1
|
Chan XHS, Haeusler IL, Choy BJK, Hassan MZ, Takata J, Hurst TP, Jones LM, Loganathan S, Harriss E, Dunning J, Tarning J, Carroll MW, Horby PW, Olliaro PL. Therapeutics for Nipah virus disease: a systematic review to support prioritisation of drug candidates for clinical trials. THE LANCET. MICROBE 2025; 6:101002. [PMID: 39549708 PMCID: PMC12062192 DOI: 10.1016/j.lanmic.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/18/2024]
Abstract
Nipah virus disease is a bat-borne zoonosis with person-to-person transmission, a case-fatality rate of 38-75%, and well recognised potential to cause a pandemic. The first reported outbreak of Nipah virus disease occurred in Malaysia and Singapore in 1998, which has since been followed by multiple outbreaks in Bangladesh and India. To date, no therapeutics or vaccines have been approved to treat Nipah virus disease, and only few such candidates are in development. In this Review, we aim to assess the safety and efficacy of the therapeutic options (monoclonal antibodies and small molecules) for Nipah virus disease and other henipaviral diseases to support prioritisation of drug candidates for further evaluation in clinical trials. At present, sufficient evidence exists to suggest trialling 1F5, m102.4, and remdesivir (alone or in combination) for prophylaxis and early treatment of Nipah virus disease. In addition to well designed clinical efficacy trials, in-vivo pharmacokinetic-pharmacodynamic studies are needed to optimise the selection and dosing of therapeutic candidates in animal challenge and natural human infection.
Collapse
Affiliation(s)
- Xin Hui S Chan
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Ilsa L Haeusler
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bennett J K Choy
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Md Zakiul Hassan
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK; Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Junko Takata
- Department of Clinical Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tara P Hurst
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luke M Jones
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Human Genetics Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Elinor Harriss
- Bodleian Health Care Libraries University of Oxford, Oxford, UK
| | - Jake Dunning
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK; Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Miles W Carroll
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Human Genetics Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter W Horby
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK
| | - Piero L Olliaro
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Ren Y, Fan P, Zhang X, Fang T, Chen Z, Yao Y, Chi X, Zhang G, Zhao X, Sun B, Li F, Liu Z, Song Z, Zhang B, Peng C, Li E, Yang Y, Li J, Chiu S, Yu C. Potent Cross-neutralizing Antibodies Reveal Vulnerabilities of Henipavirus Fusion Glycoprotein. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501996. [PMID: 40298900 DOI: 10.1002/advs.202501996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Hendra and Nipah viruses (HNVs), zoonotic paramyxoviruses with >50% case fatality rates, cause fatal encephalitis and respiratory disease, yet lack approved therapies. Here, nine rhesus-derived monoclonal antibodies (mAbs) targeting the fusion glycoprotein (F) prefusion conformation are developed. Four mAbs exhibit first-rate cross-neutralization against HNVs, with two showing synergistic potency when combined with attachment glycoprotein (G)-specific mAbs. Single-dose administration of mAbs confers robust protection against lethal Nipah virus challenge in hamsters. Structural insights reveal that 8 of the 9 potent mAbs adopt a human IGHV4-59-like framework with protruding CDRH3 loops, forming pushpin-shaped paratopes that stabilize the prefusion F-trimer by occupying vulnerable interprotomer cavities. Systematic mutational profiling identifies 14 prefusion-locking residues within the F ectodomain, classified as i) structural linchpins governing fusogenicity or ii) immunodominant hotspots targeted by cross-neutralizing mAbs. This work delivers promising therapeutic candidates against HNVs and provides blueprints for the rational design of antibodies and vaccines targeting viral fusion machinery.
Collapse
Affiliation(s)
- Yi Ren
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Pengfei Fan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Guanying Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaofan Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Bingjie Sun
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Fangxu Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Zixuan Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhenwei Song
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Baoyue Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Changming Yu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| |
Collapse
|
3
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Branda F, Ceccarelli G, Giovanetti M, Albanese M, Binetti E, Ciccozzi M, Scarpa F. Nipah Virus: A Zoonotic Threat Re-Emerging in the Wake of Global Public Health Challenges. Microorganisms 2025; 13:124. [PMID: 39858892 PMCID: PMC11767623 DOI: 10.3390/microorganisms13010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The re-emergence of the Nipah virus (NiV) in Kerala, India, following the tragic death of a 14-year-old boy, underscores the persistent threat posed by zoonotic pathogens and highlights the growing global public health challenge. With no vaccine or curative treatment available, and fatality rates as high as 94% in past outbreaks, the Nipah virus is a critical concern for health authorities worldwide. Transmitted primarily through contact with fruit bats or consumption of contaminated food, as well as direct human-to-human transmission, NiV remains a highly lethal and unpredictable pathogen. The World Health Organization has classified Nipah as a priority pathogen due to its alarming potential to cause widespread outbreaks and even trigger the next pandemic. Recent outbreaks in India and Bangladesh, occurring with seasonal regularity, have once again exposed the vulnerability of public health systems in containing this virus. This study explores the epidemiology, ecological factors driving transmission, and the public health response to NiV, emphasizing the role of zoonotic spillovers in pandemic preparedness. As the global community grapples with an increasing number of emerging infectious diseases, the Nipah virus stands as a stark reminder of the importance of coordinated surveillance, rapid containment measures, and the urgent development of novel strategies to mitigate the impact of this re-emerging threat.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Azienda Ospedaliero Universitaria Umberto I, 00161 Rome, Italy
- Migrant and Global Health Research Organization—Mi-Hero, Italy
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Mattia Albanese
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Erica Binetti
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| |
Collapse
|
5
|
Leyva-Grado VH, Promeneur D, Agans KN, Lazaro GG, Borisevich V, Deer DJ, Luckay A, Egan M, Dimitrov AS, Small B, Broder CC, Cross RW, Hamm S, Geisbert TW. Establishing an immune correlate of protection for Nipah virus in nonhuman primates. NPJ Vaccines 2024; 9:244. [PMID: 39702562 DOI: 10.1038/s41541-024-01036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The limited but recurrent outbreaks of the zoonotic Nipah virus (NiV) infection in humans, its high fatality rate, and the potential virus transmission from human to human make NiV a concerning threat with pandemic potential. There are no licensed vaccines to prevent infection and disease. A recombinant Hendra virus soluble G glycoprotein vaccine (HeV-sG-V) candidate was recently tested in a Phase I clinical trial. Because NiV outbreaks are sporadic, and with a few cases, licensing will likely require an alternate regulatory licensing pathway. Therefore, determining a reliable vaccine correlate of protection (CoP) will be critical. We assessed the immune responses elicited by HeV-sG-V in African Green monkeys and its relationship with protection from a NiV challenge. Data revealed values of specific binding and neutralizing antibody titers that predicted survival and allowed us to establish a mechanistic CoP for NiV Bangladesh and Malaysia strains.
