1
|
Wang J, Klein C, Cochran JR, Sockolosky J, Lippow SM. Exploring new frontiers in LAG-3 biology and therapeutics. Trends Pharmacol Sci 2025:S0165-6147(25)00098-7. [PMID: 40514283 DOI: 10.1016/j.tips.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025]
Abstract
Lymphocyte activation gene-3 (LAG-3) has emerged as a critical immune checkpoint receptor primarily modulating T-cell responses through distinct immune regulatory mechanisms. Recent advances have elucidated LAG-3's complex receptor-ligand interactions, structure-function relationships, and unique signaling pathways. LAG-3 antagonistic antibodies, such as relatlimab approved for melanoma, have shown promising efficacy with favorable toxicity profiles, though only in combinational therapies. While LAG-3's role in oncology continues to expand, it is also gaining recognition as a potential therapeutic target for other disorders. This review highlights recent progress in understanding LAG-3's molecular features, ligand regulation, signaling, and immune modulation mechanisms. Additionally, it explores emerging questions in oncology and the exciting potential of therapies targeting the LAG-3 pathway in autoimmune disease. A deeper understanding of LAG-3's confounding biology and disease relevance would drive the development of novel immunotherapies across broader clinical indications.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| | | | - Jennifer R Cochran
- Department of Bioengineering, Stanford Cancer Institute, Stanford University, Stanford, CA
| | | | | |
Collapse
|
2
|
Maher N, Mouhssine S, Matti BF, Alwan AF, Gaidano G. Molecular Mechanisms in the Transformation from Indolent to Aggressive B Cell Malignancies. Cancers (Basel) 2025; 17:907. [PMID: 40075754 PMCID: PMC11899122 DOI: 10.3390/cancers17050907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Histological transformation (HT) into aggressive lymphoma is a turning point in a significant fraction of patients affected by indolent lymphoproliferative neoplasms, namely, chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), marginal zone lymphomas (MZLs), and lymphoplasmacytic lymphoma (LPL) [...].
Collapse
Affiliation(s)
- Nawar Maher
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| | - Samir Mouhssine
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| | - Bassam Francis Matti
- Department of Hematology and Bone Marrow Transplant, Hematology and Bone Marrow Transplant Center, Medical City, Baghdad 00964, Iraq;
| | - Alaa Fadhil Alwan
- Department of Clinical Hematology, The National Center of Hematology, Mustansiriyah University, Baghdad 10001, Iraq;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| |
Collapse
|
3
|
Zhao L, Tang C, Jin X, Wang H, Xu K, Liu X, Liu Y, Zhao W, Zhang W, Ye L, Chen Z, Liu Q, He Y. Unraveling tumoral heterogeneity and angiogenesis-associated mechanisms of PD-1 and LAG-3 dual inhibition in lung cancers by single-cell RNA sequencing. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2025; 3:41-49. [PMID: 40226601 PMCID: PMC11993031 DOI: 10.1016/j.pccm.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 04/15/2025]
Abstract
Background Lymphocyte activation gene 3 (LAG-3) is a promising immune checkpoint for combination immunotherapy. This study aims to elucidate the exact synergistic anti-tumor mechanism of programmed death 1 (PD-1) and LAG-3 dual inhibition in lung cancer. Methods Multiple patient-derived xenograft (PDX) models of lung cancer were constructed and analyzed by single-cell RNA sequencing (scRNA-seq). Clustering of all human-derived cells, identification of biomarker genes of three cell types, trajectory analysis, and calculation of tumor heterogeneity scores were performed. Differentially expressed genes (DEGs) were identified and functional enrichment analyses of cancer-associated genes were conducted. The functional significance of DEGs in the immune system was evaluated using the Reactome online server. Major histocompatibility complex (MHC) pathways and angiogenesis-associated pathways were analyzed. The Cancer Genome Atlas (TCGA) was used for further verification. Results PD-1 and LAG-3 dual inhibition achieved synergistic tumor inhibition in squamous cell carcinoma (SCC) PDX models, but not in adenocarcinoma and small cell lung cancer PDX models. A total of 8127 cells, including 2699 basal, 4109 malignant, and 1319 epithelial cells, were identified by scRNA-seq. Malignant cells evolved from basal and epithelial cells in the trajectory analysis. The responders to the combination therapy of PD-1 and LAG-3 inhibitors had lower heterogeneity scores than non-responders. Compared with anti-PD-1 monotherapy, the combination group exhibited higher levels of neutrophil degranulation. The DEGs were correlated with disease, metabolism, and programmed cell death-associated pathways. The MHC class I-associated pathways and pericyte pathways were upregulated, whereas the vascular endothelial growth factor pathway was downregulated in the combination group. Conclusion We discovered the superior efficacy of PD-1 and LAG-3 dual inhibition in SCC PDX models, and showed that it may be associated with low tumor heterogeneity scores, upregulation of the MHC class I pathway, and normalization of tumor angiogenesis.
Collapse
Affiliation(s)
- Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chen Tang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xuan Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xinyue Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yujin Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wengang Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Li Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhimin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qi Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
4
|
Liu Y, Yao Y, Yang X, Wei M, Lu B, Dong K, Lyu D, Li Y, Guan W, Huang R, Xu G, Pan X. Lymphocyte activation gene 3 served as a potential prognostic and immunological biomarker across various cancer types: a clinical and pan-cancer analysis. Clin Transl Immunology 2024; 13:e70009. [PMID: 39372371 PMCID: PMC11450455 DOI: 10.1002/cti2.70009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives Lymphocyte activation gene 3 (LAG3), an inhibitory receptor in T-cell activation, is a negative prognostic factor. However, its impact on tumours has yet to be comprehensively elucidated on a pan-cancer scale. Thus, we aim to reveal its role at the pan-cancer level. Methods We performed IHC staining on a retrospective cohort of 370 patients. Then we assessed the prognostic effect of LAG3 using Kaplan-Meier survival analysis and multivariate Cox regression analysis. In pan-cancer analysis, we constructed competing endogenous RNA and protein-protein interaction networks, conducted gene set enrichment analysis and identified correlations between LAG3 gene expression and various factors, including clinical characteristics, tumour purity, mutations, tumour immunity and drug sensitivity across 33 cancer types. Results LAG3 was expressed higher in normal kidney tissues than in tumours. A high level of LAG3 gene expression was an independent prognostic factor for OS (HR = 6.60, 95% CI = 2.43-17.90, P < 0.001) and PFS (HR = 3.44, 95% CI = 1.68-7.10, P < 0.001). In pan-cancer analysis, LAG3 exhibited robust correlations with survival and tumour stages in various cancers. Moreover, LAG3 was strongly associated with immune-related genes, proteins and signalling pathways. LAG3 gene expression was positively associated with increased infiltration of activated immune cells and decreased infiltration of several resting cells. LAG3 gene expression was associated with tumour mutation burden and microsatellite instability in multiple cancers. Conclusion High LAG3 gene expression was an independent risk factor in kidney neoplasms. It also functioned as a biomarker for prognosis, TIME and immunotherapy efficacy in the pan-cancer dimension.
Collapse
Affiliation(s)
- Yifan Liu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuntao Yao
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinyue Yang
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Maodong Wei
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingnan Lu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Keqing Dong
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Donghao Lyu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanan Li
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenbin Guan
- Department of PathologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Runzhi Huang
- Department of Burn SurgeryThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Guofeng Xu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiuwu Pan
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Marozio L, Nuzzo AM, Gullo E, Moretti L, Canuto EM, Tancredi A, Goia M, Cosma S, Revelli A, Rolfo A, Benedetto C. Immune Checkpoints in Recurrent Pregnancy Loss: New Insights into a Detrimental and Elusive Disorder. Int J Mol Sci 2023; 24:13071. [PMID: 37685876 PMCID: PMC10488095 DOI: 10.3390/ijms241713071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recurrent pregnancy loss (RPL) refers to two or more miscarriages before 20 weeks gestation. Its prevalence is 1-2%; its pathogenesis remains unexplained in more than 50% of cases, in which the cause is thought to be abnormal immune activity during placentation leading to a lack of pregnancy-induced immune tolerance. It is unknown whether immune activity is deranged in the endometrium of women with RPL. We studied the gene expression and the quantitative tissue protein levels of three immune checkpoints (CD276, which enhances cytotoxic T-cell activity, cytotoxic T-lymphocyte-associated antigen-4 [CTL-4], which reduces Th1 cytokine production, and lymphocyte activation gene-3 [LAG-3], which shows suppressive activity on Tregs and CD4+ T-cells) in endometrial samples from 27 women with unexplained RPL and in 29 women with dysfunctional uterine bleeding and previous uneventful pregnancies as controls. RNA isolation, real-time PCR, protein isolation, and ELISA were performed. CD276 gene expression and protein tissue levels were significantly lower in the endometrium of the RPL group than in the controls, whereas both CTL-4 and LAG-3 were significantly higher. This difference suggests defective endometrial immune regulation and overactivation of immune response in women with a history of RPL, at least in relation to controls with dysfunctional uterine bleeding and previous normal reproductive history.
