1
|
Caniff KE, Al Musawa M, Judd C, Shupp M, Veve MP, Alangaden G, Claeys KC, Scipione MR, Walsh TJ, Rybak MJ. Evaluating antimicrobial stewardship strategies in candidemia: a novel desirability of outcome ranking (DOOR) analysis comparing blood culture versus T2Candida diagnostic approaches. J Clin Microbiol 2025; 63:e0004325. [PMID: 40214232 PMCID: PMC12077142 DOI: 10.1128/jcm.00043-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 05/15/2025] Open
Abstract
The T2Candida Panel (T2 Biosystems, Lexington, MA) is a rapid diagnostic test that detects Candida from whole blood within 3-5 hours. We developed and applied a desirability of outcome ranking (DOOR) analysis to investigate if an antimicrobial stewardship program (ASP) strategy centered on T2Candida diagnosis is associated with improved outcomes compared to an ASP strategy that relies on conventional blood culture diagnosis in critically ill patients with candidemia. This is a retrospective, observational cohort of patients with candidemia identified ≤72 h of intensive care unit admission at two medical centers in Detroit, MI (one T2Candida site and one blood culture site) from 2016 to 2023. Management strategies for candidemia were compared using an original DOOR analysis with inverse probability of treatment weighting (IPTW) to account for confounding. Two hundred patients were included, 100 from each site. Baseline illness severity, race, and Candida species varied between groups; however, source control procedures, echocardiogram, and ophthalmologic exam occurred at similar frequencies. T2Candida/ASP was associated with faster median (interquartile range [IQR]) detection of candidemia (7.0 [5.0-10.75] h vs 45.5 h [34.25-68.75], P < 0.001) and timelier median (IQR) initiation of directed antifungal therapy (6.0 [0-11.0] h vs 49.0 [34.0-77.0] h, P < 0.001). T2Candida/ASP patients had a 58.0% probability of achieving an overall better outcome compared to those managed with blood culture/ASP (95% confidence interval: 50.4-65.2%) in IPTW-adjusted DOOR analysis. An ASP strategy incorporating T2Candida was associated with an overall better patient outcome compared to patients managed via conventional blood culture diagnosis.IMPORTANCECandida species are a significant cause of bloodstream infections in critically ill patients. Conventional diagnostic methods, such as blood cultures, have poor sensitivity and delayed results. The T2Candida Panel is a diagnostic tool that rapidly detects Candida directly from the blood in 3-5 h, enabling faster initiation of antifungal therapy. Antimicrobial stewardship programs (ASPs) optimize the management of bloodstream infections and may benefit from incorporating T2Candida to improve patient outcomes. This study examined whether an ASP intervention based on T2Candida diagnosis, compared to one relying on traditional blood culture methods, could improve outcomes in candidemia using a desirability of outcome ranking (DOOR) analysis. The DOOR method provides a comprehensive evaluation by integrating multiple outcomes into a single end point, which is ideal given the complexity of patients with candidemia. The T2Candida/ASP intervention resulted in an overall better patient outcome, considering infectious complications, treatment failure, and all-cause mortality.
Collapse
Affiliation(s)
- Kaylee E. Caniff
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Mohammed Al Musawa
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Chloe Judd
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Macy Shupp
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Michael P. Veve
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
- Henry Ford Health System, Detroit, Michigan, USA
| | | | | | - Marco R. Scipione
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
| | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael J. Rybak
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
- Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
2
|
Pais MM, Zaragoza R, Martín-Loeches I, Gómez-Bertomeu FF, Rodríguez A. Management of Intra-Abdominal Candidiasis in Intensive Care Setting: A Narrative Review. J Fungi (Basel) 2025; 11:362. [PMID: 40422696 DOI: 10.3390/jof11050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/28/2025] [Accepted: 05/03/2025] [Indexed: 05/28/2025] Open
Abstract
Intra-abdominal candidiasis (IAC), with or without candidemia, is a common condition in patients in intensive care units (ICUs). Early diagnosis of IAC remains a challenge for clinicians despite new biomarkers. Early and appropriate antifungal treatment, which is associated with better clinical outcomes, is negatively affected by the increased isolation of non-albicans Candida strains that are resistant to the commonly used azoles and echinocandins. Based on the pharmacokinetic (PK) and pharmacodynamic (PD) properties of the different treatment options, liposomal amphotericin B, rezafungin or high doses of anidulafungin appear to be the most appropriate first-line options for complicated IAC in ICUs.
Collapse
Affiliation(s)
- Marco Marotta Pais
- Critical Care Department, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch 4, 43007 Tarragona, Spain
- Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Rovira & Virgili University, 43005 Tarragona, Spain
| | - Rafael Zaragoza
- Critical Care Department, Hospital Universitario Dr. Peset, Av. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, D08 NHY1 Dublin, Ireland
| | - Frederic F Gómez-Bertomeu
- Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Rovira & Virgili University, 43005 Tarragona, Spain
- Microbiology/Clinical Analysis Laboratory, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch 4, 43007 Tarragona, Spain
- IISPV (Instituto de Investigación Sanitaria Pere Virgili), 43005 Tarragona, Spain
- Centre for Biomedical Research in Infectious Diseases Network (CIBERINFEC), 28220 Madrid, Spain
| | - Alejandro Rodríguez
- Critical Care Department, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch 4, 43007 Tarragona, Spain
- IISPV (Instituto de Investigación Sanitaria Pere Virgili), 43005 Tarragona, Spain
- Centre for Biomedical Research Network Respiratory Diseases (CIBERES), 43005 Tarragona, Spain
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira & Virgili University, 43201 Reus, Spain
| |
Collapse
|
3
|
Pareek A, Kaur R. Core histones govern echinocandin susceptibility in Candida glabrata. Microbiol Spectr 2025:e0239924. [PMID: 40304478 DOI: 10.1128/spectrum.02399-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
The dynamic chromatin structure regulates many biological processes including gene expression, DNA repair, and genome stability in eukaryotic cells. However, its role in governing antifungal drug susceptibility in medically important fungi is just beginning to be deciphered. Chromatin architecture is maintained by a complex interplay among histone protein stoichiometry sustainment, post-translational modifications of histone proteins, and the activity of chromatin remodeling complexes. Herein, we report that the reduced gene dosage of histone core proteins in the opportunistic human fungal pathogen Candida glabrata leads to increased susceptibility toward the widely used, cell wall-targeting echinocandin antifungal drugs. Our comprehensive characterization of single and double histone mutants revealed that linker histone H1 loss had no effect on cell physiology and drug susceptibility, whereas low H2A, H2B, H3, and H4 protein levels resulted in decreased reactive oxygen species production, altered biofilm production, elevated DNA damage, and echinocandin stress susceptibility. Importantly, not all core histone mutants exhibited an increased sensitivity to other cell wall stressors, thereby precluding a general cell wall defect accounting solely for the increased caspofungin susceptibility. Finally, we show that the histone H3 acetylation at lysine-56 may be pivotal to caspofungin response of C. glabrata, as H3K56Ac levels were reduced in both core histone mutants and upon caspofungin exposure, with H3K56 acetyltransferase (CgRtt109)- and nucleosome assembly factor (CgAsf1)-lacking mutants displaying increased caspofungin susceptibility. Besides demonstrating the histone requirement for the survival of C. glabrata in the mouse systemic candidiasis model, our findings unveil histone dosage-regulated cellular processes that impact echinocandin susceptibility. IMPORTANCE Echinocandin antifungals, which impede cell wall synthesis, are often used to treat Candida bloodstream infections. The human opportunistic fungal pathogen Candida (Nakaseomyces) glabrata is increasingly being reported to exhibit co-resistance to echinocandins and ergosterol biosynthesis-inhibitory azole drugs in hospitals worldwide. However, the role of histones, protein-building blocks of the nucleosome, in governing echinocandin resistance in C. glabrata is not understood. Herein, we show that the reduced gene dosage of core histone proteins, but not of the linker histone, leads to echinocandin susceptibility, which is partly due to increased ROS levels. Additionally, our data implicate histone H3 acetylation at lysine-56 in the caspofungin response of C. glabrata. Since the emerging echinocandin resistance is an impediment to successful antifungal therapy, our findings open up a new research avenue of pharmacological targeting of histone proteins that could potentially block echinocandin resistance and attenuate C. glabrata survival in the host.
Collapse
Affiliation(s)
- Aditi Pareek
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
4
|
Zheng L, Dong Y, Wang J, Zhang M, Xu Y, Ma L, Guo L. Uncovering the connection between tunicamycin-induced respiratory deficiency and reduced fluconazole tolerance in Candida glabrata. Front Microbiol 2025; 16:1528341. [PMID: 40356653 PMCID: PMC12066676 DOI: 10.3389/fmicb.2025.1528341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Candida glabrata is a prevalent opportunistic fungal pathogen in humans, and fluconazole (FLC) is one of the most commonly used antifungal agents. However, the molecular mechanisms underlying FLC tolerance in C. glabrata remain largely unexplored. Objective This study aims to identify novel mechanisms regulating FLC tolerance, with a particular focus on tunicamycin (TUN)-induced respiratory deficiency. Methods We employed three distinct experimental approaches to investigate the impact of TUN on FLC tolerance: (1) co-treatment with TUN and FLC, (2) exclusive exposure to TUN, and (3) induction of petite formation through alternative methods. Additionally, gene expression analyses were conducted to evaluate the regulation of key genes involved in the ergosterol biosynthesis pathway. Results Our findings reveal that TUN exposure significantly abolishes FLC tolerance in C. glabrata, primarily through the induction of petite formation, which is characterized by mitochondrial dysfunction. Notably, TUN treatment resulted in the downregulation of critical ergosterol biosynthesis genes, including ERG1 and ERG11, indicating a metabolic shift in response to endoplasmic reticulum (ER) stress. Furthermore, both TUN-induced and ethidium bromide-induced petites displayed cross-resistance to TUN and FLC but showed reduced tolerance to FLC. Conclusion These results underscore the pivotal role of TUN-induced ER stress in modulating FLC tolerance via respiratory deficiency and alterations in ergosterol metabolism. Our study emphasizes the importance of mitochondrial integrity in maintaining drug tolerance in C. glabrata and suggests potential therapeutic strategies targeting metabolic pathways associated with antifungal tolerance. A deeper understanding of these mechanisms may enhance our capacity to effectively combat fungal infections.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yubo Dong
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Jing Wang
- Department of Pharmacy, Zibo Zhoucun People’s Hospital, Zibo, China
| | - Maoji Zhang
- Jinzhou Medical University Graduate Training Base (The 960th Hospital of PLA), Jinan, China
| | - Yi Xu
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Linfeng Ma
- Jinzhou Medical University Graduate Training Base (The 960th Hospital of PLA), Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Stack MA, Ostrosky-Zeichner L, Hasbun R, Park SO, Babic J, Kapadia M. Rezafungin for suppressive therapy of Candida auris in a patient with a left ventricular assist device (LVAD). IDCases 2025; 40:e02232. [PMID: 40330576 PMCID: PMC12052687 DOI: 10.1016/j.idcr.2025.e02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Invasive candidiasis is a common healthcare-associated infection with significant morbidity and mortality. Candida auris in particular has emerged as a problematic and challenging healthcare-associated infection, especially with regards to infections involving left ventricular assist devices (LVADs). There is a paucity of evidence on the best management of these particular types of infections. Rezafungin is a newly-approved echinocandin and an important new tool in the management of invasive candidiasis. We report the novel use of rezafungin for suppressive therapy in a patient with an LVAD-associated C. auris infection. Case The patient is a 57-year-old male with a past medical history most notable for heart failure with ischemic cardiomyopathy. The patient underwent LVAD placement and his post-LVAD placement clinical course was notable for recurrent C. auris fungemia. The patient was originally on indefinite micafungin therapy, but was eventually switched to once-weekly rezafungin as this was felt to be safer, easier, and more convenient for the patient. He did well on weekly rezafungin for about 4 months but did eventually develop breakthrough C. auris fungemia. Conclusions Rezafungin is a promising new antifungal in the armamentarium of drugs for treatment of invasive candidiasis, notably C. auris. Though the patient did develop a breakthrough C. auris bloodstream infection while on rezafungin therapy, his infection was well-controlled for a little over 4 months, which prevented any C. auris-related hospital admissions during that time period. This case represents the first example of rezafungin being used for an LVAD-associated C. auris infection.