Collapse
Affiliation(s)
| | | | - K N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - V Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - D J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - A Luckay
- Auro Vaccines LLC, Pearl River, NY, USA
| | - M Egan
- Auro Vaccines LLC, Pearl River, NY, USA
| | - A S Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - B Small
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - C C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - R W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - S Hamm
- Auro Vaccines LLC, Pearl River, NY, USA
| | - T W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
6
|
Bergeron É, Chiang CF, Lo MK, Karaaslan E, Satter SM, Rahman MZ, Hossain ME, Aquib WR, Rahman DI, Sarwar SB, Montgomery JM, Klena JD, Spiropoulou CF. Streamlined detection of Nipah virus antibodies using a split NanoLuc biosensor. Emerg Microbes Infect 2024; 13:2398640. [PMID: 39194145 PMCID: PMC11391874 DOI: 10.1080/22221751.2024.2398640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Nipah virus (NiV) is an emerging zoonotic RNA virus that can cause fatal respiratory and neurological diseases in animals and humans. Accurate NiV diagnostics and surveillance tools are crucial for the identification of acute and resolved infections and to improve our understanding of NiV transmission and circulation. Here, we have developed and validated a split NanoLuc luciferase NiV glycoprotein (G) biosensor for detecting antibodies in clinical and animal samples. This assay is performed by simply mixing reagents and measuring luminescence, which depends on the complementation of the split NanoLuc luciferase G biosensor following its binding to antibodies. This anti-NiV-G "mix-and-read" assay was validated using the WHO's first international standard for anti-NiV antibodies and more than 700 serum samples from the NiV-endemic country of Bangladesh. Anti-NiV antibodies from survivors persisted for at least 8 years according to both ⍺NiV-G mix-and-read and NiV neutralization assays. The ⍺NiV-G mix-and-read assay sensitivity (98.6%) and specificity (100%) were comparable to anti-NiV IgG ELISA performance but failed to detect anti-NiV antibodies in samples collected less than a week following the appearance of symptoms. Overall, the anti-NiV-G biosensor represents a simple, fast, and reliable tool that could support the expansion of NiV surveillance and retrospective outbreak investigations.
Collapse
Affiliation(s)
- Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, USA
| | - Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | | | | | | | | | | | | | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - John D Klena
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
7
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024; 18:969-987. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
8
|
Chakraborty C, Saha S, Bhattacharya M. Recent Advances in Immunological Landscape and Immunotherapeutic Agent of Nipah Virus Infection. Cell Biochem Biophys 2024; 82:3053-3069. [PMID: 39052192 DOI: 10.1007/s12013-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
9
|
Avanzato VA, Bushmaker T, Oguntuyo KY, Yinda CK, Duyvesteyn HME, Stass R, Meade-White K, Rosenke R, Thomas T, van Doremalen N, Saturday G, Doores KJ, Lee B, Bowden TA, Munster VJ. A monoclonal antibody targeting the Nipah virus fusion glycoprotein apex imparts protection from disease. J Virol 2024; 98:e0063824. [PMID: 39240113 PMCID: PMC11494970 DOI: 10.1128/jvi.00638-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies. Here, we describe a vaccination-derived neutralizing monoclonal antibody, mAb92, that targets NiV-F. Structural characterization of the Fab region bound to NiV-F (NiV-F-Fab92) by cryo-electron microscopy analysis reveals an epitope in the DIII domain at the membrane distal apex of NiV-F, an established site of vulnerability on the NiV surface. Further, prophylactic treatment of hamsters with mAb92 offered complete protection from NiV disease, demonstrating beneficial activity of mAb92 in vivo. This work provides support for targeting NiV-F in the development of vaccines and therapeutics against NiV.IMPORTANCENipah virus (NiV) is a highly lethal henipavirus (HNV) that causes severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, highlighting a need to develop countermeasures. The NiV surface displays the receptor binding protein (NiV-G, or RBP) and the fusion protein (NiV-F), which allow the virus to attach and enter cells. These proteins can be targeted by vaccines and antibodies to prevent disease. This work describes a neutralizing antibody (mAb92) that targets NiV-F. Structural characterization by cryo-electron microscopy analysis reveals where the antibody binds to NiV-F to neutralize the virus. This study also shows that prophylactic treatment of hamsters with mAb92 completely protected against developing NiV disease. This work shows how targeting NiV-F can be useful to preventing NiV disease, supporting future studies in the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Victoria A. Avanzato
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie J. Doores
- Department of Infectious Diseases, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
10
|
Saha S, Bhattacharya M, Lee SS, Chakraborty C. Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement. J Microbiol 2024; 62:811-828. [PMID: 39292378 DOI: 10.1007/s12275-024-00168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024]
Abstract
The zoonotic infection of the Nipah virus (NiV) has yet again appeared in 2023 in Kerala state, India. The virus, which has a mortality rate ranging from about 40 to 70%, has already infected India five times, the first being in 2001. The current infection is the sixth virus outbreak in the Indian population. In 1998, the first NiV infection was noted in one village in Malaysia. After that, outbreaks from other South and Southeast Asian countries have been reported periodically. It can spread between humans through contact with body fluids. Therefore, it is unlikely to generate a new pandemic. However, there is a considerable knowledge gap in the different areas of NiV. To date, no approved vaccines or treatments have been available. To fulfil the knowledge gap, the review article provided a detailed overview of the genome and genome-encoded proteins, epidemiology, transmission, pathobiology, immunobiology, diagnosis, prevention and control measures, therapeutics (monoclonal antibodies and drug molecules), and vaccine advancement of the emerging and deadly pathogen. The advanced information will help researchers to develop safe and effective NiV vaccine and treatment regimens worldwide.