Collapse
Affiliation(s)
- Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (E.G.); (E.M.C.); (A.T.); (S.C.); (C.B.)
| | - Anna Maria Nuzzo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (A.M.N.); (L.M.); (A.R.)
| | - Eugenio Gullo
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (E.G.); (E.M.C.); (A.T.); (S.C.); (C.B.)
| | - Laura Moretti
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (A.M.N.); (L.M.); (A.R.)
| | - Emilie M. Canuto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (E.G.); (E.M.C.); (A.T.); (S.C.); (C.B.)
| | - Annalisa Tancredi
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (E.G.); (E.M.C.); (A.T.); (S.C.); (C.B.)
| | - Margherita Goia
- Unit of Pathology, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy;
| | - Stefano Cosma
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (E.G.); (E.M.C.); (A.T.); (S.C.); (C.B.)
| | - Alberto Revelli
- Department of Surgical Sciences, Obstetrics and Gynecology 2, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy;
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (A.M.N.); (L.M.); (A.R.)
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Via Ventimiglia 1, 10126 Turin, Italy; (E.G.); (E.M.C.); (A.T.); (S.C.); (C.B.)
| |
Collapse
|
6
|
Yadav R, Hakobyan N, Wang JC. Role of Next Generation Immune Checkpoint Inhibitor (ICI) Therapy in Philadelphia Negative Classic Myeloproliferative Neoplasm (MPN): Review of the Literature. Int J Mol Sci 2023; 24:12502. [PMID: 37569880 PMCID: PMC10420159 DOI: 10.3390/ijms241512502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs), which include essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF), are enduring and well-known conditions. These disorders are characterized by the abnormal growth of one or more hematopoietic cell lineages in the body's stem cells, leading to the enlargement of organs and the manifestation of constitutional symptoms. Numerous studies have provided evidence indicating that the pathogenesis of these diseases involves the dysregulation of the immune system and the presence of chronic inflammation, both of which are significant factors. Lately, the treatment of cancer including hematological malignancy has progressed on the agents aiming for the immune system, cytokine environment, immunotherapy agents, and targeted immune therapy. Immune checkpoints are the molecules that regulate T cell function in the tumor microenvironment (TME). The first line of primary immune checkpoints are programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4). Immune checkpoint inhibitor therapy (ICIT) exerts its anti-tumor actions by blocking the inhibitory pathways in T cells and has reformed cancer treatment. Despite the impressive clinical success of ICIT, tumor internal resistance poses a challenge for oncologists leading to a low response rate in solid tumors and hematological malignancies. A Phase II trial on nivolumab for patients with post-essential thrombocythemia myelofibrosis, primary myelofibrosis, or post-polycythemia myelofibrosis was performed (Identifier: NCT02421354). This trial tested the efficacy of a PD-1 blockade agent, namely nivolumab, but was terminated prematurely due to adverse events and lack of efficacy. A multicenter, Phase II, single-arm open-label study was conducted including pembrolizumab in patients with primary thrombocythemia, post-essential thrombocythemia or post-polycythemia vera myelofibrosis that were ineligible for or were previously treated with ruxolitinib. This study showed that pembrolizumab treatment did not have many adverse events, but there were no pertinent clinical responses hence it was terminated after the first stage was completed. To avail the benefits from immunotherapy, the paradigm has shifted to new immune checkpoints in the TME such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin-containing suppressor of T cell activation (VISTA), and human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) forming the basis of next-generation ICIT. The primary aim of this article is to underscore and elucidate the significance of next-generation ICIT in the context of MPN. Specifically, we aim to explore the potential of monoclonal antibodies as targeted immunotherapy and the development of vaccines targeting specific MPN epitopes, with the intent of augmenting tumor-related immune responses. It is anticipated that these therapeutic modalities rooted in immunotherapy will not only expand but also enhance the existing treatment regimens for patients afflicted with MPN. Preliminary studies from our laboratory showed over-expressed MDSC and over-expressed VISTA in MDSC, and in progenitor and immune cells directing the need for more clinical trials using next-generation ICI in the treatment of MPN.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Narek Hakobyan
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Jen-Chin Wang
- Department of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| |
Collapse
|
7
|
Zhou X, Gu Y, Wang H, Zhou W, Zou L, Li S, Hua C, Gao S. From bench to bedside: targeting lymphocyte activation gene 3 as a therapeutic strategy for autoimmune diseases. Inflamm Res 2023:10.1007/s00011-023-01742-y. [PMID: 37314518 DOI: 10.1007/s00011-023-01742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Immune checkpoints negatively regulate immune response, thereby playing an important role in maintaining immune homeostasis. Substantial studies have confirmed that blockade or deficiency of immune checkpoint pathways contributes to the deterioration of autoimmune diseases. In this context, focusing on immune checkpoints might provide alternative strategies for the treatment of autoimmunity. Lymphocyte activation gene 3 (LAG3), as a member of immune checkpoint, is critical in regulating immune responses as manifested in multiple preclinical studies and clinical trials. Recent success of dual-blockade of LAG3 and programmed death-1 in melanoma also supports the notion that LAG3 is a crucial regulator in immune tolerance. METHODS We wrote this review article by searching the PubMed, Web of Science and Google Scholar databases. CONCLUSION In this review, we summarize the molecular structure and the action mechanisms of LAG3. Additionally, we highlight its roles in diverse autoimmune diseases and discuss how the manipulation of the LAG3 pathway can serve as a promising therapeutic strategy as well as its specific mechanism with the aim of filling the gaps from bench to bedside.
Collapse
Affiliation(s)
- Xueyin Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiming Gu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huihong Wang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
8
|
Bhagwat B, de Waal Malefyt R, Willingham A. Investigating combination benefit of PD1 and LAG3 co-blockade using an engineered cellular bioassay. Int Immunopharmacol 2023; 119:109566. [PMID: 37044037 DOI: 10.1016/j.intimp.2022.109566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 04/14/2023]
Abstract
LAG3 and PD1 are both immunomodulatory receptor that act by inhibiting activation of T cells, producing a more immunosuppressive environment. Even with the recent clinical success of PD1 and LAG3 co-blockade, signal transduction downstream of LAG3 remains largely unknown. We have leveraged an engineered Jurkat (T cell) and Raji (APC) co-culture system to assess simultaneous blockade of PD1 and LAG3 pathways using antibodies. RNA-Seq analysis of cell pellets individually treated with LAG3 or PD1 antibodies revealed modest immune activation however, 5-fold more genes were upregulated upon combination treatment. There were increases in costimulatory genes like CD28, CD5, CD6 as well as intracellular signaling molecules like LCP2 and ITK. Given the role of ERK in immune activation of T cells, pERK levels of Jurkat cells in the assay were evaluated. A very modest activation of pERK was observed with anti-LAG3 compared to anti-PD1 but a combination treatment resulted in prolonged ERK phosphorylation. Treatment of Jurkat cells with a commercial phosphatase inhibitor NSC87877 which can impact many phosphatases resulted in immune activation, measured by increased IL2 levels, only in the presence of LAG3. When NSC87877 was combined with the PD1 antibody, it could phenocopy combination benefit of PD1 and LAG3 blocking antibodies. CD28 has a recognized role in PD1 signaling but the impact on LAG3 signaling remains unknown. CD28 knockout in Jurkat cells affected overall IL-2 response of both LAG3 and PD1 antibody treatment but still retained combination benefit. Taken together this reductionist system highlights differences in downstream effects of LAG3 and PD1 blockade and we believe that the assay may have further utility to dissect convergence of both signaling pathways and augment studies in primary cells.
Collapse
Affiliation(s)
| | - Rene de Waal Malefyt
- Discovery Biologics, Merck & Co., Inc, South San Francisco, CA, USA; Synthekine, Inc., Menlo Park, CA, USA
| | | |
Collapse
|
9
|
Immunological Aspects of Richter Syndrome: From Immune Dysfunction to Immunotherapy. Cancers (Basel) 2023; 15:cancers15041015. [PMID: 36831361 PMCID: PMC9954516 DOI: 10.3390/cancers15041015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Richter Syndrome (RS) is defined as the development of an aggressive lymphoma in patients with a previous or simultaneous diagnosis of chronic lymphocytic leukemia (CLL). Two pathological variants of RS are recognized: diffuse large B-cell lymphoma (DLBCL)-type and Hodgkin lymphoma (HL)-type RS. Different molecular mechanisms may explain the pathogenesis of DLBCL-type RS, including genetic lesions, modifications of immune regulators, and B cell receptor (BCR) pathway hyperactivation. Limited data are available for HL-type RS, and its development has been reported to be similar to de novo HL. In this review, we focus on the immune-related pathogenesis and immune system dysfunction of RS, which are linked to BCR over-reactivity, altered function of the immune system due to the underlying CLL, and specific features of the RS tumor microenvironment. The standard of care of this disease consists in chemoimmunotherapy, eventually followed by stem cell transplantation, but limited possibilities are offered to chemo-resistant patients, who represent the majority of RS cases. In order to address this unmet clinical need, several immunotherapeutic approaches have been developed, namely T cell engagement obtained with bispecific antibodies, PD-1/PD-L1 immune checkpoint blockade by the use of monoclonal antibodies, selective drug delivery with antibody-drug conjugates, and targeting malignant cells with anti-CD19 chimeric antigen receptor-T cells.