Collapse
Affiliation(s)
- Matthew A. Stack
- University of Texas Health Science Center at Houston, USA
- Saint Louis University School of Medicine, USA
| | | | - Rodrigo Hasbun
- University of Texas Health Science Center at Houston, USA
| | - Sun O. Park
- University of Texas Health Science Center at Houston, USA
| | | | - Mona Kapadia
- University of Texas Health Science Center at Houston, USA
| |
Collapse
|
6
|
Torres-Cano A, de Armentia C, Roldán A, López-Peralta E, Manosalva J, Merino-Amador P, González-Romo F, Puig-Asensio M, Ardanuy C, Martín-Gómez MT, Romero-Herrero D, Pérez-Ayala A, López-Lomba M, Durán-Valle MT, Sánchez-Romero I, Muñoz-Algarra M, Roiz-Mesones MP, Lara-Plaza I, Ruíz Pérez de Pipaón M, Megías-Lobón G, Mantecón-Vallejo MÁ, Alcázar-Fuoli L, Megías D, Zaragoza O. Resistance to Azoles in Candida parapsilosis Isolates from Spain Is Associated with an Impairment in Filamentation and Biofilm Formation. J Fungi (Basel) 2025; 11:299. [PMID: 40278120 PMCID: PMC12028211 DOI: 10.3390/jof11040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025] Open
Abstract
In recent years, there has been an increase in the incidence of fluconazole-non-susceptible (FNS) Candida parapsilosis. The reasons why these strains are able to colonize hospitals remain unknown. It is also unclear whether these strains exhibit resistance to the disinfectants used in hospitals, facilitating their spread. For these reasons, in this work, we aimed to investigate whether fluconazole resistance was associated with virulence traits and the resistance of these strains to common hospital disinfectants. The general conclusion of the study was that more than 95% of the FNS strains, regardless of the resistance mutation they carried, had filamentation problems, whereas around 75% of the susceptible strains formed pseudohyphae and were capable of filamentation. This 95% of the FNS strains did not form pseudohyphae, did not invade agar, and did not form biofilms, while the susceptible strains exhibited the opposite behaviour. Through microfluidics experiments, we observed that both the susceptible and FNS strains were capable of adhering to a plastic surface under dynamic conditions, but the FNS strains formed unstable aggregates that did not remain attached to the surface, confirming the filamentation defect of these strains. In the second part of the study, we observed that FNS strains are susceptible to clinical disinfectants, although they presented a slight resistance to some of them, such as chlorhexidine, compared to susceptible isolates. In this work, we address important aspects to understand the dissemination of FNS strains in clinical outbreaks.
Collapse
Affiliation(s)
- Alba Torres-Cano
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
| | - Cristina de Armentia
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
| | - Alejandra Roldán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
| | - Elena López-Peralta
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
| | - Juliana Manosalva
- Advanced Optical Microscopy Unit, Central Core Units, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Paloma Merino-Amador
- Microbiology Department, University Hospital Clínico San Carlos, 28040 Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Department of Medicine, Complutense University, School of Medicine, 28040 Madrid, Spain
| | - Fernando González-Romo
- Microbiology Department, University Hospital Clínico San Carlos, 28040 Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Department of Medicine, Complutense University, School of Medicine, 28040 Madrid, Spain
| | - Mireia Puig-Asensio
- Department of Infectious Diseases, Bellvitge University Hospital, 08097 Barcelona, Cataluña, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 Barcelona, Cataluña, Spain
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC, CB21/13/00009), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Ardanuy
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 Barcelona, Cataluña, Spain
- Microbiology Department, Bellvitge University Hospital, 08907 Barcelona, Cataluña, Spain
- Biomedical Research Networking Centre in Infectious Diseases in Respiratory Diseases (CIBERES CB06/06/0037), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Teresa Martín-Gómez
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Cataluña, Spain
| | - Daniel Romero-Herrero
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Cataluña, Spain
| | - Ana Pérez-Ayala
- Microbiology Unit, University Hospital 12 de Octubre, 28041 Madrid, Spain
- Research Institute from Hospital 12 de Octubre i + 12, 28041 Madrid, Spain
| | - Marta López-Lomba
- Microbiology and Parasitology Department, Móstoles University Hospital, 28935 Madrid, Spain
| | | | - Isabel Sánchez-Romero
- Microbiology Department, Puerta de Hierro University Hospital, 28222 Majadahonda, Madrid, Spain
| | - María Muñoz-Algarra
- Microbiology Department, Puerta de Hierro University Hospital, 28222 Majadahonda, Madrid, Spain
| | - María Pía Roiz-Mesones
- Microbiology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Cantabria, Spain
- Valdecilla Research Instituto (Instituto de Investigación Valdecilla, IDIVAL), 39008 Santander, Cantabria, Spain
- Biomedical Research Networking Centre in Infectious Diseases CIBERINFEC (CB21/13/00068), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Lara-Plaza
- Microbiology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Cantabria, Spain
| | - Maite Ruíz Pérez de Pipaón
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, 41013 Seville, Andalucía, Spain
- Biomedical Research Networking Centre in Infectious Diseases CIBERINFEC (CB21/13/00006), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Clinical and Molecular Microbiology Group, Instituto de Biomedicina de Sevilla, HUVR/CSIC/Sevilla University, 41013 Seville, Andalucía, Spain
| | - Gregoria Megías-Lobón
- Department of Clinical Microbiology, Burgos University Hospital, 09006 Burgos, Castilla y León, Spain
| | | | - Laura Alcázar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
- Biomedical Research Networking Centre in Infectious Diseases CIBERINFEC (CB21/13/00105), 28029 Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Central Core Units, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
- Biomedical Research Networking Centre in Infectious Diseases CIBERINFEC (CB21/13/00105), 28029 Madrid, Spain
| |
Collapse
|
7
|
Kaur E, Acharya V. Computational prediction of Homo sapiens-Candida albicans protein-protein interactions reveal key virulence factors using dual RNA-Seq data analysis. Arch Microbiol 2025; 207:115. [PMID: 40188396 DOI: 10.1007/s00203-025-04312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/08/2025]
Abstract
A prevalent pathobiont, Candida albicans, accounts for approximately 70% of fungal infections worldwide owing to its virulence traits that culminate in devastating fatalities within healthcare facilities. Protein-protein interactions (PPIs) between Homo sapiens and C. albicans play a pivotal role in infection and disease progression. Additionally, scarcity of information on H. sapiens-C. albicans protein-protein interactions makes it difficult to understand the molecular mechanisms underlying infection and host immune responses. Investigating these PPIs can provide crucial insights into host-pathogen relationships and facilitate the development of novel therapeutic interventions. To address this challenge, we utilized computational techniques based on homology and domain to project 56,515 human-fungal pathogen protein-protein interactions (HF-PPIs) involving 6830 human and 486 C. albicans proteins. We have identified 16 key virulence factors of C. albicans, including SOD1, ERG10, GFA1, and VPS4, as potential therapeutic targets. As evidenced by dual RNA-Seq data acquired at various stages of infection such as 15, 30, 60, 120, and 240 min, these fungal genes interact with down-regulated human immunomodulatory genes specifically, ADRM1, DAXX, RYBP, SGTA, and SRGN. In addition to their intrinsically disordered regions, these human genes are particularly susceptible to fungal manipulation. Through the identification of experimentally validated virulence factors and their interaction partners, this investigation constructs HF-PPI between H. sapiens and C. albicans. Our knowledge of human-fungal pathogen protein-protein interactions will be improved by integrating computational and experimental data in order to facilitate the development of efficient fungal infection prevention and treatment protocols.
Collapse
Affiliation(s)
- Ekjot Kaur
- Artificial Intelligence for Computational Biology (AICoB) Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishal Acharya
- Artificial Intelligence for Computational Biology (AICoB) Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Dishan A, Ozkaya Y, Temizkan MC, Barel M, Gonulalan Z. Candida species covered from traditional cheeses: Characterization of C. albicans regarding virulence factors, biofilm formation, caseinase activity, antifungal resistance and phylogeny. Food Microbiol 2025; 127:104679. [PMID: 39667852 DOI: 10.1016/j.fm.2024.104679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
This study has provided characterization data (carriage of virulence, antifungal resistance, caseinase activity, biofilm-forming ability and genotyping) of Candida albicans isolates and the occurrence of Candida species in traditional cheeses collected from Kayseri, Türkiye. Phenotypic (E-test, Congo red agar and microtiter plate tests) and molecular tests (identification, virulence factors, biofilm-formation, antifungal susceptibility) were carried out. The phylogenetic relatedness of C. albicans isolates was obtained by constructing the PCA dendrogram from the mass spectra data. Of 102 samples, 13 (12.7%) were found to be contaminated with C. albicans, 15 (14.7%), 10 (9.8%) and five (4.9%) were found to be contaminated with C. krusei, C. lusitane and C. paraplosis, respectively. While seven (16.2%) of 43 Candida spp. isolates were obtained from cheese collected from villages, 36 (83.7%) belonged to cheeses collected from traditional retail stores. The carriage rate of C. albicans isolates belonging to virulence factors HSP90 and PLB1 genes was 30.7%. ALST1, ALST3, BCR, ECE, andHWP (virulence and biofilm-associated) genes were harbored by 30.7%, 23%, 38.4%, 53.8%, and 38.4% of the 13 isolates. According to the microplate test, eight (61.5%) of 13 isolates had strong biofilm production. ERG11 and FKS1 (antifungal resistance genes) were found in 46.1% and 23% of 13 isolates, respectively. Due to missense mutations, K128T, E266D and V488I amino acid changes were detected for some isolates regarding azole resistance. As a result of the E-test, of the 13 isolates, one (7.6%) was resistant to flucytosine, four (30.7%) were resistant to caspofungin, and nine (69.2%) were resistant to fluconazole. The PCA analysis clustered the studied isolates into two major clades. C. albicans isolates of traditional cheese collected from villages were grouped in the same cluster. Among the C. albicans isolates from village cheese, there were those obtained from the same dairy milk at different times. Samples from the same sales points produced at different dairy farms were also contaminated with C. albicans. Concerning food safety standards applied from farm to fork, in order to prevent these pathogenic agents from contaminating cheeses, attention to the hygiene conditions of the sale points, conscious personnel, prevention of cross contamination will greatly reduce public health threats in addition to the application of animal health control, milking hygiene, pasteurization parameters in traditional cheese production.
Collapse
Affiliation(s)
- Adalet Dishan
- Yozgat Bozok University, Faculty of Veterinary Medicine, Dept. of Food Hygiene and Technology, Yozgat, Turkiye.
| | - Yasin Ozkaya
- Erciyes University, Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Kayseri, Turkiye
| | - Mehmet Cevat Temizkan
- Yozgat Bozok University, Faculty of Veterinary Medicine, Dept. of Veterinary Genetics, Yozgat, Turkiye
| | - Mukaddes Barel
- Erciyes University, Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Kayseri, Turkiye
| | - Zafer Gonulalan
- Erciyes University, Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Kayseri, Turkiye
| |
Collapse
|
9
|
Abreu-Pereira CA, Gorayb-Pereira AL, Jordão CC, Paro CB, Barbugli PA, Pavarina AC. Zerumbone enhances the photodynamic effect against biofilms of fluconazole-resistant Candida albicans clinical isolates. J Dent 2025; 155:105631. [PMID: 39956310 DOI: 10.1016/j.jdent.2025.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025] Open
Abstract
The aim was the evaluation of Zerumbone (ZER) associated with Photodithazine® (PDZ) mediated antimicrobial photodynamic therapy (aPDT) on fluconazole-resistant (CaR) and -susceptible (CaS) Candida albicans biofilms, and well as two fluconazole-resistant clinical isolates (R70 and R14). Biofilms (48 h) were treated with ZER (256 µg/mL) for 20 min, followed by the absence or presence of the photosensitizer (PDZ; 200 mg/L) and Light Emitting Diode (LED; 600 nm; 50 Jcm2), either alone or in combination, resulting in 8 treatment groups (Control; ZER; aPDT; PDZ; LED; ZER+aPDT; ZER+PDZ; ZER+LED; n = 12). The treatments were evaluated by colony-forming unit (CFU), total and insoluble biomass, extracellular matrix components (ECM) quantification [extracellular DNA (eDNA), proteins, alkali (ASP) and water-soluble polysaccharides (WSP)], and Confocal Laser Scanning Microscopy (CLSM). Data were subjected to three-way ANOVA with Bonferroni post-test (α 5 %). The combination of ZER and aPDT promoted a greater reduction of biofilms' components for all the strains evaluated (CaS, CaR, R14, R70). On average, ZER+aPDT group showed a 2.01 log10 (30 %) reduction in CFU counts, total biomass (30 %), insoluble biomass (33 %), and total protein (15 %). Additionally, there was a reduction in ECM components of the biofilms, such as insoluble proteins (24 %), WSP (68 %), ASP (26 %) and eDNA (60 %) compared to the control group. Images obtained through CLSM showed that the association of ZER+aPDT resulted in a higher content of dead cells. Treatment with ZER+aPDT enhanced the efficacy of photodynamic treatment on fluconazole-resistant C. albicans (including clinical isolates), representing an encouraging antifungal approach.