Collapse
Affiliation(s)
- Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
11
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
12
|
Hassan MZ, Shirin T, Satter SM, Rahman MZ, Bourner J, Cheyne A, Torreele E, Horby P, Olliaro P. Nipah virus disease: what can we do to improve patient care? THE LANCET. INFECTIOUS DISEASES 2024; 24:e463-e471. [PMID: 38185127 DOI: 10.1016/s1473-3099(23)00707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The year 2023 marked the 25th anniversary of the first detected outbreak of Nipah virus disease. Despite Nipah virus being a priority pathogen in the WHO Research and Development blueprint, the disease it causes still carries high mortality, unchanged since the first reported outbreaks. Although candidate vaccines for Nipah virus disease exist, developing new therapeutics has been underinvested. Nipah virus disease illustrates the typical market failure of medicine development for a high-consequence pathogen. The unpredictability of outbreaks and low number of infections affecting populations in low-income countries does not make an attractive business case for developing treatments for Nipah virus disease-a situation compounded by methodological challenges in clinical trial design. Nipah virus therapeutics development is not motivated by commercial interest. Therefore, we propose a regionally led, patient-centred, and public health-centred, end-to-end framework that articulates a public health vision and a roadmap for research, development, manufacturing, and access towards the goal of improving patient outcomes. This framework includes co-creating a regulatory-compliant, clinically meaningful, and context-specific clinical development plan and establishing quality standards in clinical care and research capabilities at sites where the disease occurs. The success of this approach will be measured by the availability and accessibility of improved Nipah virus treatments in affected communities and reduced mortality.
Collapse
Affiliation(s)
- Md Zakiul Hassan
- Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh; Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK.
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Syed M Satter
- Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Mohammed Z Rahman
- Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Josephine Bourner
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK
| | - Ashleigh Cheyne
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK
| | - Els Torreele
- Institute for Innovation and Public Purpose, University College London, London, UK; Independent Researcher and Advisor, Geneva, Switzerland
| | - Peter Horby
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK
| | - Piero Olliaro
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Fan P, Sun M, Zhang X, Zhang H, Liu Y, Yao Y, Li M, Fang T, Sun B, Chen Z, Chi X, Chen L, Peng C, Chen Z, Zhang G, Ren Y, Liu Z, Li Y, Li J, Li E, Guan W, Li S, Gong R, Zhang K, Yu C, Chiu S. A potent Henipavirus cross-neutralizing antibody reveals a dynamic fusion-triggering pattern of the G-tetramer. Nat Commun 2024; 15:4330. [PMID: 38773072 PMCID: PMC11109247 DOI: 10.1038/s41467-024-48601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop β1S2-β1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.
Collapse
Grants
- the Defense Industrial Technology Development Program, Grant No. JCKY2020802B001
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000032
- Hubei Jiangxia Laboratory, Grant No. JXBS002
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700, Grant No. 2022YFA1302700; the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB0490000; the Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Grant No. QYPY20220019; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000044
- the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No. XDB0490000
Collapse
Affiliation(s)
- Pengfei Fan
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yujiao Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Bingjie Sun
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Li Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Guanying Zhang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yi Ren
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zixuan Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wuxiang Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
| |
Collapse
|
14
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
15
|
Anderson-Mondella CJJ, Maines TR, Tansey CM, Belser JA. Meeting Ferret Enrichment Needs in Infectious Disease Laboratory Settings. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:518-524. [PMID: 37857467 PMCID: PMC10772907 DOI: 10.30802/aalas-jaalas-23-000057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
Environmental enrichment is a necessary component of all research vivarium settings. However, appropriate enrichment decisions vary greatly depending on the species involved and the research use of the animals. The increasing use of ferrets in research settings-notably for modeling the pathogenicity and transmissibility of viral pathogens that require containment in ABSL-2 to -4 environments-presents a particular challenge for veterinary and research staff to ensure that enrichment needs for these animals are met consistently. Here, we discuss the species-specific enrichment needs of ferrets, enrichment considerations for ferrets housed in research settings, and the challenges and importance of providing appropriate enrichment during experimentation, including when ferrets are housed in high-containment facilities. This article is organized to support the easy availability of information that will facilitate the design and implementation of optimal environmental enrichment for ferrets used in diverse research efforts in vivarium settings.
Collapse
Affiliation(s)
- Challie JJ Anderson-Mondella
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia
- Georgia Gwinnett College, Lawrenceville, Georgia; and
| | - Taronna R Maines
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cassandra M Tansey
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
16
|
Pigeaud DD, Geisbert TW, Woolsey C. Animal Models for Henipavirus Research. Viruses 2023; 15:1980. [PMID: 37896758 PMCID: PMC10610982 DOI: 10.3390/v15101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic paramyxoviruses in the genus Henipavirus (HNV) that emerged nearly thirty years ago. Outbreaks of HeV and NiV have led to severe respiratory disease and encephalitis in humans and animals characterized by a high mortality rate. Despite the grave threat HNVs pose to public health and global biosecurity, no approved medical countermeasures for human use currently exist against HeV or NiV. To develop candidate vaccines and therapeutics and advance the field's understanding of HNV pathogenesis, animal models of HeV and NiV have been instrumental and remain indispensable. Various species, including rodents, ferrets, and nonhuman primates (NHPs), have been employed for HNV investigations. Among these, NHPs have demonstrated the closest resemblance to human HNV disease, although other animal models replicate some key disease features. Here, we provide a comprehensive review of the currently available animal models (mice, hamsters, guinea pigs, ferrets, cats, dogs, nonhuman primates, horses, and swine) to support HNV research. We also discuss the strengths and limitations of each model for conducting pathogenesis and transmission studies on HeV and NiV and for the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Declan D. Pigeaud
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
17
|
Wang Z, McCallum M, Yan L, Sharkey W, Park YJ, Dang HV, Amaya M, Person A, Broder CC, Veesler D. Structure and design of Langya virus glycoprotein antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554025. [PMID: 37645760 PMCID: PMC10462157 DOI: 10.1101/2023.08.20.554025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse and hamster target cells using a different, yet unknown, receptor than NiV and HeV and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryo-electron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing previously unknown conformational landscapes and their distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Ashley Person
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Isaacs A, Low YS, Macauslane KL, Seitanidou J, Pegg CL, Cheung STM, Liang B, Scott CAP, Landsberg MJ, Schulz BL, Chappell KJ, Modhiran N, Watterson D. Structure and antigenicity of divergent Henipavirus fusion glycoproteins. Nat Commun 2023; 14:3577. [PMID: 37328468 PMCID: PMC10275869 DOI: 10.1038/s41467-023-39278-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
In August 2022, a novel henipavirus (HNV) named Langya virus (LayV) was isolated from patients with severe pneumonic disease in China. This virus is closely related to Mòjiāng virus (MojV), and both are divergent from the bat-borne HNV members, Nipah (NiV) and Hendra (HeV) viruses. The spillover of LayV is the first instance of a HNV zoonosis to humans outside of NiV and HeV, highlighting the continuing threat this genus poses to human health. In this work, we determine the prefusion structures of MojV and LayV F proteins via cryogenic electron microscopy to 2.66 and 3.37 Å, respectively. We show that despite sequence divergence from NiV, the F proteins adopt an overall similar structure but are antigenically distinct as they do not react to known antibodies or sera. Glycoproteomic analysis revealed that while LayV F is less glycosylated than NiV F, it contains a glycan that shields a site of vulnerability previously identified for NiV. These findings explain the distinct antigenic profile of LayV and MojV F, despite the extent to which they are otherwise structurally similar to NiV. Our results carry implications for broad-spectrum HNV vaccines and therapeutics, and indicate an antigenic, yet not structural, divergence from prototypical HNVs.