Collapse
|
10
|
Rodríguez-Guilarte L, Ramírez MA, Andrade CA, Kalergis AM. LAG-3 Contribution to T Cell Downmodulation during Acute Respiratory Viral Infections. Viruses 2023; 15:147. [PMID: 36680187 PMCID: PMC9865459 DOI: 10.3390/v15010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
LAG-3 is a type I transmembrane protein expressed on immune cells, such as activated T cells, and binds to MHC class II with high affinity. LAG-3 is an inhibitory receptor, and its multiple biological activities on T cell activation and effector functions play a regulatory role in the immune response. Immunotherapies directed at immune checkpoints, including LAG-3, have become a promising strategy for controlling malignant tumors and chronic viral diseases. Several studies have suggested an association between the expression of LAG-3 with an inadequate immune response during respiratory viral infections and the susceptibility to reinfections, which might be a consequence of the inhibition of T cell effector functions. However, important information relative to therapeutic potential during acute viral lower respiratory tract infections and the mechanism of action of the LAG-3 checkpoint remains to be characterized. In this article, we discuss the contribution of LAG-3 to the impairment of T cells during viral respiratory infections. Understanding the host immune response to respiratory infections is crucial for developing effective vaccines and therapies.
Collapse
Affiliation(s)
- Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
11
|
Immune checkpoint blockade in melanoma: Advantages, shortcomings and emerging roles of the nanoparticles. Int Immunopharmacol 2022; 113:109300. [DOI: 10.1016/j.intimp.2022.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
12
|
Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release 2021; 340:168-187. [PMID: 34743998 DOI: 10.1016/j.jconrel.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy in the female population with a high mortality rate. Despite the satisfying depth of studies evaluating the contributory role of immune checkpoints in this malignancy, few articles have reviewed the pros and cons of immune checkpoint blockades (ICBs). In the current review, we provide an overview of immune-related inhibitory molecules and also discuss the original data obtained from international research laboratories on the aberrant expression of T and non-T cell-associated immune checkpoints in breast cancer. Then, we especially focus on recent studies that utilized ICBs as the treatment strategy in breast cancer and provide their efficiency reports. As there are always costs and benefits, we discuss the limitations and challenges toward ICB therapy such as adverse events and drug resistance. In the last section, we allocate an overview of the recent data concerning the application of nanoparticle systems for cancer immunotherapy and propose that nano-based ICB approaches may overcome the challenges related to ICB therapy in breast cancer. In conclusion, it seems it is time for nanoscience to more rapidly move forward into clinical trials and illuminates the breast cancer treatment area with its potent features for the target delivery of ICBs.
Collapse
Affiliation(s)
- Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sahar Tahaghoghi-Hajghorbani
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Jafarzadeh
- Department of Laboratory Science, Sirjan Faculty of Medical Science, Sirjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Emmenegger M, De Cecco E, Hruska‐Plochan M, Eninger T, Schneider MM, Barth M, Tantardini E, de Rossi P, Bacioglu M, Langston RG, Kaganovich A, Bengoa‐Vergniory N, Gonzalez‐Guerra A, Avar M, Heinzer D, Reimann R, Häsler LM, Herling TW, Matharu NS, Landeck N, Luk K, Melki R, Kahle PJ, Hornemann S, Knowles TPJ, Cookson MR, Polymenidou M, Jucker M, Aguzzi A. LAG3 is not expressed in human and murine neurons and does not modulate α-synucleinopathies. EMBO Mol Med 2021; 13:e14745. [PMID: 34309222 PMCID: PMC8422075 DOI: 10.15252/emmm.202114745] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
While the initial pathology of Parkinson's disease and other α-synucleinopathies is often confined to circumscribed brain regions, it can spread and progressively affect adjacent and distant brain locales. This process may be controlled by cellular receptors of α-synuclein fibrils, one of which was proposed to be the LAG3 immune checkpoint molecule. Here, we analysed the expression pattern of LAG3 in human and mouse brains. Using a variety of methods and model systems, we found no evidence for LAG3 expression by neurons. While we confirmed that LAG3 interacts with α-synuclein fibrils, the specificity of this interaction appears limited. Moreover, overexpression of LAG3 in cultured human neural cells did not cause any worsening of α-synuclein pathology ex vivo. The overall survival of A53T α-synuclein transgenic mice was unaffected by LAG3 depletion, and the seeded induction of α-synuclein lesions in hippocampal slice cultures was unaffected by LAG3 knockout. These data suggest that the proposed role of LAG3 in the spreading of α-synucleinopathies is not universally valid.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Elena De Cecco
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | | | - Timo Eninger
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Matthias M Schneider
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | - Melanie Barth
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Elena Tantardini
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Pierre de Rossi
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Mehtap Bacioglu
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Rebekah G Langston
- Cell Biology and Gene Expression SectionLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | - Alice Kaganovich
- Cell Biology and Gene Expression SectionLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | - Nora Bengoa‐Vergniory
- Department of Physiology, Anatomy and GeneticsOxford Parkinson’s Disease Center (OPDC)Oxford UniversityOxfordUK
| | | | - Merve Avar
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Daniel Heinzer
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Regina Reimann
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Lisa M Häsler
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Therese W Herling
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | - Naunehal S Matharu
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | - Natalie Landeck
- Cell Biology and Gene Expression SectionLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease ResearchUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Ronald Melki
- Laboratory of Neurodegenerative DiseasesCNRSInstitut François Jacob (MIRCen)CEAFontenay‐aux‐RosesFrance
| | - Philipp J Kahle
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of NeurodegenerationHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Simone Hornemann
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Tuomas P J Knowles
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeUK
| | - Mark R Cookson
- Cell Biology and Gene Expression SectionLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Adriano Aguzzi
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
14
|
MacLachlan BJ, Mason GH, Greenshields‐Watson A, Triebel F, Gallimore A, Cole DK, Godkin A. Molecular characterization of HLA class II binding to the LAG-3 T cell co-inhibitory receptor. Eur J Immunol 2021; 51:331-341. [PMID: 32920841 PMCID: PMC8101287 DOI: 10.1002/eji.202048753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/24/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (antibodies that block the T cell co-inhibitory receptors PD-1/PD-L1 or CTLA-4) have revolutionized the treatment of some forms of cancer. Importantly, combination approaches using drugs that target both pathways have been shown to boost the efficacy of such treatments. Subsequently, several other T cell inhibitory receptors have been identified for the development of novel immune checkpoint inhibitors. Included in this list is the co-inhibitory receptor lymphocyte activation gene-3 (LAG-3), which is upregulated on T cells extracted from tumor sites that have suppressive or exhausted phenotypes. However, the molecular rules that govern the function of LAG-3 are still not understood. Using surface plasmon resonance combined with a novel bead-based assay (AlphaScreenTM ), we demonstrate that LAG-3 can directly and specifically interact with intact human leukocyte antigen class II (HLA-II) heterodimers. Unlike the homologue CD4, which has an immeasurably weak affinity using these biophysical approaches, LAG-3 binds with low micromolar affinity. We further validated the interaction at the cell surface by staining LAG-3+ cells with pHLA-II-multimers. These data provide new insights into the mechanism by which LAG-3 initiates T cell inhibition.
Collapse
Affiliation(s)
| | | | | | | | - Awen Gallimore
- Division of Infection & ImmunityCardiff UniversityCardiffUK
| | - David K. Cole
- Division of Infection & ImmunityCardiff UniversityCardiffUK
| | - Andrew Godkin
- Division of Infection & ImmunityCardiff UniversityCardiffUK
| |
Collapse
|
15
|
Qi Y, Chen L, Liu Q, Kong X, Fang Y, Wang J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Front Immunol 2021; 11:563258. [PMID: 33488573 PMCID: PMC7820761 DOI: 10.3389/fimmu.2020.563258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Although various immunotherapies have exerted promising effects on cancer treatment, many patients with cancer continue to exhibit poor responses. Because of its negative regulatory effects on T cells and its biological functions related to immune and inflammatory responses, there has been considerable emphasis on a protein-coding gene named lymphocyte-activation gene 3 (LAG3). Recently, evidence demonstrated marked synergy in its targeted therapy with programmed death-1 and programmed death-1 ligand-1 (PD-1/PD-L1) blockade, and a variety of LAG3 targeted agents are in clinical trials, indicating the important role of LAG3 in immunotherapy. This mini-review discusses preclinical and clinical studies investigating PD-1 pathway blockade in combination with LAG3 inhibition as a potentially more effective immunotherapy strategy for further development in the clinic. This strategy might provide a new approach for the design of more effective and precise cancer immune checkpoint therapies.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Graydon CG, Mohideen S, Fowke KR. LAG3's Enigmatic Mechanism of Action. Front Immunol 2021; 11:615317. [PMID: 33488626 PMCID: PMC7820757 DOI: 10.3389/fimmu.2020.615317] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
LAG3 is an important immune checkpoint with relevance in cancer, infectious disease and autoimmunity. However, despite LAG3's role in immune exhaustion and the great potential of LAG3 inhibition as treatment, much remains unknown about its biology, particularly its mechanism of action. This review describes the knowns, unknowns and controversies surrounding LAG3. This includes examination of how LAG3 is regulated transcriptionally and post-translationally by endocytosis and proteolytic cleavage. We also discuss the interactions of LAG3 with its ligands and the purpose thereof. Finally, we review LAG3's mechanism of action, including the roles of LAG3 intracellular motifs and the lack of a role for CD4 competition. Overall, understanding the biology of LAG3 can provide greater insight on LAG3 function, which may broaden the appreciation for LAG3's role in disease and potentially aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Colin G. Graydon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shifa Mohideen
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada,Department of Medical Micobiology, University of Nairobi, Nairobi, Kenya,Department of Community Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada,Partners for Health and Development in Africa, Nairobi, Kenya,*Correspondence: Keith R. Fowke,
| |
Collapse
|
17
|
Liu X, Xu Q, Li Z, Xiong B. Integrated analysis identifies AQP9 correlates with immune infiltration and acts as a prognosticator in multiple cancers. Sci Rep 2020; 10:20795. [PMID: 33247170 PMCID: PMC7699650 DOI: 10.1038/s41598-020-77657-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin 9 (AQP9), as an aquaglyceroporin, is expressed in many immune cells and plays important role in tumor initiation and progression. However, the relationship between AQP9 and tumor-infiltrating cells, and its prognostic value in cancers still require comprehensive understanding. Herein, we aimed to elucidate the correlations of AQP9 with prognosis and immune infiltration levels in diverse cancers. We detected the expression and survival data of AQP9 through Oncomine, TIMER, Kaplan–Meier Plotter and PrognoScan databases. The correlations between AQP9 and immune infiltrates were analyzed in TIMER database. Our results found that high AQP9 expression was significantly correlated with worse prognosis in breast, colon and lung cancers, while predicted better prognosis in gastric cancer. Moreover, AQP9 had significant association with various immune infiltrating cells including CD8+ and CD4+ T cells, neutrophils, macrophages and dendritic cells (DCs), and diverse immune gene markers in BRCA, COAD, LUAD, LUSC and STAD. AQP9 was also significantly correlated with the regulation of tumor associated macrophages (TAM). These results indicate that AQP9 can play as a significant biomarker to determine the prognosis and the immune infiltrating levels in different cancers. It might also contribute to the development of the immunotherapy in breast, colon, lung and gastric cancers.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Qian Xu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zijing Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China. .,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, People's Republic of China. .,Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
18
|
Shan C, Li X, Zhang J. Progress of immune checkpoint LAG-3 in immunotherapy. Oncol Lett 2020; 20:207. [PMID: 32963613 DOI: 10.3892/ol.2020.12070] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Immune checkpoint inhibition has been shown to successfully reactivate T cell responses directed against tumor-associated antigens, resulting in significantly prolonged overall survival in patients with various types of solid tumors. Among them, cytotoxic T-lymphocyte protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) play key roles in tumor immune escape and are well-established targets of cancer immunotherapy. However, the low response rate PD-1 and CTLA-4 is a limitation and a challenge. Hence, studies have focused on investigating the tumor microenvironment for alternative therapeutic targets. Lymphocyte activation gene 3 protein (LAG-3) negatively regulates T lymphocytes by binding to the extracellular domain of the ligand, thus avoiding autoimmunity caused by T cell overactivation. LAG-3 is an important immune checkpoint in vivo and plays a balanced regulatory role in the human immune system. LAG-3 is now regarded as a new generation of immunotherapy targets. The present review describes the research progress of LAG-3 to provide reference for further investigation of LAG-3. The immune checkpoint of LAG-3 plays a crucial role in cancer development and may be used in future clinical practice of cancer therapy.
