1
|
Castellano LRC, Cruz SBSC, Hier M, Bonan PRF, Alaoui-Jamali MA, da Silva SD. Implications and Emerging Therapeutic Avenues of Inflammatory Response in HPV+ Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:5406. [PMID: 36358823 PMCID: PMC9657300 DOI: 10.3390/cancers14215406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 10/24/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of malignancies which have shown exponential incidence in the last two decades especially due to human papillomavirus (HPV) infection. The HPV family comprises more than 100 types of viruses with HPV16 and HPV18 being the most prevalent strains in HNSCC. Literature data reveal that the mutation profile as well as the response to chemotherapy and radiotherapy are distinct among HPV+ versus HPV-negative tumors. Furthermore, the presence of the virus induces activation of an immune response, in particular the recruitment of specific antiviral T lymphocytes to tumor sites. These T cells when activated produce soluble factors including cytokines and chemokines capable of modifying the local immune tumor microenvironment and impact on tumor response to the treatment. In this comprehensive review we investigated current knowledge on how the presence of an HPV can modify the inflammatory response systemically and within the tumor microenvironment's immunological responses, thereby impacting on disease prognosis and survival. We highlighted the research gaps and emerging approaches necessary to discover novel immunotherapeutic targets for HPV-associated HNSCC.
Collapse
Affiliation(s)
- Lúcio Roberto Cançado Castellano
- Department of Otolaryngology and Head and Neck Surgery and Lady Davis Institutes for Medical Research of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
- Human Immunology Research and Education Group, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Sara Brito Silva Costa Cruz
- Department of Otolaryngology and Head and Neck Surgery and Lady Davis Institutes for Medical Research of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
- Human Immunology Research and Education Group, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery and Lady Davis Institutes for Medical Research of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Paulo Rogério Ferreti Bonan
- Human Immunology Research and Education Group, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Moulay A. Alaoui-Jamali
- Department of Otolaryngology and Head and Neck Surgery and Lady Davis Institutes for Medical Research of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery and Lady Davis Institutes for Medical Research of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
2
|
VanBenschoten HM, Woodrow KA. Vaginal delivery of vaccines. Adv Drug Deliv Rev 2021; 178:113956. [PMID: 34481031 PMCID: PMC8722700 DOI: 10.1016/j.addr.2021.113956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/06/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Recent estimates suggest that one in two sexually active individuals will acquire a sexually transmitted infection by age 25, an alarming statistic that amounts to over 1 million new infections per day worldwide. Vaccination against STIs is highly desirable for alleviating this global burden of disease. Vaginal immunization is a promising strategy to combat transmission via the vaginal mucosa. The vagina is typically considered a poor inductive site for common correlates of adaptive immunity. However, emerging evidence suggests that immune tolerance may be overcome by precisely engineered vaccination schemes that orchestrate cell-mediated immunity and establish tissue resident memory immune cells. In this review, we will discuss the unique immunological milieu of the vaginal mucosa and our current understanding of correlates of pathogenesis and protection for several common STIs. We then present a summary of recent vaginal vaccine studies and explore the role that mucosal adjuvants and delivery systems play in enhancing protection according to requisite features of immunity. Finally, we offer perspectives on the challenges and future directions of vaginal vaccine delivery, discussing remaining physiological barriers and innovative vaccine formulations that may overcome them.
Collapse
Affiliation(s)
- Hannah M VanBenschoten
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
3
|
Sa-nguanmoo N, Namdee K, Khongkow M, Ruktanonchai U, Zhao Y, Liang XJ. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. NANO RESEARCH 2021; 15:2196-2225. [PMID: 34659650 PMCID: PMC8501370 DOI: 10.1007/s12274-021-3832-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.
Collapse
Affiliation(s)
- Nawamin Sa-nguanmoo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - YongXiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning, 530021 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
4
|
Quantifying the relative immune cell activation from whole tissue/organ-derived differentially expressed gene data. Sci Rep 2017; 7:12847. [PMID: 28993694 PMCID: PMC5634445 DOI: 10.1038/s41598-017-12970-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023] Open
Abstract
Evaluation of immune responses in individual immune cell types is important for the development of new medicines. Here, we propose a computational method designated ICEPOP (Immune CEll POPulation) to estimate individual immune cell type responses from bulk tissue and organ samples. The relative gene responses are scored for each cell type by using the data from differentially expressed genes derived from control- vs drug-treated sample pairs, and the data from public databases including ImmGen and IRIS, which contain gene expression profiles of a variety of immune cells. By ICEPOP, we analysed cell responses induced by vaccine-adjuvants in the mouse spleen, and extended the analyses to human peripheral blood mononuclear cells and gut biopsy samples focusing on human papilloma virus vaccination and inflammatory bowel disease treatment with Infliximab. In both mouse and human datasets, our method reliably quantified the responding immune cell types and provided insightful information, demonstrating that our method is useful to evaluate immune responses from bulk sample-derived gene expression data. ICEPOP is available as an interactive web site (https://vdynamics.shinyapps.io/icepop/) and Python package (https://github.com/ewijaya/icepop).
Collapse
|
5
|
Diemen PMV, Leneghan DB, Brian IJ, Miura K, Long CA, Milicic A, Biswas S, Rollier CS, Wyllie DH. The S. aureus 4-oxalocrotonate tautomerase SAR1376 enhances immune responses when fused to several antigens. Sci Rep 2017; 7:1745. [PMID: 28496136 PMCID: PMC5431793 DOI: 10.1038/s41598-017-01421-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
A persistent goal of vaccine development is the enhancement of the immunogenicity of antigens while maintaining safety. One strategy involves alteration of the presentation of the antigen by combining antigens with a multimeric scaffold. Multi-antigen vaccines are under development, and there are presently far more candidate antigens than antigen scaffolding strategies. This is potentially problematic, since prior immunity to a scaffold may inhibit immune responses to the antigen-scaffold combination. In this study, a series of domains from S. aureus which have been shown to crystallise into multimeric structures have been examined for their scaffolding potential. Of these domains, SAR1376, a 62 amino acid member of the 4-oxalocrotonate tautomerase (4-OT) family, was pro-immunogenic in mice when fused to a range of pathogen antigens from both S. aureus and P. falciparum, and delivered by either DNA vaccination, viral vector vaccines or as protein-in-adjuvant formulations. The adjuvant effect did not depend on enzymatic activity, but was abrogated by mutations disrupting the hexameric structure of the protein. We therefore propose that SAR1376, and perhaps other members of the 4-OT protein family, represent very small domains which can be fused to a wide range of antigens, enhancing immune responses against them.