Collapse
Affiliation(s)
- César Augusto Abreu-Pereira
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Ana Luiza Gorayb-Pereira
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Cláudia Carolina Jordão
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Clara Brait Paro
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Ana Claudia Pavarina
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil.
| |
Collapse
|
10
|
Eagling-Every E, Tsoi SK, Walker H, Haeusler GM. Systematic Review of the Presentation, Treatment, and Outcome of Chronic Disseminated Candidiasis in Children With Cancer or Following Hematopoietic Cell Transplant. Pediatr Blood Cancer 2025; 72:e31560. [PMID: 39865554 DOI: 10.1002/pbc.31560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Chronic disseminated candidiasis (CDC) is a rare complication of immunosuppression. This review describes the presentation, management, and outcomes of CDC in pediatric patients with cancer or following hematopoietic cell transplant (HCT). PubMed, Embase, and Medline were searched identifying 32 studies, describing 95 cases of CDC. CDC occurred almost exclusively in patients with leukemia (91%), with only 5% occurring in lymphoma, 1% post HCT, and 3% in solid tumor. The most frequent presenting symptoms were fever (97%) and abdominal pain (45%), with lesions in liver in 63% and spleen in 54% (less common in kidney, lungs and skin/soft tissue). Of the 67 (71%) episodes with microbiological confirmation, Candida tropicalis (28%) was the most common causative species. Antifungal treatment durations varied from 14 days to 28 months. Additionally, 31 (33%) patients received an adjuvant therapy, the most common being corticosteroids. Mortality, directly attributable to CDC, occurred in nine (9%). There remains insufficient data to guide a unified approach to management.
Collapse
Affiliation(s)
| | - Shu Ki Tsoi
- Infectious Diseases Department, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Hannah Walker
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabrielle M Haeusler
- Infectious Diseases Department, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Paediatric Integrated Cancer Service, Parkville, Victoria, Australia
- NHMRC National Centre for Infections in Cancer, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Keck JM, Dare RK, Jenkins MB, Rico JC, Grisham L, McDonald J, Viteri A, Bradsher RW. It's Here, It's There, There's Fungi Everywhere: A Case Series Utilizing Rezafungin for Invasive Candidiasis. Infect Dis Ther 2025; 14:889-895. [PMID: 40069441 PMCID: PMC11993525 DOI: 10.1007/s40121-025-01120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/25/2025] [Indexed: 04/13/2025] Open
Abstract
Rezafungin is a long-acting echinocandin with broad coverage against Candida. Rezafungin has primarily been indicated for candidemia, with limited literature available on its use for infections outside of the bloodstream. Herein, three patient cases are presented from an academic medical center. Infectious processes presented include drug-resistant mucosal candidiasis, prosthetic joint infection, and candidemia involving Candida auris. In all three cases, patients received rezafungin. Clinical response was demonstrated in all patients as was tolerability of rezafungin. Together these cases provide further evidence for the use of rezafungin, including its use for treatment of invasive infections other than candidemia.
Collapse
Affiliation(s)
- Jacob M Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, 4301 W. Markham St. #529, Little Rock, AR, 72205, USA.
| | - Ryan K Dare
- Department of Medicine, Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mitchell B Jenkins
- Department of Medicine, Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Juan C Rico
- Department of Medicine, Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Luke Grisham
- Department of Medicine, Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jennifer McDonald
- Department of Pharmacy, University of Arkansas for Medical Sciences, 4301 W. Markham St. #529, Little Rock, AR, 72205, USA
| | - Alina Viteri
- Department of Pharmacy, University of Arkansas for Medical Sciences, 4301 W. Markham St. #529, Little Rock, AR, 72205, USA
| | - Robert W Bradsher
- Department of Medicine, Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
12
|
Bessiatti Fava Oliveira AP, Resende LM, da Silva MS, de Azevedo Dos Santos L, Carvalho AO, Chaves RP, Nagano CS, Moreira FF, Seabra SH, Da Cunha M, de Oliveira Mello É, Taveira GB, Rodrigues R, Gomes VM. Lipid Transfer Proteins (LTPs) Partially Purified from Capsicum chinense Jacq. Seeds: Antifungal Properties and α-amylase Inhibitory Activity. Protein J 2025; 44:201-212. [PMID: 39924634 DOI: 10.1007/s10930-025-10256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
In this study, we identified and partially purified antimicrobial peptides belonging to the family of lipid transfer proteins (LTPs) from Capsicum chinense seeds (UENF 1751 accession). Fractions rich in LTPs were obtained via ion exchange chromatography and subsequently purified via reverse-phase chromatography in an HPLC system. Therefore, two fractions were revealed: C1 (the nonretained fraction) and C2 (the retained fraction in ion-exchange chromatography). Fraction C1 was subjected to reverse-phase chromatography via a C18 column on an HPLC system, and ten fractions were obtained (P1-P10), all of which significantly inhibited the growth of Candida albicans, except for P4 and P9. The viability analysis of the active fractions at a concentration of 100 µg.mL-1 against C. albicans revealed that they did not exhibit fungicidal activity but rather exhibited fungistatic activity. The peptide is considered fungicidal when it results in the total loss of viable yeast cells, that is, when it causes the complete death of the fungi. When the substance only inhibits cell growth, but does not eliminate them completely, the effect is classified as fungistatic. Fractions P3, P4, P7, and P10 inhibited Tenebrio molitor larvae α-amylase. The P10 fraction presented protein bands in its electrophoretic profile with a molecular mass between 6.5 kDa and 14.2 kDa and reacted positively to an antibody produced against a protein from the LTP family bywestern blotting. The results of the analysis of amino acid residues from the P10 fraction revealed similarity between type I LTPs and type II LTPs. The ultrastructural aspects of C. albicans cells exposed to the P10 fraction were evaluated via transmission electron microscopy (TEM), with significant differences in their morphology being evident compared with those of the control. In summary, our results demonstrated the presence of LTPs in C. chinense seeds with inhibitory effects on the growth of yeasts of the genus Candida, which exhibited fungistatic effects and structural changes in C. albicans cells, in addition to exhibiting inhibitory effects on the larval insect T. molitor α-amylase.
Collapse
Affiliation(s)
- Arielle Pinheiro Bessiatti Fava Oliveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Larissa Maximiano Resende
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Layrana de Azevedo Dos Santos
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - André Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Renata Pinheiro Chaves
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Felipe Figueirôa Moreira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Sérgio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Campos dos Goytacazes, RJ, 28015-602, Brazil.
| |
Collapse
|
13
|
Balaes T, Mangalagiu V, Antoci V, Amariucai-Mantu D, Diaconu D, Mangalagiu II. Hybrid Bis-(Imidazole/Benzimidazole)-Pyridine Derivatives with Antifungal Activity of Potential Interest in Medicine and Agriculture via Improved Efficiency Methods. Pharmaceuticals (Basel) 2025; 18:495. [PMID: 40283932 PMCID: PMC12030448 DOI: 10.3390/ph18040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Nowadays fungal infections are rising serious threats for the human health system and agriculture, mostly because of antifungal resistance, emergence of new fungal pathogens and adverse effects, pressing the scientific world for exploration of new antifungal compounds. Therefore, the aim of this work was to synthesize and to study antifungal activity against human and plant fungi of a new class of hybrid bis-(imidazole/benzimidazole)-pyridine salt derivatives. Methods: The synthesis of the hybrid derivatives was performed using both conventional thermal heating and ultrasound irradiation methods. Results: The use of ultrasound irradiation has the advantages of a dramatic decrease in reaction time and, consequently, a notable acceleration in reaction rate, a remarkable decrease in consumed energy and higher yields. The antifungal activity against five human fungal strains and for plant fungal strains was determined by the disk diffusion method and minimum inhibitory concentration. Conclusions: The tested hybrid derivatives manifest good antifungal activity against the tested strains. Some of the hybrid compounds have very good quasi-nonselective activity against the tested human and plant pathogenic fungi, in some cases close to the control drug fluconazole, respectively, to many antifungal agents commercially used for plant protection.
Collapse
Affiliation(s)
- Tiberius Balaes
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20A Carol 1st Bvd, 700505 Iasi, Romania;
| | - Violeta Mangalagiu
- Institute of Interdisciplinary Research, CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania;
- Faculty of Food Engineering, Stefan Cel Mare University of Suceava, 13 Universitatii Str., 720229 Suceava, Romania
| | - Vasilichia Antoci
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania; (V.A.); (D.A.-M.)
| | - Dorina Amariucai-Mantu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania; (V.A.); (D.A.-M.)
| | - Dumitrela Diaconu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania; (V.A.); (D.A.-M.)
- Institute of Interdisciplinary Research, RECENT-AIR Centre, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania; (V.A.); (D.A.-M.)
| |
Collapse
|
14
|
Tulio EF, Lucini F, de Lima AC, Garoni Martins do Carmo ND, Barbosa MDS, de Almeida de Souza GH, Rossato L. Candida infections in COVID-19 patients: A review of prevalence, risk factors, and mortality. Indian J Med Microbiol 2025; 55:100831. [PMID: 40157425 DOI: 10.1016/j.ijmmb.2025.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/14/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Candida spp. infections have increasingly been reported among COVID-19 patients, yet the epidemiological factors, diagnostic methods, and outcomes associated with these infections remain poorly understood. These infections, particularly in ICU settings, present significant challenges due to high mortality rates and rising antifungal resistance. This study aimed to investigate the occurrence, risk factors, treatment, and outcomes of Candida albicans and non-albicans Candida in COVID-19 patients, providing clinical and epidemiological insights. METHODS A review following PRISMA guidelines was conducted. Searches were performed in PubMed, Embase, and BVS databases, covering articles published from January 2020 to May 2024. Inclusion criteria included case reports or case series providing detailed information on Candida spp. in COVID-19 patients. Data extraction focused on patient demographics, underlying diseases, antifungal and antibiotic therapies, antifungal susceptibility, resistance profiles, and outcomes. Statistical analyses were conducted using SPSS software. RESULTS The review included 67 studies, totaling 223 COVID-19 patients. Male patients were predominant. Common comorbidities included hypertension, cancer, and dyslipidemia. Echinocandins were the primary antifungal treatment. Non-albicans Candida exhibited a higher resistance rate (47.10 %) compared to C. albicans (2.35 %). Overall mortality rates were high, at 60.50 % for C. albicans and 62.30 % for non-albicans. Significant risk factors for mortality included age, central venous catheter use, ICU admission, and corticosteroid therapy. CONCLUSIONS The study identified critical risk factors and clinical characteristics in COVID-19 patients with Candida infections. The high incidence of antifungal resistance among non-albicans and high mortality rates highlight the need for vigilant monitoring and targeted antifungal strategies to improve outcomes.
Collapse
Affiliation(s)
- Eduardo Franco Tulio
- Health Sciences Research Laboratory, Universidade Federal of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | - Fabíola Lucini
- Health Sciences Research Laboratory, Universidade Federal of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | - Allan Carminatti de Lima
- Medical Student, Faculty of Medicine, Universidade Federal of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | | | - Marcelo Dos Santos Barbosa
- Health Sciences Research Laboratory, Universidade Federal of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Luana Rossato
- Health Sciences Research Laboratory, Universidade Federal of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
15
|
Amann V, Kissmann AK, Firacative C, Rosenau F. Biofilm-Associated Candidiasis: Pathogenesis, Prevalence, Challenges and Therapeutic Options. Pharmaceuticals (Basel) 2025; 18:460. [PMID: 40283897 PMCID: PMC12030374 DOI: 10.3390/ph18040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The rising prevalence of fungal infections, especially those caused by Candida species, presents a major risk to global health. With approximately 1.5 million deaths annually, the urgency for effective treatment options has never been greater. Candida spp. are the leading cause of invasive infections, significantly impacting immunocompromised patients and those in healthcare settings. C. albicans, C. parapsilosis and the emerging species C. auris are categorized as highly dangerous species because of their pathogenic potential and increasing drug resistance. This review comparatively describes the formation of microbial biofilms of both bacterial and fungal origin, including major pathogens, thereby creating a novel focus. Biofilms can further complicate treatment, as these structures provide enhanced resistance to antifungal therapies. Traditional antifungal agents, including polyenes, azoles and echinocandins, have shown effectiveness, yet resistance development continues to rise, necessitating the exploration of novel therapeutic approaches. Antimicrobial peptides (AMPs) such as the anti-biofilm peptides Pom-1 and Cm-p5 originally isolated from snails represent promising candidates due to their unique mechanisms of action and neglectable cytotoxicity. This review article discusses the challenges posed by Candida infections, the characteristics of important species, the role of biofilms in virulence and the potential of new therapeutic options like AMPs.
Collapse
Affiliation(s)
- Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia;
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| |
Collapse
|
16
|
Lew-Smith J, Binkley J, Sherlock G. The Candida Genome Database: annotation and visualization updates. Genetics 2025; 229:iyaf001. [PMID: 39776186 DOI: 10.1093/genetics/iyaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The Candida Genome Database (CGD; www.candidagenome.org) is unique in being both a model organism database and a fungal pathogen database. As a fungal pathogen database, CGD hosts locus pages for 5 species of the best-studied pathogenic fungi in the Candida group. As a model organism database, the species Candida albicans serves as a model both for other Candida spp. and for non-Candida fungi that form biofilms and undergo routine morphogenic switching from the planktonic form to the filamentous form, which is not done by other model yeasts. As pathogenic Candida species have become increasingly drug resistant, the high lethality of invasive candidiasis in immunocompromised people is increasingly alarming. There is a pressing need for additional research into basic Candida biology, epidemiology and phylogeny, and potential new antifungals. CGD serves the needs of this diverse research community by curating the entire gene-based Candida experimental literature as it is published, extracting, organizing, and standardizing gene annotations. Gene pages were added for the species Candida auris, recent outbreaks of which have been labeled an "urgent" threat. Most recently, we have begun linking clinical data on disease to relevant Literature Topics to improve searchability for clinical researchers. Because CGD curates for multiple species and most research focuses on aspects related to pathogenicity, we focus our curation efforts on assigning Literature Topic tags, collecting detailed mutant phenotype data, and assigning controlled Gene Ontology terms with accompanying evidence codes. Our Summary pages for each feature include the primary name and all aliases for that locus, a description of the gene and/or gene product, detailed ortholog information with links, a JBrowse window with a visual view of the gene on its chromosome, summarized phenotype, Gene Ontology, and sequence information, references cited on the summary page itself, and any locus notes. The database serves as a community hub, where we link to various types of reference material of relevance to Candida researchers, including colleague information, news, and notice of upcoming meetings. We routinely survey the community to learn how the field is evolving and how needs may have changed. For example, we asked our users which species we should next add to CGD, and the clear answer was Candida tropicalis. A key future challenge is management of the flood of high-throughput expression data to make it as useful as possible to as many researchers as possible. The central challenge for any community database is to turn data into knowledge, which the community can access, use, and build upon.