Collapse
Affiliation(s)
- Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Yu Shang Low
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Joy Seitanidou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Connor A P Scott
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
19
|
Amaya M, Yin R, Yan L, Borisevich V, Adhikari BN, Bennett A, Malagon F, Cer RZ, Bishop-Lilly KA, Dimitrov AS, Cross RW, Geisbert TW, Broder CC. A Recombinant Chimeric Cedar Virus-Based Surrogate Neutralization Assay Platform for Pathogenic Henipaviruses. Viruses 2023; 15:1077. [PMID: 37243163 PMCID: PMC10223282 DOI: 10.3390/v15051077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bishwo N. Adhikari
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Andrew Bennett
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Francisco Malagon
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Antony S. Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Robert W. Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
20
|
Byrne PO, Fisher BE, Ambrozak DR, Blade EG, Tsybovsky Y, Graham BS, McLellan JS, Loomis RJ. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein. Nat Commun 2023; 14:1494. [PMID: 36932063 PMCID: PMC10021056 DOI: 10.1038/s41467-023-36995-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Nipah virus (NiV) is a pathogenic paramyxovirus that causes fatal encephalitis in humans. Two envelope glycoproteins, the attachment protein (G/RBP) and fusion protein (F), facilitate entry into host cells. Due to its vital role, NiV F presents an attractive target for developing vaccines and therapeutics. Several neutralization-sensitive epitopes on the NiV F apex have been described, however the antigenicity of most of the F protein's surface remains uncharacterized. Here, we immunize mice with prefusion-stabilized NiV F and isolate ten monoclonal antibodies that neutralize pseudotyped virus. Cryo-electron microscopy reveals eight neutralization-sensitive epitopes on NiV F, four of which have not previously been described. Novel sites span the lateral and basal faces of NiV F, expanding the known library of vulnerable epitopes. Seven of ten antibodies bind the Hendra virus (HeV) F protein. Multiple sequence alignment suggests that some of these newly identified neutralizing antibodies may also bind F proteins across the Henipavirus genus. This work identifies new epitopes as targets for therapeutics, provides a molecular basis for NiV neutralization, and lays a foundation for development of new cross-reactive antibodies targeting Henipavirus F proteins.
Collapse
Affiliation(s)
- Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Brian E Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - Elizabeth G Blade
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 21701, Frederick, MD, USA
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
- Morehouse School of Medicine, 30310, Atlanta, GA, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA.
| | - Rebecca J Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA.
- GSK Global Health R&D Vaccines (GVGH), 53100, Siena, Italy.
| |
Collapse
|
21
|
Yang S, Kar S. Are we ready to fight the Nipah virus pandemic? An overview of drug targets, current medications, and potential leads. Struct Chem 2023:1-19. [PMID: 37363045 PMCID: PMC9993391 DOI: 10.1007/s11224-023-02148-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
Nipah virus (NiV) is a high-lethality RNA virus from the family of Paramyxoviridae and genus Henipavirus, classified under Biosafety Level-4 (BSL-4) pathogen due to the severity of pathogenicity and lack of medications and vaccines. Direct contacts or the body fluids of infected animals are the major factor of transmission of NiV. As it is not an airborne infection, the transmission rate is relatively low. Still, mutations of the NiV in the animal reservoir over the years, followed by zoonotic transfer, can make the deadliness of the virus manifold in upcoming years. Therefore, there is no denial of the possibility of a pandemic after COVID-19 considering the severe pathogenicity of NiV, and that is why we need to be prepared with possible drugs in upcoming days. Considering the time constraints, computational aided drug design (CADD) is an efficient way to study the virus and perform the drug design and test the HITs to lead experimentally. Therefore, this review focuses primarily on NiV target proteins (covering NiV and human), experimentally tested repurposed drug details, and latest computational studies on potential lead molecules, which can be explored as potential drug candidates. Computationally identified drug candidates, including their chemical structures, docking scores, amino acid level interaction with corresponding protein, and the platform used for the studies, are thoroughly discussed. The review will offer a one-stop study to access what had been performed and what can be performed in the CADD of NiV.
Collapse
Affiliation(s)
- Siyun Yang
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083 USA
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083 USA
| |
Collapse
|
22
|
Satterfield BA, Mire CE, Geisbert TW. Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection. Methods Mol Biol 2023; 2682:1-22. [PMID: 37610570 DOI: 10.1007/978-1-0716-3283-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic paramyxoviruses, which have emerged in recent decades and cause sporadic outbreaks of respiratory and encephalitic disease in Australia and Southeast Asia, respectively. Over two billion people currently live in regions potentially at risk due to the wide range of the Pteropus fruit bat reservoir, yet there are no approved vaccines or therapeutics to protect against or treat henipavirus disease. In recent years, significant progress has been made toward developing various experimental vaccine platforms and therapeutics. Here, we describe these advances for both human and livestock vaccine candidates and discuss the numerous preclinical studies and the few that have progressed to human phase 1 clinical trial and the one approved veterinary vaccine.
Collapse
Affiliation(s)
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- National Bio- and Agro-defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, NY, USA.
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
23
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
24
|
The pathogenesis of Nipah virus: A review. Microb Pathog 2022; 170:105693. [DOI: 10.1016/j.micpath.2022.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
|
25
|
Fc-Dependent Immunomodulation Induced by Antiviral Therapeutic Antibodies: New Perspectives for Eliciting Protective Immune Responses. Antibodies (Basel) 2022; 11:antib11030050. [PMID: 35892710 PMCID: PMC9331007 DOI: 10.3390/antib11030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
The multiple mechanisms of action of antiviral monoclonal antibodies (mAbs) have made these molecules a potential therapeutic alternative for treating severe viral infections. In addition to their direct effect on viral propagation, several studies have shown that mAbs are able to enhance the host's adaptive immune response and generate long-lasting protective immunity. Such immunomodulatory effects occur in an Fc-dependent manner and rely on Fc-FcγR interactions. It is noteworthy that several FcγR-expressing cells have been shown to play a key role in enhancing humoral and cellular immune responses (so-called "vaccinal effects") in different experimental settings. This review recalls recent findings concerning the vaccinal effects induced by antiviral mAbs, both in several preclinical animal models and in patients treated with mAbs. It summarizes the main cellular and molecular mechanisms involved in these immunomodulatory properties of antiviral mAbs identified in different pathological contexts. It also describes potential therapeutic interventions to enhance host immune responses that could guide the design of improved mAb-based immunotherapies.