Collapse
Affiliation(s)
| | | | - Iona J Brian
- Jenner Institute, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| | - Anita Milicic
- Jenner Institute, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Sumi Biswas
- Jenner Institute, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Biomedical Research Centre, CCVTM, Churchill Lane, OX37LE, Oxford, UK
| | - David H Wyllie
- Jenner Institute, University of Oxford, CCMP, OX3 7BN, UK.
| |
Collapse
|
6
|
Kines RC, Cerio RJ, Roberts JN, Thompson CD, de Los Pinos E, Lowy DR, Schiller JT. Human papillomavirus capsids preferentially bind and infect tumor cells. Int J Cancer 2015; 138:901-11. [PMID: 26317490 DOI: 10.1002/ijc.29823] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/21/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022]
Abstract
We previously determined that human papillomavirus (HPV) virus-like particles (VLPs) and pseudovirions (PsV) did not, respectively, bind to or infect intact epithelium of the cervicovaginal tract. However, they strongly bound heparan sulfate proteoglycans (HSPG) on the basement membrane of disrupted epithelium and infected the keratinocytes that subsequently entered the disrupted site. We here report that HPV capsids (VLP and PsV) have the same restricted tropism for a wide variety of disrupted epithelial and mesothelial tissues, whereas intact tissues remain resistant to binding. However, the HPV capsids directly bind and infect most tumor-derived cell lines in vitro and have analogous tumor-specific properties in vivo, after local or intravenous injection, using orthotopic models for human ovarian and lung cancer, respectively. The pseudovirions also specifically infected implanted primary human ovarian tumors. Heparin and ι-carrageenan blocked binding and infection of all tumor lines tested, implying that tumor cell binding is HSPG-dependent. A survey using a panel of modified heparins indicates that N-sulfation and, to a lesser degree, O-6 sulfation of the surface HSPG on the tumors are important for HPV binding. Therefore, it appears that tumor cells consistently evolve HSPG modification patterns that mimic the pattern normally found on the basement membrane but not on the apical surfaces of normal epithelial or mesothelial cells. Consequently, appropriately modified HPV VLPs and/or PsV could be useful reagents to detect and potentially treat a remarkably broad spectrum of cancers.
Collapse
Affiliation(s)
| | - Rebecca J Cerio
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jeffrey N Roberts
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cynthia D Thompson
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Douglas R Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - John T Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Monroy-García A, Gómez-Lim MA, Weiss-Steider B, Hernández-Montes J, Huerta-Yepez S, Rangel-Santiago JF, Santiago-Osorio E, Mora García MDL. Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model. Arch Virol 2013; 159:291-305. [DOI: 10.1007/s00705-013-1819-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/30/2013] [Indexed: 12/11/2022]
|
8
|
Immune response to vaccine adjuvants during the first year of life. Vaccine 2012; 31:2500-5. [PMID: 23085363 DOI: 10.1016/j.vaccine.2012.10.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/25/2012] [Accepted: 10/05/2012] [Indexed: 12/23/2022]
Abstract
Subunit vaccine formulations often include adjuvants that primarily stimulate innate immune cells. While young infants represent the major target population for vaccination, effective immunization in this age group remains a challenge. Many parameters of innate immune responses differ quantitatively and qualitatively from newborns to infants and adults, revealing a highly regulated developmental program. Herein, we discuss the potential implications of innate immune ontogeny for the activity of adjuvants contained in licensed infant vaccines, as well as future directions for rational design of adjuvanted vaccines for this age group.
Collapse
|
9
|
Renoux VM, Bisig B, Langers I, Dortu E, Clémenceau B, Thiry M, Deroanne C, Colige A, Boniver J, Delvenne P, Jacobs N. Human papillomavirus entry into NK cells requires CD16 expression and triggers cytotoxic activity and cytokine secretion. Eur J Immunol 2011; 41:3240-52. [PMID: 21830210 DOI: 10.1002/eji.201141693] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/08/2011] [Accepted: 08/03/2011] [Indexed: 12/25/2022]
Abstract
Human papillomavirus (HPV) infections account for more than 50% of infection-linked cancers in women worldwide. The immune system controls, at least partially, viral infection and around 90% of HPV-infected women clear the virus within two years. However, it remains unclear which immune cells are implicated in this process and no study has evaluated the direct interaction between HPVs and NK cells, a key player in host resistance to viruses and tumors. We demonstrated an NK-cell infiltration in HPV-associated preneoplastic cervical lesions. Since HPVs cannot grow in vitro, virus-like particles (VLPs) were used as a model for studying the NK-cell response against the virus. Interestingly, NK cells displayed higher cytotoxic activity and cytokine production (TNF-α and IFN-γ) in the presence of HPV-VLPs. Using flow cytometry and microscopy, we observed that NK-cell stimulation was linked to rapid VLP entry into these cells by macropinocytosis. Using CD16(+) and CD16(-) NK-cell lines and a CD16-blocking antibody, we demonstrated that CD16 is necessary for HPV-VLP internalization, as well as for degranulation and cytokine production. Thus, we show for the first time that NK cells interact with HPVs and can participate in the immune response against HPV-induced lesions.
Collapse
Affiliation(s)
- Virginie M Renoux
- Laboratory of Experimental Pathology, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xu W, Liu J, Gong W, Chen J, Zhu S, Zhang L. Protective immunity against Chlamydia trachomatis genital infection induced by a vaccine based on the major outer membrane multi-epitope human papillomavirus major capsid protein L1. Vaccine 2011; 29:2672-8. [DOI: 10.1016/j.vaccine.2010.12.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/21/2010] [Accepted: 12/26/2010] [Indexed: 10/18/2022]
|
11
|
Chen HS, Conway MJ, Christensen ND, Alam S, Meyers C. Papillomavirus capsid proteins mutually impact structure. Virology 2011; 412:378-83. [PMID: 21329956 DOI: 10.1016/j.virol.2011.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/06/2010] [Accepted: 01/14/2011] [Indexed: 02/08/2023]
Abstract
We studied a panel of mutant viruses containing wild-type and chimeric capsid HPV16 and HPV18 proteins. The mutant capsid protein expression, genome amplification, and episomal maintenance were comparable with the wild-type virus. However, the chimeric viruses varied in their titers from wild-type. We show that the intertypical mutant chimeric capsid viruses, that L2 affects the structure of L1 and that L1 affects the structure of L2 in the virion. These effects were measured using a panel of conformation-dependent neutralizing L1 MAbs and an L2 capsid surface peptide derived neutralizing antibody. These data suggest that variation of one capsid gene not only affects its own structure and antigenicity, but also affects the structure and antigenicity of the other capsid protein. Implications of our data suggest that for the continued effectiveness of a vaccine, variation in both capsid proteins need to be considered and not just the protein the vaccine is directed against.
Collapse
Affiliation(s)
- Horng-Shen Chen
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
12
|
Chen HS, Bromberg-White J, Conway MJ, Alam S, Meyers C. Study of infectious virus production from HPV18/16 capsid chimeras. Virology 2010; 405:289-99. [PMID: 20598725 DOI: 10.1016/j.virol.2010.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 01/25/2023]
Abstract
Using the HPV18 genome as the backbone, we exchanged the HPV18 L2 or L1 genes with those of HPV16. The intertypical exchange of HPV18 L1 with the HPV16 L1 produced genomes that efficiently replicated and produced infectious virus. Genomes containing an intertypical exchange of HPV18 L2 for the HPV16 L2 failed to produce infectious virus in multiple independently derived cell lines. Using chimeric constructs of individual capsid proteins, we identified a type-specific domain at the N-terminus of the HPV18L1 capsid protein, which interferes with its ability to cooperate with the HPV16 L2 protein to form infectious viral particles. Deletion of this domain allows for the cooperation of the HPV18 L1 protein and HPV16 L2 protein and production of infectious progeny. In addition, cooperation of this N-terminal HPV18 L1 deletion mutant protein with the wild-type HPV18 L2 protein efficiently replicates infectious virus but changes occur in the viral structure.