Collapse
Affiliation(s)
- Jodi Lew-Smith
- Department of Genetics, Stanford University, Stanford CA 94305-5120, USA
| | - Jonathan Binkley
- Department of Genetics, Stanford University, Stanford CA 94305-5120, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford CA 94305-5120, USA
| |
Collapse
|
17
|
Diaconu D, Savu M, Ciobanu C, Mangalagiu V, Mangalagiu II. Current strategies in design and synthesis of antifungals hybrid and chimeric diazine derivatives. Bioorg Med Chem 2025; 119:118069. [PMID: 39818112 DOI: 10.1016/j.bmc.2025.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In the last decades fungal infections became a major threat to human health having an unacceptably occurrence, a high rate of mortality and the number of patients at risk for these infections continue to increase every year. An effective, modern and very useful strategy in antifungal therapy is represented by the use of chimeric and hybrid drugs, most of them being with azaheterocycle skeleton. In this review, we present an overview from the last five years of the most representative achievements in the field of chimeric and hybrid diazine derivatives with antifungal properties. Within this work we emphasize the most relevant data concerning the synthesis, design, Structure Activity Relationships (SAR) correlations and antifungal activity of the main classes of diazine: 1,2-diazine (pyridazine), 1,3-diazine (pyrimidine), 1,4-diazine (pyrazine) and their fused derivatives.
Collapse
Affiliation(s)
- Dumitrela Diaconu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania; Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, RECENT-AIR Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Marius Savu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania
| | - Catalina Ciobanu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Violeta Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania; Stefan Cel Mare University of Suceava, Faculty of Food Engineering, 13 Universitatii Str., 720229 Suceava, Romania
| | - Ionel I Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania.
| |
Collapse
|
18
|
Xia C, Liu R, Zhang S, Shen J, Wang Z. Fluconazole-induced changes in azole resistance and biofilm production in Candida glabrata in vitro. Diagn Microbiol Infect Dis 2025; 111:116683. [PMID: 39884024 DOI: 10.1016/j.diagmicrobio.2025.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Currently, the molecular mechanisms of azole resistance in C. glabrata are unresolved. This study aims to detect azole resistance of C. glabrata after exposure to fluconazole (Diflucan) in vitro. After 50 days of induction, the five susceptible isolates of C. glabrata demonstrated cross-resistance to azoles (fluconazole (Diflucan), voriconazole and itraconazole). Mutations in PDR1 or ERG11 genes are key nodes in azole resistance of C. glabrata. DNA-Sequencing revealed three(3/5) fluconazole (Diflucan)-resistant isolates had undergone missense mutations (R376Q, R772K, E1083K in PDR1 and F135L in ERG11), all of which were newly discovered and previously unreported. mRNA expression of resistant genes in five resistant isolated was elevated, with CDR1 being the most prominent. Analysis using flow cytometry revealed that resistant strains showed decreased R6G uptake and increased efflux efficiency, but no obvious significance difference in biofilm production. C. glabrata acquires azole cross-resistance upon continuous exposed to fluconazole (Diflucan) and could remain resistant without antifungal agents. The development of azole resistance in C. glabrata has been linked to genes associated with efflux pump transporters and the ergosterol synthesis pathway. However, the relationship between resistance and newly discovered missense mutation sites requires further investigation.
Collapse
Affiliation(s)
- Cuiping Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei 230012, China
| | - Ruonan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Shujing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei 230012, China.
| | - Zhongxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
19
|
Hizlisoy H, Dishan A, Bekdik IK, Barel M, Koskeroglu K, Ozkaya Y, Aslan O, Yilmaz OT. Candida albicans in the oral cavities of pets: biofilm formation, putative virulence, antifungal resistance profiles and classification of the isolates. Int Microbiol 2025; 28:423-435. [PMID: 38955904 DOI: 10.1007/s10123-024-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
The study aimed to investigate Candida albicans presence, antifungal resistance, biofilm formation, putative virulence genes, and molecular characterization in oral samples of dogs and cats. A total of 239 oral samples were collected from cats and dogs of various breeds and ages at Erciyes University, Faculty of Veterinary Medicine Clinics, between May 2017 and April 2018. Among 216 isolates obtained, 15 (6.95%) were identified as C. albicans, while 8 (3.7%) were non-albicans Candida species. Antifungal susceptibility testing revealed sensitivities to caspofungin, fluconazole, and flucytosine in varying proportions. Molecular analysis indicated the presence of fluconazole and caspofungin resistance genes in all C. albicans isolates. Additionally, virulence genes ALS1, HWP1, and HSP90 showed variable presence. Biofilm formation varied among isolates, with 46.7% strong, 33.3% moderate, and 20% weak producers. PCA analysis categorized isolates into two main clusters, with some dog isolates grouped separately. The findings underscore the significance of oral care and protective measures in pets due to C. albicans prevalence, biofilm formation, virulence factors, and antifungal resistance in their oral cavity, thereby aiding clinical diagnosis and treatment in veterinary medicine.
Collapse
Affiliation(s)
- Harun Hizlisoy
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciye University, Kayseri, Türkiye.
| | - Adalet Dishan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Bozok University, Yozgat, Türkiye
| | - Ilknur Karaca Bekdik
- Faculty of Veterinary Medicine, Department of Internal Medicine, Erciyes University, Kayseri, Türkiye
| | - Mukaddes Barel
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciye University, Kayseri, Türkiye
| | | | - Yasin Ozkaya
- Health Sciences Institute, Erciyes University, Kayseri, Türkiye
| | - Oznur Aslan
- Faculty of Veterinary Medicine, Department of Internal Medicine, Erciyes University, Kayseri, Türkiye
| | | |
Collapse
|
20
|
da Silva Dutra M, Araújo PRM, Gleiciane da Rocha M, Pereira VC, Freitas AS, Pereira Lopes RG, Souza PFN, Montenegro RC, de Aquino Pereira-Neto W, dos Santos Araújo G, de Aguiar Cordeiro R, Sidrim JJC, de Melo Guedes GM, Castelo-Branco DDSCM, Rocha MFG. Antimicrobial and antiparasitic potential of lupeol: antifungal effect on the Candida parapsilosis species complex and nematicidal activity against Caenorhabditis elegans. J Med Microbiol 2025; 74:001976. [PMID: 40052668 PMCID: PMC11936342 DOI: 10.1099/jmm.0.001976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/31/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction. There is growing concern about infections caused by non-albicans Candida species, including species of the Candida parapsilosis complex - which have seen a considerable increase in cases during the COVID-19 pandemic - in addition to concern about nematode resistance to currently used anthelmintics.Gap Statement. Lupeol is a triterpenoid phytosterol that has a wide range of biological activities, although its antifungal and antiparasitic potential is still poorly explored. Additionally, its effect on the biofilm of the C. parapsilosis species complex has not yet been studied.Aim. This study aimed to investigate the antifungal effect of lupeol against C. parapsilosis complex species, in planktonic cells and mature biofilms, as well as its nematicidal potential against Caenorhabditis elegans. In addition, molecular docking was performed to identify potential target molecules for lupeol's antifungal effect.Methodology. Twelve strains of C. parapsilosis species complex were used. Planktonic susceptibility was performed through the broth microdilution assay, while the antibiofilm effect was investigated by measuring the biomass and metabolic activity. The antifungal mechanism of action of lupeol was investigated by target fishing. The evaluation of the nematicidal effect was performed using the C. elegans infection model.Results. Lupeol demonstrated antifungal activity against planktonic cells with a MIC between 64 and 512 µg ml-1. In mature biofilms, lupeol was able to reduce biomass starting from a concentration of 1024 µg ml-1 and reduce metabolic activity from a concentration of 64 µg ml-1. It was observed that there was interaction of lupeol with the enzyme 14α-demethylase. Furthermore, lupeol had a nematicidal effect from a concentration of 64 µg ml-1.Conclusion. Lupeol exhibits an antifungal effect on the C. parapsilosis species complex, in the planktonic and mature biofilm forms, possibly by affecting the ergosterol synthesis. Lupeol further demonstrated a nematicidal potential.
Collapse
Affiliation(s)
- Marrie da Silva Dutra
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Ricardo Monteiro Araújo
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Gleiciane da Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Vinícius Carvalho Pereira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raissa Geovanna Pereira Lopes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - Géssica dos Santos Araújo
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
21
|
Ullah N, Muccio M, Magnasco L, Sepulcri C, Giacobbe DR, Vena A, Bassetti M, Mikulska M. Species-Specific Sensitivity and Levels of Beta-D-Glucan for the Diagnosis of Candidemia-A Systematic Review and Meta-Analysis. J Fungi (Basel) 2025; 11:149. [PMID: 39997443 PMCID: PMC11856011 DOI: 10.3390/jof11020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND 1, 3-ß-D-Glucan (BDG) is an antigen present in the cell wall of many pathogenic fungi and is used as a marker for the early diagnosis of candidemia and discontinuation of empirical treatment. Changes in the epidemiology of Candida species might have a negative impact on the performance of serum BDG. The aim of this study was to analyze the performance of BDG in candidemia diagnosis focusing on species-specific differences in BDG sensitivity and BDG levels. METHODS The PRISMA system was used for the systematic search. The following databases were searched for articles published from January 2010 to November 2023: PubMed, Science Direct, and Scopus. RESULTS A total of 21 studies that met the inclusion criteria were included, reporting data from 1633 patients with candidemia; 11 reported both sensitivity and specificity, 15 reported species-specific sensitivity, and nine reported species-specific BDG levels. The pooled sensitivity of BDG in all studies was 0.73 (95% confidence interval (CI), 0.66-0.80), while the pooled sensitivity and specificity in 11 studies were 0.81 (95% CI 0.73-0.89) and 0.80 (95% CI 0.74-0.87). BDG pooled sensitivity (all assays) and BDG levels (for assays with cutoff of 80 pg/mL) were the highest in C. krusei (currently Pichia kudriavzevii) and the lowest in C. auris: 0.76 and 417 pg/mL for C. krusei, 0.73 and 345 pg/mL for C. albicans, 0.74 and 356 pg/mL for C. glabrata (currently Nakaseomyces glabrata), 0.70 and 324 pg/mL for C. tropicalis, 0.63 and 95 pg/mL for C. parapsilosis, 0.51 and 62 pg/mL for C. auris, and 0.44 and 79 pg/mL for other Candida species. These differences were statistically significant for BDG sensitivity and levels of C. albicans, C. glabrata, C. krusei, and C. tropicalis compared to C. auris, C. parapsilosis, and other Candida species. CONCLUSION The sensitivity of BDG in candidemia diagnosis depends on the Candida species, with the lowest being for C. auris and C. parapsilosis. This might have a clinical impact in centers where these species are prevalent.
Collapse
Affiliation(s)
- Nadir Ullah
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (N.U.); (M.M.); (C.S.); (D.R.G.); (A.V.); (M.B.)
| | - Marco Muccio
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (N.U.); (M.M.); (C.S.); (D.R.G.); (A.V.); (M.B.)
| | - Laura Magnasco
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Chiara Sepulcri
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (N.U.); (M.M.); (C.S.); (D.R.G.); (A.V.); (M.B.)
