and elevating their infection prevalence due to the rapid climate change, urbanization, and increased international travel and global trade. Various significant arboviruses, including the dengue virus, Zika virus, Chikungunya virus, and yellow fever virus, are all reliant on the same primary vector, Aedes aegypti. Consequently, the occurrence of arbovirus coinfection in mosquitoes is anticipated. Arbovirus coinfection in mosquitoes has two patterns: simultaneous and sequential. Numerous studies have demonstrated that simultaneous coinfection of arboviruses in mosquitoes is unlikely to exert mutual developmental influence on these viruses. However, the viruses' interplay within a mosquito after the sequential coinfection seems intricated and not well understood. METHODOLOGY/PRINCIPAL FINDINGS We conducted experiments aimed at examining the phenomenon of arbovirus sequential coinfection in both mosquito cell line (C6/36) and A. aegypti, specifically focusing on dengue virus (DENV, serotype 2) and Zika virus (ZIKV). We firstly observed that DENV and ZIKV can sequentially infect mosquito C6/36 cell line, but the replication level of the subsequently infected ZIKV was significantly suppressed. Similarly, A. aegypti mosquitoes can be sequentially coinfected by these two arboviruses, regardless of the order of virus exposure. However, the replication, dissemination, and the transmission potential of the secondary virus were significantly inhibited. We preliminarily explored the underlying mechanisms, revealing that arbovirus-infected mosquitoes exhibited activated innate immunity, disrupted lipid metabolism, and enhanced RNAi pathway, leading to reduced susceptibility to the secondary arbovirus infections. CONCLUSIONS/SIGNIFICANCE Our findings suggest that, in contrast to simultaneous arbovirus coinfection in mosquitoes that can promote the transmission and co-circulation of these viruses, sequential coinfection appears to have limited influence on arbovirus transmission dynamics. However, it is important to note that more experimental investigations are needed to refine and expand upon this conclusion.
Collapse
Affiliation(s)
- Jiameng Peng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Meichun Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Gang Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Dongjing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Hanley KA, Cecilia H, Azar SR, Moehn BA, Gass JT, Oliveira da Silva NI, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts. Nat Commun 2024; 15:2682. [PMID: 38538621 PMCID: PMC10973334 DOI: 10.1038/s41467-024-46810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brett A Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jordan T Gass
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Information School, University of Washington, Seattle, WA, 98105, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
10
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. Parasit Vectors 2024; 17:73. [PMID: 38374048 PMCID: PMC10877814 DOI: 10.1186/s13071-023-06109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. METHODS Here, we examine single and co-infection of Mayaro virus (D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27 °C) and hot (32 °C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. RESULTS Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes with a tendency for higher titers in co-infected mosquitoes at both temperatures, and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs. single infections and was more evident at earlier time points (7 vs. 14 days post infection) for Mayaro. The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. CONCLUSIONS Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses. However, more studies are necessary to clarify the role of co-infection at different temperature regimes, including under more natural temperature settings.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Dengue and zika seropositivity, burden, endemicity, and cocirculation antibodies in Nigeria. Ann Med 2023; 55:652-662. [PMID: 37074313 PMCID: PMC9970210 DOI: 10.1080/07853890.2023.2175903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Mosquito-borne infections are of global health concern because of their rapid spread and upsurge, which creates a risk for coinfections. DENV and ZIKV are transmitted by Aedes aegypti and A. albopictus and are prevalent in Nigeria and neighbouring countries. However, their seroprevalence, burden, hidden endemicity and possible cocirculation are poorly understood in Nigeria. METHODS We conducted a cross-sectional study of 871 participants from three regions of Nigeria. All serum samples were analysed using malaria RDT and the immunoblot molecular diagnostic assay recomLine Tropical Fever for the presence of arboviral antibody serological marker IgG (Mikrogen Diagnostik, Neuried, Germany) with DENV and ZIKV Nonstructural protein 1 (NS 1), DENV and ZIKV Equad (variant of the envelope protein with designated mutations to increase specificity), according to the manufacturer's instructions. RESULTS The overall IgG antibody seropositivity against DENV-flavivirus was 44.7% (389/871); 95% CI (41.41-47.99), while ZIKV-flavivirus was 19.2% (167/871); 95% CI (0.16-0.21), and DENV-ZIKV-flavivirus cocirculation antibody seropositivity was 6.2%5 (54/871); 95% CI (0.6-0.7) in the three study regions of Nigeria. The study cohort presented similar clinical signs and symptoms of flaviviruses (DENV and ZIKV) in all three study regions. CONCLUSION This study highlighted an unexpectedly high antibody seropositivity, burden, hidden endemicity, and regional spread of mono- and co-circulating flaviviruses (DENV and ZIKV) in Nigeria.Key messagesDengue flavivirus sero-cross-reactivity drives antibody-dependent enhancement of ZIKV infection.Both viruses share common hosts (humans) and vectors (primarily Aedes aegypti), and are thus influenced by similar biological, ecological, and economic factors, resulting in epidemiological synergy.Additionally, the actual burden in epidemic and interepidemic periods is grossly or chronically unknown and underreported. Despite this trend and the potential public health threat, there are no reliable data, and little is known about these arboviral co-circulation infections.
Collapse
|
12
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541186. [PMID: 37292724 PMCID: PMC10245717 DOI: 10.1101/2023.05.17.541186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. Here, we examine single and co-infection of Mayaro virus (-D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27°C) and hot (32°C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes, with a tendency for higher titers in co-infected mosquitoes at both temperatures and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs single infections and was more evident at earlier timepoints (7 vs 14 days post infection). The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses, but further studies are necessary to clarify the role of co-infection at different and variable temperature regimes.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
Lin DCD, Weng SC, Tsao PN, Chu JJH, Shiao SH. Co-infection of dengue and Zika viruses mutually enhances viral replication in the mosquito Aedes aegypti. Parasit Vectors 2023; 16:160. [PMID: 37165438 PMCID: PMC10172068 DOI: 10.1186/s13071-023-05778-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti transmits two of the most serious mosquito-borne viruses, dengue virus (DENV) and Zika virus (ZIKV), which results in significant human morbidity and mortality worldwide. The quickly shifting landscapes of DENV and ZIKV endemicity worldwide raise concerns that their co-circulation through the Ae. aegypti mosquito vector could greatly exacerbate the disease burden in humans. Recent reports have indicated an increase in the number of co-infection cases in expanding co-endemic regions; however, the impact of co-infection on viral infection and the detailed molecular mechanisms remain to be defined. METHODS C6/36 (Aedes albopictus) cells were cultured in Dulbecco's modified Eagle medium/Mitsuhashi and Maramorosch Insect Medium (DMEM/MM) (1:1) containing 2% heat-inactivated fetal bovine serum and 1× penicillin/streptomycin solution. For virus propagation, the cells were infected with either DENV serotype 2 (DENV2) strain 16681 or ZIKV isolate Thailand/1610acTw (MF692778.1). Mosquitoes (Ae. aegypti UGAL [University of Georgia Laboratory]/Rockefeller strain) were orally infected with DENV2 and ZIKV through infectious blood-feeding. RESULTS We first examined viral replication activity in cells infected simultaneously, or sequentially, with DENV and ZIKV, and found interspecies binding of viral genomic transcripts to the non-structural protein 5 (NS5). When we challenged Ae. aegypti mosquitos with both DENV2 and ZIKV sequentially to probe similar interactions, virus production and vector susceptibility to infection were significantly enhanced. CONCLUSIONS Our results suggest that DENV2 and ZIKV simultaneously establishing infection in the Ae. aegypti mosquito vector may augment one another during replication. The data also implicate the homologous NS5 protein as a key intersection between the flaviviruses in co-infection, highlighting it as a potential target for vector control.