Collapse
Affiliation(s)
- Horng-Shen Chen
- Department of Microbiology and Immunology H107, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
13
|
Current understanding of the mechanism of HPV infection. Gynecol Oncol 2010; 118:S12-7. [PMID: 20494219 DOI: 10.1016/j.ygyno.2010.04.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 12/31/2022]
Abstract
HPVs (human papillomaviruses) and other papillomaviruses have a unique mechanism of infection that has likely evolved to limit infection to the basal cells of stratified epithelium, the only tissue in which they replicate. Recent studies in a mouse cervicovaginal challenge model indicate that, surprisingly, the virus cannot initially bind to keratinocytes in vivo. Rather it must first bind via its L1 major capsid protein to heparan sulfate proteoglycans (HSPGs) on segments of the basement membrane (BM) exposed after epithelial trauma and undergo a conformational change that exposes the N-terminus of L2 minor capsid protein to furin cleavage. L2 proteolysis exposes a previously occluded surface of L1 that binds an as yet undetermined cell surface receptor on keratinocytes that have migrated over the BM to close the wound. Papillomaviruses are the only viruses that are known to initiate their infectious process at an extracellular site. In contrast to the in vivo situation, the virions can bind directly to many cultured cell lines through cell surface HSPGs and then undergo a similar conformational change and L2 cleavage. Transfer to the secondary receptor leads to internalization, uncoating in late endosomes, escape from the endosome by an L2-dependent mechanism, and eventual trafficking of an L2-genome complex to specific subnuclear domains designated ND10 bodies, where viral gene transcription is initiated. The infectious process is remarkably slow and asynchronous both in vivo and in cultured cells, taking 12-24h for initiation of transcription. The extended exposure of antibody neutralizing determinants while the virions reside on the BM and cell surfaces might, in part, account for the remarkable effectiveness of vaccines based on neutralizing antibodies to L1 virus-like particles or the domain of L2 exposed after furin cleavage.
Collapse
|
14
|
Immunization with a Mixture of HIV Env DNA and VLP Vaccines Augments Induction of CD8 T Cell Responses. J Biomed Biotechnol 2010; 2010:497219. [PMID: 20508832 PMCID: PMC2876254 DOI: 10.1155/2010/497219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 12/04/2022] Open
Abstract
The immune response induced by immunization with HIV Env DNA and virus-like particle (VLP) vaccines was investigated. Immunization with the HIV Env DNA vaccine induced a strong CD8 T cell response but relatively weak antibody response against the HIV Env whereas immunization with VLPs induced higher levels of antibody responses but little CD8 T cell response. Interestingly, immunization with a mixture the HIV Env DNA and VLP vaccines induced enhanced CD8 T cell and antibody responses. Further, it was observed that the mixing of DNA and VLP vaccines during immunization is necessary for augmenting induction of CD8 T cell responses and such augmentation of CD8 T cell responses was also observed by mixing the HIV Env DNA vaccine with control VLPs. These results show that immunization with a mixture of DNA and VLP vaccines combines advantages of both vaccine platforms for eliciting high levels of both antibody and CD8 T cell responses.
Collapse
|
15
|
Wang Y, Bian ZM, Yu WZ, Yan Z, Chen WC, Li XX. Induction of interleukin-8 gene expression and protein secretion by C-reactive protein in ARPE-19 cells. Exp Eye Res 2010; 91:135-42. [PMID: 20188089 DOI: 10.1016/j.exer.2010.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 11/16/2022]
Abstract
C-reactive protein (CRP) is an acute phase reactant and its level rises rapidly during inflammation. Recent studies have suggested the potential involvement of CRP in the pathogenesis of age-related macular degeneration (AMD). To delineate the functional roles of CRP in inflammatory response by the ocular posterior segments, the effects of CRP on ARPE-19, an immortalized human retinal pigment epithelia (hRPE) cell line, were investigated in the present study. Treatment of ARPE-19 cells with CRP resulted in enhanced NF-kB nuclear translocation and dose-dependent transient induction of IL-8 mRNA synthesis and protein secretion. Stimulated expression of VEGF, but not MCP-1 by CRP was also observed. The induced IL-8 expression was transient and peaked at 12h post stimulation. In the presence of inhibitors for NF-kB, p38, MEK and JNK, the CRP-induced IL-8 production was abolished by 99.5+/-2.3, 97.8+/-2.1, 55.3+/-2.5 and 37.3+/-1.3%, respectively. Neutralization of Fc gamma receptors by anti-CD32 and CD64 antibodies produced 39.9+/-1.6 and 59.5+/-2.6% reduction, respectively, of CRP-stimulated IL-8 secretion, whereas that by anti-CD16 antibody had no effect. This study suggests that the pro-inflammatory effects of CRP in ARPE-19 cells may contribute to the inflammatory retinal diseases by induction of pro-inflammatory cytokines such as IL-8. This induction is mediated by NF-kB and multiple MAPK pathways through Fc gamma receptors.
Collapse
Affiliation(s)
- Yu Wang
- Department of Ophthalmology, People's Hospital of Peking University, Beijing 100044, China
| | | | | | | | | | | |
Collapse
|
16
|
Mechanisms of cell entry by human papillomaviruses: an overview. Virol J 2010; 7:11. [PMID: 20089191 PMCID: PMC2823669 DOI: 10.1186/1743-422x-7-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/20/2010] [Indexed: 01/24/2023] Open
Abstract
As the primary etiological agents of cervical cancer, human papillomaviruses (HPVs) must deliver their genetic material into the nucleus of the target cell. The viral capsid has evolved to fulfil various roles that are critical to establish viral infection. The particle interacts with the cell surface via interaction of the major capsid protein, L1, with heparan sulfate proteoglycans. Moreover, accumulating evidence suggests the involvement of a secondary receptor and a possible role for the minor capsid protein, L2, in cell surface interactions. The entry of HPV in vitro is initiated by binding to a cell surface receptor in contrast to the in vivo situation where the basement membrane has recently been identified as the primary site of virus binding. Binding of HPV triggers conformational changes, which affect both capsid proteins L1 and L2, and such changes are a prerequisite for interaction with the elusive uptake receptor. Most HPV types that have been examined, appear to enter the cell via a clathrin-dependent endocytic mechanism, although many data are inconclusive and inconsistent. Furthermore, the productive entry of HPV is a process that occurs slowly and asynchronously and it is characterised by an unusually extended residence on the cell surface. Despite the significant advances and the emergence of a general picture of the infectious HPV entry pathway, many details remain to be clarified. The impressive technological progress in HPV virion analysis achieved over the past decade, in addition to the improvements in general methodologies for studying viral infections, provide reasons to be optimistic about further advancement of this field. This mini review is intended to provide a concise overview of the literature in HPV virion/host cell interactions and the consequences for endocytosis.