Collapse
Affiliation(s)
- Chanchan Shan
- Department of Cardiology, Wuxi No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xing Li
- Department of Cardiology, Wuxi No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Jian Zhang
- Department of Orthopaedic Surgery, Wuxi No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
19
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
20
|
Hu S, Liu X, Li T, Li Z, Hu F. LAG3 (CD223) and autoimmunity: Emerging evidence. J Autoimmun 2020; 112:102504. [PMID: 32576412 DOI: 10.1016/j.jaut.2020.102504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Immune checkpoint molecules play pivotal roles in maintaining the immune homeostasis. Targeting these molecules, such as the classical Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) and Programmed Cell Death Protein 1 (PD1), achieves great success in treating cancers. However, not all the patients respond well. This urges the immunologists to identify novel immune checkpoint molecules. Lymphocyte activation gene-3 (LAG3; CD223) is a newly identified inhibitory receptor. It is expressed on a variety of immune cells, including CD4+ T cells, CD8+ T cells, Tregs, B cells, and NK cells. Its unique intracellular domains, signaling patterns as well as the striking synergy observed in its targeted therapy with anti-PD1 indicate the important role of LAG3 in maintaining immune tolerance. Currently, a variety of agents targeting LAG3 are in clinical trials, revealing great perspectives in the future immunotherapy. In this review, we briefly summarize the studies on LAG3, including its structure, isoforms, ligands, signaling, function, roles in multiple diseases, as well as the latest targeted therapeutic advances, with particular concern on the potential association of LAG3 with autoimmune diseases.
Collapse
Affiliation(s)
- Suiyuan Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Tianding Li
- Software Center, Bank of China, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
21
|
Angin M, Brignone C, Triebel F. A LAG-3-Specific Agonist Antibody for the Treatment of T Cell-Induced Autoimmune Diseases. THE JOURNAL OF IMMUNOLOGY 2020; 204:810-818. [PMID: 31907283 DOI: 10.4049/jimmunol.1900823] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022]
Abstract
T cells chronically stimulated with the same peptide tend to express exhaustion markers such as PD-1 or LAG-3. Deficiencies in the PD-1 and LAG-3 pathways have been linked to the development of autoimmune diseases. IMP761 is a LAG-3-specific humanized agonist Ab with immunosuppressive properties both in vitro and in vivo in an Ag-specific delayed-type hypersensitivity (DTH) model in the cynomolgus macaque (Macaca fascicularis). IMP761 inhibits TCR-mediated NFAT activation and Ag-induced human T cell proliferation and activation. In the DTH model, assessment of T cell infiltration and gene expression profile at the DTH biopsy site corresponds to immunosuppression of an Ag-induced T cell response. IMP761 is the first LAG-3-specific agonist product candidate, acting upstream on activated T cells, the root cause of self-Ag-specific T cell-induced autoimmune diseases.
Collapse
|
22
|
Wang W, Chen D, Zhao Y, Zhao T, Wen J, Mao Y, Chen C, Sang Y, Zhang Y, Chen Y. Characterization of LAG-3, CTLA-4, and CD8 + TIL density and their joint influence on the prognosis of patients with esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:776. [PMID: 32042792 DOI: 10.21037/atm.2019.11.38] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background We aimed to characterize the relationships of lymphocyte activation gene-3 (LAG-3) expression, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) expression, and CD8+ tumor-infiltrating lymphocyte (TIL) density, and to investigate the joint prognostic impact of these three markers in patients with surgically resected esophageal squamous cell carcinoma (ESCC). Methods Expression of LAG-3, CTLA-4 and the density of CD8+ TILs were evaluated by immunohistochemistry in resected ESCC. The associations between LAG-3 expression and clinicopathologic characteristics, as well as patient prognoses, were analyzed. Results A total of 183 patients were included. LAG-3 expression was observed in 69 (37.7%) patients. Positive LAG-3 expression was significantly associated with CTLA-4 expression (P=0.004). LAG-3 positivity, CTLA-4 positivity, and low CD8+ TIL densities were significantly associated with worsening recurrence-free survival (RFS) [LAG-3: hazard ratio (HR), 1.72; 95% confidence interval (CI), 1.10-2.89; P=0.019; CTLA-4: HR, 1.69; 95% CI, 1.04-2.73; P=0.033; CD8+: HR, 0.60; 95% CI, 0.38-0.94; P=0.025] and overall survival (OS) (LAG-3: HR, 2.09; 95% CI, 1.24-3.53; P=0.006; CTLA-4: HR, 1.47; 95% CI, 0.86-2.53; P=0.161; CD8+: HR, 0.56; 95% CI, 0.33-0.95; P=0.032). Subgroup analysis revealed that the LAG-3 CTLA-4 CD8+ group had the best RFS (P<0.001) and OS (P<0.001). Conclusions LAG-3 expression was correlated with CTLA-4 expression on TILs. Positive LAG-3 expression was associated with poor prognoses in ESCC. A combination of LAG-3, CTLA-4 expression and CD8+ TILs density could further stratify patients into different subgroups with distinct prognoses.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Donglai Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Yuhuan Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ting Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Junmiao Wen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yiming Mao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Department of Thoracic Surgery, Suzhou Kowloon Hospital Shanghai Jiaotong University School of Medicine, Suzhou 215028, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Yonghua Sang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
23
|
Burova E, Hermann A, Dai J, Ullman E, Halasz G, Potocky T, Hong S, Liu M, Allbritton O, Woodruff A, Pei J, Rafique A, Poueymirou W, Martin J, MacDonald D, Olson WC, Murphy A, Ioffe E, Thurston G, Mohrs M. Preclinical Development of the Anti-LAG-3 Antibody REGN3767: Characterization and Activity in Combination with the Anti-PD-1 Antibody Cemiplimab in Human PD-1xLAG-3-Knockin Mice. Mol Cancer Ther 2019; 18:2051-2062. [PMID: 31395688 DOI: 10.1158/1535-7163.mct-18-1376] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/17/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Abstract
In the tumor microenvironment, multiple inhibitory checkpoint receptors can suppress T-cell function, thereby enabling tumor immune evasion. Blockade of one of these checkpoint receptors, PD-1, with therapeutic antibodies has produced positive clinical responses in various cancers; however, the efficacy of this approach can be further improved. Simultaneously targeting multiple inhibitory checkpoint receptors has emerged as a promising therapeutic strategy. Here, we report the development and characterization of REGN3767, a fully human IgG4 antibody targeting LAG-3, another inhibitory receptor on T cells. REGN3767 binds human and monkey LAG-3 with high affinity and specificity and blocks the interaction of LAG-3 with its ligand, MHC class II. In an engineered T-cell/antigen-presenting cell bioassay, REGN3767 alone, or in combination with cemiplimab (REGN2810, human anti-PD-1 antibody), blocked inhibitory signaling to T cells mediated by hLAG-3/MHCII in the presence of PD-1/PD-L1. To test the in vivo activity of REGN3767 alone or in combination with cemiplimab, we generated human PD-1xLAG-3 knockin mice, in which the extracellular domains of mouse Pdcd1 and Lag3 were replaced with their human counterparts. In these humanized mice, treatment with cemiplimab and REGN3767 showed increased efficacy in a mouse tumor model and enhanced the secretion of proinflammatory cytokines by tumor-specific T cells. The favorable pharmacokinetics and toxicology of REGN3767 in nonhuman primates, together with enhancement of antitumor efficacy of anti-PD-1 antibody in preclinical tumor models, support its clinical development.