Collapse
Affiliation(s)
- Daniel Chieh-Ding Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Kribs C, Greenhalgh D. Impact of tetravalent dengue vaccination with screening, ADE, and altered infectivity on single-serotype dengue and Zika transmission. J Math Biol 2023; 86:85. [PMID: 37119296 DOI: 10.1007/s00285-023-01915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/28/2022] [Accepted: 04/02/2023] [Indexed: 05/01/2023]
Abstract
Acquired immunity to a dengue virus serotype (whether by infection or the only licensed dengue vaccine) can produce antibody-dependent enhancement (ADE) in later infections with another dengue serotype, resulting in higher viral loads and more severe symptoms such as dengue hemorrhagic fever, unless the person already has immunity to multiple dengue serotypes. Screening to confirm dengue seropositivity is therefore recommended before vaccination. Recent studies suggest that the closely-related Zika virus may also interact with dengue through ADE. This study uses a mathematical model to evaluate the likely impact of imperfect screening and dengue vaccination on the spread of both viruses in a population where only one dengue serotype circulates, although the vaccine may take against any or all of the four recognized serotypes. Analysis focuses on the reproductive numbers of the viruses. Results indicate that vaccination increases the spread of Zika through induced ADE, while its impact on the spread of dengue depends on screening specificity and serotype-specific vaccine efficacies, as well as the intensity of ADE. Numerical analysis identifies the roles played by age-in and catch-up vaccination as well as screening characteristics and prior dengue exposure.
Collapse
Affiliation(s)
- Christopher Kribs
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA.
| | - David Greenhalgh
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, UK
| |
Collapse
|
15
|
da Conceição PJP, de Carvalho LR, de Godoy BLV, Nogueira ML, Terzian ACB, de Godoy MF, Calmon MF, Bittar C, Rahal P. Detection of DENV-2 and ZIKV coinfection in southeastern Brazil by serum and urine testing. Med Microbiol Immunol 2023:10.1007/s00430-023-00762-z. [PMID: 37029306 DOI: 10.1007/s00430-023-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE Aedes aegypti mosquito-borne diseases have a significant impact on public health in Brazil. In this study, we investigated the presence of the Zika virus (ZIKV) and dengue virus (DENV) in serum and urine samples from symptomatic participants who attended an Emergency Care Unit located in a city in the northwestern region of São Paulo between February 2018 and April 2019. METHODS Serum and urine samples were collected from participants suspected of having arbovirus infection. After the extraction of viral RNA, viral detection was performed by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) (One-Step RT-qPCR). RESULTS A total of 305 participants participated in this study. A total of 283 blood and 270 urine samples were collected. Of 305 patients, 36.4% (111/305) were positive for ZIKV, 43.3% (132/305) for DENV2, and 0.3% (1/305) for DENV1. Coinfection with ZIKV/DENV2 was observed in 13.1% of participants. If only serum samples were used, ZIKV detection would have decreased to 23.3% (71/305). Of all the participants included in the study, only one was suspected of having ZIKV infection based on clinical diagnosis, and the remaining participants were suspected of having DENV. CONCLUSION By testing serum and urine samples, we increased the detection of both viruses and detected considerable levels of ZIKV and DENV-2 coinfection when compared to other studies. Additionally, we detected an unnoticed ZIKV outbreak in the city. These findings highlight the importance of the molecular diagnosis of arboviruses to aid public health surveillance and management strategies.
Collapse
Affiliation(s)
| | | | - Bianca Lara Venâncio de Godoy
- Department of Molecular Biology, Medical School of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Mauricio Lacerda Nogueira
- Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Ana Carolina Bernardes Terzian
- Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Moacir Fernandes de Godoy
- Department of Cardiology and Cardiovascular Surgery, Medical School of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Marília Freitas Calmon
- Department of Biology, São Paulo State University-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Cintia Bittar
- Department of Biology, São Paulo State University-UNESP, São José do Rio Preto, São Paulo, Brazil.
- Laboratory of Molecular Immunology-The Rockefeller University, New York, NY, USA.
| | - Paula Rahal
- Department of Biology, São Paulo State University-UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
16
|
da Costa Paz A, Chaves BA, Godoy RSM, Coelho DF, Vieira Júnior AB, Alencar RM, Alcântara JA, Félix LDS, Oliveira CCA, Monteiro WM, Lacerda MVG, Secundino NFC, Pimenta PFP. Vector Competence for Zika Virus Changes Depending on the Aedes aegypti's Region of Origin in Manaus: A Study of an Endemic Brazilian Amazonian City. Viruses 2023; 15:v15030770. [PMID: 36992479 PMCID: PMC10058289 DOI: 10.3390/v15030770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
Zika virus (ZIKV) is transmitted to humans by the infectious bite of mosquitoes such as Aedes aegypti. In a city, the population control of mosquitoes is carried out according to alerts generated by different districts via the analysis of the mosquito index. However, we do not know whether, besides mosquito abundance, the susceptibility of mosquitoes could also diverge among districts and thus impact the dissemination and transmission of arboviruses. After a viremic blood meal, the virus must infect the midgut, disseminate to tissues, and reach the salivary gland to be transmitted to a vertebrate host. This study evaluated the patterns of ZIKV infection in the Ae. aegypti field populations of a city. The disseminated infection rate, viral transmission rate, and transmission efficiency were measured using quantitative PCR at 14 days post-infection. The results showed that all Ae. aegypti populations had individuals susceptible to ZIKV infection and able to transmit the virus. The infection parameters showed that the geographical area of origin of the Ae. aegypti influences its vector competence for ZIKV transmission.
Collapse
Affiliation(s)
- Andréia da Costa Paz
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
| | - Bárbara Aparecida Chaves
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - Raquel Soares Maia Godoy
- Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | | | - Ademir Bentes Vieira Júnior
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
| | - Rodrigo Maciel Alencar
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
| | - João Arthur Alcântara
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
| | - Luiza Dos Santos Félix
- Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - Cinthia Catharina Azevedo Oliveira
- Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Fiocruz, Manaus 79057-070, Amazonas, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nágila Francinete Costa Secundino
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Amazonas, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Fiocruz, IOCRUZ, Belo Horizonte 30190-002, Minas Gerais, Brazil
| |
Collapse
|
17
|
García-Romero C, Carrillo Bilbao GA, Navarro JC, Martin-Solano S, Saegerman C. Arboviruses in Mammals in the Neotropics: A Systematic Review to Strengthen Epidemiological Monitoring Strategies and Conservation Medicine. Viruses 2023; 15:417. [PMID: 36851630 PMCID: PMC9962704 DOI: 10.3390/v15020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) are a diverse group of ribonucleic acid (RNA) viruses, with the exception of African swine fever virus, that are transmitted by hematophagous arthropods to a vertebrate host. They are the important cause of many diseases due to their ability to spread in different environments and their diversity of vectors. Currently, there is no information on the geographical distribution of the diseases because the routes of transmission and the mammals (wild or domestic) that act as potential hosts are poorly documented or unknown. We conducted a systematic review from 1967 to 2021 to identify the diversity of arboviruses, the areas, and taxonomic groups that have been monitored, the prevalence of positive records, and the associated risk factors. We identified forty-three arboviruses in nine mammalian orders distributed in eleven countries. In Brazil, the order primates harbor the highest number of arbovirus records. The three most recorded arboviruses were Venezuelan equine encephalitis, Saint Louis encephalitis and West Nile virus. Serum is the most used sample to obtain arbovirus records. Deforestation is identified as the main risk factor for arbovirus transmission between different species and environments (an odds ratio of 1.46 with a 95% confidence interval: 1.34-1.59). The results show an increase in the sampling effort over the years in the neotropical region. Despite the importance of arboviruses for public health, little is known about the interaction of arboviruses, their hosts, and vectors, as some countries and mammalian orders have not yet been monitored. Long-term and constant monitoring allows focusing research on the analysis of the interrelationships and characteristics of each component animal, human, and their environment to understand the dynamics of the diseases and guide epidemiological surveillance and vector control programs. The biodiversity of the Neotropics should be considered to support epidemiological monitoring strategies.