Collapse
|
17
|
Kang SM, Song JM, Quan FS, Compans RW. Influenza vaccines based on virus-like particles. Virus Res 2009; 143:140-6. [PMID: 19374929 DOI: 10.1016/j.virusres.2009.04.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 12/14/2022]
Abstract
The simultaneous expression of structural proteins of virus can produce virus-like particles (VLPs) by a self-assembly process in a viral life cycle even in the absence of genomic material. Taking an advantage of structural and morphological similarities of VLPs to native virions, VLPs have been suggested as a promising platform for new viral vaccines. In the light of a pandemic threat, influenza VLPs have been recently developed as a new generation of non-egg based cell culture-derived vaccine candidates against influenza infection. Animals vaccinated with VLPs containing hemagglutinin (HA) or HA and neuraminidase (NA) were protected from morbidity and mortality resulting from lethal influenza infections. Influenza VLPs serve as an excellent model system of an enveloped virus for understanding the properties of VLPs in inducing protective immunity. In this review, we briefly describe the characteristics of influenza VLPs assembled with a lipid bilayer containing glycoproteins, and summarize the current progress on influenza VLPs as an alternative vaccine candidate against seasonal as well as pandemic influenza viruses. In addition, the protective immune correlates induced by vaccination with influenza VLPs are discussed.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
There is an urgent need to develop novel approaches for vaccination against emerging pathogenic avian influenza viruses as a priority for pandemic preparedness. Influenza virus-like particles (VLPs) have been suggested and developed as a new generation of non-egg-based cell culture-derived vaccine candidates against influenza infection. Influenza VLPs are formed by a self-assembly process incorporating structural proteins into budding particles composed of the hemagglutinin (HA), neuraminidase (NA) and M1 proteins, and may include additional influenza proteins such as M2. Animals vaccinated with VLPs were protected from morbidity and mortality resulting from lethal influenza infections. The protective mechanism of influenza VLP vaccines was similar to that of the currently licensed influenza vaccines inducing neutralizing antibodies and hemagglutination inhibition activities. Current studies demonstrate that influenza VLP approaches can be a promising alternative approach to developing a vaccine for pandemic influenza viruses. The first human clinical trial of a recombinant pandemic-like H5N1 influenza VLP vaccine was initiated in July 2007 (Bright et al., unpublished).
Collapse
|
19
|
Nasir L, Campo MS. Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet Dermatol 2008; 19:243-54. [PMID: 18927950 DOI: 10.1111/j.1365-3164.2008.00683.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine papillomavirus (BPV) is perhaps the most extensively studied animal papillomavirus. In cattle BPVs induce benign tumours of cutaneous or mucosal epithelia, called papillomas or warts. Cattle papillomas are benign tumours and generally regress without eliciting any serious clinical problems in the host, but occasionally persist and provide the focus for malignant transformation to squamous cell carcinoma, as in the case of cancer of the urinary bladder and cancer of the upper alimentary canal. BPV is the only papillomavirus that jumps species: the virus also infects equids, and gives rise to fibroblastic tumours called sarcoids. Sarcoids very rarely regress, more often they persist and can be locally aggressive. These tumours are the most common dermatological tumour of equids worldwide. The purpose of this review is to discuss the biology of BPV, the biology of bovine tumours and equine sarcoids, and present the current understanding of BPV in tumour pathogenesis in its natural host, cattle, and in its heterologous host, equids. Finally, the use of anti-BPV vaccines as a therapy for equine sarcoids will be discussed. Only limited information on the clinical or pathological aspects of either bovine or equine tumours will be provided as this subject has been extensively addressed previously.
Collapse
Affiliation(s)
- Lubna Nasir
- Division of Pathological Sciences, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH.
| | | |
Collapse
|
20
|
Yang C, Ye L, Compans RW. Protection against filovirus infection: virus-like particle vaccines. Expert Rev Vaccines 2008; 7:333-44. [PMID: 18393603 DOI: 10.1586/14760584.7.3.333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Significant progress has been made in vaccine development against infection by Ebola and Marburg viruses, members of the Filoviridae, which cause severe hemorrhagic fevers in humans with no effective treatment and a mortality rate of up to 90%. Several vaccine strategies have been shown to effectively protect immunized animals against filovirus infection. Among these candidate vaccine strategies, virus-like particles represent a promising approach and have been shown to protect small laboratory animals as well as nonhuman primates against lethal challenge by Ebola and/or Marburg viruses. This review briefly summarizes filovirus epidemiology and pathogenesis, and focuses on the discussion of recent advances in filovirus vaccine development and the current understanding of protective immune responses against filovirus infection with an emphasis on the progress and challenge of filovirus virus-like particle vaccine development.
Collapse
Affiliation(s)
- Chinglai Yang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
21
|
de Witte L, Zoughlami Y, Aengeneyndt B, David G, van Kooyk Y, Gissmann L, Geijtenbeek TBH. Binding of human papilloma virus L1 virus-like particles to dendritic cells is mediated through heparan sulfates and induces immune activation. Immunobiology 2007; 212:679-91. [PMID: 18086370 DOI: 10.1016/j.imbio.2007.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 11/24/2022]
Abstract
Immunization using human papilloma virus (HPV)-L1 virus-like particles (VLPs) induces a robust and effective immune response, which has recently resulted in the implementation of the HPV-L1 VLP vaccination in health programs. However, during infection, HPV can escape immune surveillance leading to latency and disease. Dendritic cells (DCs) induce effective immune responses after vaccination, but might also induce immune modulation during infection. The interaction of HPV-L1 VLPs with mucosal DCs determines the immune response. However, little is known about the receptors on mucosal DC subsets involved in HPV-L1 VLP binding. Therefore, we set out to investigate the interaction of HPV-L1 VLPs with the different mucosal DC subsets; the subepithelial DCs and Langerhans cells (LCs). We observed strong binding of HPV-L1 VLPs to both DCs and LCs. We did not observe an involvement for C-type lectins such as dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and langerin. The HPV-L1 VLP binding to DCs was mediated through heparan sulfates, since it was abrogated by heparinase-II treatment. The heparan sulfate proteoglycan syndecan-3 binds VLPs and is expressed on both DCs and LCs. Binding of VLPs to DCs, but not to LCs, strongly correlated with the levels of heparan sulfates and syndecan-3, suggesting that syndecan-3 is the main receptor for HPV-L1 VLPs on DCs. VLP interaction with DCs resulted in the up-regulation of co-stimulatory molecules and the production of the cytokines IL-6, IL-8, IL-10 and IL-12p40. Our results support an important role for syndecan-3 as a HPV receptor on DCs, which could be important for both vaccine development and understanding HPV pathogenesis.
Collapse
Affiliation(s)
- Lot de Witte
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Da Silva DM, Fausch SC, Verbeek JS, Kast WM. Uptake of human papillomavirus virus-like particles by dendritic cells is mediated by Fcgamma receptors and contributes to acquisition of T cell immunity. THE JOURNAL OF IMMUNOLOGY 2007; 178:7587-97. [PMID: 17548594 DOI: 10.4049/jimmunol.178.12.7587] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chimeric human papillomavirus virus-like particles (HPV cVLP) are immunogens able to elicit potent CTL responses in mice against HPV16-transformed tumors; however, the mechanism of T cell priming has remained elusive. HPV VLP bind to human MHC class II-positive APCs through interaction with FcgammaRIII, and immature dendritic cells (DC) become activated after incubation with HPV VLP; however, it is unclear whether FcgammaR on DC are involved. In mice, FcgammaRII and FcgammaRIII are homologous and bind similar ligands. In this study, we show that binding and uptake of VLP by DC from FcgammaRII, FcgammaRIII, and FcgammaRII/III-deficient mice are reduced by up to 50% compared with wild-type mice. Additionally, maturation of murine DC from FcgammaRII/III-deficient mice by VLP is also reduced, indicating that DC maturation, and thus Ag presentation, is diminished in the absence of expression of FcgammaR. To investigate the in vivo contribution of FcgammaR in the induction of cellular immunity, FcgammaR single- and double-knockout mice were immunized with HPV16 L1/L2-E7 cVLP, and the frequency of E7-specific T cells was analyzed by tetramer binding, IFN-gamma ELISPOT, and cytotoxicity assays. All readouts indicated that the frequency of E7-specific CD4(+) and CD8(+) T cells induced in all FcgammaR-deficient mice after immunization with cVLP was significantly diminished. Based on these results, we propose that the low-affinity FcgammaR contribute to the high immunogenicity of HPV VLP during T cell priming by targeting VLP to DC and inducing a maturation state of the DC that facilitates Ag presentation to and activation of naive T cells.