Collapse
|
26
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
27
|
Wang Z, Dang HV, Amaya M, Xu Y, Yin R, Yan L, Hickey AC, Annand EJ, Horsburgh BA, Reid PA, Smith I, Eden JS, Xu K, Broder CC, Veesler D. Potent monoclonal antibody-mediated neutralization of a divergent Hendra virus variant. Proc Natl Acad Sci U S A 2022; 119:e2122769119. [PMID: 35617431 PMCID: PMC9295758 DOI: 10.1073/pnas.2122769119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/16/2022] [Indexed: 12/27/2022] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic Henipaviruses (HNVs) responsible for recurrent outbreaks in humans and domestic species of highly fatal (50 to 95%) disease. A HeV variant (HeV-g2) of unprecedented genetic divergence has been identified in two fatally diseased horses, and in two flying fox species in regions of Australia not previously considered at risk for HeV spillover. Given the HeV-g2 divergence from HeV while retaining equivalent pathogenicity and spillover potential, understanding receptor usage and antigenic properties is urgently required to guide One Health biosecurity. Here, we show that the HeV-g2 G glycoprotein shares a conserved receptor tropism with prototypic HeV and that a panel of monoclonal antibodies recognizing the G and F glycoproteins potently neutralizes HeV-g2– and HeV G/F–mediated entry into cells. We determined a crystal structure of the Fab fragment of the hAH1.3 antibody bound to the HeV G head domain, revealing an antigenic site associated with potent cross-neutralization of both HeV-g2 and HeV. Structure-guided formulation of a tetravalent monoclonal antibody (mAb) mixture, targeting four distinct G head antigenic sites, results in potent neutralization of HeV and HeV-g2 and delineates a path forward for implementing multivalent mAb combinations for postexposure treatment of HNV infections.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Yan Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Andrew C. Hickey
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
- US Public Health Services Commissioned Corps, Rockville, MD 20852
| | - Edward J. Annand
- Sydney School of Veterinary Science, University of Sydney, Sydney, 2570 NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, 2006 NSW, Australia
- Black Mountain Laboratories, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601 ACT, Australia
- Equine Veterinary and One Health Epidemiology, EquiEpiVet, Aireys Inlet, Surf Coast, 3231 VIC, Australia
| | - Bethany A. Horsburgh
- University of Sydney School of Medicine, Sydney, 2006 NSW, Australia
- Westmead Institute for Medical Research, Sydney, 2145 NSW, Australia
| | - Peter A. Reid
- Private Equine Veterinary Practice, Brisbane, 4034 QLD, Australia
| | - Ina Smith
- Black Mountain Laboratories, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601 ACT, Australia
| | - John-Sebastian Eden
- University of Sydney School of Medicine, Sydney, 2006 NSW, Australia
- Westmead Institute for Medical Research, Sydney, 2145 NSW, Australia
| | - Kai Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| |
Collapse
|
28
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
29
|
Wang Z, Amaya M, Addetia A, Dang HV, Reggiano G, Yan L, Hickey AC, DiMaio F, Broder CC, Veesler D. Architecture and antigenicity of the Nipah virus attachment glycoprotein. Science 2022; 375:1373-1378. [PMID: 35239409 DOI: 10.1126/science.abm5561] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are zoonotic henipaviruses (HNVs) responsible for outbreaks of encephalitis and respiratory illness. The entry of HNVs into host cells requires the attachment (G) and fusion (F) glycoproteins, which are the main targets of antibody responses. To understand viral infection and host immunity, we determined a cryo-electron microscopy structure of the NiV G homotetrameric ectodomain in complex with the nAH1.3 broadly neutralizing antibody Fab fragment. We show that a cocktail of two nonoverlapping G-specific antibodies neutralizes NiV and HeV synergistically and limits the emergence of escape mutants. Analysis of polyclonal serum antibody responses elicited by vaccination of macaques with NiV G indicates that the receptor binding head domain is immunodominant. These results pave the way for implementing multipronged therapeutic strategies against these deadly pathogens.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ha V Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gabriella Reggiano
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Andrew C Hickey
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA.,U.S. Public Health Services Commissioned Corps, Rockville, MD 20852, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Defective Interfering Viral Particle Treatment Reduces Clinical Signs and Protects Hamsters from Lethal Nipah Virus Disease. mBio 2022; 13:e0329421. [PMID: 35297677 PMCID: PMC9040845 DOI: 10.1128/mbio.03294-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Defective interfering particles (DIs) contain a considerably smaller genome than the parental virus but retain replication competency. As DIs can directly or indirectly alter propagation kinetics of the parental virus, they offer a novel approach to antiviral therapy, capitalizing on knowledge from natural infection. However, efforts to translate in vitro inhibition to in vivo screening models remain limited. We investigated the efficacy of virus-like particles containing DI genomes (therapeutic infectious particles [TIPs]) in the Syrian hamster model of lethal Nipah virus (NiV) disease. We found that coadministering a high dose of TIPs intraperitoneally with virus challenge improved clinical course and reduced lethality. To mimic natural exposure, we also evaluated lower-dose TIP delivery and virus challenge intranasally, finding equally efficacious reduction in disease severity and overall lethality. Eliminating TIP replicative capacity decreased efficacy, suggesting protection via direct inhibition. These data provide evidence that TIP-mediated treatment can confer protection against disease and lethal outcome in a robust animal NiV model, supporting further development of TIP treatment for NiV and other high-consequence pathogens. IMPORTANCE Here, we demonstrate that treatment with defective interfering particles (DIs), a natural by-product of viral infection, can significantly improve the clinical course and outcome of viral disease. When present with their parental virus, DIs can directly or indirectly alter viral propagation kinetics and exert potent inhibitory properties in cell culture. We evaluated the efficacy of a selection of virus-like particles containing DI genomes (TIPs) delivered intranasally in a lethal hamster model of Nipah virus disease. We demonstrate significantly improved clinical outcomes, including reduction in both lethality and the appearance of clinical signs. This work provides key efficacy data in a robust model of Nipah virus disease to support further development of TIP-mediated treatment against high-consequence viral pathogens.