Collapse
Affiliation(s)
- Cinthya García-Romero
- Maestría en Biodiversidad y Cambio Climático, Facultad de Ciencias del Medio Ambiente, Universidad Tecnológica Indoamérica, Quito 170521, Ecuador
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Gabriel Alberto Carrillo Bilbao
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
- Facultad de Filosofía, Letras y Ciencias de la Educación, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Juan-Carlos Navarro
- Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170521, Ecuador
| | - Sarah Martin-Solano
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, P.O. Box 171-5-231B, Sangolquí 171103, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
18
|
Bhardwaj A, Sharma R, Grover A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J Biomol Struct Dyn 2023; 41:1-15. [PMID: 34796791 DOI: 10.1080/07391102.2021.2002720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dengue and zika are amongst the most prevalent mosquito-borne diseases caused by closely related members Dengue virus (DENV) and Zika virus (ZIKV), respectively, of the Flaviviridae family. DENV and ZIKV have been reported to co-infect several people, resulting in fatalities across the world. A vaccine that can safeguard against both these pathogens concurrently, can offer several advantages. This study has employed immuno-informatics for devising a multi-epitope, multi-pathogenic vaccine against both these viruses. Since, the two viruses share a common vector source, whose salivary components are reported to aid viral pathogenesis; antigenic salivary proteins from Aedes aegypti were also incorporated into the design of the vaccine along with conserved structural and non-structural viral proteins. Conserved B- and T-cell epitopes were identified for all the selected antigenic proteins. These epitopes were merged and further supplemented with β-defensin as an adjuvant, to yield an immunogenic vaccine construct. In-silico 3D modeling and structural validation of the vaccine construct was conducted, followed by its molecular docking and molecular dynamics simulation studies with human TLR2. Immune simulation study was also performed, and it further provided support that the designed vaccine can mount an effective immune response and hence provide protection against both DENV and ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Bhardwaj
- School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
19
|
Gonçalves Maciel LH, Vieira da Rocha Neto C, Ferreira Martins Y, de Azevedo Furtado F, Cunha Teixeira P, Oliveira Dias MY, Batista Rodrigues YK, Ribeiro Piauilino IC, Damasceno Pinto S, Côrte Alencar AC, de Lima Gimaque JB, Gomes Mourão MP, Guimarães Lacerda MV, da Costa Castilho M, Bôtto-Menezes C. Prevalence of arboviruses and other infectious causes of skin rash in patients treated at a tertiary health unit in the Brazilian Amazon. PLoS Negl Trop Dis 2022; 16:e0010727. [PMID: 36228027 PMCID: PMC9560595 DOI: 10.1371/journal.pntd.0010727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the clinical course of diseases such as arboviruses, skin rashes may appear, as is often seen in other infectious diseases. The aim of this study was to estimate the prevalence of arboviruses and other infectious causes of skin rash in a tertiary health unit in Manaus, Amazonas state, Western Brazilian Amazon. METHODOLOGY/PRINCIPAL FINDINGS This was a cross-sectional study of patients presenting with rash who sought care at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD) from February 2018 to May 2019. Individuals of either gender, aged over 18 years, were invited to participate voluntarily. Infection by Zika virus (ZIKV), dengue virus (DENV), chikungunya virus (CHIKV), Mayaro virus (MAYV), Oropouche virus (OROV) and measles was evaluated using RT-qPCR (real-time polymerase chain reaction). Immunodiagnostic tests for EBV, CMV, HIV, syphilis, rubella and measles were also performed. A total of 340 participants were included, most were female (228, 67.1%) with an average age of 36.5 years (SD ± 12.2 years). The highest prevalence was of ZIKV monoinfections (65.3%, 222/340), followed by DENV (0.9%, 3/340) and CHIKV infection (0.3%, 1/340). No cases of MAYV, OROV or rubella were found. Other causes of skin rash were detected: measles (2.9%, 10/340), parvovirus B19 (0.9% 3/340), HIV (0.3%, 1/340) and syphilis 0.6% (2/340). The co-infections identified were ZIKV+HIV (0.3%, 1/340), ZIKV+measles (0.3%, 1/340), ZIKV+parvovirus B19 (0.3%, 1/340), ZIKV+EBV (0.3%, 1/340), EBV+parvovirus B19 (0.3%, 1/340), CMV+parvovirus B19 (0.6%, 2/340), CMV+syphilis (0.3%, 1/340), ZIKV+EBV+parvovirus B19 (0.3%, 1/340) and CMV+EBV+parvovirus B19 (0.9%, 3/340). Approximately one quarter of patients had no defined cause for their skin rash (25.3%, 86/340). CONCLUSIONS Despite the benign clinical evolution of most of the diseases diagnosed in this series of cases, syndromic surveillance of diseases such as syphilis and HIV are of utmost importance. Periodic serosurveillance might also aid in evaluating the trends of endemic diseases and eventual outbreaks.
Collapse
Affiliation(s)
| | - Cosmo Vieira da Rocha Neto
- Programa de Iniciação Científica, Fundação de Medicina Tropical Doutor Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brasil
| | - Yasmin Ferreira Martins
- Programa de Iniciação Científica, Fundação de Medicina Tropical Doutor Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brasil
| | | | - Pâmela Cunha Teixeira
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | - Maianne Yasmin Oliveira Dias
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | | | | | - Sérgio Damasceno Pinto
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | | | | | - Maria Paula Gomes Mourão
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Instituto Leônidas e Maria Deane (ILMD–Fiocruz Amazônia), Manaus, Amazonas, Brazil
| | | | - Camila Bôtto-Menezes
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
20
|
Gaunt MW, Pettersson JHO, Kuno G, Gaunt B, de Lamballerie X, Gould EA. Widespread Interspecific Phylogenetic Tree Incongruence Between Mosquito-Borne and Insect-Specific Flaviviruses at Hotspots Originally Identified in Zika Virus. Virus Evol 2022; 8:veac027. [PMID: 35591877 PMCID: PMC9113262 DOI: 10.1093/ve/veac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/22/2021] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Intraspecies (homologous) phylogenetic incongruence, or ‘tree conflict’ between different loci within the same genome of mosquito-borne flaviviruses (MBFV), was first identified in dengue virus (DENV) and subsequently in Japanese encephalitis virus (JEV), St Louis encephalitis virus, and Zika virus (ZIKV). Recently, the first evidence of phylogenetic incongruence between interspecific members of the MBFV was reported in ZIKV and its close relative, Spondweni virus. Uniquely, these hybrid proteomes were derived from four incongruent trees involving an Aedes-associated DENV node (1 tree) and three different Culex-associated flavivirus nodes (3 trees). This analysis has now been extended across a wider spectrum of viruses within the MBFV lineage targeting the breakpoints between phylogenetic incongruent loci originally identified in ZIKV. Interspecies phylogenetic incongruence at these breakpoints was identified in 10 of 50 viruses within the MBFV lineage, representing emergent Aedes and Culex-associated viruses including JEV, West Nile virus, yellow fever virus, and insect-specific viruses. Thus, interspecies phylogenetic incongruence is widespread amongst the flaviviruses and is robustly associated with the specific breakpoints that coincide with the interspecific phylogenetic incongruence previously identified, inferring they are ‘hotspots’. The incongruence amongst the emergent MBFV group was restricted to viruses within their respective associated epidemiological boundaries. This MBFV group was RY-coded at the third codon position (‘wobble codon’) to remove transition saturation. The resulting ‘wobble codon’ trees presented a single topology for the entire genome that lacked any robust evidence of phylogenetic incongruence between loci. Phylogenetic interspecific incongruence was therefore observed for exactly the same loci between amino acid and the RY-coded ‘wobble codon’ alignments and this incongruence represented either a major part, or the entire genomes. Maximum likelihood codon analysis revealed positive selection for the incongruent lineages. Positive selection could result in the same locus producing two opposing trees. These analyses for the clinically important MBFV suggest that robust interspecific phylogenetic incongruence resulted from amino acid selection. Convergent or parallel evolutions are evolutionary processes that would explain the observation, whilst interspecific recombination is unlikely.