Collapse
Affiliation(s)
- Diane M Da Silva
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
23
|
García-Piñeres A, Hildesheim A, Dodd L, Kemp TJ, Williams M, Harro C, Lowy DR, Schiller JT, Pinto LA. Cytokine and chemokine profiles following vaccination with human papillomavirus type 16 L1 Virus-like particles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:984-9. [PMID: 17596432 PMCID: PMC2044489 DOI: 10.1128/cvi.00090-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the systemic cytokine pattern induced by vaccination with human papillomavirus (HPV) L1 virus-like particles (VLP), we analyzed 22 different cytokines in culture supernatants of L1 VLP-stimulated peripheral blood mononuclear cells from vaccine (n = 19) and placebo (n = 7) recipients at months 0 and 2 after vaccination, using a multiplex cytokine bead array. In vaccine recipients, incubation with L1 VLP in vitro led to a statistically significant increase in production of Th1 (granulocyte-macrophage colony-stimulating factor, interleukin-2 [IL-2], gamma interferon; P < 0.0007) and Th2 (IL-4, IL-5, IL-10, IL-13; P < 0.0017) cytokines and the chemokine IP-10 (P = 0.0021) at month 2 after immunization, compared to levels seen prior to vaccination. These responses were not seen in placebo recipients. Cytokine and neutralizing antibody responses to vaccination followed the same pattern, with the highest antibody responses seen for subjects with higher cytokine responses. Cytokine profiling studies using samples from efficacy trials may provide important information about discriminators of long-term protection against HPV.
Collapse
Affiliation(s)
- Alfonso García-Piñeres
- HPV Immunology Laboratory, SAIC-Frederick, Inc./NCI-Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ryan EP, Malboeuf CM, Bernard M, Rose RC, Phipps RP. Cyclooxygenase-2 Inhibition Attenuates Antibody Responses against Human Papillomavirus-Like Particles. THE JOURNAL OF IMMUNOLOGY 2006; 177:7811-9. [PMID: 17114452 DOI: 10.4049/jimmunol.177.11.7811] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vaccination to generate protective humoral immunity against infectious disease is becoming increasingly important due to emerging strains of virus, poorly immunogenic vaccines, and the threat of bioterrorism. We demonstrate that cyclooxygenase-2 (Cox-2) is crucial for optimal Ab responses to a model vaccine, human papillomavirus type 16 virus-like particles (HPV 16 VLPs). Cox-2-deficient mice produce 70% less IgG, 50% fewer Ab-secreting cells, and 10-fold less neutralizing Ab to HPV 16 VLP vaccination compared with wild-type mice. The reduction in Ab production by Cox-2(-/-) mice was partially due to a decrease in class switching. SC-58125, a structural analog of the Cox-2-selective inhibitor Celebrex reduced by approximately 70% human memory B cell differentiation to HPV 16 VLP IgG-secreting cells. The widespread use of nonsteroidal anti-inflammatory drugs and Cox-2-selective inhibitory drugs may therefore reduce vaccine efficacy, especially when vaccines are poorly immunogenic or the target population is poorly responsive to immunization.
Collapse
Affiliation(s)
- Elizabeth P Ryan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
25
|
García-Piñeres AJ, Hildesheim A, Trivett M, Williams M, Wu L, Kewalramani VN, Pinto LA. Role of DC-SIGN in the activation of dendritic cells by HPV-16 L1 virus-like particle vaccine. Eur J Immunol 2006; 36:437-45. [PMID: 16385626 DOI: 10.1002/eji.200535068] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dendritic cell-specific intercellular adhesion molecule-grabbing non-integrin (DC-SIGN), a specific C-type lectin expressed on DC, binds and transmits different pathogens to susceptible cells. In the present study, we examined the role of DC-SIGN in the capture of human papillomavirus (HPV) pseudovirions and activation of DC. We demonstrate that HPV virus-like particles (VLP) bind to DC-SIGN expressed on transfected Raji cells and that antibodies against DC-SIGN block this interaction. DC take up VLP, which activate expression of costimulatory markers and cytokines/chemokines. Although our results indicate that DC-SIGN is not the major receptor for VLP in DC, this interaction contributes to the activation of DC surface antigens (HLA class I) and of various cytokines/chemokines, particularly TNF-alpha, IL-6, and RANTES. Induction of these markers in DC by VLP was significantly abrogated when binding to DC-SIGN was blocked by anti-DC-SIGN antibodies. These results suggest that DC-SIGN has a functional role in DC activation induced by HPV-16 L1-VLP, and thus highlight new aspects of DC interactions with HPV VLP.
Collapse
|
26
|
|
27
|
Qian J, Dong Y, Pang YYS, Ibrahim R, Berzofsky JA, Schiller JT, Khleif SN. Combined prophylactic and therapeutic cancer vaccine: Enhancing CTL responses to HPV16 E2 using a chimeric VLP in HLA-A2 mice. Int J Cancer 2006; 118:3022-9. [PMID: 16425257 DOI: 10.1002/ijc.21781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We identified the strategies to induce a CTL response to human papillomavirus (HPV) 16 E2 in HLA-A2 transgenic mice (AAD). A chimeric HPV16 virus-like particle (VLP) that includes full length HPV16 E7 and E2 (VLP-E7E2) was generated. The combination of E2 and E7 has the advantage that E2 is expressed in early dysplasia and neoplasia lesions, where E7 is expressed in more advance lesions. Since T cell response to E2 is less defined, we first evaluated the strategies to enhancing CD8(+) T cell responses to HPV E7, using different combinations of immune-modulators with VLP-E7E2. Data showed that the CTL response to E7 could be significantly enhanced by coinjection of GM-CSF and anti-CD40 antibodies with chimeric VLP-E7E2 without adjuvant. However, using the same combination, a low level of CD8(+) T cell response to E2 was detected. To enhance the CD8+ T cell response to E2, we analyzed T cell epitopes from E2 sequence. A heterogenous prime-boost with chimeric VLP-E7E2 and E2 peptides was performed. The data showed that the priming with chimeric VLP-E7E2, followed by boosting with E2 peptides, gave a better CTL response than 2 immunizations with E2 peptides. The enhanced immunity is due to the increase of CD11c(+) and CD11c(+) CD40(+) double positive dendritic cells in mice that received immune-modulators, GM-CSF and anti-CD40. Furthermore, the level of anti-L1 antibodies remains similar in mice immunized with chimeric VLP with/without immune-modulators. Thus, the data suggested that the chimeric VLP-E7E2 has a therapeutic potential for the treatment of HPV-associated CINs and cancer without diminishing VLPs potential as a prophylactic vaccine by inducing anti-L1 antibodies against free virus.