Collapse
|
31
|
Young A, Isaacs A, Scott CAP, Modhiran N, McMillan CLD, Cheung STM, Barr J, Marsh G, Thakur N, Bailey D, Li KSM, Luk HKH, Kok KH, Lau SKP, Woo PCY, Furuyama W, Marzi A, Young PR, Chappell KJ, Watterson D. A platform technology for generating subunit vaccines against diverse viral pathogens. Front Immunol 2022; 13:963023. [PMID: 36059532 PMCID: PMC9436389 DOI: 10.3389/fimmu.2022.963023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 12/28/2022] Open
Abstract
The COVID-19 pandemic response has shown how vaccine platform technologies can be used to rapidly and effectively counteract a novel emerging infectious disease. The speed of development for mRNA and vector-based vaccines outpaced those of subunit vaccines, however, subunit vaccines can offer advantages in terms of safety and stability. Here we describe a subunit vaccine platform technology, the molecular clamp, in application to four viruses from divergent taxonomic families: Middle Eastern respiratory syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), Lassa virus (LASV) and Nipah virus (NiV). The clamp streamlines subunit antigen production by both stabilising the immunologically important prefusion epitopes of trimeric viral fusion proteins while enabling purification without target-specific reagents by acting as an affinity tag. Conformations for each viral antigen were confirmed by monoclonal antibody binding, size exclusion chromatography and electron microscopy. Notably, all four antigens tested remained stable over four weeks of incubation at 40°C. Of the four vaccines tested, a neutralising immune response was stimulated by clamp stabilised MERS-CoV spike, EBOV glycoprotein and NiV fusion protein. Only the clamp stabilised LASV glycoprotein precursor failed to elicit virus neutralising antibodies. MERS-CoV and EBOV vaccine candidates were both tested in animal models and found to provide protection against viral challenge.
Collapse
Affiliation(s)
- Andrew Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer Barr
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Glenn Marsh
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Nazia Thakur
- The Pirbright Institute, Woking, United Kingdom.,Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | - Kenneth S M Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hayes K H Luk
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kin-Hang Kok
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Loomis RJ, DiPiazza AT, Falcone S, Ruckwardt TJ, Morabito KM, Abiona OM, Chang LA, Caringal RT, Presnyak V, Narayanan E, Tsybovsky Y, Nair D, Hutchinson GB, Stewart-Jones GBE, Kueltzo LA, Himansu S, Mascola JR, Carfi A, Graham BS. Chimeric Fusion (F) and Attachment (G) Glycoprotein Antigen Delivery by mRNA as a Candidate Nipah Vaccine. Front Immunol 2021; 12:772864. [PMID: 34956199 PMCID: PMC8692728 DOI: 10.3389/fimmu.2021.772864] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Barney S. Graham, ; Rebecca J. Loomis,
| | - Anthony T. DiPiazza
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Tracy J. Ruckwardt
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Olubukola M. Abiona
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lauren A. Chang
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Deepika Nair
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Barney S. Graham, ; Rebecca J. Loomis,
| |
Collapse
|
33
|
Bauer S, Zhang F, Linhardt RJ. Implications of Glycosaminoglycans on Viral Zoonotic Diseases. Diseases 2021; 9:85. [PMID: 34842642 PMCID: PMC8628766 DOI: 10.3390/diseases9040085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Zoonotic diseases are infectious diseases that pass from animals to humans. These include diseases caused by viruses, bacteria, fungi, and parasites and can be transmitted through close contact or through an intermediate insect vector. Many of the world's most problematic zoonotic diseases are viral diseases originating from animal spillovers. The Spanish influenza pandemic, Ebola outbreaks in Africa, and the current SARS-CoV-2 pandemic are thought to have started with humans interacting closely with infected animals. As the human population grows and encroaches on more and more natural habitats, these incidents will only increase in frequency. Because of this trend, new treatments and prevention strategies are being explored. Glycosaminoglycans (GAGs) are complex linear polysaccharides that are ubiquitously present on the surfaces of most human and animal cells. In many infectious diseases, the interactions between GAGs and zoonotic pathogens correspond to the first contact that results in the infection of host cells. In recent years, researchers have made progress in understanding the extraordinary roles of GAGs in the pathogenesis of zoonotic diseases, suggesting potential therapeutic avenues for using GAGs in the treatment of these diseases. This review examines the role of GAGs in the progression, prevention, and treatment of different zoonotic diseases caused by viruses.
Collapse
Affiliation(s)
- Sarah Bauer
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Biological Science, Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
34
|
Gómez Román R, Tornieporth N, Cherian NG, Shurtleff AC, L'Azou Jackson M, Yeskey D, Hacker A, Mungai E, Le TT. Medical countermeasures against henipaviruses: a review and public health perspective. THE LANCET. INFECTIOUS DISEASES 2021; 22:e13-e27. [PMID: 34735799 PMCID: PMC8694750 DOI: 10.1016/s1473-3099(21)00400-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
Henipaviruses, including Nipah virus, are regarded as pathogens of notable epidemic potential because of their high pathogenicity and the paucity of specific medical countermeasures to control infections in humans. We review the evidence of medical countermeasures against henipaviruses and project their cost in a post-COVID-19 era. Given the sporadic and unpredictable nature of henipavirus outbreaks, innovative strategies will be needed to circumvent the infeasibility of traditional phase 3 clinical trial regulatory pathways. Stronger partnerships with scientific institutions and regulatory authorities in low-income and middle-income countries can inform coordination of appropriate investments and development of strategies and normative guidelines for the deployment and equitable use of multiple medical countermeasures. Accessible measures should include global, regional, and endemic in-country stockpiles of reasonably priced small molecules, monoclonal antibodies, and vaccines as part of a combined collection of products that could help to control henipavirus outbreaks and prevent future pandemics.
Collapse
Affiliation(s)
- Raúl Gómez Román
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Nadia Tornieporth
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway; University of Applied Sciences & Arts, Hanover, Germany
| | | | - Amy C Shurtleff
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | - Debra Yeskey
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Adam Hacker
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Eric Mungai
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Tung Thanh Le
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway.
| |
Collapse
|
35
|
Abstract
Over the past 20 years, Nipah virus (NiV) has emerged as a significant, highly pathogenic bat-borne paramyxovirus causing severe respiratory disease and encephalitis in humans, and human-to-human transmission has been demonstrated in multiple outbreaks. In addition to causing serious illness in humans, NiV is a zoonotic pathogen capable of infecting a wide range of other mammalian species, including pigs and horses. While NiV has caused less than 700 human cases since its discovery in 1998/1999, the involvement of intermediate agricultural hosts can result in significant economic consequences. Owing to the severity of disease, capacity for human-to-human transmission, zoonotic potential, and lack of available approved therapeutic treatment options, NiV has been listed by the World Health Organization in their Blueprint list of priority pathogens as one of the eight most dangerous pathogens to monitor and prepare countermeasures to prevent a pandemic. Here, we discuss progress towards the development of therapeutic measures for the treatment of NiV infection and disease.