Collapse
Affiliation(s)
- Michael W Gaunt
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John H-O Pettersson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goro Kuno
- Formerly, Centers for Disease Control, Fort Collins, CO 80521, USA
| | - Bill Gaunt
- Aeon-sys, MBCS Kensington Road, Barnsley S75 2TU, UK
| | - Xavier de Lamballerie
- UMR “Unité des Virus Emergents”, Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
- APHM Public Hospitals of Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Ernest A Gould
- UMR “Unité des Virus Emergents”, Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
21
|
Carvalho KDS, Guedes DRD, Crespo MM, de Melo-Santos MAV, Silva-Filha MHNL. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasit Vectors 2021; 14:379. [PMID: 34321098 PMCID: PMC8317411 DOI: 10.1186/s13071-021-04880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aedes aegypti can transmit arboviruses worldwide, and Bacillus thuringiensis svar. israelensis (Bti)-based larvicides represent an effective tool for controlling this species. The safety of Bti and lack of resistance have been widely reported; however, little is known regarding the impact of the extensive use of these larvicides on the life traits of mosquitoes. Therefore, this study investigated biological parameters, including susceptibility to arbovirus, of an Ae. aegypti strain (RecBti) subjected to 29 generations of exposure to Bti compared with the RecL reference strain. Methods The biological parameters of individuals reared under controlled conditions were compared. Also, the viral susceptibility of females not exposed to Bti during their larval stage was analysed by oral infection and followed until 14 or 21 days post-infection (dpi). Results RecBti individuals did not display alterations in the traits that were assessed (fecundity, fertility, pupal weight, developmental time, emergence rate, sex ratio and haematophagic capacity) compared to RecL individuals. Females from both strains were susceptible to dengue serotype 2 (DENV-2) and Zika virus (ZIKV). However, RecBti females showed significantly higher rates of ZIKV infection compared with RecL females at 7 (90% versus 68%, Chi-square: χ2 = 7.27, df = 1, P = 0.006) and 14 dpi (100% versus 87%, Chi-square: χ2 = 7.69, df = 1, P = 0.005) and for dissemination at 7 dpi (83.3% versus 36%, Fisher’s exact test: P < 0.0001, OR = 0.11, 95% CI 0.03–0.32). Quantification of DENV-2 and ZIKV viral particles produced statistically similar results for females from both strains. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not alter most of the evaluated biological parameters, except that RecBti females exhibited a higher vector susceptibility for ZIKV. This finding is related to a background of Bti exposure for several generations but not to a previous exposure of the tested females during the larval stage. This study highlights mosquito responses that could be associated with the chronic exposure to Bti in addition to the primary larvicidal effect elicited by this control agent. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04880-6.
Collapse
Affiliation(s)
| | | | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
22
|
Rodrigues NB, Godoy RSM, Orfano AS, Chaves BA, Campolina TB, Costa BDA, Félix LDS, Silva BM, Norris DE, Pimenta PFP, Secundino NFC. Brazilian Aedes aegypti as a Competent Vector for Multiple Complex Arboviral Coinfections. J Infect Dis 2021; 224:101-108. [PMID: 33544850 DOI: 10.1093/infdis/jiab066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aedes aegypti is a highly competent vector in the transmission of arboviruses, such as chikungunya, dengue, Zika, and yellow fever viruses, and causes single and coinfections in the populations of tropical countries. METHODS The infection rate, viral abundance (VA), vector competence (VC), disseminated infection, and survival rate were recorded after single and multiple infections of the vector with 15 combinations of chikungunya, dengue, Zika, and yellow fever arboviruses. RESULTS Infection rates were 100% in all single and multiple infection experiments, except in 1 triple coinfection that presented a rate of 50%. The VC and disseminated infection rate varied from 100% (in single and quadruple infections) to 40% (in dual and triple infections). The dual and triple coinfections altered the VC and/or VA of ≥1 arbovirus. The highest viral VAs were detected for a single infection with chikungunya. The VAs in quadruple infections were similar when compared with each respective single infection. A decrease in survival rates was observed in a few combinations. CONCLUSIONS A. aegypti was able to host all single and multiple arboviral coinfections. The interference of the chikungunya virus suggests that distinct arbovirus families may have a significant role in complex coinfections.
Collapse
Affiliation(s)
- Nilton Barnabé Rodrigues
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Soares Maia Godoy
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Silva Orfano
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Aparecida Chaves
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Thais Bonifácio Campolina
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Dos Anjos Costa
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luíza Dos Santos Félix
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Melo Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Douglas Eric Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paulo Filemon Paolucci Pimenta
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Nagila Francinete Costa Secundino
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
23
|
Trammell CE, Goodman AG. Host Factors That Control Mosquito-Borne Viral Infections in Humans and Their Vector. Viruses 2021; 13:748. [PMID: 33923307 PMCID: PMC8145797 DOI: 10.3390/v13050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mosquito-borne viral infections are responsible for a significant degree of morbidity and mortality across the globe due to the severe diseases these infections cause, and they continue to increase each year. These viruses are dependent on the mosquito vector as the primary means of transmission to new vertebrate hosts including avian, livestock, and human populations. Due to the dynamic host environments that mosquito-borne viruses pass through as they are transmitted between vector and vertebrate hosts, there are various host factors that control the response to infection over the course of the pathogen's life cycle. In this review, we discuss these host factors that are present in either vector or vertebrate models during infection, how they vary or are conserved between hosts, and their implications in future research pertaining to disease prevention and treatment.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- NIH Protein Biotechnology Training Program, Washington State University, Pullman, WA 99164-6240, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
24
|
Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines (Basel) 2021; 9:vaccines9030294. [PMID: 33810028 PMCID: PMC8005041 DOI: 10.3390/vaccines9030294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection and its associated congenital and other neurological disorders, particularly microcephaly and other fetal developmental abnormalities, constitute a World Health Organization (WHO) Zika Virus Research Agenda within the WHO’s R&D Blueprint for Action to Prevent Epidemics, and continue to be a Public Health Emergency of International Concern (PHEIC) today. ZIKV pathogenicity is initiated by viral infection and propagation across multiple placental and fetal tissue barriers, and is critically strengthened by subverting host immunity. ZIKV immune evasion involves viral non-structural proteins, genomic and non-coding RNA and microRNA (miRNA) to modulate interferon (IFN) signaling and production, interfering with intracellular signal pathways and autophagy, and promoting cellular environment changes together with secretion of cellular components to escape innate and adaptive immunity and further infect privileged immune organs/tissues such as the placenta and eyes. This review includes a description of recent advances in the understanding of the mechanisms underlying ZIKV immune modulation and evasion that strongly condition viral pathogenesis, which would certainly contribute to the development of anti-ZIKV strategies, drugs, and vaccines.