Collapse
Affiliation(s)
- Jiahua Qian
- Vaccine Branch, NCI, National Naval Medical Center, Bldg 8, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Lenz P, Lowy DR, Schiller JT. Papillomavirus virus-like particles induce cytokines characteristic of innate immune responses in plasmacytoid dendritic cells. Eur J Immunol 2005; 35:1548-56. [PMID: 15832296 DOI: 10.1002/eji.200425547] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human papillomavirus (HPV) virus-like particles (VLP) are being extensively tested as vaccines for the prevention of HPV-associated cervical cancer. Dendritic cells (DC) acquire and present antigens, initiating innate and adaptive immune responses. It has been shown previously that DC of the myeloid lineage are capable of generating adaptive immune responses to HPV VLP in vitro. However, the capacity of plasmacytoid DC (pDC) to acquire HPV VLP and the nature of the immune response generated have not been reported. In this study we found that freshly isolated as well as CpG-matured pDC bind papillomavirus VLP and that internalization occurs preferentially in the immature pDC. In contrast to myeloid DC, pDC did not undergo phenotypic maturation upon exposure to HPV16 VLP. However, HPV16 VLP induced pDC to secrete of IFN-alpha and IL-6, both cytokines that play a role in the generation of antibody responses, as well as TNFalpha and IL-8. Given that VLP do not contain viral nucleic acids, these results indicate that viral capsids alone may be capable of inducing cytokine production by pDC. Finally, CpG-activated pDC, but not pDC exposed to HPV16 VLP, activated lymphocytes to secrete IL-10 and low levels of IFN-gamma. Together these findings suggest a possible immunogenic effect of pDC in the setting of VLP vaccination.
Collapse
Affiliation(s)
- Petra Lenz
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, USA.
| | | | | |
Collapse
|
29
|
Bontkes HJ, Ruizendaal JJ, Kramer D, Meijer CJLM, Hooijberg E. Plasmacytoid dendritic cells are present in cervical carcinoma and become activated by human papillomavirus type 16 virus-like particles. Gynecol Oncol 2005; 96:897-901. [PMID: 15721448 DOI: 10.1016/j.ygyno.2004.10.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Plasmacytoid dendritic cells (PDC) play an important role in the innate immune response to viral infections through the secretion of high levels of IFNalpha. We investigated whether PDC play a role in Human Papillomavirus (HPV) associated cervical carcinoma. METHODS Frozen sections of 18 cervical carcinomas were analyzed for the presence of myeloid and plasmacytoid DC. To study whether the HPV virus can activate PDC, expression of putative VLP receptors (CD49f and CD16) was analyzed on PDC in peripheral blood mononuclear cells of healthy donors. Furthermore, CD83 induction and IFNalpha production by purified blood-derived PDC was measured after incubation with HPV 16 virus like particles (VLP). RESULTS PDC were detected in 83% of the CxCa cases, primarily in the stroma. PDC express one of the putative VLP receptors (CD49f). IFNalpha production but no CD83 expression was induced in PDC upon incubation with VLP. CONCLUSION Our data suggest that PDC, which are at hand locally in the cervix, play a role in the natural immune response against HPV and identify PDC as possible targets for VLP-based vaccines.
Collapse
Affiliation(s)
- Hetty J Bontkes
- Department of Pathology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Fausch SC, Da Silva DM, Kast WM. Heterologous papillomavirus virus-like particles and human papillomavirus virus-like particle immune complexes activate human Langerhans cells. Vaccine 2005; 23:1720-9. [PMID: 15705478 DOI: 10.1016/j.vaccine.2004.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 09/22/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Chimeric human papillomavirus virus-like particles (HPV cVLP) are currently being explored as a therapeutic vaccination strategy against cervical cancer. HPV cVLP are being explored as a result of their interaction with and activation of dendritic cells, a potent antigen-presenting cell. However Langerhans cells, another type of antigen-presenting cell, can interact with HPV cVLP especially during mucosal routes of vaccine administration. Langerhans cells are not activated by HPV cVLP, utilize a different endocytosis mechanism than DC for HPV cVLP uptake, do not initiate an immune response toward HPV cVLP derived antigens, and are potentially immunosuppressive after interaction with HPV cVLP. Taken together, these findings indicate that the overall effectiveness of HPV cVLP as a therapeutic vaccine may be reduced. Bovine papillomavirus (BPV) VLP, cotton-tail rabbit papillomavirus (CRPV) VLP, and HPV VLP immune complexes (IC), which are taken up via similar endocytosis mechanisms in DC and LC, activate both cell types. DC and LC incubated with these VLP upregulate surface activation markers and increase secretion of IL-12 p70. The activated cells are then able to initiate an immune response against chimeric VLP-derived antigens. These data indicate that other therapeutic vaccination strategies based on using chimeric BPV VLP, chimeric CRPV VLP, or chimeric HPV VLP immune complexes may be more effective in generating an immune response against HPV-induced diseases such as cervical cancer.
Collapse
Affiliation(s)
- Steven C Fausch
- Norris Comprehensive Cancer Center, Zilkha Building, University of Southern California, 1501 San Pablo Street, MC 2821, Los Angeles, CA 90089-2821, USA
| | | | | |
Collapse
|
31
|
Reddy KJ, Banapour B, Anderson DE, Lee SH, Marquez JP, Carlos MP, Torres JV. Induction of immune responses against human papillomaviruses by hypervariable epitope constructs. Immunology 2004; 112:321-7. [PMID: 15147575 PMCID: PMC1782473 DOI: 10.1111/j.1365-2567.2004.01873.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
An ideal prophylactic vaccine against human papillomaviruses (HPV) would be one that can induce broadly reactive antibody titres to at least the major oncogenic strains of HPV. It has been previously shown that HPV structural proteins are highly immunogenic but fail to elicit cross-reactive immune responses against heterologous strains of HPV. Recent studies have demonstrated that the immunity induced by virus-like particles is mostly type specific. In the present study, we determined the breadth of reactivity of antibodies induced in mice immunized with hypervariable epitope constructs (HECs), which represent sequence variants of immunodominant B-cell epitopes of the major capsid protein L1 of HPV. In order to test the breadth of reactivity, sera from immunized mice were tested against peptides representing analogous sequences of HPV types 16, 18, 31 and 45. Mice immunized with HECs based on two epitopes mounted antibody responses that cross-reacted with two different analogues, 16 and 18. Significantly, antibodies from mice immunized with HECs also inhibited haemagglutination mediated by HPV-16 L1 VLPs, suggesting that immunization resulted in the development of antibodies that could bind to viral capsid proteins in their native conformation. Our observations suggest that HECs may overcome the restriction of type specific immunity against HPV.