Collapse
Affiliation(s)
- Elena Burova
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Jie Dai
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Terra Potocky
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Seongwon Hong
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Matt Liu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Amy Woodruff
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Jerry Pei
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Joel Martin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Andrew Murphy
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ella Ioffe
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Markus Mohrs
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York.
| |
Collapse
|
24
|
Tundo GR, Sbardella D, Lacal PM, Graziani G, Marini S. On the Horizon: Targeting Next-Generation Immune Checkpoints for Cancer Treatment. Chemotherapy 2019; 64:62-80. [PMID: 31387102 DOI: 10.1159/000500902] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Immune checkpoints are critical regulatory pathways of the immune system which finely tune the response to biological threats. Among them, the CD-28/CTLA-4 and PD-1/PD-L1 axes play a key role in tumour immune escape and are well-established targets of cancer immunotherapy. SUMMARY The clinical experience accumulated to date provides unequivocal evidence that anti-CTLA-4, PD-1, or PD-L1 monoclonal antibodies, used as monotherapy or in combination regimes, are effective in a variety of advanced/metastatic types of cancer, with improved clinical outcomes compared to conventional chemotherapy. However, the therapeutic success is currently restricted to a limited subset of patients and reliable predictive biomarkers are still lacking. Key Message: The identification and characterization of additional co-inhibitory pathways as novel pharmacological targets to improve the clinical response in refractory patients has led to the development of different immune checkpoint inhibitors, the activities of which are currently under investigation. In this review, we discuss recent literature data concerning the mechanisms of action of next-generation monoclonal antibodies targeting LAG-3, TIM-3, and TIGIT co-inhibitory molecules that are being explored in clinical trials, as single agents or in combination with other immune-stimulating agents.
Collapse
Affiliation(s)
- Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy,
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
25
|
Dirix L, Triebel F. AIPAC: a Phase IIb study of eftilagimod alpha (IMP321 or LAG-3Ig) added to weekly paclitaxel in patients with metastatic breast cancer. Future Oncol 2019; 15:1963-1973. [PMID: 30977393 DOI: 10.2217/fon-2018-0807] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eftilagimod alpha (IMP321), a soluble dimeric recombinant form of LAG-3, is a first-in-class antigen presenting cell activator under clinical development. By stimulating dendritic cells through MHC class II molecules, IMP321 was proven to induce sustained immune responses. Combining active immunotherapy with a standard cytotoxic chemotherapy regimen represents a promising novel strategy that might lead to therapeutic improvements in metastatic breast cancer. Here, we describe the rationale and design of AIPAC (NCT02614833), a double-blind, randomized, multicenter Phase IIb study evaluating IMP321 plus paclitaxel as a first-line chemotherapy compared with paclitaxel plus placebo in hormone receptor-positive metastatic breast cancer patients. The primary end point is progression-free survival and key secondary objectives include overall survival, safety, quality of life and objective response rate.
Collapse
Affiliation(s)
- Luc Dirix
- Translational Cancer Research Unit, Department of Medical Oncology, Oncology Center GZA Hospital Sint-Augustinus, Antwerp, Belgium
| | | |
Collapse
|
26
|
Abstract
HIV causes several forms of immune dysfunction that need to be addressed in a functional cure for HIV. Immune exhaustion describes a dysfunctional phenotype caused by chronic cellular activation. Lymphocyte activation gene-3 (LAG3) is one of several negative coreceptors known as immune checkpoints that contribute to this exhaustion phenotype. Antibodies targeting immune checkpoints are now used clinically to restore immunity against cancer and hold promise in restoring immunity during HIV infection. Here, we summarize current knowledge surrounding LAG3 and discuss its relevance during HIV infection and the potential for LAG3-targeting antibodies in a functional HIV cure.
Collapse
Affiliation(s)
- Colin G. Graydon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Allison L. Balasko
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| |
Collapse
|
27
|
Que Y, Fang Z, Guan Y, Xiao W, Xu B, Zhao J, Chen H, Zhang X, Zeng M, Liang Y, Zhang X. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival. Cancer Biol Med 2019; 16:331-340. [PMID: 31516753 PMCID: PMC6713642 DOI: 10.20892/j.issn.2095-3941.2018.0306] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective To elucidate the role and prognostic significance of lymphocyte activation-gene-3 (LAG-3) in soft tissue sarcoma (STS). Methods The expression of LAG-3 in patient and matched normal blood samples was analyzed by flow cytometry. The localization and prognostic values of LAG-3+ cells in 163 STS patients were analyzed by immunohistochemistry. In addition, the expression of tumor-infiltrating CD3+ T, CD4+ T, and CD8+ T cells and their role in the prognosis of STS were evaluated by immunohistochemistry. The effect of LAG-3 blockade was evaluated in an immunocompetent MCA205 fibrosarcoma mouse model.
Results Peripheral CD8+ and CD4+ T cells from STS patients expressed higher levels of LAG-3 than those from healthy donors. LAG-3 expression in STS was significantly associated with a poor clinical outcome (P = 0.038 ) and was correlated with high pathological grade (P < 0.001), advanced tumor stage ( P = 0.016). Additionally, LAG-3 expression was highly correlated with CD8+ T-cell infiltration (r = 0.7034, P < 0.001). LAG-3 was expressed in murine tumor-infiltrating lymphocytes, and its blockade decreased tumor growth and enhanced secretion of interferon-gamma by CD8 + and CD4+ T cells.
Conclusions LAG-3 blockade may be a promising strategy to improve the effects of targeted therapy in STS.
Collapse
Affiliation(s)
- Yi Que
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhixin Fang
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou 510000, China
| | - Yuanxiang Guan
- Department of Gastric and Pancreatic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wei Xiao
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bushu Xu
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jingjing Zhao
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huoying Chen
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yao Liang
- Department of Gastric and Pancreatic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xing Zhang
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
28
|
Lymphocyte activation gene 3 (Lag3) expression is increased in prion infections but does not modify disease progression. Sci Rep 2018; 8:14600. [PMID: 30279468 PMCID: PMC6168446 DOI: 10.1038/s41598-018-32712-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
Prion diseases, Alzheimer’s disease and Parkinson’s disease (PD) are fatal degenerative disorders that share common neuropathological and biochemical features, including the aggregation of pathological protein conformers. Lymphocyte activation gene 3 (Lag3, also known as CD223) is a member of the immunoglobulin superfamily of receptors expressed on peripheral immune cells, microglia and neurons, which serves as a receptor for α-synuclein aggregates in PD. Here we examined the possible role of Lag3 in the pathogenesis of prion diseases. Through quantitative real-time PCR and RNA-sequencing, we found that the expression levels of Lag3 were relatively low in the adult mouse brains, yet its expression was increased after prion infection. However, we failed finding significant differences regarding the incubation time, PrPSc load, neurodegeneration, astrocyte and microglia reactions and inflammatory gene expression between the Lag3 knockout mice and wild-type littermate controls after prion infection. We conclude that loss of Lag3 has no significant influence on prion disease pathogenesis. Considering that Lag3 is an immune checkpoint receptor, our results suggest that immune checkpoint inhibition (an increasingly prevalent therapeutic modality against many types of cancer) might not exert positive or negative effects on the progression of prion diseases.
Collapse
|
29
|
Control of NK Cell Activation by Immune Checkpoint Molecules. Int J Mol Sci 2017; 18:ijms18102129. [PMID: 29023417 PMCID: PMC5666811 DOI: 10.3390/ijms18102129] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
The development of cancer and chronic infections is facilitated by many subversion mechanisms, among which enhanced expression of immune checkpoints molecules, such as programmed death-1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), on exhausted T cells. Recently, immune checkpoint inhibitors have shown remarkable efficiency in the treatment of a number of cancers. However, expression of immune checkpoints on natural killer (NK) cells and its functional consequences on NK cell effector functions are much less explored. In this review, we focus on the current knowledge on expression of various immune checkpoints in NK cells, how it can alter NK cell-mediated cytotoxicity and cytokine production. Dissecting the role of these inhibitory mechanisms in NK cells is critical for the full understanding of the mode of action of immunotherapies using checkpoint inhibitors in the treatment of cancers and chronic infections.