Collapse
|
25
|
Morgan J, Strode C, Salcedo-Sora JE. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl Trop Dis 2021; 15:e0009259. [PMID: 33705409 PMCID: PMC7987142 DOI: 10.1371/journal.pntd.0009259] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/23/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
| | - Clare Strode
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
- * E-mail: (CS); (JES-S)
| | - J. Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (CS); (JES-S)
| |
Collapse
|
26
|
Teixeira AF, de Brito BB, Correia TML, Viana AIS, Carvalho JC, da Silva FAF, Santos MLC, da Silveira EA, Neto HPG, da Silva NMP, Rocha CVS, Pinheiro FD, Chaves BA, Monteiro WM, de Lacerda MVG, Secundino NFC, Pimenta PFP, de Melo FF. Simultaneous circulation of zakat, dengue, and chikungunya viruses and their vertical co-transmission among Aedes aegypti. Acta Trop 2021; 215:105819. [PMID: 33406443 DOI: 10.1016/j.actatropica.2020.105819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
The outbreaks caused by the Aedes aegypti-transmitted dengue virus (DENV), zakat virus (ZIKV), and chikungunya virus (CHIKV) result in a significant impact to the health systems of tropical countries. Furthermore, the occurrence of patients coinfected by at least two of these arboviruses is an aggravating factor in that scenario. On this basis, surveillance tools such as the Rapid Index Survey for Aedes aegypti (LIRAa) are used to estimate vector infestation in order to improve the prediction of human outbreaks. Ae. aegypti eggs were collected in the city of Vitória da Conquista, in Bahia State, Brazil, and subsequently hatched into larvae, which were analyzed in pools or individually for the presence of DENV, ZIKV, and CHIKV by molecular biology methods. The detection data for arboviruses were crossed with the LIRAa obtained in each region of the study city. Thirty larvae pools were analyzed, and fourteen (46.6%) of them were detected positive for DENV, ZIKV, and/or CHIKV. Among the individually analyzed larvae (n = 30), nine (30%) were positive for any of these arboviruses, and four (13.3%) were simultaneously coinfected by DENV and ZIKV. Furthermore, there was a positive correlation between the detection of circulating arboviruses and LIRAa. The simultaneous Ae. aegypti larvae infection by two different arboviruses is an unprecedented finding. This result suggests the occurrence of a vertical arboviruses co-transmission from the female mosquito to its offspring in nature. The occurrence of concomitant circulation of DENV, ZIKV, and CHIKV in Ae. aegypti from a single study region is another finding of this article. Finally, LIRAa seems to not only estimate vector infestation but also to predict circulation of arboviruses.
Collapse
Affiliation(s)
- Adriano Fernandes Teixeira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Thiago Macêdo Lopes Correia
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Airton Idalécio Sousa Viana
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Juliana Cabral Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Filipe Antônio França da Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Eliezer Almeida da Silveira
- Secretaria Municipal de Saúde de Vitória da Conquista, Rua Rotary Club, 69, Centro, Postal code: 45040-150, Vitória da Conquista, Bahia, Brazil
| | - Henry Paul Granger Neto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Natalia Maria Pereira da Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Cínthya Viana Souza Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Fillipe Dantas Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil
| | - Bárbara Aparecida Chaves
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Avenida Pedro Teixeira, 25, Postal code: 69040-000, Dom Pedro, Manaus, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Avenida Pedro Teixeira, 25, Postal code: 69040-000, Dom Pedro, Manaus, Amazonas, Brazil
| | - Marcus Vinícius Guimarães de Lacerda
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Avenida Pedro Teixeira, 25, Postal code: 69040-000, Dom Pedro, Manaus, Amazonas, Brazil; Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, FIOCRUZ-AM, Rua Terezina, 476, Postal code: 69057-070, Adrianópolis, Manaus, Amazonas, Brazil
| | - Nágila Francinete Costa Secundino
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Avenida Pedro Teixeira, 25, Postal code: 69040-000, Dom Pedro, Manaus, Amazonas, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz, FIOCRUZ-MG, Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte, Postal code: 30190-002, Minas Gerais, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Avenida Pedro Teixeira, 25, Postal code: 69040-000, Dom Pedro, Manaus, Amazonas, Brazil; Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Avenida Pedro Teixeira, 25, Postal code: 69040-000, Dom Pedro, Manaus, Amazonas, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz, FIOCRUZ-MG, Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte, Postal code: 30190-002, Minas Gerais, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, 58, Postal code: 45029-094, Candeias, Vitória da Conquista, Bahia, Brazil.
| |
Collapse
|
27
|
Kirstein OD, Ayora-Talavera G, Koyoc-Cardeña E, Chan Espinoza D, Che-Mendoza A, Cohuo-Rodriguez A, Granja-Pérez P, Puerta-Guardo H, Pavia-Ruz N, Dunbar MW, Manrique-Saide P, Vazquez-Prokopec GM. Natural arbovirus infection rate and detectability of indoor female Aedes aegypti from Mérida, Yucatán, Mexico. PLoS Negl Trop Dis 2021; 15:e0008972. [PMID: 33395435 PMCID: PMC7781390 DOI: 10.1371/journal.pntd.0008972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022] Open
Abstract
Arbovirus infection in Aedes aegypti has historically been quantified from a sample of the adult population by pooling collected mosquitoes to increase detectability. However, there is a significant knowledge gap about the magnitude of natural arbovirus infection within areas of active transmission, as well as the sensitivity of detection of such an approach. We used indoor Ae. aegypti sequential sampling with Prokopack aspirators to collect all mosquitoes inside 200 houses with suspected active ABV transmission from the city of Mérida, Mexico, and tested all collected specimens by RT-PCR to quantify: a) the absolute arbovirus infection rate in individually tested Ae. aegypti females; b) the sensitivity of using Prokopack aspirators in detecting ABV-infected mosquitoes; and c) the sensitivity of entomological inoculation rate (EIR) and vectorial capacity (VC), two measures ABV transmission potential, to different estimates of indoor Ae. aegypti abundance. The total number of Ae. aegypti (total catch, the sum of all Ae. aegypti across all collection intervals) as well as the number on the first 10-min of collection (sample, equivalent to a routine adult aspiration session) were calculated. We individually tested by RT-PCR 2,161 Aedes aegypti females and found that 7.7% of them were positive to any ABV. Most infections were CHIKV (77.7%), followed by DENV (11.4%) and ZIKV (9.0%). The distribution of infected Aedes aegypti was overdispersed; 33% houses contributed 81% of the infected mosquitoes. A significant association between ABV infection and Ae. aegypti total catch indoors was found (binomial GLMM, Odds Ratio > 1). A 10-min indoor Prokopack collection led to a low sensitivity of detecting ABV infection (16.3% for detecting infected mosquitoes and 23.4% for detecting infected houses). When averaged across all infested houses, mean EIR ranged between 0.04 and 0.06 infective bites per person per day, and mean VC was 0.6 infectious vectors generated from a population feeding on a single infected host per house/day. Both measures were significantly and positively associated with Ae. aegypti total catch indoors. Our findings provide evidence that the accurate estimation and quantification of arbovirus infection rate and transmission risk is a function of the sampling effort, the local abundance of Aedes aegypti and the intensity of arbovirus circulation. Aedes-borne diseases comprise a serious public health burden in many parts of the world, usually affecting low income areas. The ability to detect virus circulation within a population may be key in responding to the threat of outbreaks, providing a cost-effective approach for triggering vector control. Unfortunately, gaps in the knowledge of natural Aedes-borne virus (ABV) infection in Aedes aegypti have led to uncertainties in the consideration of arbovirus surveillance in mosquitoes. Here, we show that the natural infection rate in a mosquito population may not be a function of where Aedes aegypti are, but rather where key human-mosquito contacts occur. Sampling 200 houses with suspected ABV active transmission led us to quantify high virus infection rates in all Aedes aegypti present in the house and use such information to estimate the sensitivity of indoor aspiration with Prokopack devices and two measures of ABV transmission potential. Our findings provide evidence that the accurate quantification of arbovirus infection rate and transmission risk is a function of the sampling effort, the local abundance of Aedes aegypti and the intensity of arbovirus circulation. Results from this study are relevant to understand the value of virus testing of vector populations, and for the design of entomological endpoints relevant for epidemiological trials quantifying the impact of vector control on ABVs.