Collapse
Affiliation(s)
- K Jyotsna Reddy
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Mandic A, Vujkov T. Human papillomavirus vaccine as a new way of preventing cervical cancer: a dream or the future? Ann Oncol 2004; 15:197-200. [PMID: 14760108 DOI: 10.1093/annonc/mdh043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cervical cancer is the major cause of death in women of reproductive age in parts of the developing world. Thanks to the effectiveness of national screening programs, the incidence and mortality rates for cervical cancer have declined dramatically in developed countries. According to many researchers, human papillomavirus (HPV) infection has an important role in the development of cervical neoplasm. The effects of HPV infection on the oncogenesis of cervical carcinoma can be explained to a large degree by the regulation and function of the two viral oncogenes, E6 and E7. About 25 of >80 types infect the genital tract. HPV types are stratified into low, intermediate- and high-risk categories. Today, vaccines are available against many serious human pathogens. It is accepted worldwide that cervical carcinoma is a consequence of infection with HPV viruses. Therefore it is reasonable to assume that vaccine that prevents infection will reduce the incidence of cervical cancer. Virus-like particles are empty viral capsids, and are the leading candidate vaccines for the treatment or prevention of cervical cancer in humans. The HPV type 16 (HPV16) L1 virus-like particle vaccines have been shown to be generally well tolerated and they generate high levels of antibodies against HPV16. Since approximately 50% of cervical cancers are associated with HPV16 infection, the administration of this type of vaccine to young women could reduce the incidence of HPV16 infection, which is related to cervical dysplasia and cervical neoplasm. Vaccination against HPV infection could reduce the risk of infection and, most importantly, decrease the incidence of cervical cancer. A vaccine for cervical cancer is not a dream in the far future, it is happening today.
Collapse
Affiliation(s)
- A Mandic
- Institute of Oncology, Sremska Kamenica, Yugoslavia.
| | | |
Collapse
|
33
|
Warfield KL, Bosio CM, Welcher BC, Deal EM, Mohamadzadeh M, Schmaljohn A, Aman MJ, Bavari S. Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci U S A 2003; 100:15889-94. [PMID: 14673108 PMCID: PMC307663 DOI: 10.1073/pnas.2237038100] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Indexed: 11/18/2022] Open
Abstract
The filovirus Ebola causes hemorrhagic fever with 70-80% human mortality. High case-fatality rates, as well as known aerosol infectivity, make Ebola virus a potential global health threat and possible biological warfare agent. Development of an effective vaccine for use in natural outbreaks, response to biological attack, and protection of laboratory workers is a higher national priority than ever before. Coexpression of the Ebola virus glycoprotein (GP) and matrix protein (VP40) in mammalian cells results in spontaneous production and release of virus-like particles (VLPs) that resemble the distinctively filamentous infectious virions. VLPs have been tested and found efficacious as vaccines for several viruses, including papillomavirus, HIV, parvovirus, and rotavirus. Herein, we report that Ebola VLPs (eVLPs) were immunogenic in vitro as eVLPs matured and activated mouse bone marrow-derived dendritic cells, assessed by increases in cell-surface markers CD40, CD80, CD86, and MHC class I and II and secretion of IL-6, IL-10, macrophage inflammatory protein (MIP)-1alpha, and tumor necrosis factor alpha by the dendritic cells. Further, vaccinating mice with eVLPs activated CD4+ and CD8+ T cells, as well as CD19+ B cells. After vaccination with eVLPs, mice developed high titers of Ebola virus-specific antibodies, including neutralizing antibodies. Importantly, mice vaccinated with eVLPs were 100% protected from an otherwise lethal Ebola virus inoculation. Together, our data suggest that eVLPs represent a promising vaccine candidate for protection against Ebola virus infections and a much needed tool to examine the genesis and nature of immune responses to Ebola virus.
Collapse
Affiliation(s)
- Kelly L Warfield
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang R, Yutzy WH, Viscidi RP, Roden RBS. Interaction of L2 with beta-actin directs intracellular transport of papillomavirus and infection. J Biol Chem 2003; 278:12546-53. [PMID: 12560332 DOI: 10.1074/jbc.m208691200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viruses that replicate in the nucleus, including the primary causative agent of cervical cancer, human papillomavirus type 16 (HPV16), must first cross the cytoplasm. We compared the uptake of HPV16 virus-like particles (VLPs) either with or without the minor capsid protein L2. Whereas VLPs containing only the major capsid protein L1 were diffusely distributed within the cytoplasm even 6 h post-infection, VLPs comprising both L1 and L2 exhibited a radial distribution in the cytoplasm and accumulated in the perinuclear region of BPHE-1 cells within 2 h. L2 of HPV16 or bovine papillomavirus was shown to bind to a 43-kDa cellular protein that was subsequently identified as beta-actin by matrix-assisted laser desorption ionization time-of-flight analysis. A conserved domain comprising residues 25-45 of HPV16 L2 was sufficient for interaction with beta-actin. HPV16 L2 residues 25-45 fused to green fluorescent protein, but not green fluorescent protein alone, colocalized with actin and caused cell retraction and disruption of the microfilament network. Finally, wild-type L2, but not L2 with residues 25-45 deleted, facilitated HPV16 pseudovirion infection. Thus, binding of beta-actin by L2 residues 25-45 facilitates transport of HPV16 across the cytoplasm during infection, and blockade of this novel interaction may be useful for prophylaxis.
Collapse
Affiliation(s)
- Rongcun Yang
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
35
|
Khleif SN. Human papillomavirus therapy for the prevention and treatment of cervical cancer. Curr Treat Options Oncol 2003; 4:111-9. [PMID: 12594937 DOI: 10.1007/s11864-003-0012-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cervical carcinoma is associated with human papillomavirus infection. Proliferation of cancer cells depends on the continual expression of the E6 and E7 viral oncogenes. This article includes treatment strategies that can interfere with expression or function of the proteins and immunotherapeutic approaches that can eliminate cells that express E6 and E7 proteins.
Collapse
Affiliation(s)
- Samir N Khleif
- Center for Cancer Research, National Cancer Institute, National Naval Medical Center, Building 8, Room 4137, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Lenz P, Thompson CD, Day PM, Bacot SM, Lowy DR, Schiller JT. Interaction of papillomavirus virus-like particles with human myeloid antigen-presenting cells. Clin Immunol 2003; 106:231-7. [PMID: 12706410 DOI: 10.1016/s1521-6616(02)00039-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Papillomavirus-like particles (VLPs) are potent inducers of humoral and cellular immune responses, making them attractive candidates for noninfectious viral subunit vaccines. To further our understanding of how VLPs activate the immune system, we have investigated their interaction with human myeloid antigen-presenting cells. We found that VLPs bound, with increasing density, to the cell surface of human monocytes, macrophages, and monocyte-derived dendritic cells (DCs). Interestingly, there was a negative correlation between binding intensity and CD83 expression in DCs, suggesting that the main receptor for binding of VLPs may be downregulated during maturation. Exposure to VLPs resulted in acute phenotypic activation of monocytes and DCs. Furthermore, VLPs rapidly induced production of inflammatory cytokines in monocytes, macrophages, and DCs, as assessed by intracellular cytokine staining. For each cell type, the patterns of interleukin-1beta, interleukin-12, tumor necrosis factor-alpha, and interleukin-6 production were distinct from the pattern induced by lipopolysaccharide (LPS), a bacterial activator of myeloid antigen-presenting cells. Our results indicate that VLPs target multiple cells of the immune system, which helps to account for VLPs being so effective in priming humoral and cellular immune responses even in the absence of adjuvant.