Collapse
|
30
|
Andrews LP, Marciscano AE, Drake CG, Vignali DAA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 2017; 276:80-96. [PMID: 28258692 DOI: 10.1111/imr.12519] [Citation(s) in RCA: 676] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the impressive impact of CTLA4 and PD1-PDL1-targeted cancer immunotherapy, a large proportion of patients with many tumor types fail to respond. Consequently, the focus has shifted to targeting alternative inhibitory receptors (IRs) and suppressive mechanisms within the tumor microenvironment. Lymphocyte activation gene-3 (LAG3) (CD223) is the third IR to be targeted in the clinic, consequently garnering considerable interest and scrutiny. LAG3 upregulation is required to control overt activation and prevent the onset of autoimmunity. However, persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression, contributing to a state of exhaustion manifest in impaired proliferation and cytokine production. The exact signaling mechanisms downstream of LAG3 and interplay with other IRs remain largely unknown. However, the striking synergy between LAG3 and PD1 observed in multiple settings, coupled with the contrasting intracellular cytoplasmic domain of LAG3 as compared with other IRs, highlights the potential uniqueness of LAG3. There are now four LAG3-targeted therapies in the clinic with many more in preclinical development, emphasizing the broad interest in this IR. Given the translational relevance of LAG3 and the heightened interest in the impact of dual LAG3/PD1 targeting in the clinic, the outcome of these trials could serve as a nexus; significantly increasing or dampening enthusiasm for subsequent targets in the cancer immunotherapeutic pipeline.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ariel E Marciscano
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Departments of Oncology, Immunology and Urology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
31
|
|
32
|
Flies AS, Blackburn NB, Lyons AB, Hayball JD, Woods GM. Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease. Front Immunol 2017; 8:513. [PMID: 28515726 PMCID: PMC5413580 DOI: 10.3389/fimmu.2017.00513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii) facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY) ligand-binding motif and the CTLA-4 (GVYVKM) inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based switch motifs (ITSMs) in genes and protein domains that have not been previously reported in any species. This checkpoint molecule analysis and review of salient features for each of the molecules presented here can serve as road map for the development of a Tasmanian devil facial tumor disease immunotherapy. Finally, the strategies can be used as a guide for veterinarians, ecologists, and other researchers willing to venture into the nascent field of wild immunology.
Collapse
Affiliation(s)
- Andrew S. Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Nicholas B. Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Alan Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - John D. Hayball
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Gregory M. Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
33
|
He Y, Yu H, Rozeboom L, Rivard CJ, Ellison K, Dziadziuszko R, Suda K, Ren S, Wu C, Hou L, Zhou C, Hirsch FR. LAG-3 Protein Expression in Non-Small Cell Lung Cancer and Its Relationship with PD-1/PD-L1 and Tumor-Infiltrating Lymphocytes. J Thorac Oncol 2017; 12:814-823. [PMID: 28132868 DOI: 10.1016/j.jtho.2017.01.019] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 01/08/2017] [Accepted: 01/08/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Immunotherapy targeting the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) checkpoint has shown promising efficacy in patients with NSCLC. Lymphocyte activating 3 gene (LAG-3) is another important checkpoint, and its role in NSCLC is still not clear. In this study we investigated lymphocyte activing 3 (LAG-3) protein expression; its correlation with PD-1, PD-L1, and tumor-infiltrating lymphocytes (TILs); and its association with survival in NSCLC. METHODS The expression of LAG-3 (EPR4392 [Abcam, Cambridge, MA]) protein was assessed in 55 NSCLC cell lines by immunohistochemistry. LAG-3, PD-1 (NAT 105 [Cell Marque, Rocklin, CA]), and PD-L1 (22C3 [Dako, Carpenteria, CA]) protein expression was evaluated by immunohistochemistry, and TIL abundance was scored in 139 surgically resected specimens from patients with NSCLC. We also verified results in samples from 62 patients with untreated NSCLC and detected a correlation between LAG-3 expression and EGFR and KRAS mutation and echinoderm microtubule associated protein like 4 gene (EML4)-anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangement. RESULTS LAG-3 was not expressed on any of the 55 NSCLC cell lines. However, LAG-3 was expressed on the TILs in 36 patients with NSCLC (25.9%). Sixty patient samples (43.2%) were positive for PD-1 on the TILs, and 25 (18.0%) were positive for PD-L1 on tumor cells. Neither LAG-3 nor PD-1 was expressed on the tumor cells. LAG-3 was overexpressed on the TILs in nonadenocarcinoma compared with in adenocarcinoma (p = 0.031). LAG-3 expression on TILs was significantly correlated with that of PD-1 on TILs (p < 0.001) and PD-L1 on tumor cells (p = 0.041) but not with TIL percentage (p = 0.244). With the logistic regression model, the ORs for LAG-3 were 0.320 (95% confidence interval [CI]: 0.110-0.929) and 4.364 (95% CI: 1.898-10.031) when nonadenocarcinoma was compared with adenocarcinoma and TILs that were negative for PD-1 were compared with those positive for PD-1. Recurrence-free survival was significantly different in patients whose TILs were LAG-3-negative as opposed to LAG-3-positive (1.91 years [95% CI: 0.76-3.06] versus 0.87 years [95% CI: 0.27-1.47] [p = 0.025]). Likewise, LAG-3 status of TILs (negative versus positive) did significantly affect overall survival (OS) (3.04 years [95% CI: 2.76-3.32] versus 1.08 years [95% CI: 0.42-1.74] [p = 0.039]). Using Kaplan-Meier analysis, we found that patients with both PD-L1-negative tumor cells and LAG-3-negative TILs have longer recurrence-free survival than patients who are either PD-L1- or LAG-3-positive or both PD-L1- and LAG-3-positive (2.09 years [95% CI: 0.90-3.28] versus 1.42 years [95% CI: 0.46-2.34] versus 0.67 years [95% CI: 0.00-1.45] [p = 0.007]). In the verification stage, high expression of LAG-3 was also significantly correlated with higher expression of PD-1 on TILs (p = 0.016) and PD-L1 on tumor cells (p = 0.014). There was no correlation between LAG-3 expression and EGFR (p = 0.325) and KRAS mutation (p = 1.000) and ALK fusion (p = 0.562). CONCLUSIONS LAG-3 is expressed on TILs in tumor tissues of some patients with NSCLC. Its expression was higher in nonadenocarcinoma and correlated with PD-1/PD-L1 expression. LAG-3 positivity or both LAG-3 and PD-L1 positivity was correlated with early postoperative recurrence. LAG-3 was related to poor prognosis.
Collapse
Affiliation(s)
- Yayi He
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hui Yu
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Leslie Rozeboom
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher J Rivard
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kim Ellison
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fred R Hirsch
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
34
|
Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 2017; 15:1. [PMID: 28073373 PMCID: PMC5225559 DOI: 10.1186/s12964-016-0160-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
Collapse
Affiliation(s)
- Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Eckhard Klieser
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Daniel Neureiter
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria. .,Salzburg Cancer Research Institute, Salzburg, Austria.
| |
Collapse
|
35
|
Golden D, Kolmakova A, Sura S, Vella AT, Manichaikul A, Wang XQ, Bielinski SJ, Taylor KD, Chen YDI, Rich SS, Rodriguez A. Lymphocyte activation gene 3 and coronary artery disease. JCI Insight 2016; 1:e88628. [PMID: 27777974 DOI: 10.1172/jci.insight.88628] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND: The lipoprotein scavenger receptor BI (SCARB1) rs10846744 noncoding variant is significantly associated with atherosclerotic disease independently of traditional cardiovascular risk factors. We identified a potentially novel connection between rs10846744, the immune checkpoint inhibitor lymphocyte activation gene 3 (LAG3), and atherosclerosis. METHODS: In vitro approaches included flow cytometry, lipid raft isolation, phosphosignaling, cytokine measurements, and overexpressing and silencing LAG3 protein. Fasting plasma LAG3 protein was measured in hyperalphalipoproteinemic (HALP) and Multi-Ethnic Study of Atherosclerosis (MESA) participants. RESULTS: In comparison with rs10846744 reference (GG homozygous) cells, LAG3 protein levels by flow cytometry (P < 0.001), in lipid rafts stimulated and unstimulated (P = 0.03), and phosphosignaling downstream of B cell receptor engagement of CD79A (P = 0.04), CD19 (P = 0.04), and LYN (P = 0.001) were lower in rs10846744 risk (CC homozygous) cells. Overexpressing LAG3 protein in risk cells and silencing LAG3 in reference cells confirmed its importance in phosphosignaling. Secretion of TNF-α was higher (P = 0.04) and IL-10 was lower (P = 0.04) in risk cells. Plasma LAG3 levels were lower in HALP carriers of the CC allele (P < 0.0001) and by race (P = 0.004). In MESA, race (P = 0.0005), age (P = 0.003), lipid medications (P = 0.03), smoking history (P < 0.0001), and rs10846744 genotype (P = 0.002) were independent predictors of plasma LAG3. In multivariable regression models, plasma LAG3 was significantly associated with HDL-cholesterol (HDL-C) (P = 0.007), plasma IL-10 (P < 0.0001), and provided additional predictive value above the Framingham risk score (P = 0.04). In MESA, when stratified by high HDL-C, plasma LAG3 was associated with coronary heart disease (CHD) (odds ratio 1.45, P = 0.004). CONCLUSION: Plasma LAG3 is a potentially novel independent predictor of HDL-C levels and CHD risk. FUNDING: This work was supported by an NIH RO1 grant (HL075646), the endowed Linda and David Roth Chair for Cardiovascular Research, and the Harold S. Geneen Charitable Trust Coronary Heart Disease Research award to Annabelle Rodriguez. MESA is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079, UL1-TR-000040, and DK063491. Cardiometabochip genotyping data for the MESA samples was supported in part by grants and contracts R01HL98077, N02-HL-64278, HL071205, UL1TR000124, DK063491, RD831697, and P50 ES015915.