Collapse
Affiliation(s)
- Oscar David Kirstein
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Guadalupe Ayora-Talavera
- Laboratorio de Virología. Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Edgar Koyoc-Cardeña
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Daniel Chan Espinoza
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Azael Che-Mendoza
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Azael Cohuo-Rodriguez
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Pilar Granja-Pérez
- Laboratorio Estatal de Salud Pública, Servicios de Salud de Yucatán, Mérida, Yucatán, México
| | - Henry Puerta-Guardo
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Norma Pavia-Ruz
- Laboratorio de Hematología. Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Mike W. Dunbar
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Pablo Manrique-Saide
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | |
Collapse
|
28
|
Assessment of Synthetic Membranes for Artificial Blood Feeding of Culicidae. INSECTS 2020; 12:insects12010015. [PMID: 33383618 PMCID: PMC7824735 DOI: 10.3390/insects12010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
Potential pathogen transmission through hematophagy in Culicidae is a major public-health problem, and several studies have been performed to better understand this phenomenon. Research on these insects often requires the maintenance of colonies in the laboratory. Due to the hematophagic habits of these organisms, blood must be provided in order to guarantee the reproduction of individuals that constitute the colonies. Some species of mammals and birds are used as a direct blood source in many laboratories. Due to current bioethical parameters, the direct use of animals has been replaced by artificial blood feeding by using synthetic membranes to simulate animal skin. In this study, the efficiency of collagen and latex in the artificial feeding of mosquitoes of the Aedes aegypti and Culex quinquefasciatus species was evaluated and compared with Parafilm®, a standard membrane that is frequently used for this purpose. Important aspects of the feeding and reproduction of these insects were considered. For both species, latex showed the poorest performance. Collagen membrane performed well in most parameters, but was not as efficient as Parafilm® for fecundity in Aedes aegypti, and for the percentage of engorged females in Culex quinquefasciatus. We concluded that, although collagen is more resistant and easier to handle, Parafilm® was the most efficient among the three evaluated membranes for the artificial blood feeding of mosquitoes.
Collapse
|
29
|
Laureti M, Paradkar PN, Fazakerley JK, Rodriguez-Andres J. Superinfection Exclusion in Mosquitoes and Its Potential as an Arbovirus Control Strategy. Viruses 2020; 12:v12111259. [PMID: 33167513 PMCID: PMC7694488 DOI: 10.3390/v12111259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
The continuing emergence of arbovirus disease outbreaks around the world, despite the use of vector control strategies, warrants the development of new strategies to reduce arbovirus transmission. Superinfection exclusion, a phenomenon whereby a primary virus infection prevents the replication of a second closely related virus, has potential to control arbovirus disease emergence and outbreaks. This phenomenon has been observed for many years in plants, insects and mammalian cells. In this review, we discuss the significance of identifying novel vector control strategies, summarize studies exploring arbovirus superinfection exclusion and consider the potential for this phenomenon to be the basis for novel arbovirus control strategies.
Collapse
Affiliation(s)
- Mathilde Laureti
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, VIC 3220 Geelong, Australia;
- Correspondence: (M.L.); (J.R.-A.)
| | - Prasad N. Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Diseases Preparedness, VIC 3220 Geelong, Australia;
| | - John K. Fazakerley
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
| | - Julio Rodriguez-Andres
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3000 Melbourne, Australia;
- Correspondence: (M.L.); (J.R.-A.)
| |
Collapse
|
30
|
Kazazian L, Lima Neto AS, Sousa GS, do Nascimento OJ, Castro MC. Spatiotemporal transmission dynamics of co-circulating dengue, Zika, and chikungunya viruses in Fortaleza, Brazil: 2011-2017. PLoS Negl Trop Dis 2020; 14:e0008760. [PMID: 33104708 PMCID: PMC7644107 DOI: 10.1371/journal.pntd.0008760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/05/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
The mosquito-borne viruses dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV), now co-endemic in the Americas, pose growing threats to health worldwide. However, it remains unclear whether there exist interactions between these viruses that could shape their epidemiology. This study advances knowledge by assessing the transmission dynamics of co-circulating DENV, ZIKV, and CHIKV in the city of Fortaleza, Brazil. Spatiotemporal transmission dynamics of DENV, ZIKV, and CHIKV were analyzed using georeferenced data on over 210,000 reported cases from 2011 to 2017 in Fortaleza, Brazil. Local spatial clustering tests and space-time scan statistics were used to compare transmission dynamics across all years. The transmission of co-circulating viruses in 2016 and 2017 was evaluated at fine spatial and temporal scales using a measure of spatiotemporal dependence, the τ-statistic. Results revealed differences in the diffusion of CHIKV compared to previous DENV epidemics and spatially distinct transmission of DENV/ZIKV and CHIKV during the period of their co-circulation. Significant spatial clustering of viruses of the same type was observed within 14-day time intervals at distances of up to 6.8 km (p<0.05). These results suggest that arbovirus risk is not uniformly distributed within cities during co-circulation. Findings may guide outbreak preparedness and response efforts by highlighting the clustered nature of transmission of co-circulating arboviruses at the neighborhood level. The potential for competitive interactions between the arboviruses should be further investigated.
Collapse
Affiliation(s)
- Lilit Kazazian
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Antonio S. Lima Neto
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Health Surveillance Department, Fortaleza Municipal Health Secretariat (SMS-Fortaleza), Joaquim Távora, Fortaleza, Ceará, Brazil
- Health Sciences Center, University of Fortaleza (UNIFOR), Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Geziel S. Sousa
- Health Surveillance Department, Fortaleza Municipal Health Secretariat (SMS-Fortaleza), Joaquim Távora, Fortaleza, Ceará, Brazil
| | - Osmar José do Nascimento
- Health Surveillance Department, Fortaleza Municipal Health Secretariat (SMS-Fortaleza), Joaquim Távora, Fortaleza, Ceará, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Silva NM, Santos NC, Martins IC. Dengue and Zika Viruses: Epidemiological History, Potential Therapies, and Promising Vaccines. Trop Med Infect Dis 2020; 5:E150. [PMID: 32977703 PMCID: PMC7709709 DOI: 10.3390/tropicalmed5040150] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV), which can lead to fatal hemorrhagic fever, affects 390 million people worldwide. The closely related Zika virus (ZIKV) causes microcephaly in newborns and Guillain-Barré syndrome in adults. Both viruses are mostly transmitted by Aedes albopictus and Aedes aegypti mosquitoes, which, due to globalization of trade and travel alongside climate change, are spreading worldwide, paving the way to DENV and ZIKV transmission and the occurrence of new epidemics. Local outbreaks have already occurred in temperate climates, even in Europe. As there are no specific treatments, these viruses are an international public health concern. Here, we analyze and discuss DENV and ZIKV outbreaks history, clinical and pathogenesis features, and modes of transmission, supplementing with information on advances on potential therapies and restraining measures. Taking advantage of the knowledge of the structure and biological function of the capsid (C) protein, a relatively conserved protein among flaviviruses, within a genus that includes DENV and ZIKV, we designed and patented a new drug lead, pep14-23 (WO2008/028939A1). It was demonstrated that it inhibits the interaction of DENV C protein with the host lipid system, a process essential for viral replication. Such an approach can be used to develop new therapies for related viruses, such as ZIKV.