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (N.U.); (M.M.); (C.S.); (D.R.G.); (A.V.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (N.U.); (M.M.); (C.S.); (D.R.G.); (A.V.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (N.U.); (M.M.); (C.S.); (D.R.G.); (A.V.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (N.U.); (M.M.); (C.S.); (D.R.G.); (A.V.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
22
|
Pyrpasopoulou A, Zarras C, Mouloudi E, Vakalis G, Ftergioti A, Kouroupis D, Papathanasiou AI, Iosifidis E, Goumperi S, Lampada C, Terzaki M, Roilides E. Changing Epidemiology of Candida spp. Causing Bloodstream Infections in a Tertiary Hospital in Northern Greece: Appearance of Candida auris. Pathogens 2025; 14:161. [PMID: 40005536 PMCID: PMC11858320 DOI: 10.3390/pathogens14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION The epidemiology of candidemia has shifted in the past few decades; drug-resistant non-albicans Candida species have become more prevalent worldwide. The aim of this retrospective study was to determine the epidemiology of Candida species isolated from hospitalized neonates, children and adults, and to investigate a potential changing susceptibility pattern in a large general tertiary hospital. METHODS All unique Candida strains isolated from candidemia cases between 1 January 2020 and 15 October 2024 were identified, and their susceptibility profile was characterized. The distribution pattern in different ward types (medical, surgical, pediatric and ICU) was recorded. Cumulative annual susceptibility profiles were compared. RESULTS Candidemia incidence increased during the COVID-19 pandemic, from 0.63/1000 patient-days in 2020 to 0.96/1000 patient-days in 2022, and has since slightly decreased (0.83 and 0.89 in 2023 and 2024, respectively). Candidemia-associated mortality was high (>50%) in 2020 and peaked during the pandemic. During the study period, Candida parapsilosis remained the most frequent Candida spp. However, since the first isolation of Candida auris from the bloodstream in late 2022, and despite intense infection control measures taken, its frequency sharply climbed to the second position after only C. parapsilosis in the first 10 months of 2024 (33.6% vs. 25.2% for C. parapsilosis and 21.0% for C. albicans). While C. albicans has remained highly susceptible to fluconazole (1% resistance rate), C. parapsilosis manifested significant resistance to fluconazole during 2022-2024 (52%). C. auris was universally resistant to azoles and one isolate also resistant to echinocandins. CONCLUSIONS A high prevalence of azole resistance of C. parapsilosis, the most frequently isolated Candida species, persists, and a significant rise of C. auris was recorded in nosocomial bloodstream infections with severe implications on public health.
Collapse
Affiliation(s)
- Athina Pyrpasopoulou
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.)
- Infectious Diseases Unit, Hippokration General Hospital, 54642 Thessaloniki, Greece; (G.V.); (A.F.); (A.-I.P.); (S.G.); (E.R.)
| | - Charalampos Zarras
- Laboratory of Microbiology, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Eleni Mouloudi
- Intensive Care Unit, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Georgios Vakalis
- Infectious Diseases Unit, Hippokration General Hospital, 54642 Thessaloniki, Greece; (G.V.); (A.F.); (A.-I.P.); (S.G.); (E.R.)
| | - Argyro Ftergioti
- Infectious Diseases Unit, Hippokration General Hospital, 54642 Thessaloniki, Greece; (G.V.); (A.F.); (A.-I.P.); (S.G.); (E.R.)
| | - Dimitrios Kouroupis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.)
| | | | - Elias Iosifidis
- 3rd Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (E.I.); (C.L.)
| | - Stella Goumperi
- Infectious Diseases Unit, Hippokration General Hospital, 54642 Thessaloniki, Greece; (G.V.); (A.F.); (A.-I.P.); (S.G.); (E.R.)
| | - Charis Lampada
- 3rd Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (E.I.); (C.L.)
| | - Maria Terzaki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.)
| | - Emmanuel Roilides
- Infectious Diseases Unit, Hippokration General Hospital, 54642 Thessaloniki, Greece; (G.V.); (A.F.); (A.-I.P.); (S.G.); (E.R.)
- 3rd Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (E.I.); (C.L.)
| |
Collapse
|
23
|
Spettel K, Bumberger D, Kriz R, Frank S, Loy M, Galazka S, Suchomel M, Lagler H, Makristathis A, Willinger B. In vitro long-term exposure to chlorhexidine or triclosan induces cross-resistance against azoles in Nakaseomyces glabratus. Antimicrob Resist Infect Control 2025; 14:2. [PMID: 39849551 PMCID: PMC11755926 DOI: 10.1186/s13756-024-01511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Topical antiseptics are crucial for preventing infections and reducing transmission of pathogens. However, commonly used antiseptic agents have been reported to cause cross-resistance to other antimicrobials in bacteria, which has not yet been described in yeasts. This study aims to assess the in vitro efficacy of antiseptics against clinical and reference isolates of Candida albicans and Nakaseomyces glabratus, and whether prolonged exposure to antiseptics promotes the development of antifungal (cross)resistance. METHODS A high-throughput approach for in vitro resistance development was established to simultaneously expose 96 C. albicans and N. glabratus isolates to increasing concentrations of a given antiseptic - chlorhexidine, triclosan or octenidine. Susceptibility testing and whole genome sequencing of yeast isolates pre- and post-exposure were performed. RESULTS Long-term exposure to antiseptics does not result in the development of stable resistance to the antiseptics themselves. However, 50 N. glabratus isolates acquired resistance to azole antifungals after long-term exposure to triclosan or chlorhexidine, revealing newly acquired mutations in the PDR1 and PMA1 genes. CONCLUSIONS Chlorhexidine as well as triclosan, but not octenidine, were able to introduce selective pressure promoting resistance to azole antifungals. Although we assessed this phenomenon only in vitro, these findings warrant critical monitoring in clinical settings.
Collapse
Affiliation(s)
- Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, 1100, Austria
| | - Dominik Bumberger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Richard Kriz
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, 1100, Austria
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, 1090, Austria
| | - Sarah Frank
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Madita Loy
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Sonia Galazka
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, Vienna, 1220, Austria
| | - Miranda Suchomel
- Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, 1090, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, 1090, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
24
|
Askari F, Kaur R. Candida glabrata: A Tale of Stealth and Endurance. ACS Infect Dis 2025; 11:4-20. [PMID: 39668745 DOI: 10.1021/acsinfecdis.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Candida (Nakaseomyces) glabrata, an opportunistic human fungal pathogen, causes mucosal and deep-seated infections in immunocompromised individuals. Recently designated as a high-priority fungal pathogen by the World Health Organization (WHO), C. glabrata exhibits low inherent susceptibility to azole antifungals. In addition, about 10% clinical isolates of C. glabrata display co-resistance to both azole and echinocandin drugs. Molecular mechanisms of antifungal resistance and virulence in C. glabrata are currently being delineated in-depth. This Review provides an overview of the epidemiology, biology, drug resistance, tools and host model systems for C. glabrata. Additionally, we discuss the immune evasion strategies that aid C. glabrata in establishing infections in the host. Overall, this Review aims to contribute to ongoing efforts to raise awareness of human pathogenic fungi, the growing threat of antifungal drug resistance and the unmet need for novel antifungal therapies, with an ultimate goal of improving clinical outcomes of affected individuals.
Collapse
Affiliation(s)
- Fizza Askari
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| | - Rupinder Kaur
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| |
Collapse
|
25
|
Fang J, Fang H, Guo P, Peng Y, Chen P. Strongyloides stercoralis combined with concurrent multiple pathogens infections in an immunosuppressed patient: a case report. Front Med (Lausanne) 2025; 11:1519065. [PMID: 39845824 PMCID: PMC11753413 DOI: 10.3389/fmed.2024.1519065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Background Strongyloides stercoralis is an opportunistic pathogenic parasite. Most individuals with normal immune function may not exhibit significant symptoms, and the signs are atypical, which can easily lead to missed diagnoses and delayed treatment. People with underlying diseases and weakened immunity are prone to develop severe conditions after infection with Strongyloides stercoralis. Case presentation We report an immunocompromised patient in whom the pathogen was initially not detectable using traditional parasitic detection techniques. However, Strongyloides stercoralis was identified in both the alveolar lavage fluid and blood through metagenomic next-generation sequencing. Subsequently, Strongyloides stercoralis was detected in the alveolar lavage fluid after multiple rounds of testing using traditional microscopic examination techniques. Based on the mNGS results and other examination findings, the patient was diagnosed with Strongyloides stercoralis in combination with concurrent multiple pathogens infections. After the combined drug therapy of Meropenem, Vancomycin, and Albendazole, the patient's condition was gradually brought under control. Conclusion This case demonstrates the advantage of integrating traditional detection methods with metagenomics next-generation sequencing technology in the etiological diagnosis of immunocompromised individuals. It is conducive to clarifying the etiological diagnosis of patients and thereby facilitating the timely initiation of corresponding treatments.
Collapse
Affiliation(s)
- Jingchun Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Laboratory Medicine, Nansha Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huimin Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Laboratory Medicine, Nansha Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Penghao Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqin Peng
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
26
|
Franconi I, Fais R, Giordano C, Tuvo B, Stani C, Tavanti A, Barnini S, Lupetti A. Rapid Identification of Clinically Relevant Candida spp. by I-dOne Software Using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy. J Fungi (Basel) 2025; 11:40. [PMID: 39852459 PMCID: PMC11767175 DOI: 10.3390/jof11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy is a spectrum-based technique that quantifies the absorption of infrared light by molecules present in the microbial cell. The aim of the present study was to evaluate the performance of the ATR-FTIR spectroscopic technique via I-dOne software (Version 2.0) compared with the MALDI-TOF MS in identifying Candida spp. Each infrared spectrum was compared with spectra stored in the software database. The updated version of the I-dOne software was used to analyze ATR-FTIR spectra. All Candida isolates 284/284 (100%) were classified correctly according to the genus. Overall species identification yielded 272/284 (95.8%) concordant identification results with MALDI-TOF MS. Additionally, all 79 isolates belonging to the Candida parapsilosis species complex were identified correctly to the species level with the updated version of the I-dOne software. Only 12 (4.2%) isolates were misidentified at the species level. The present study highlights the potential diagnostic performance of the I-dOne software with ATR-FTIR spectroscopic technique referral spectral database as a real alternative for routine identification of the most frequently isolated Candida spp.
Collapse
Affiliation(s)
- Iacopo Franconi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37-39, 56127 Pisa, Italy; (I.F.); (R.F.); (B.T.)
| | - Roberta Fais
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37-39, 56127 Pisa, Italy; (I.F.); (R.F.); (B.T.)
| | - Cesira Giordano
- SD Microbiology Bacteriology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (C.G.); (S.B.)
| | - Benedetta Tuvo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37-39, 56127 Pisa, Italy; (I.F.); (R.F.); (B.T.)
| | | | - Arianna Tavanti
- Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Simona Barnini
- SD Microbiology Bacteriology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (C.G.); (S.B.)
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37-39, 56127 Pisa, Italy; (I.F.); (R.F.); (B.T.)
| |
Collapse
|
27
|
Ibe C, Otu A, Pohl CH. Mechanisms of resistance to cell wall and plasma membrane targeting antifungal drugs in Candida species isolated in Africa. Expert Rev Anti Infect Ther 2025; 23:91-104. [PMID: 39754518 DOI: 10.1080/14787210.2024.2448844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/05/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
INTRODUCTION There is a rise in the emergence of multidrug resistant fungal pathogens worldwide, including in Africa. METHOD This systematic review summarized the published data on the mechanisms and epidemiology of antifungal resistance in Candida species in Africa between 2000 and early 2024. RESULT Seventeen reports from seven African countries were analyzed but due to the paucity of data, the prevalence of antifungal resistant Candida isolates in Africa could not be estimated. However, a total of 1376 (out of 2812) resistant isolates were documented with South Africa reporting the most. Candida auris was the most reported species with multidrug and pandrug resistant strains documented in South Africa. Generally, azoles but not posaconazole or isavuconazole, resistance was reported. Fluconazole resistant isolates harbored Erg11 Y132F, VF125LA and K177A/R/N335S/E343D substitutions, MRR1 gain of function mutations or efflux pump protein over expression. Resistance to members of the echinocandin family was also reported and Fks1 S639P substitution was observed. CONCLUSION The data highlight that the increasing Candida species resistance to cell wall and cell membrane active antifungals is a cause for serious concern in Africa. There is need to increase antifungal research capacity and mount epidemiological surveillance to determine the true scale of the problem. PROSPERO REGISTRATION NUMBER CRD42024550231.
Collapse
Affiliation(s)
- Chibuike Ibe
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | - Akaninyene Otu
- Department of Microbiology, Leeds General Infirmary, Leeds, UK
| | - Carolina Henritta Pohl
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
28
|
Brittin NJ, Aceti DJ, Braun DR, Anderson JM, Ericksen SS, Rajski SR, Currie CR, Andes DR, Bugni TS. Dereplication of Natural Product Antifungals via Liquid Chromatography-Tandem Mass Spectrometry and Chemical Genomics. Molecules 2024; 30:77. [PMID: 39795134 PMCID: PMC11721837 DOI: 10.3390/molecules30010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Recently expanded reports of multidrug-resistant fungal infections underscore the need to develop new and more efficient methods for antifungal drug discovery. A ubiquitous problem in natural product drug discovery campaigns is the rediscovery of known compounds or their relatives; accordingly, we have integrated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for structural dereplication and Yeast Chemical Genomics for bioprocess evaluation into a screening platform to identify such compounds early in the screening process. We identified 450 fractions inhibiting Candida albicans and the resistant strains of C. auris and C. glabrata among more than 40,000 natural product fractions. LC-MS/MS and chemical genomics were then used to identify those with known chemistry and mechanisms of action. The parallel deployment of these orthogonal methods improved the detection of unwanted compound classes over the methods applied individually.