Collapse
Affiliation(s)
- Petra Lenz
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4040, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yang R, Day PM, Yutzy WH, Lin KY, Hung CF, Roden RBS. Cell surface-binding motifs of L2 that facilitate papillomavirus infection. J Virol 2003; 77:3531-41. [PMID: 12610128 PMCID: PMC149523 DOI: 10.1128/jvi.77.6.3531-3541.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) is the primary etiologic agent of cervical carcinoma, whereas bovine papillomavirus type 1 (BPV1) causes benign fibropapillomas. However, the capsid proteins, L1 and L2, of these divergent papillomaviruses exhibit functional conservation. A peptide comprising residues 1 to 88 of BPV1 L2 binds to a variety of cell lines, but not to the monocyte-derived cell line D32, and blocks BPV1 infection of mouse C127 cells. Residues 13 to 31 of HPV16 L2 and BPV1 L2 residues 1 to 88 compete for binding to the cell surface, and their binding, unlike that of HPV16 L1/L2 virus-like particles, is unaffected by heparinase or trypsin pretreatment of HeLa cells. A fusion of HPV16 L2 peptide 13-31 and GFP binds (K(d), approximately 1 nM) to approximately 45,000 receptors per HeLa cell. Furthermore, mutation of L2 residues 18 and 19 or 21 and 22 significantly reduces both the ability of the HPV16 L2 13-31-GFP fusion protein to bind to SiHa cells and the infectivity of HPV16 pseudovirions. Antibody to BPV1 L2 peptides comprising residues 115 to 135 binds to intact BPV1 virions, but fails to neutralize at a 1:10 dilution. However, deletion of residues 91 to 129 from L2 abolishes the infectivity of BPV1, but not their binding to the cell surface. In summary, L2 residues 91 to 129 contain epitopes displayed on the virion surface and are required for infection, but not virion binding to the cell surface. Upon the binding of papillomavirus to the cell surface, residues 13 to 31 of L2 interact with a widely expressed, trypsin- and heparinase-resistant cell surface molecule and facilitate infection.
Collapse
Affiliation(s)
- Rongcun Yang
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
38
|
Fausch SC, Da Silva DM, Rudolf MP, Kast WM. Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3242-9. [PMID: 12218143 DOI: 10.4049/jimmunol.169.6.3242] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
High-risk human papillomaviruses are linked to several malignancies including cervical cancer. Because human papillomavirus-infected women do not always mount protective antiviral immunity, we explored the interaction of human papillomavirus with Langerhans cells, which would be the first APCs the virus comes into contact with during infection. We determined that dendritic cells, normally targeted by vaccination procedures and Langerhans cells, normally targeted by the natural virus equally internalize human papillomavirus virus-like particles. However, in contrast to dendritic cells, Langerhans cells are not activated by human papillomavirus virus-like particles, illustrated by the lack of: up-regulating activation markers, secreting IL-12, stimulating T cells in an MLR, inducing human papillomavirus-specific immunity, and migrating from epidermal tissue. Langerhans cells, like dendritic cells, can display all of these characteristics when stimulated by proinflammatory agents. These data may define an intriguing immune escape mechanism used by human papillomavirus and form the basis for designing optimal vaccination strategies.
Collapse
Affiliation(s)
- Steven C Fausch
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
39
|
Triyatni M, Saunier B, Maruvada P, Davis AR, Ulianich L, Heller T, Patel A, Kohn LD, Liang TJ. Interaction of hepatitis C virus-like particles and cells: a model system for studying viral binding and entry. J Virol 2002; 76:9335-44. [PMID: 12186916 PMCID: PMC136469 DOI: 10.1128/jvi.76.18.9335-9344.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus-like particles (HCV-LPs) containing the structural proteins of HCV H77 strain (1a genotype) was used as a model for HCV virion to study virus-cell interaction. HCV-LPs showed a buoyant density of 1.17 to 1.22 g/cm(3) in a sucrose gradient and formed double-shelled particles 35 to 49 nm in diameter. Flow cytometry analysis by an indirect method (detection with anti-E2 antibody) and a direct method (use of dye-labeled HCV-LPs) showed that HCV-LPs binds to several human hepatic (primary hepatocytes, HepG2, HuH7, and NKNT-3) and T-cell (Molt-4) lines. HCV-LPs binding to cells occurred in a dose- and calcium-dependent manner and was not mediated by CD81. Scatchard plot analysis suggests the presence of two binding sites for HCV-LPs with high (K(d) approximately 1 microg/ml) and low (K(d) approximately 50 to 60 microg/ml) affinities of binding. Anti-E1 and -E2 antibodies inhibited HCV-LPs binding to cells. While preincubation of HCV-LPs with very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), or high-density lipoprotein (HDL) blocked its binding to cells, preincubation of cells with VLDL, LDL, HDL, or anti-LDL-R antibody did not. Confocal microscopy analysis showed that, after binding to cells, dye-labeled HCV-LPs were internalized into the cytoplasm. This process could be inhibited with anti-E1 or anti-E2 antibodies, suggesting that E1 and E2 proteins mediate HCV-LPs binding and, subsequently, their entry into cells. Altogether, our results indicate that HCV-LPs can be used to further characterize the mechanisms involved in the early steps of HCV infection.
Collapse
Affiliation(s)
- Miriam Triyatni
- Liver Diseases Section, National Institute of Diabetes and DigestiveKidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The development of antiviral vaccines has almost exclusively been based on live attenuated vaccines up until now. However, the efficacy of HBsAg particles as an antiHBV vaccine has clearly demonstrated that protective antiviral immunity can be achieved by other strategies. Virus-like particles formed by structural proteins were proven to be highly immunogenic and capable of inducing protective immunity against various viral infections in preclinical studies. Clinical trials using virus-like particles confirmed their safety and immunogenicity. Moreover, chimeric virus-like particles carrying foreign peptidic sequences were shown to elicit potent B- and T-cell responses. Virus-like particles formed by a fusion protein between the HBsAg and the circumsporozoïte surface protein are safe and immunogenic in volunteers and induce a partial protection against natural Plasmodium falciparum infection.
Collapse
|
41
|
Da Silva DM, Pastrana DV, Schiller JT, Kast WM. Effect of preexisting neutralizing antibodies on the anti-tumor immune response induced by chimeric human papillomavirus virus-like particle vaccines. Virology 2001; 290:350-60. [PMID: 11883199 DOI: 10.1006/viro.2001.1179] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chimeric human papillomavirus virus-like particles (HPV cVLPs) carrying HPV16 E7 protein are potent vaccines for inducing cell-mediated immunity (CMI) against HPV-induced tumors in animal models. We tested the hypothesis that virion-neutralizing antibodies generated during an initial vaccination might prevent effective boosting of CMI to the cVLPs. Mice with circulating HPV16-neutralizing antibodies, generated by direct immunization with wild-type VLPs or by passive transfer of hyperimmune anti-HPV16 VLP mouse sera, were subsequently vaccinated with HPV16 E7-containing cVLPs. Mice with preexisting neutralizing antibodies were not protected from HPV16 E7-positive TC-1 tumor challenge, compared to the protection seen in mice lacking these antibodies. Antibody-coated VLPs bound very inefficiently to receptor-positive cell lines, suggesting that one of the mechanisms of antibody interference is blocking of VLP binding to its receptor and thereby uptake of VLPs by antigen-presenting cells. Our results suggest that repetitive vaccination with a cVLP for induction of cellular immune responses to an incorporated antigen may be of limited effectiveness due to the presence of neutralizing antibodies against the capsid proteins induced after the first application. This limitation could potentially be overcome by boosting with cVLPs containing the same target antigen incorporated into other papillomavirus-type VLPs.
Collapse
Affiliation(s)
- D M Da Silva
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Department of Microbiology and Immunology, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|