Collapse
Affiliation(s)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| | - Ivo C. Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| |
Collapse
|
32
|
Sarkar B, Ullah MA, Araf Y, Das S, Hosen MJ. Blueprint of epitope-based multivalent and multipathogenic vaccines: targeted against the dengue and zika viruses. J Biomol Struct Dyn 2020; 39:6882-6902. [PMID: 32772811 DOI: 10.1080/07391102.2020.1804456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Both dengue virus (DENV) and zika virus (ZIKV) belong to the highly infectious Flaviviridae family that has already caused several outbreaks and epidemics in many countries. DENV and ZIKV cause two of the most wide spread mosquito-borne viral diseases in the world, dengue fever (DENF) and zika fever (ZIKF), respectively. In many regions around the world, both of these diseases can outbreak together and can be lethal as well as life-threatening. Unfortunately, there is no functional and satisfactory vaccine available to combat these viruses. Therefore, in this study, we have attempted to design a blue print of potential multivalent and multipathogenic vaccines using immunoinformatics approach, which can combat both the DENV and ZIKV infections, simultaneously. Initially, three vaccines were designed; containing highly antigenic, non-allergenic, and non-toxic epitopes of T-cell (100% conserved) and B-cell from all the four DENV serotypes and ZIKV. In total, nine cytotoxic T-lymphocytic (CTL), nine helper T-lymphocytic (HTL), and seven B-cell lymphocytic (BCL) epitopes were used to construct three vaccines using three different adjuvants, designated as 'V1', 'V2', and 'V3'. Later, V3 was found to be the best vaccine construct, determined by molecular docking analysis. Thereafter, several in silico validation studies including molecular dynamics simulation and immune simulation were performed which indicated that V3 might be quite stable and should generate substantial immune response in the biological environment. However, further in vivo and in vitro validation might be required to finally confirm the safety and efficacy of our suggested vaccine constructs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sowmen Das
- Department of Computer Science and Engineering, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
33
|
Olawoyin O, Kribs C. Coinfection, Altered Vector Infectivity, and Antibody-Dependent Enhancement: The Dengue-Zika Interplay. Bull Math Biol 2020; 82:13. [PMID: 31933003 PMCID: PMC7223258 DOI: 10.1007/s11538-019-00681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Although dengue and Zika cocirculation has increased within the past 5 years, very little is known about its epidemiological consequences. To investigate the effect of dengue and Zika cocirculation on the spread of both pathogens, we create a deterministic dengue and Zika coinfection model, the first to incorporate altered infectivity of mosquitoes (due to coinfection). The model also addresses increased infectivity due to antibody-dependent enhancement (ADE) within the human population. Central to our analysis is the derivation and interpretation of the basic reproductive number and invasion reproductive number of both pathogens. In addition, we investigate how model parameters impact the persistence of each disease. Our results identify threshold conditions under which one disease facilitates the spread of the other and show that ADE has a greater impact on disease persistence than altered vector infectivity. This work highlights the importance of ADE and illustrates that while the endemic presence of dengue facilitates the spread of Zika, it is possible for high Zika prevalence to prevent the establishment of dengue.
Collapse
Affiliation(s)
- Omomayowa Olawoyin
- Department of Mathematics, University of Texas at Arlington, 411 South Nedderman Drive, Box 19408, Arlington, TX, 76019, USA.
| | - Christopher Kribs
- Department of Mathematics, University of Texas at Arlington, 411 South Nedderman Drive, Box 19408, Arlington, TX, 76019, USA
| |
Collapse
|
34
|
Dinkar A, Singh J. Dengue infection in North India: An experience of a tertiary care center from 2012 to 2017. Tzu Chi Med J 2020; 32:36-40. [PMID: 32110518 PMCID: PMC7015012 DOI: 10.4103/tcmj.tcmj_161_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Recently, an alarming rise of dengue has been seen in India which remains a major public health concern. This study has been designed for a comprehensive overview of the epidemiology, gender, age, area distribution, symptomology, and seasonal variability. MATERIALS AND METHODS Retrospective analysis of 900 suspected dengue cases of all age groups of either sex from 2012 to 2017 at a North Indian tertiary care hospital revealed 461 (51.22%) cases seropositive for dengue. RESULTS The age group of 20-30 years was the most affected group with male predominance. The urban population was more affected as 75.05%, and maximum cases were detected in October month followed by November. Common abnormal laboratory parameters were thrombocytopenia (99.1%), hepatic dysfunction (59%), and leukopenia (26.68%). Two uncommon findings, pancytopenia and pancreatic dysfunction were reported in 7 and 3 cases respectively. CONCLUSION Dengue infection in India has evolved rapidly, and regular outbreaks have been observed with a changing epidemiology, as the disease is rapidly spreading from urban to rural areas with increasing atypical manifestations.
Collapse
Affiliation(s)
- Anju Dinkar
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jitendra Singh
- Department of Medicine, Narayana Medical College, Sasaram, Bihar, India
| |
Collapse
|
35
|
Impacts of Zika emergence in Latin America on endemic dengue transmission. Nat Commun 2019; 10:5730. [PMID: 31844054 PMCID: PMC6915707 DOI: 10.1038/s41467-019-13628-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
In 2015 and 2016, Zika virus (ZIKV) swept through dengue virus (DENV) endemic areas of Latin America. These viruses are of the same family, share a vector and may interact competitively or synergistically through human immune responses. We examine dengue incidence from Brazil and Colombia before, during, and after the Zika epidemic. We find evidence that dengue incidence was atypically low in 2017 in both countries. We investigate whether subnational Zika incidence is associated with changes in dengue incidence and find mixed results. Using simulations with multiple assumptions of interactions between DENV and ZIKV, we find cross-protection suppresses incidence of dengue following Zika outbreaks and low periods of dengue incidence are followed by resurgence. Our simulations suggest correlations in DENV and ZIKV reproduction numbers could complicate associations between ZIKV incidence and post-ZIKV DENV incidence and that periods of low dengue incidence are followed by large increases in dengue incidence. Dengue and Zika virus are related flaviviruses, and introduction of Zika in the Americas may have impacted dengue epidemiology. Here, Borchering et al. show that dengue incidence was unusually low in 2017 in Brazil and Colombia, and simulations incorporating immune-mediated interactions predict reductions in dengue following Zika outbreaks with subsequent rebounds.
Collapse
|
36
|
Freitas LP, Cruz OG, Lowe R, Sá Carvalho M. Space-time dynamics of a triple epidemic: dengue, chikungunya and Zika clusters in the city of Rio de Janeiro. Proc Biol Sci 2019; 286:20191867. [PMID: 31594497 PMCID: PMC6790786 DOI: 10.1098/rspb.2019.1867] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dengue, an arboviral disease transmitted by Aedes mosquitoes, has been endemic in Brazil for decades. However, vector-control strategies have not led to a significant reduction in the disease burden and have not been sufficient to prevent chikungunya and Zika entry and establishment in the country. In Rio de Janeiro city, the first Zika and chikungunya epidemics were detected between 2015 and 2016, coinciding with a dengue epidemic. Understanding the behaviour of these diseases in a triple epidemic scenario is a necessary step for devising better interventions for prevention and outbreak response. We applied scan statistics analysis to detect spatio-temporal clustering for each disease separately and for all three simultaneously. In general, clusters were not detected in the same locations and time periods, possibly owing to competition between viruses for host resources, depletion of susceptible population, different introduction times and change in behaviour of the human population (e.g. intensified vector-control activities in response to increasing cases of a particular arbovirus). Simultaneous clusters of the three diseases usually included neighbourhoods with high population density and low socioeconomic status, particularly in the North region of the city. The use of space–time cluster detection can guide intensive interventions to high-risk locations in a timely manner, to improve clinical diagnosis and management, and pinpoint vector-control measures.