Collapse
Affiliation(s)
- Nathaniel J. Brittin
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Aceti
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Josephine M. Anderson
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Spencer S. Ericksen
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Cameron R. Currie
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David R. Andes
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| |
Collapse
|
29
|
Miranda S, Lassnig C, Schmidhofer K, Kjartansdottir H, Vogl C, Tangermann S, Tsymala I, Babl V, Müller M, Kuchler K, Strobl B. Lack of TYK2 signaling enhances host resistance to Candida albicans skin infection. Nat Commun 2024; 15:10493. [PMID: 39622833 PMCID: PMC11612186 DOI: 10.1038/s41467-024-54888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing diseases ranging from local to life-threating systemic infections. Tyrosine kinase 2 (TYK2), a crucial mediator in several cytokine signaling pathways, has been associated with protective functions in various microbial infections. However, its specific contribution in the immune response to fungal infections has remained elusive. In this study, we show that mice lacking TYK2 or its enzymatic activity exhibit enhanced resistance to C. albicans skin infections, limiting fungal spread and accelerating wound healing. Impaired TYK2-signaling prompted the formation of a distinctive layer of necrotic neutrophils around the fungal pathogens. Transcriptomic analysis revealed TYK2's pivotal role in regulating interferon-inducible genes in neutrophils, thereby impacting their antifungal capacity during infection. Furthermore, we show that TYK2-dependent interferon-gamma (IFNγ) production contributes to fungal dissemination from the skin to the kidneys. Our study uncovers a hitherto unrecognized detrimental role of TYK2 in cutaneous C. albicans infections.
Collapse
Affiliation(s)
- Sara Miranda
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Schmidhofer
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hrönn Kjartansdottir
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Tangermann
- Centre of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Verena Babl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Gonçalves B, Pires DP, Fernandes L, Pacheco M, Ferreira T, Osório H, Soares AR, Henriques M, Silva S. Biofilm matrix regulation by Candida glabrata Zap1 under acidic conditions: transcriptomic and proteomic analyses. Microbiol Spectr 2024; 12:e0120124. [PMID: 39494883 PMCID: PMC11619577 DOI: 10.1128/spectrum.01201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/06/2024] [Indexed: 11/05/2024] Open
Abstract
The vaginal acidic environment potentiates the formation of Candida glabrata biofilms, leading to complicated and recurrent infections. Importantly, the production of matrix is known to contribute to the recalcitrant features of Candida biofilms. In this study, we reveal that Zap1 regulates the matrix of C. glabrata acidic biofilms and analyzed the modulation of their transcriptome (by microarrays) and matrix proteome (by LC-MS/MS) by Zap1. For that, the deletion mutant zap1Δ and its complemented strain zap1Δ::ZAP1 were constructed, and their biofilms were developed at pH 4 (adjusted with lactic acid). The results revealed that Zap1 is a negative regulator of the total amount of protein and carbohydrate in the biofilm matrix. Accordingly, various genes and matrix proteins with predicted functions in the regulation of carbohydrate metabolism, sugar binding, sugar transport, and adhesion (including Epa family) were repressed by Zap1. Nevertheless, the results also suggested that Zap1 is essential to the delivery and organization of some matrix components. Indeed, Zap1 was required for the secretion of 122 proteins to the matrix and induced the expression of 557 genes, including various targets involved in glucan metabolism. Additionally, Zap1 induced targets with roles in virulence, resistance to antifungals, and host immunity evasion, including yapsins, ERG family, and moonlighting proteins. Zap1 was also required for the secretion of acidic-specific matrix proteins, indicating a contribution to the response to the acidic environment. Overall, this study demonstrates that Zap1 is a relevant regulator of the biofilm matrix, contributing to a better understanding of C. glabrata acidic biofilms.IMPORTANCEThe rising prevalence of vulvovaginal candidiasis (VVC) and the increasing presence of Candida spp. with aggressive virulence features and low susceptibility to common antifungals, particularly Candida glabrata, have resulted in more severe, prolonged, and recurrent cases of VVC, with significant implications for patients. This research offers valuable insights into the molecular changes that contribute to the formation of C. glabrata biofilms in the acidic vaginal environment, representing a significant advancement in the understanding of C. glabrata's virulence. Notably, this study identified Zap1 as a critical regulator of C. glabrata biofilm matrix, with additional potential roles in adhesion, antifungal resistance, evasion of host immunity, and response to acidic conditions, making it a promising target for new therapeutic approaches. Importantly, Zap1 is the first regulator of the biofilm matrix to be identified in C. glabrata, and the elucidation of its targets (including genes and matrix proteins) lays a strong foundation for future research.
Collapse
Affiliation(s)
- Bruna Gonçalves
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Priscila Pires
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Liliana Fernandes
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Miguel Pacheco
- Informatics Department, University of Minho, Braga, Portugal
| | - Tiago Ferreira
- Informatics Department, University of Minho, Braga, Portugal
| | - Hugo Osório
- i3S—Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Raquel Soares
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Silva
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| |
Collapse
|
31
|
Jacobs SE, Chaturvedi V. CAF to the Rescue! Potential and Challenges of Combination Antifungal Therapy for Reducing Morbidity and Mortality in Hospitalized Patients With Serious Fungal Infections. Open Forum Infect Dis 2024; 11:ofae646. [PMID: 39544494 PMCID: PMC11561589 DOI: 10.1093/ofid/ofae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
The global burden of invasive fungal disease is substantial and escalating. Combination antifungal therapy (CAF) may improve patient outcomes by reducing development of resistance, improving drug penetration and rate of fungal clearance, and allowing for lower and less toxic antifungal drug doses; yet, increased cost, antagonism, drug-drug interactions, and toxicity are concerns. Clinical practice guidelines recommend antifungal monotherapy, rather than CAF, for most invasive fungal diseases due to a lack of comparative randomized clinical trials. An examination of the existing body of CAF research should frame new hypotheses and determine priorities for future CAF clinical trials. We performed a systematic review of CAF clinical studies for invasive candidiasis, cryptococcosis, invasive aspergillosis, and mucormycosis. Additionally, we summarized findings from animal models of CAF and assessed laboratory methods available to evaluate CAF efficacy. Future CAF trials should be prioritized according to animal models showing improved survival and observational clinical data supporting efficacy and safety.
Collapse
Affiliation(s)
- Samantha E Jacobs
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vishnu Chaturvedi
- Microbiology and Molecular Biology Laboratories, Department of Pathology, Westchester Medical Center, Valhalla, New York, USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
32
|
Deckers C, Bélik F, Khourssaji M, Plum PE, Ausselet N, Bulpa P, Sonet A, Bihin B, Huang TD, Denis O, Montesinos I. "A decade of candidaemia: A comprehensive analysis of prognosis and risk factors at a Belgian tertiary hospital". Diagn Microbiol Infect Dis 2024; 110:116493. [PMID: 39153355 DOI: 10.1016/j.diagmicrobio.2024.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Candidemia, predominantly caused by C. albicans, poses a significant threat in hospitals. Yet, non-albicans candidemia (NAC) and antifungal resistance are increasing concerns. This retrospective study at CHU UCL Namur Mont-Godinne, a Belgian university hospital, from January 2013 to February 2023, analyzed 148 candidemia cases. The mean annual incidence was 0.94 per 1000 admissions, with a notable surge in C. albicans cases in 2020, possibly due to COVID-19. Candidemia was most prevalent in the ICU (48 %), with C. albicans (57.1 %) and C. glabrata (18.4 %) being the predominant species and a 30-day mortality rate of 38 %. NAC was significantly higher in the hematology unit (81 %). Notably, no echinocandin resistance was observed, while fluconazoleresistance remained stable at 10 %. NAC was associated with azole resistance. This study provides a decade-long overview of candidemia at CHU UCL Namur Mont-Godinne, offering valuable insights into its epidemiology and clinical characteristics in Belgian hospital settings.
Collapse
Affiliation(s)
- Corentin Deckers
- Service of Clinical Microbiology, CHU UCL Namur and Université Catholique de Louvain, Rue Gaston Thérasse, 1, Godinne, Yvoir 5530 , Belgium.
| | - Florian Bélik
- Service of Clinical Microbiology, CHU UCL Namur and Université Catholique de Louvain, Rue Gaston Thérasse, 1, Godinne, Yvoir 5530 , Belgium
| | - Mehdi Khourssaji
- Service of Clinical Microbiology, CHU UCL Namur and Université Catholique de Louvain, Rue Gaston Thérasse, 1, Godinne, Yvoir 5530 , Belgium
| | - Pierre-Emmanuel Plum
- Service of Infectious Disease, CHU UCL Namur and Université Catholique de Louvain, Yvoir, Belgium
| | - Nathalie Ausselet
- Service of Infectious Disease, CHU UCL Namur and Université Catholique de Louvain, Yvoir, Belgium
| | - Pierre Bulpa
- Service of Intensive Care, CHU UCL Namur and Université Catholique de Louvain, Yvoir, Belgium
| | - Anne Sonet
- Service of Hematology, CHU UCL Namur and Université Catholique de Louvain, Yvoir, Belgium
| | - Benoit Bihin
- Scientific Support Unit (USS), CHU UCL Namur and Université Catholique de Louvain, Yvoir, Belgium
| | - Te-Din Huang
- Service of Clinical Microbiology, CHU UCL Namur and Université Catholique de Louvain, Rue Gaston Thérasse, 1, Godinne, Yvoir 5530 , Belgium
| | - Olivier Denis
- Service of Clinical Microbiology, CHU UCL Namur and Université Catholique de Louvain, Rue Gaston Thérasse, 1, Godinne, Yvoir 5530 , Belgium
| | - Isabel Montesinos
- Service of Clinical Microbiology, CHU UCL Namur and Université Catholique de Louvain, Rue Gaston Thérasse, 1, Godinne, Yvoir 5530 , Belgium
| |
Collapse
|
33
|
Ünal N, Spruijtenburg B, Arastehfar A, Gümral R, de Groot T, Meijer EFJ, Türk-Dağı H, Birinci A, Hilmioğlu-Polat S, Meis JF, Lass-Flörl C, Ilkit M. Multicentre Study of Candida parapsilosis Blood Isolates in Türkiye Highlights an Increasing Rate of Fluconazole Resistance and Emergence of Echinocandin and Multidrug Resistance. Mycoses 2024; 67:e70000. [PMID: 39547949 DOI: 10.1111/myc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES Worldwide emergence of clonal outbreaks caused by fluconazole-resistant (FLCR) and the recent emergence of echinocandin- and multidrug-resistant (ECR and MDR) Candida parapsilosis isolates pose serious threats to modern clinics. Conducting large-scale epidemiological studies aimed at determining the genetic composition and antifungal resistance rates is necessary to devise antifungal stewardship and infection control strategies at international, national and local levels. Despite being severely hit by outbreaks due to FLCR C. parapsilosis isolates, such knowledge at the national level is lacking in Türkiye. Herein, we conducted a prospective multicentre study involving five major clinical centres in Türkiye to determine antifungal resistance rates, underlying mechanisms and genetic composition of all isolates. METHODS In total, 341 isolates were collected from 265 patients including clinical information. Antifungal susceptibility testing against common antifungals was performed in addition to sequencing of ERG11 and FKS1. Last, isolates were genotyped with short tandem repeat (STR) genotyping to investigate potential nosocomial transmission. RESULTS The FLCR rate was 26.7% (91/341), out of which 75.8% (69/91) harboured the ERG11Y132F mutation. Patients infected with FLCR isolates had a higher mortality rate compared to their susceptible counterparts (49% for FLCR vs. 42% for susceptible). ECR rate was 2.1% (7/341) and isolates carried FKS1F652L/R658G/W1370R mutations. Concerningly, four ECR isolates were MDR. FLCR isolates grouped in distinct clusters without evidence of inter-hospital transmission, whereas large clusters containing susceptible isolates from all centres were noted. CONCLUSION Overall, the increasing prevalence of FLCR C. parapsilosis at national level and the emergence of ECR and MDR isolates pose serious clinical challenges in Türkiye. Therefore, conducting large-scale epidemiological studies are critical to determine the trend of antifungal resistance and to tailor pertinent antifungal stewardship and infection control strategies to effectively curb the spread of drug-resistant C. parapsilosis.