Collapse
Affiliation(s)
| | | | | | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia.,Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Xin-Qun Wang
- Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | | | - Kent D Taylor
- Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Yii-Der Ida Chen
- Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | |
Collapse
|
36
|
Belkina AC, Snyder-Cappione JE. OMIP-037: 16-color panel to measure inhibitory receptor signatures from multiple human immune cell subsets. Cytometry A 2016; 91:175-179. [PMID: 27706900 DOI: 10.1002/cyto.a.22983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Anna C Belkina
- Flow Cytometry Core Facility and the Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer E Snyder-Cappione
- Flow Cytometry Core Facility and the Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
37
|
He Y, Rivard CJ, Rozeboom L, Yu H, Ellison K, Kowalewski A, Zhou C, Hirsch FR. Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci 2016; 107:1193-7. [PMID: 27297395 PMCID: PMC5021038 DOI: 10.1111/cas.12986] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has recently become widely used in lung cancer. Many oncologists are focused on cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death ligand-1 (PD-L1) and programmed cell death-1 (PD-1). Immunotherapy targeting the PD-1/PD-L1 checkpoints has shown promising efficacy in non-small cell lung cancer (NSCLC), but questions remain to be answered. Among them is whether the simultaneous inhibition of other checkpoints could improve outcomes. Lymphocyte-activation gene-3 (LAG-3) is another vital checkpoint that may have a synergistic interaction with PD-1/PD-L1. Here we review the LAG-3 function in cancer, clinical trials with agents targeting LAG-3 and the correlation of LAG-3 with other checkpoints.
Collapse
Affiliation(s)
- Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher J Rivard
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leslie Rozeboom
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hui Yu
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kim Ellison
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley Kowalewski
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Fred R Hirsch
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
38
|
Huang RY, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 2016; 6:27359-77. [PMID: 26318293 PMCID: PMC4694995 DOI: 10.18632/oncotarget.4751] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
The immune co-inhibitory receptors lymphocyte activation gene-3 (LAG3) and programmed cell death 1 (PD1) synergistically contribute to autoimmunity and tumor evasion. Here we demonstrate how they collaborate and interact to regulate T cell function. We first show that LAG3 and PD1 are co-expressed on both OVA-specific and non-specific T cells infiltrating murine ovarian tumors. Dual antibody blockade or genetic knockout of LAG3 and PD1 significantly enhanced T effector function and delayed tumor growth. LAG3 and PD1 co-localized in activated CD8+ T cells in vitro at the trans-Golgi vesicles, early/recycling endosomal compartments, lysosomes, and microtubule organizing center. Importantly, LAG3 and PD1 cluster with pLck at the immunological synapse. Reciprocal immunoprecipitation of T cell extracts revealed physical interaction between LAG3 and PD1. Mutational analyses indicate that the cytoplasmic domain of LAG3 is not absolutely required for its association with PD1, while the ITIM and ITSM of PD1 are necessary for its association with LAG3. Finally, LAG3 protein also associates with the Src-homology-2 domain-containing phosphatases (SHP1/2) which are known to be recruited by PD1 during T cell signaling. Our data indicate that the association of LAG3 with PD1 contributes to their rapid trafficking to the immunological synapse, leading to a synergistic inhibitory effect on T cell signaling.
Collapse
Affiliation(s)
- Ruea-Yea Huang
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Cheryl Eppolito
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Protul Shrikant
- Department of Research, Mayo Clinic, Scottsdale, Arizona, USA
| | - Junko Matsuzaki
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
39
|
Zhang L, Wang J, Wei F, Wang K, Sun Q, Yang F, Jin H, Zheng Y, Zhao H, Wang L, Yu W, Zhang X, An Y, Yang L, Zhang X, Ren X. Profiling the dynamic expression of checkpoint molecules on cytokine-induced killer cells from non-small-cell lung cancer patients. Oncotarget 2016; 7:43604-43615. [PMID: 27283895 PMCID: PMC5190047 DOI: 10.18632/oncotarget.9871] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoints associate with dysfunctional T cells, which have a reduced ability to clear pathogens or cancer cells. T-cell checkpoint blockade may improve patient survival. However, checkpoint molecules on cytokine-induced killer (CIK) cell, a non-specific adoptive immunotherapy, remain unknown. In present study, we detected the dynamic expression of eight major checkpoint molecules (CTLA-4, PD-1, PD-L1, TIM- 3, CEACAM-1, LAG-3, TIGIT and BTLA) on CIK cells from NSCLC patients. The majority of these molecules, except BTLA, were sharply elevated during the early stage of CIK cell culture. Thereafter, PD-1 and TIGIT expressions decreased gradually towards the initial level (day 0). Moreover, CTLA-4 faded away during the later stage of CIK culture. LAG-3 expression decreased but was still significantly higher than the initial level. Of note, PD-L1 remained stably upregulated during CIK culture compared with PD-1, indicating that PD-L1 might act as an inhibitory molecule on CIK cells instead of PD-1. Furthermore, TIM-3 and CEACAM1 were strongly expressed simultaneously during long-term CIK culture and showed a significant and mutually positive correlation. BTLA displayed a distinct pattern, and its expression gradually decreased throughout the CIK culture. These observations suggested that CIK cells might be partly exhausted before clinical transfusion, characterized by the high expression of PD-L1, LAG-3, TIM- 3, and CEACAM-1 and the low expression of TIGIT, BTLA, PD-1, and CTLA-4 compared with initial culture. Our results imply that implementing combined treatment on CIK cells before transfusion via antibodies targeting PD-L1, LAG-3, TIM-3, and CEACAM-1 might improve the efficiency of CIK therapy for NSCLC patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Kaiyuan Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Fan Yang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yu Zheng
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Limei Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yang An
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tiyuanbei, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xinwei Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
40
|
Cook KD, Whitmire JK. LAG-3 Confers a Competitive Disadvantage upon Antiviral CD8+ T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:119-27. [PMID: 27206765 DOI: 10.4049/jimmunol.1401594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/28/2016] [Indexed: 11/19/2022]
Abstract
Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8(+) T cells during chronic virus infection and antitumor responses. However, the T cell response in LAG-3-deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8(+) T cell responses. Our results indicate that LAG-3 expression by CD8(+) T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison with LAG-3-deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8(+) T cell responses.
Collapse
Affiliation(s)
- Kevin D Cook
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599; and
| | - Jason K Whitmire
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599; and Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
41
|
Velcheti V, Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer. Am Soc Clin Oncol Educ Book 2016; 35:298-308. [PMID: 27249709 DOI: 10.1200/edbk_156572] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent success of immunotherapy strategies such as immune checkpoint blockade in several malignancies has established the role of immunotherapy in the treatment of cancer. Cancers use multiple mechanisms to co-opt the host-tumor immune interactions, leading to immune evasion. Our understanding of the host-tumor interactions has evolved over the past few years and led to various promising new therapeutic strategies. This article will focus on the basic principles of immunotherapy, novel pathways/agents, and combinatorial immunotherapies.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Departments of Pathology and Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT
| | - Kurt Schalper
- From the Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Departments of Pathology and Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT
| |
Collapse
|
42
|
Li X, Hu W, Zheng X, Zhang C, Du P, Zheng Z, Yang Y, Wu J, Ji M, Jiang J, Wu C. Emerging immune checkpoints for cancer therapy. Acta Oncol 2015; 54:1706-13. [PMID: 26361073 DOI: 10.3109/0284186x.2015.1071918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors has emerged as promising treatment modality for cancer based on the success of anti-CTLA-4 and -PD-1/PD-L1 antibodies. LAG-3 and TIM-3 are two new immune checkpoints. The aim of this work is to review the role and application of LAG-3 and TIM-3 for cancer immunotherapy. MATERIAL AND METHODS Literatures were searched and collected in Medline/PubMed. RESULTS LAG-3 is presented as a CD4 homolog type I transmembrane protein which binds MHC class II molecules. LAG-3 negatively regulates T cell proliferation, homeostasis and function. IMP321 is formed of an extracellular portion of human LAG-3 fused to the Fc fraction of human IgG1 and has shown increased T cell responses and tolerability in phase I studies on advanced renal cell cancer. When combined with paclitaxel, IMP321 has exerted immune enhancement and tumor inhibition with no significant IMP321-related adverse events. TIM-3 belongs to the TIM family and mainly negatively regulates Th1 immunity. The TIM-3/galectin-9 pathway contributes to the suppressive tumor microenvironment. TIM-3 overexpression is associated with poor prognosis in a variety of cancers. Both LAG-3 and TIM-3 are coexpressed with other immune checkpoints. The application of LAG-3 or TIM-3 does play an important role in anti-tumor responses, and maybe better when combing with anti-CTLA-4 and anti-PD-1/L1 antibodies. CONCLUSIONS These two immune checkpoints play crucial roles in cancer development and may be used in future clinical practice of cancer therapy.
Collapse
Affiliation(s)
- Xiaodong Li
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Wenwei Hu
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Xiao Zheng
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Chu Zhang
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Peng Du
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Zhuojun Zheng
- d Department of Hematology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Yan Yang
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Jun Wu
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Mei Ji
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Jingting Jiang
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Changping Wu
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| |
Collapse
|
43
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 2015; 9:1936-65. [PMID: 26578451 DOI: 10.1016/j.molonc.2015.10.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
The term 'inhibitory checkpoint' refers to the broad spectrum of co-receptors expressed by T cells that negatively regulate T cell activation thus playing a crucial role in maintaining peripheral self-tolerance. Co-inhibitory receptor ligands are highly expressed by a variety of malignancies allowing evasion of anti-tumour immunity. Recent studies demonstrate that manipulation of these co-inhibitory pathways can remove the immunological brakes that impede endogenous immune responses against tumours. Antibodies that block the interactions between co-inhibitory receptors and their ligands have delivered very promising clinical responses, as has been shown by recent successful trials targeting the CTLA-4 and PD-1 pathways. In this review, we discuss the mechanisms of action and expression pattern of co-inhibitory receptors on different T cells subsets, emphasising differences between CD4(+) and CD8(+) T cells. We also summarise recent clinical findings utilising immune checkpoint blockade.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Laurie Menger
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | | | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK.
| | | |
Collapse
|
44
|
Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators. Front Immunol 2015; 6:418. [PMID: 26347741 PMCID: PMC4544156 DOI: 10.3389/fimmu.2015.00418] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.