Collapse
Affiliation(s)
- Kendra Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michelle Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
36
|
Doyle MP, Kose N, Borisevich V, Binshtein E, Amaya M, Nagel M, Annand EJ, Armstrong E, Bombardi R, Dong J, Schey KL, Broder CC, Zeitlin L, Kuang EA, Bornholdt ZA, West BR, Geisbert TW, Cross RW, Crowe JE. Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Rep 2021; 36:109628. [PMID: 34469726 PMCID: PMC8527959 DOI: 10.1016/j.celrep.2021.109628] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
Hendra virus and Nipah virus (NiV), members of the Henipavirus (HNV) genus, are zoonotic paramyxoviruses known to cause severe disease across six mammalian orders, including humans. We isolated a panel of human monoclonal antibodies (mAbs) from the B cells of an individual with prior exposure to equine Hendra virus (HeV) vaccine, targeting distinct antigenic sites. The most potent class of cross-reactive antibodies achieves neutralization by blocking viral attachment to the host cell receptors ephrin-B2 and ephrin-B3, with a second class being enhanced by receptor binding. mAbs from both classes display synergistic activity in vitro. In a stringent hamster model of NiV Bangladesh (NiVB) infection, antibodies from both classes reduce morbidity and mortality and achieve synergistic protection in combination. These candidate mAbs might be suitable for use in a cocktail therapeutic approach to achieve synergistic potency and reduce the risk of virus escape. Doyle et al. describe two human monoclonal antibodies that target the henipavirus receptor-binding protein, HENV-103 and HENV-117, that display highly potent activity in vitro and enhanced therapeutic efficacy in vivo when delivered as a cocktail.
Collapse
Affiliation(s)
- Michael P Doyle
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Viktoriya Borisevich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Moushimi Amaya
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marcus Nagel
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward J Annand
- Sydney School of Veterinary Science and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia; Black Mountain Laboratories & Australian Centre for Disease Preparedness, Health and Biosecurity, CSIRO, Canberra & Geelong, Australia
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jinhui Dong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher C Broder
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - Erin A Kuang
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | | | | | - Thomas W Geisbert
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Structural basis for broad coronavirus neutralization. Nat Struct Mol Biol 2021; 28:478-486. [PMID: 33981021 DOI: 10.1038/s41594-021-00596-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023]
Abstract
Three highly pathogenic β-coronaviruses have crossed the animal-to-human species barrier in the past two decades: SARS-CoV, MERS-CoV and SARS-CoV-2. To evaluate the possibility of identifying antibodies with broad neutralizing activity, we isolated a monoclonal antibody, termed B6, that cross-reacts with eight β-coronavirus spike glycoproteins, including all five human-infecting β-coronaviruses. B6 broadly neutralizes entry of pseudotyped viruses from lineages A and C, but not from lineage B, and the latter includes SARS-CoV and SARS-CoV-2. Cryo-EM, X-ray crystallography and membrane fusion assays reveal that B6 binds to a conserved cryptic epitope located in the fusion machinery. The data indicate that antibody binding sterically interferes with the spike conformational changes leading to membrane fusion. Our data provide a structural framework explaining B6 cross-reactivity with β-coronaviruses from three lineages, along with a proof of concept for antibody-mediated broad coronavirus neutralization elicited through vaccination. This study unveils an unexpected target for next-generation structure-guided design of a pan-β-coronavirus vaccine.
Collapse
|
38
|
Amaya M, Cheng H, Borisevich V, Navaratnarajah CK, Cattaneo R, Cooper L, Moore TW, Gaisina IN, Geisbert TW, Rong L, Broder CC. A recombinant Cedar virus based high-throughput screening assay for henipavirus antiviral discovery. Antiviral Res 2021; 193:105084. [PMID: 34077807 DOI: 10.1016/j.antiviral.2021.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic, bat-borne paramyxoviruses in the genus Henipavirus that cause severe and often fatal acute respiratory and/or neurologic diseases in humans and livestock. There are currently no approved antiviral therapeutics or vaccines for use in humans to treat or prevent NiV or HeV infection. To facilitate development of henipavirus antivirals, a high-throughput screening (HTS) platform was developed based on a well-characterized recombinant version of the nonpathogenic Henipavirus, Cedar virus (rCedV). Using reverse genetics, a rCedV encoding firefly luciferase (rCedV-Luc) was rescued and its utility evaluated for high-throughput antiviral compound screening. The luciferase reporter gene signal kinetics of rCedV-Luc in different human cell lines was characterized and validated as an authentic real-time measure of viral growth. The rCedV-Luc platform was optimized as an HTS assay that demonstrated high sensitivity with robust Z' scores, excellent signal-to-background ratios and coefficients of variation. Eight candidate compounds that inhibited rCedV replication were identified for additional validation and demonstrated that 4 compounds inhibited authentic NiV-Bangladesh replication. Further evaluation of 2 of the 4 validated compounds in a 9-point dose response titration demonstrated potent antiviral activity against NiV-Bangladesh and HeV, with minimal cytotoxicity. This rCedV reporter can serve as a surrogate yet authentic BSL-2 henipavirus platform that will dramatically accelerate drug candidate identification in the development of anti-henipavirus therapies.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Han Cheng
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Terry W Moore
- Department of Pharmaceutical Sciences and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Irina N Gaisina
- Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, IL, 60612, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
39
|
Dong J, Cross RW, Doyle MP, Kose N, Mousa JJ, Annand EJ, Borisevich V, Agans KN, Sutton R, Nargi R, Majedi M, Fenton KA, Reichard W, Bombardi RG, Geisbert TW, Crowe JE. Potent Henipavirus Neutralization by Antibodies Recognizing Diverse Sites on Hendra and Nipah Virus Receptor Binding Protein. Cell 2021; 183:1536-1550.e17. [PMID: 33306954 DOI: 10.1016/j.cell.2020.11.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/04/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Hendra (HeV) and Nipah (NiV) viruses are emerging zoonotic pathogens in the Henipavirus genus causing outbreaks of disease with very high case fatality rates. Here, we report the first naturally occurring human monoclonal antibodies (mAbs) against HeV receptor binding protein (RBP). All isolated mAbs neutralized HeV, and some also neutralized NiV. Epitope binning experiments identified five major antigenic sites on HeV-RBP. Animal studies demonstrated that the most potent cross-reactive neutralizing mAbs, HENV-26 and HENV-32, protected ferrets in lethal models of infection with NiV Bangladesh 3 days after exposure. We solved the crystal structures of mAb HENV-26 in complex with both HeV-RBP and NiV-RBP and of mAb HENV-32 in complex with HeV-RBP. The studies reveal diverse sites of vulnerability on RBP recognized by potent human mAbs that inhibit virus by multiple mechanisms. These studies identify promising prophylactic antibodies and define protective epitopes that can be used in rational vaccine design.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Binding Sites