Collapse
Affiliation(s)
- Nevzat Ünal
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
- Adana City Training and Research Hospital, Laboratory of Medical Microbiology, University of Health Sciences, Adana, Turkey
| | - Bram Spruijtenburg
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ramazan Gümral
- Division of Mycology, Department of Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Eelco F J Meijer
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Hatice Türk-Dağı
- Department of Microbiology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Asuman Birinci
- Department of Microbiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Jacques F Meis
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | | | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
34
|
Alawfi SA. Health of Saudi Women in the Post-Pandemic Era: Candidiasis Incidence and Post COVID-19 and COVID-19-Vaccination. Int J Womens Health 2024; 16:1687-1697. [PMID: 39421715 PMCID: PMC11484768 DOI: 10.2147/ijwh.s472953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Candidiasis, commonly known as yeast infection, affects people worldwide due to the overgrowth of Candida species. Of several types, genital candidiasis, particularly vulvovaginal candidiasis (VVC), primarily caused by C. albicans is frequently observed in females of reproductive age. Candidiasis has also become a serious issue in the post-pandemic era, as it occurs as a secondary infection in COVID-19 patients during or after the course of viral illness. Therefore, this study investigated the incidence of C. albicans infections in women of reproductive age, and its relationship with the incidence of COVID-19 and vaccination in Saudi Arabia. Objective Additionally, this study aimed to determine the awareness of women on candidiasis and its subsequent impact on the occurrence of infection. A survey-based quantitative study was conducted in which primary data were collected from participants using a self-reported questionnaire. Methods A total of 200 women aged 18-45 were selected through random sampling. Apart from their sociodemographic characteristics, the history of COVID-19 incidence, COVID-19 vaccination, and candidiasis occurrences among respondents were recorded. Their level of awareness and knowledge of candidiasis, along with their perceptions of strategies for mitigating the risk of incidence, were also evaluated. The collected data were analysed using different statistical tools. Results The findings of this study revealed a positive correlation between candidiasis, viral infection, and vaccination, regardless of the type and dosage of vaccine administered. Furthermore, both COVID-19 incidence and vaccination had a positive and significant impact on the occurrence of candidiasis among Saudi women. Conclusion Despite certain limitations, this study has theoretical and managerial implications for improved management of candidiasis in the post-COVID era.
Collapse
Affiliation(s)
- Sami A Alawfi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
35
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
36
|
Meneghello S, Bernabè G, Di Pietra G, Di Sopra S, Del Vecchio C, Cattelan AM, Castagliuolo I, Brun P. Prevalence, Species Distribution and Resistance of Candidemia in Pediatric and Adult Patients in a Northeast Italy University Hospital. J Fungi (Basel) 2024; 10:707. [PMID: 39452659 PMCID: PMC11508697 DOI: 10.3390/jof10100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Candidemia and invasive candidiasis (IC) are causes of morbidity and mortality in healthcare settings, with notable differences between children and adults. Understanding the species distribution and antimicrobial susceptibility profiles of clinical isolates can guide empiric therapy in patients at risk of IC. This study investigated the incidence and antifungal susceptibility patterns of yeasts involved in IC in pediatric and adult patients from 2019 to 2023. The average incidence of IC was 0.715 per 1000 patients, increasing over the study period; infants had the highest incidence rates. Over half of the IC episodes occurred in intensive care units (ICUs). Non-albicans Candida (NAC) species represented the most frequently isolated species in adults and children (55.96% and 50.0%, respectively), with the prevalence of C. parapsilosis (26.45% and 14.7%, respectively), N. glabratus (14.97% and 8.82%, respectively) and C. tropicalis (4.36% and 2.94%, respectively). C. lusitaniae was identified in 14.7% of pediatric IC cases. In NAC species, antifungal resistance has also increased over the five years of the study: 69.12% were resistant to azoles and 7.35% were resistant to micafungin. Resistance was higher in pediatric patients. Our study highlights differences in IC characteristics between pediatric and adult populations and emphasizes the importance of targeted antifungal stewardship in ICU patients with NAC invasive infections.
Collapse
Affiliation(s)
- Silvia Meneghello
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
| | - Giulia Bernabè
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
| | - Giuseppe Di Pietra
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
| | - Sarah Di Sopra
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
| | - Claudia Del Vecchio
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
| | - Anna Maria Cattelan
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
- Infectious Diseases Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy
| | - Ignazio Castagliuolo
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
| |
Collapse
|
37
|
Alkan A, Buyukasik Y, Uzun O, Demir AU, Coplu L. Invasive fungal infections in patients with acute leukemia: A retrospective cohort study at a tertiary-care hospital. Medicine (Baltimore) 2024; 103:e39959. [PMID: 39465746 PMCID: PMC11460920 DOI: 10.1097/md.0000000000039959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 10/29/2024] Open
Abstract
Invasive fungal infection (IFI) is an important cause of morbidity and mortality in acute leukemia patients. In the past few decades, the incidence of IFI has dramatically increased. Nevertheless, the management of IFI has become more complicated owing to changes in the epidemiology of fungal diseases and therapeutic regimens. Therefore, it is important to establish an appropriate strategy for centers that provide the diagnosis and treatment of acute leukemia patients based on scientific data and with available resources. In this study we investigated the incidence of IFI, pathogens, the use of diagnostic methods, and risk factors for IFI in acute leukemia patients over a 17-year period. A total of 502 acute leukemia patients (male/female: 57%/43%, mean age: 57.7 ± 15.5 years) hospitalized at adult and oncology hospitals between 2003 and 2020 were reviewed retrospectively. The incidence of proven and probable IFI was 13.2% (33.1%, when possible cases were included). The most common IFI was aspergillosis (49 patients, 9.7%), followed by candidemia, mucormycosis, and Pneumocystis jirovecii pneumonia. The galactomannan antigen test was positive in the serum of 39 (23.5%) patients and in bronchoalveolar lavage (BAL) fluid in 6 (3.6%) patients. Thirteen (7.8%) sputum cultures (11 Aspergillus spp. and 2 Candida spp.) and 4 (2.4%) BAL fluid (1 Aspergillus spp., 2 Candida spp., 1 P jirovecii) were positive for a fungal pathogen. Neutropenia, intensive care unit (ICU) follow-up and mechanical ventilation (MV) increased the risk of IFI by 3.5, 2.5, and 1.8 times, respectively. The median survival was 5 (range: 1.9-8) months. ICU follow-up shortened the survival by 12 months and increased the death risk by 2.49-fold. MV shortened survival by 57 months and increased the death risk by 3.82-fold. IFI remains a significant contributor to the morbidity and mortality in acute leukemia patients. Pulmonary involvement is the most common site. Neutropenia, ICU follow-up and MV are associated with an increased risk for IFI and mortality. We recommend in the IFI approach, to be aware of IFI in patients receiving intensive chemotherapy and/or recipients of hematopoietic stem cell transplantation, and to evaluate with microbiological, serological and radiological tests during the clinical follow-up.
Collapse
Affiliation(s)
- Asli Alkan
- Ankara Etlik City Hospital, Chest Diseases Clinic, Ankara, Turkey
- Formerly Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| | - Yahya Buyukasik
- Hacettepe University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Omrum Uzun
- Hacettepe University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Ahmet Ugur Demir
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| | - Lutfi Coplu
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| |
Collapse
|
38
|
Rodrigues LS, Siqueira AC, Vasconcelos TM, Ferreira AMM, Spalanzani RN, Krul D, Medeiros É, Sestren B, Lanzoni LDA, Ricieri MC, Motta FA, Estivalet TI, Dalla-Costa LM. Invasive candidiasis in a pediatric tertiary hospital: Epidemiology, antifungal susceptibility, and mortality rates. Med Mycol 2024; 62:myae097. [PMID: 39354681 PMCID: PMC11498051 DOI: 10.1093/mmy/myae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
Invasive infections caused by non-albicans Candida are increasing worldwide. However, there is still a lack of information on invasive candidiasis (IC) in the pediatric setting, including susceptibility profiles and clonal studies. We investigated the clinical, epidemiologic, and laboratory characteristics of IC, possible changes in antifungal susceptibility profiles over time, and the occurrence of clonality in our tertiary children's hospital. We analyzed 123 non-duplicate Candida isolates from sterile sites of pediatric patients in a tertiary hospital in southern Brazil, between 2016 and 2021. Data on demographics, comorbidities, and clinical outcomes were collected. Candida species distribution, antifungal susceptibility profiles, biofilm production, and molecular epidemiology of isolates were assessed using reference methods. The range of IC incidence was 0.88-1.55 cases/1000 hospitalized patients/year, and the IC-related mortality rate was 20.3%. Of the total IC cases, 42.3% were in patients aged < 13 months. Mechanical ventilation, parenteral nutrition, and intensive care unit (ICU) admission were common in this group. In addition, ICU admission was identified as a risk factor for IC-related mortality. The main site of Candida spp. isolation was blood, and non-albicans Candida species were predominant (70.8%). No significant clonal spread was observed among isolates of the three most commonly isolated species, and 99.1% of all isolates were biofilm producers. Non-albicans Candida species were predominant in this study. Notably, clonal expansion and emergence of antifungal drug resistance were not observed in our pediatric setting.
Collapse
Affiliation(s)
- Luiza Souza Rodrigues
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | - Adriele Celine Siqueira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | - Thaís Muniz Vasconcelos
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | | | - Regiane Nogueira Spalanzani
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | - Damaris Krul
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | - Érika Medeiros
- Hospital Pequeno Príncipe, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Bianca Sestren
- Hospital Pequeno Príncipe, Curitiba, Paraná, CEP 80250-060, Brazil
| | | | | | | | - Terezinha Inez Estivalet
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Maringá, Paraná, CEP 87020-900, Brazil
- Universidade Federal do Paraná, Departamento de Patologia Básica, Curitiba, Paraná, CEP 81531-980, Brazil
| | | |
Collapse
|
39
|
Rai MN, Lan Q, Parsania C, Rai R, Shirgaonkar N, Chen R, Shen L, Tan K, Wong KH. Temporal transcriptional response of Candida glabrata during macrophage infection reveals a multifaceted transcriptional regulator CgXbp1 important for macrophage response and fluconazole resistance. eLife 2024; 13:e73832. [PMID: 39356739 PMCID: PMC11554308 DOI: 10.7554/elife.73832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/01/2024] [Indexed: 10/04/2024] Open
Abstract
Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata's survival in macrophages and drug tolerance.
Collapse
Affiliation(s)
| | - Qing Lan
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Rikky Rai
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Ruiwen Chen
- Faculty of Health Sciences, University of MacauTaipaChina
| | - Li Shen
- Faculty of Health Sciences, University of MacauTaipaChina
- Gene Expression, Genomics and Bioinformatics Core, Faculty of Health Sciences, University of MacauTaipaChina
| | - Kaeling Tan
- Faculty of Health Sciences, University of MacauTaipaChina
- Gene Expression, Genomics and Bioinformatics Core, Faculty of Health Sciences, University of MacauTaipaChina
| | - Koon Ho Wong
- Faculty of Health Sciences, University of MacauTaipaChina
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau,Avenida da UniversidadeTaipaChina
- MoE Frontiers Science Center for Precision Oncology, University of MacauTaipaChina
| |
Collapse
|
40
|
Michalcová L, Bednárová L, Slang S, Večeřa M, Heidingsfeld O. Contact lenses as a potential vehicle of Candida transmission. Cont Lens Anterior Eye 2024; 47:102249. [PMID: 38839478 DOI: 10.1016/j.clae.2024.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Contact lenses can be contaminated with various microorganisms, including pathogenic yeasts of the genus Candida, which are known for their ability to adhere to abiotic surfaces, including plastic materials used for various medical purposes. Microbial contamination of the lenses can lead to infection of the wearer's eyes. The purpose of this study was to simulate the contamination of contact lenses with C. albicans and C. parapsilosis, analyze the interaction of the microorganisms with the lens material, and optimize the protocol for PCR-based analysis of the microbial agents responsible for lens contamination. METHODS Hilafilcon lenses were exposed to C. albicans and C. parapsilosis cultures, washed, and examined for their ability to further spread the contamination. Scanning electron microscopy was used to analyze the attachment of yeast cells to the lenses. Infrared spectroscopy was used to examine the potential changes in the lens material due to Candida contamination. The protocol for DNA isolation from contaminated lenses was established to enable PCR analysis of microbes attached to the lenses. RESULTS Hilafilcon lenses contaminated with Candida were able to spread the contamination even after washing with saline or with a commercial cleaning solution. In the present experimental settings, the yeasts did not grow into the lenses but began to form biofilms on the surface. However, the ability of the lenses to retain water was altered. The PCR-based protocol could be used to help identify the type of contamination of contact lenses. CONCLUSION Once contaminated with Candida albicans or Candida parapsilosis, Hilafilcon contact lenses are difficult to clean. Yeasts began to form biofilms on lens surfaces.
Collapse
Affiliation(s)
- Lucie Michalcová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Stanislav Slang
- Center of Materials and Nanotechnologies, University of Pardubice, nám. Čs. legií 565, 530 02 Pardubice, Czech Republic
| | - Miroslav Večeřa
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Olga Heidingsfeld
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
41
|
Srisurapanont K, Lerttiendamrong B, Meejun T, Thanakitcharu J, Manothummetha K, Thongkam A, Chuleerarux N, Sanguankeo A, Li LX, Leksuwankun S, Langsiri N, Torvorapanit P, Worasilchai N, Plongla R, Moonla C, Nematollahi S, Kates OS, Permpalung N. Candidemia Following Severe COVID-19 in Hospitalised and Critical Ill Patients: A Systematic Review and Meta-Analysis. Mycoses 2024; 67:e13798. [PMID: 39379339 PMCID: PMC11607781 DOI: 10.1111/myc.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
RATIONALE The epidemiology and clinical impact of COVID-19-associated candidemia (CAC) remained uncertain, leaving gaps in understanding its prevalence, risk factors and outcomes. METHODS A systematic review and meta-analysis were conducted by searching PubMed, Embase and Scopus for reports of CAC prevalence, risk factors and clinical outcomes up to June 18, 2024. The generalised linear mixed model was employed to determine the prevalence and 95% confidence intervals (CIs). The risk factors and clinical outcomes were compared between patients with and without CAC using the inverse variance method. RESULTS From 81 studies encompassing 29 countries and involving 351,268 patients, the global prevalence of CAC was 4.33% (95% Cl, 3.16%-5.90%) in intensive care unit (ICU) patients. In ICUs, the pooled prevalence of CAC in high-income countries was significantly higher than that of lower-middle-income countries (5.99% [95% Cl, 4.24%-8.40%] vs. 2.23% [95% Cl, 1.06%-4.61%], p = 0.02). Resistant Candida species, including C. auris, C. glabrata (Nakaseomyces glabratus) and C. krusei (Pichia kudriavzveii), constituted 2% of ICU cases. The mortality rate for CAC was 68.40% (95% Cl, 61.86%-74.28%) among ICU patients. Several risk factors were associated with CAC, including antibiotic use, central venous catheter placement, dialysis, mechanical ventilation, tocilizumab, extracorporeal membrane oxygenation and total parenteral nutrition. Notably, the pooled odds ratio of tocilizumab was 2.59 (95% CI, 1.44-4.65). CONCLUSIONS The prevalence of CAC is substantial in the ICU setting, particularly in high-income countries. Several risk factors associated with CAC were identified, including several that are modifiable, offering the opportunity to mitigate the risk of CAC.