Collapse
Affiliation(s)
- Isabelle Le Mercier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - J Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
45
|
Peña J, Jones NG, Bousheri S, Bangsberg DR, Cao H. Lymphocyte activation gene-3 expression defines a discrete subset of HIV-specific CD8+ T cells that is associated with lower viral load. AIDS Res Hum Retroviruses 2014; 30:535-41. [PMID: 24180338 DOI: 10.1089/aid.2012.0195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mechanisms leading to the observed immune dysregulation in chronic HIV infection are not well understood. The MHC-II class ligand, lymphocyte activation gene-3 (LAG-3, CD223), has been implicated in the complex regulation mechanism of immune functions. In this study, we describe a new population of HIV-specific CD8(+) T cells expressing LAG-3. These LAG-3(+)CD8(+) T cells do not display immunophenotypic patterns traditionally attributed to regulatory T cells. The LAG3(+)CD8(+) T cells are CCR7(+),CD127(-), and display heterogeneous surface expressions of CD45RA and CD25. Interestingly, HIV-specific LAG-3(+)CD8(+) T cells do not substantially express CTLA-4 and LAG-3 expression does not correlate with interleukin (IL)-10 or tumor growth factor (TGF)-β production. In addition, HIV-specific LAG3(+)CD8(+) T cells do not produce interferon (IFN-γ) or express CD107a. The frequency of HIV-specific LAG3(+)CD8(+) T cells negative correlated with plasma viral load. Our study introduces a new population of HIV-specific CD8(+) T cells and proposes additional mechanisms of immune regulation in chronic HIV infection.
Collapse
Affiliation(s)
- José Peña
- California Department of Public Health, Richmond, California
| | - Norman G. Jones
- California Department of Public Health, Richmond, California
| | | | - David R. Bangsberg
- Mbarara University of Science and Technology, Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital Center for Global Health, Harvard Medical School, Boston, Massachusetts
| | - Huyen Cao
- California Department of Public Health, Richmond, California
| |
Collapse
|
46
|
Kulpa DA, Brehm JH, Fromentin R, Cooper A, Cooper C, Ahlers J, Chomont N, Sékaly RP. The immunological synapse: the gateway to the HIV reservoir. Immunol Rev 2014; 254:305-25. [PMID: 23772628 PMCID: PMC3707302 DOI: 10.1111/imr.12080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A major challenge in the development of a cure for human immunodeficiency virus (HIV) has been the incomplete understanding of the basic mechanisms underlying HIV persistence during antiretroviral therapy. It is now realized that the establishment of a latently infected reservoir refractory to immune system recognition has thus far hindered eradication efforts. Recent investigation into the innate immune response has shed light on signaling pathways downstream of the immunological synapse critical for T-cell activation and establishment of T-cell memory. This has led to the understanding that the cell-to-cell contacts observed in an immunological synapse that involve the CD4+ T cell and antigen-presenting cell or T-cell–T-cell interactions enhance efficient viral spread and facilitate the induction and maintenance of latency in HIV-infected memory T cells. This review focuses on recent work characterizing the immunological synapse and the signaling pathways involved in T-cell activation and gene regulation in the context of HIV persistence.
Collapse
Affiliation(s)
- Deanna A Kulpa
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute-Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, Triebel F, Charron D, Aoudjit F, Al-Daccak R, Michel L. MHC Class II Engagement by Its Ligand LAG-3 (CD223) Contributes to Melanoma Resistance to Apoptosis. THE JOURNAL OF IMMUNOLOGY 2011; 186:5173-83. [DOI: 10.4049/jimmunol.1002050] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Abstract
LAG-3 (CD223) is a cell surface molecule expressed on activated T cells (Huard et al. Immunogenetics 39:213-217, 1994), NK cells (Triebel et al. J Exp Med 171:1393-1405, 1990), B cells (Kisielow et al. Eur J Immunol 35:2081-2088, 2005), and plasmacytoid dendritic cells (Workman et al. J Immunol 182:1885-1891, 2009) that plays an important but incompletely understood role in the function of these lymphocyte subsets. In addition, the interaction between LAG-3 and its major ligand, Class II MHC, is thought to play a role in modulating dendritic cell function (Andreae et al. J Immunol 168:3874-3880, 2002). Recent preclinical studies have documented a role for LAG-3 in CD8 T cell exhaustion (Blackburn et al. Nat Immunol 10:29-37, 2009), and blockade of the LAG-3/Class II interaction using a LAG-3 Ig fusion protein is being evaluated in a number of clinical trials in cancer patients. In this review, we will first discuss the basic structural and functional biology of LAG-3, followed by a review of preclinical and clinical data pertinent to a role for LAG-3 in cancer immunotherapy.
Collapse
Affiliation(s)
- Monica V. Goldberg
- Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street – CRB 423, Baltimore, MD 21231, USA
| | - Charles G. Drake
- Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street – CRB 410, Baltimore, MD 21231, USA,
| |
Collapse
|
49
|
Gill D, Tan PH. Induction of pathogenic cytotoxic T lymphocyte tolerance by dendritic cells: a novel therapeutic target. Expert Opin Ther Targets 2010; 14:797-824. [PMID: 20560799 DOI: 10.1517/14728222.2010.499360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IMPORTANCE OF THE FIELD Dendritic cells (DCs) have an important role, both direct and indirect, in controlling the expansion and function of T cells. Of the different subsets of T cells, cytotoxic T lymphocytes (CTLs/CD8(+) T cells) have been implicated in the pathogenesis and development of many diseases, including various forms of autoimmunity and transplant rejection. It may therefore be of therapeutic benefit to control the function of CTL in order to modulate disease processes and to ameliorate disease symptoms. Currently, pharmacological approaches have been employed to either directly or indirectly modulate the function of T cells. However, these treatment strategies have many limitations. Many experimental data have suggested that it is possible to alter CTL activity through manipulation of DC. AREAS COVERED IN THIS REVIEW Novel strategies that condition DCs to influence disease outcome through manipulation of CTL activity, both directly and indirectly. This includes the modulation of co-stimulation, negative co-stimulation, as well as manipulation of the cytokine milieu during CTL generation. Furthermore, DCs may also impact CTL activity through effects on effector and regulatory cells, along with manipulation of bioenergetic regulation, apoptotic-cell mediated tolerance and through the generation of exosomes. The implications of related interventions in the clinical arena are in turn considered. WHAT THE READER WILL GAIN Insight into such indirect methods of controlling CTL activity allows for an understanding of how disease-specific T cells may be regulated, while also sparing other aspects of adaptive immunity for normal physiological function. Such an approach towards the treatment of disease represents an innovative therapeutic target in the clinical arena. TAKE HOME MESSAGE There are numerous innovative methods for using DCs to control CTL responses. Manipulation of this interaction is thus an attractive avenue for the treatment of disease, particularly those of immune dysregulation, such as seen in autoimmunity and transplantation. With the number of studies moving into clinical stages constantly increasing, further advances and successes in this area are inevitable.
Collapse
Affiliation(s)
- Dipender Gill
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Surgery, Headley Way, Oxford, OX3 9DU, UK
| | | |
Collapse
|
50
|
Li B, VanRoey M, Triebel F, Jooss K. Lymphocyte activation gene-3 fusion protein increases the potency of a granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy. Clin Cancer Res 2008; 14:3545-54. [PMID: 18519788 DOI: 10.1158/1078-0432.ccr-07-5200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of the present study was to evaluate granulocyte macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell immunotherapy, which is known to stimulate a potent and long-lasting antigen-specific immune response in combination with lymphocyte activation gene-3 fusion protein (LAG-3Ig), which has been shown to act as an adjuvant for priming T helper type 1 and cytotoxic T-cell responses. EXPERIMENTAL DESIGN Survival and immune monitoring studies were done in the B16 melanoma model. GM-CSF-secreting tumor cell immunotherapy was administered as a single s.c. injection and LAG-3Ig was administered s.c. at the immunotherapy site. RESULTS The studies reported here show that combining LAG-3Ig with GM-CSF-secreting tumor cell immunotherapy prolonged the survival of tumor-bearing animals compared with animals treated with either therapy alone. Prolonged survival correlated with increased numbers of systemic IFN gamma-secreting CD8+ T cells and a significantly increased infiltration of activated effector CD8+ T cells into the tumor. Moreover, an increase in antigen-specific IgG1 humoral responses was detected in serum of animals injected with the combination therapy compared with animals injected with either therapy alone. CONCLUSION LAG-3Ig combined with a GM-CSF-secreting tumor cell immunotherapy stimulated both cellular and humoral antitumor immune responses that correlated with prolonged survival in tumor-bearing animals.
Collapse
Affiliation(s)
- Betty Li
- Cell Genesys, Inc., 500 Forbes Boulevard, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|