- Binding, Competitive
- Brain/pathology
- Chiroptera/virology
- Cross Reactions/immunology
- Crystallography, X-Ray
- Ephrin-B2/metabolism
- Female
- Ferrets/virology
- Hendra Virus/immunology
- Henipavirus/immunology
- Humans
- Interferometry
- Liver/pathology
- Models, Molecular
- Neutralization Tests
- Nipah Virus/immunology
- Protein Binding
- Protein Conformation
- Protein Domains
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
Collapse
Affiliation(s)
- Jinhui Dong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert W Cross
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael P Doyle
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jarrod J Mousa
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Edward J Annand
- Sydney School of Veterinary Science and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia; Black Mountain Laboratories & Australian Centre for Disease Preparedness, Health and Biosecurity, CSIRO, Canberra, ACT, Australia
| | - Viktoriya Borisevich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N Agans
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel Nargi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mahsa Majedi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Karla A Fenton
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Walter Reichard
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin G Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas W Geisbert
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
40
|
Dang HV, Cross RW, Borisevich V, Bornholdt ZA, West BR, Chan YP, Mire CE, Da Silva SC, Dimitrov AS, Yan L, Amaya M, Navaratnarajah CK, Zeitlin L, Geisbert TW, Broder CC, Veesler D. Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nat Struct Mol Biol 2021; 28:426-434. [PMID: 33927387 DOI: 10.1038/s41594-021-00584-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are henipaviruses (HNVs) causing respiratory illness and severe encephalitis in humans, with fatality rates of 50-100%. There are no licensed therapeutics or vaccines to protect humans. HeV and NiV use a receptor-binding glycoprotein (G) and a fusion glycoprotein (F) to enter host cells. HNV F and G are the main targets of the humoral immune response, and the presence of neutralizing antibodies is a correlate of protection against NiV and HeV in experimentally infected animals. We describe here two cross-reactive F-specific antibodies, 1F5 and 12B2, that neutralize NiV and HeV through inhibition of membrane fusion. Cryo-electron microscopy structures reveal that 1F5 and 12B2 recognize distinct prefusion-specific, conserved quaternary epitopes and lock F in its prefusion conformation. We provide proof-of-concept for using antibody cocktails for neutralizing NiV and HeV and define a roadmap for developing effective countermeasures against these highly pathogenic viruses.
Collapse
Affiliation(s)
- Ha V Dang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - Yee-Peng Chan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Chad E Mire
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Antony S Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | | | | | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV. Evolution of Nipah Virus Infection: Past, Present, and Future Considerations. Trop Med Infect Dis 2021; 6:tropicalmed6010024. [PMID: 33672796 PMCID: PMC8005932 DOI: 10.3390/tropicalmed6010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus of the Henipavirus genus first identified in Malaysia in 1998. Henipaviruses have bat reservoir hosts and have been isolated from fruit bats found across Oceania, Asia, and Africa. Bat-to-human transmission is thought to be the primary mode of human NiV infection, although multiple intermediate hosts are described. Human infections with NiV were originally described as a syndrome of fever and rapid neurological decline following contact with swine. More recent outbreaks describe a syndrome with prominent respiratory symptoms and human-to-human transmission. Nearly annual outbreaks have been described since 1998 with case fatality rates reaching greater than 90%. The ubiquitous nature of the reservoir host, increasing deforestation, multiple mode of transmission, high case fatality rate, and lack of effective therapy or vaccines make NiV’s pandemic potential increasingly significant. Here we review the epidemiology and microbiology of NiV as well as the therapeutic agents and vaccines in development.
Collapse
Affiliation(s)
- Naomi Hauser
- Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Alexis C. Gushiken
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Shivakumar Narayanan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Shyam Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Joel V. Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
- Correspondence: ; Tel.: +1-410-706-5704
| |
Collapse
|
42
|
Edwards RJ, Mansouri K, Stalls V, Manne K, Watts B, Parks R, Janowska K, Gobeil SMC, Kopp M, Li D, Lu X, Mu Z, Deyton M, Oguin TH, Sprenz J, Williams W, Saunders KO, Montefiori D, Sempowski GD, Henderson R, Munir Alam S, Haynes BF, Acharya P. Cold sensitivity of the SARS-CoV-2 spike ectodomain. Nat Struct Mol Biol 2021; 28:128-131. [PMID: 33402708 PMCID: PMC7878407 DOI: 10.1038/s41594-020-00547-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
The SARS-CoV-2 spike (S) protein, a primary target for COVID-19 vaccine development, presents its receptor binding domain in two conformations, the receptor-accessible 'up' or receptor-inaccessible 'down' states. Here we report that the commonly used stabilized S ectodomain construct '2P' is sensitive to cold temperatures, and this cold sensitivity is abrogated in a 'down' state-stabilized ectodomain. Our findings will impact structural, functional and vaccine studies that use the SARS-CoV-2 S ectodomain.
Collapse
Affiliation(s)
- Robert J Edwards
- Duke Human Vaccine Institute, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | | | | | | | - Brian Watts
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Durham, NC, USA
| | | | | | - Megan Kopp
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Zekun Mu
- Duke Human Vaccine Institute, Durham, NC, USA
| | | | | | | | - Wilton Williams
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Rory Henderson
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
| |
Collapse
|
43
|
Cold sensitivity of the SARS-CoV-2 spike ectodomain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32699852 DOI: 10.1101/2020.07.12.199588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 spike (S) protein, a primary target for COVID-19 vaccine development, presents its Receptor Binding Domain in two conformations: receptor-accessible "up" or receptor-inaccessible "down" conformations. Here, we report that the commonly used stabilized S ectodomain construct "2P" is sensitive to cold temperature, and that this cold sensitivity is resolved in a "down" state stabilized spike. Our results will impact structural, functional and vaccine studies that use the SARS-CoV-2 S ectodomain.
Collapse
|
44
|
Estudos experimentais sobre COVID-19: panorama da produção científica mundial. ACTA PAUL ENFERM 2020. [DOI: 10.37689/acta-ape/2020ao01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|