Collapse
Affiliation(s)
- Laís Picinini Freitas
- Escola Nacional de Saúde Pública Sergio Arouca (ENSP), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Oswaldo Gonçalves Cruz
- Programa de Computação Científica (PROCC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rachel Lowe
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK.,Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Marilia Sá Carvalho
- Programa de Computação Científica (PROCC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Valiant WG, Mattapallil MJ, Higgs S, Huang YJS, Vanlandingham DL, Lewis MG, Mattapallil JJ. Simultaneous Coinfection of Macaques with Zika and Dengue Viruses Does not Enhance Acute Plasma Viremia but Leads to Activation of Monocyte Subsets and Biphasic Release of Pro-inflammatory Cytokines. Sci Rep 2019; 9:7877. [PMID: 31133721 PMCID: PMC6536518 DOI: 10.1038/s41598-019-44323-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/15/2019] [Indexed: 01/06/2023] Open
Abstract
The consequences of simultaneous infection with Zika (ZIKV) and Dengue (DENV) viruses are poorly understood. Here we show that rhesus macaques experimentally coinfected simultaneously with ZIKV and DENV-2 demonstrated ZIKV or DENV replication without an enhancement of either infection. Coinfection was accompanied by an increase in the proportions of CD14+CD16+ pro-inflammatory subsets of monocytes and release of pro-inflammatory cytokines in the plasma. Numerous cytokines such as I-TAC, Eotaxin, RANTES, MCP-1, IFNγ and MIG demonstrated a biphasic peak that coincided with the differences in kinetics of ZIKV and DENV replication suggesting that viral replication likely differentially modulated the release of these cytokines. Red blood cell indices significantly declined during acute infection suggesting transient anemia, and was accompanied by elevated levels of muscle, liver and renal injury markers. These findings have implications for understanding the pathogenesis of coinfection in ZIKV and DENV endemic regions, and is the 1st report of an experimental coinfection using the rhesus macaque model for ZIKV and DENV infections.
Collapse
Affiliation(s)
- William G Valiant
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Mary J Mattapallil
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Higgs
- Biosecurity Research Institute, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S Huang
- Biosecurity Research Institute, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Dana L Vanlandingham
- Biosecurity Research Institute, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Joseph J Mattapallil
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
38
|
Caragata EP, Rocha MN, Pereira TN, Mansur SB, Dutra HLC, Moreira LA. Pathogen blocking in Wolbachia-infected Aedes aegypti is not affected by Zika and dengue virus co-infection. PLoS Negl Trop Dis 2019; 13:e0007443. [PMID: 31107912 PMCID: PMC6544317 DOI: 10.1371/journal.pntd.0007443] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/31/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022] Open
Abstract
Background Wolbachia’s ability to restrict arbovirus transmission makes it a promising tool to combat mosquito-transmitted diseases. Wolbachia-infected Aedes aegypti are currently being released in locations such as Brazil, which regularly experience concurrent outbreaks of different arboviruses. A. aegypti can become co-infected with, and transmit multiple arboviruses with one bite, which can complicate patient diagnosis and treatment. Methodology/principle findings Using experimental oral infection of A. aegypti and then RT-qPCR, we examined ZIKV/DENV-1 and ZIKV/DENV-3 co-infection in Wolbachia-infected A. aegypti and observed that Wolbachia-infected mosquitoes experienced lower prevalence of infection and viral load than wildtype mosquitoes, even with an extra infecting virus. Critically, ZIKV/DENV co-infection had no significant impact on Wolbachia’s ability to reduce viral transmission. Wolbachia infection also strongly altered expression levels of key immune genes Defensin C and Transferrin 1, in a virus-dependent manner. Conclusions/significance Our results suggest that pathogen interference in Wolbachia-infected A. aegypti is not adversely affected by ZIKV/DENV co-infection, which suggests that Wolbachia-infected A. aegypti will likely prove suitable for controlling mosquito-borne diseases in environments with complex patterns of arbovirus transmission. Wolbachia is an endosymbiotic bacterium that infects insects. It has been artificially transferred into Aedes aegypti, a mosquito species that can transmit medically important viruses including dengue, chikungunya, and Zika. Wolbachia in A. aegypti limits infection with these viruses, making the mosquitoes much less capable of transmitting them to people. In tropical areas, where these viral pathogens are commonly found, it is not unusual for outbreaks of different viruses to occur at the same time, which can complicate diagnosis and treatment for those afflicted. Mosquitoes with Wolbachia are currently being released into these areas to reduce transmission of these diseases. In our study, we assessed whether Wolbachia infection in A. aegypti mosquitoes could still effectively inhibit the dengue and Zika viruses if the mosquitoes were fed both viruses at the same time. We found that Wolbachia was still very effective at inhibiting the replication of both viruses in the mosquito, and likewise still greatly reduced the chance of transmission of either virus. Our results suggest that Wolbachia-infected mosquitoes should be able to limit infection with more than one virus, should they encounter them in the field.
Collapse
Affiliation(s)
- Eric P. Caragata
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Marcele N. Rocha
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Thiago N. Pereira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Simone B. Mansur
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Heverton L. C. Dutra
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Luciano A. Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
39
|
Vogels CBF, Rückert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol 2019; 17:e3000130. [PMID: 30668574 PMCID: PMC6358106 DOI: 10.1371/journal.pbio.3000130] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Epidemiological synergy between outbreaks of viruses transmitted by Aedes aegypti mosquitoes, such as chikungunya, dengue, and Zika viruses, has resulted in coinfection of humans with multiple viruses. Despite the potential impact on public health, we know only little about the occurrence and consequences of such coinfections. Here, we review the impact of coinfection on clinical disease in humans, discuss the possibility for co-transmission from mosquito to human, and describe a role for modeling transmission dynamics at various levels of co-transmission. Solving the mystery of virus coinfections will reveal whether they should be viewed as a serious concern for public health.
Collapse
Affiliation(s)
- Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Claudia Rückert
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sean M. Cavany
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
40
|
de Bruycker‐Nogueira F, Faria NRDC, Nunes PCG, Nogueira RMR, de Filippis AMB, dos Santos FB. First detection and molecular characterization of a DENV-1/DENV-4 co-infection during an epidemic in Rio de Janeiro, Brazil. Clin Case Rep 2018; 6:2075-2080. [PMID: 30455894 PMCID: PMC6230646 DOI: 10.1002/ccr3.1750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 11/29/2022] Open
Abstract
In the 80s, dengue viruses type 1 and 4 (DENV-1 and 4) were isolated in North region of Brazil. However, it was only after the DENV-1 introduction in the state of Rio de Janeiro (RJ) in mid-1980s, that dengue became a nationwide public health problem. In 2009, this serotype re-emerged causing an explosive epidemic in the country. DENV-4 was first detected in RJ in 2011 and in 2012, and DENV-1 and 4 were co-circulating and responsible for a high number of cases notifications. Here, we describe the detection and molecular characterization of a DENV-1/4 co-infection in sample of 2012 in RJ.
Collapse
|