Collapse
Affiliation(s)
| | | | - Tanaporn Meejun
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jaedvara Thanakitcharu
- Panyananthaphikkhu Cholprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Achitpol Thongkam
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipat Chuleerarux
- Department of Medicine, University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Anawin Sanguankeo
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lucy X. Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Surachai Leksuwankun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattapong Langsiri
- Panyananthaphikkhu Cholprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, and Research Unit of Medical Mycology Diagnosis, Chulalongkorn University, Bangkok, Thailand
| | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Saman Nematollahi
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Olivia S. Kates
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
42
|
Williams CC, Gregory JB, Usher J. Understanding the clinical and environmental drivers of antifungal resistance in the One Health context. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001512. [PMID: 39475703 PMCID: PMC11524418 DOI: 10.1099/mic.0.001512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024]
Abstract
Antifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, Candida auris and Aspergillus fumigatus, examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.
Collapse
Affiliation(s)
- Catrin C. Williams
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jack B. Gregory
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
43
|
Li K, Yang X, Li L, Zhi L. Candidaemia: A 9-Year Retrospective Analysis of Epidemiology and Antimicrobial Susceptibility in Tertiary Care Hospitals in Western China. Infect Drug Resist 2024; 17:3891-3900. [PMID: 39253608 PMCID: PMC11382801 DOI: 10.2147/idr.s477815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose This investigation endeavors to scrutinize the resistance profiles to antifungal agents, alongside the clinical distribution of Candida isolates that yielded positive results in blood cultures at Suining Central Hospital spanning the years 2015 to 2023. The objective is to provide crucial epidemiological insights that may aid in early clinical intervention and judicious deployment of antifungal therapies. Methods This retrospective analysis analyses data on 182 different Candida strains with positive clinical blood cultures obtained from the Microbiology Laboratory of Suining Central Hospital over a period of nine consecutive years. The study involved identification of Candida species and assessment of resistance patterns to fungal drugs. Results Our analysis revealed that the median age of patients diagnosed with Candidaemia from the 182 strains was 62 years, with a distribution of 63.7% females and 36.3% males. Within the cohort of 182 Candida strains, Candida albicans constituted 32.4%, while non-albicans Candida species comprised 67.6% of the cases. Specifically, Candida tropicalis represented 37.4%, Candida glabrata 12.1%, Candida parapsilosis 11.0%,Candida guilliermondii 3.8%, and both Candida krusei and Candida Dublin accounted for 1.6% each. These Candida species were predominantly identified in intensive care units (ICU), hematology, gastroenterology, neurology centers, and endocrine metabolism units. Conclusion The findings of this investigation suggest a shift in the prevalence of non-Candida albicans species, notably C. tropicalis, as the predominant cause of Candidaemia at Suining Central Hospital, surpassing C. albicans. Although instances of antifungal resistance are infrequent, there has been a notable rise in resistance to azoles. This study provides important insights into the local epidemiology, which will be essential for informing the selection of empirical antifungal therapy and contributing to the global surveillance of antifungal resistance.
Collapse
Affiliation(s)
- Kun Li
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Xue Yang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Long Li
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Lan Zhi
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| |
Collapse
|
44
|
Salmanton-García J, Cornely OA, Stemler J, Barać A, Steinmann J, Siváková A, Akalin EH, Arikan-Akdagli S, Loughlin L, Toscano C, Narayanan M, Rogers B, Willinger B, Akyol D, Roilides E, Lagrou K, Mikulska M, Denis B, Ponscarme D, Scharmann U, Azap A, Lockhart D, Bicanic T, Kron F, Erben N, Rautemaa-Richardson R, Goodman AL, Garcia-Vidal C, Lass-Flörl C, Gangneux JP, Taramasso L, Ruiz M, Schick Y, Van Wijngaerden E, Milacek C, Giacobbe DR, Logan C, Rooney E, Gori A, Akova M, Bassetti M, Hoenigl M, Koehler P. Attributable mortality of candidemia - Results from the ECMM Candida III multinational European Observational Cohort Study. J Infect 2024; 89:106229. [PMID: 39025408 DOI: 10.1016/j.jinf.2024.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Despite antifungal advancements, candidaemia still has a high mortality rate of up to 40%. The ECMM Candida III study in Europe investigated the changing epidemiology and outcomes of candidaemia for better understanding and management of these infections. METHODS In this observational cohort study, participating hospitals enrolled the first ten consecutive adults with blood culture-proven candidemia. Collected data included patient demographics, risk factors, hospital stay duration (follow-up of 90 days), diagnostic procedures, causative Candida spp., management details, and outcome. Controls were included in a 1:1 fashion from the same hospitals. The matching process ensured similarity in age (10-year range), primary underlying disease, hospitalization in intensive care versus non-ICU ward, and major surgery within 2 weeks before candidemia between cases and controls. Overall and attributable mortality were described, and a survival probability for cases and controls was performed. RESULTS One hundred seventy-one pairs consisting of patients with candidemia and matched controls from 28 institutions were included. In those with candidemia, overall mortality was 40.4%. Attributable mortality was 18.1% overall but differed between causative Candida species (7.7% for Candida albicans, 23.7% for Candida glabrata/Nakaseomyces glabratus, 7.7% for Candida parapsilosis and 63.6% for Candida tropicalis). Regarding risk factors, the presence of a central venous catheter, total parenteral nutrition and acute or chronic renal disease were significantly more common in cases versus controls. Duration of hospitalization, and especially that of ICU stay, was significantly longer in candidemia cases (20 (IQR 10-33) vs 15 days (IQR 7-28); p = 0.004). CONCLUSIONS Although overall and attributable mortality in this subgroup analysis of matched case/control pairs remains high, the attributable mortality appears to have decreased in comparison to historical cohorts. This decrease may be driven by improved prognosis of Candida albicans and Candida parapsilosis candidemia; whereas candidemia due to other Candida spp. exhibits a much higher attributable mortality.
Collapse
Affiliation(s)
- Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Aleksandra Barać
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jörg Steinmann
- Institute for Clinical Hygiene and Medical Microbiology, Paracelsus Medical University, Nuremberg, Germany
| | - Alena Siváková
- Department of Microbiology, St Anne's Faculty Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Emin Halis Akalin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | - Laura Loughlin
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Cristina Toscano
- Laboratory of Clinical Microbiology and Molecular Biology, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Manjusha Narayanan
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Benedict Rogers
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Deniz Akyol
- Ege Univerisity Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Emmanuel Roilides
- Infectious Diseases Department, Hippokration General Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katrien Lagrou
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Blandine Denis
- Department of Infectious Diseases, Hôpital Saint-Louis, Fernand Widal, Lariboisière, AP-HP, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Urlike Scharmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Deborah Lockhart
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom; Department of Medical Microbiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, UK, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Tihana Bicanic
- Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Florian Kron
- VITIS Healthcare Group, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; FOM University of Applied Sciences, Essen, Germany
| | - Nurettin Erben
- Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence, and Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Anna L Goodman
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research (CIDR), Guy's and St Thomas' National Health Service Foundation Trust and King's College London, and Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | | | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, European Confederation of Medical Mycology Excellence Center for Medical Mycology, Innsbruck Medical University, Innsbruck, Austria
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
| | - Lucia Taramasso
- Departement of Internal Medicine Fondazione IRCCS Cà Granda Osepdale Maggiore Policlinico, Milan, Italy
| | - Maite Ruiz
- UGC Enfermedades Infecciosas, Microbiología y Parasitología, University Hospital Virgen del Rocío, Seville, Spain; Grupo Microbiología Clínica y Molecular, Instituto de Biomedicina de Sevilla, HUVR/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Yael Schick
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Eric Van Wijngaerden
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Christopher Milacek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Clare Logan
- Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Emily Rooney
- Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Andrea Gori
- Departement of Internal Medicine Fondazione IRCCS Cà Granda Osepdale Maggiore Policlinico, Milan, Italy
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | - Matteo Bassetti
- IRCCS Ospedale Policlinico San Martino di Genova, Genoa, Italy
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Unit, European Confederation of Medical Mycology Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Austria.
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
45
|
Hassoun Y, Aptekmann AA, Keniya MV, Gomez RY, Alayo N, Novi G, Quinteros C, Kaya F, Zimmerman M, Caceres DH, Chow NA, Perlin DS, Shor E. Evolutionary dynamics in gut-colonizing Candida glabrata during caspofungin therapy: Emergence of clinically important mutations in sphingolipid biosynthesis. PLoS Pathog 2024; 20:e1012521. [PMID: 39250486 PMCID: PMC11412501 DOI: 10.1371/journal.ppat.1012521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 09/19/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Invasive fungal infections are associated with high mortality, which is exacerbated by the limited antifungal drug armamentarium and increasing antifungal drug resistance. Echinocandins are a frontline antifungal drug class targeting β-glucan synthase (GS), a fungal cell wall biosynthetic enzyme. Echinocandin resistance is generally low but increasing in species like Candida glabrata, an opportunistic yeast pathogen colonizing human mucosal surfaces. Mutations in GS-encoding genes (FKS1 and FKS2 in C. glabrata) are strongly associated with clinical echinocandin failure, but epidemiological studies show that other, as yet unidentified factors also influence echinocandin susceptibility. Furthermore, although the gut is known to be an important reservoir for emergence of drug-resistant strains, the evolution of resistance is not well understood. Here, we studied the evolutionary dynamics of C. glabrata colonizing the gut of immunocompetent mice during treatment with caspofungin, a widely-used echinocandin. Whole genome and amplicon sequencing revealed rapid genetic diversification of this C. glabrata population during treatment and the emergence of both drug target (FKS2) and non-drug target mutations, the latter predominantly in the FEN1 gene encoding a fatty acid elongase functioning in sphingolipid biosynthesis. The fen1 mutants displayed high fitness in the gut specifically during caspofungin treatment and contained high levels of phytosphingosine, whereas genetic depletion of phytosphingosine by deletion of YPC1 gene hypersensitized the wild type strain to caspofungin and was epistatic to fen1Δ. Furthermore, high resolution imaging and mass spectrometry showed that reduced caspofungin susceptibility in fen1Δ cells was associated with reduced caspofungin binding to the plasma membrane. Finally, we identified several different fen1 mutations in clinical C. glabrata isolates, which phenocopied the fen1Δ mutant, causing reduced caspofungin susceptibility. These studies reveal new genetic and molecular determinants of clinical caspofungin susceptibility and illuminate the dynamic evolution of drug target and non-drug target mutations reducing echinocandin efficacy in patients colonized with C. glabrata.
Collapse
Affiliation(s)
- Yasmine Hassoun
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Ariel A Aptekmann
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Mikhail V Keniya
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Rosa Y Gomez
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Nicole Alayo
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Giovanna Novi
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Christopher Quinteros
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Firat Kaya
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Matthew Zimmerman
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Diego H Caceres
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Nancy A Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David S Perlin
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Nutley, New Jersey, United States of America
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, D.C., United States of America
| | - Erika Shor
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Nutley, New Jersey, United States of America
| |
Collapse
|
46
|
Bays DJ, Jenkins EN, Lyman M, Chiller T, Strong N, Ostrosky-Zeichner L, Hoenigl M, Pappas PG, Thompson III GR. Epidemiology of Invasive Candidiasis. Clin Epidemiol 2024; 16:549-566. [PMID: 39219747 PMCID: PMC11366240 DOI: 10.2147/clep.s459600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
Invasive candidiasis (IC) is an increasingly prevalent, costly, and potentially fatal infection brought on by the opportunistic yeast, Candida. Previously, IC has predominantly been caused by C. albicans which is often drug susceptible. There has been a global trend towards decreasing rates of infection secondary to C. albicans and a rise in non-albicans species with a corresponding increase in drug resistance creating treatment challenges. With advances in management of malignancies, there has also been an increase in the population at risk from IC along with a corresponding increase in incidence of breakthrough IC infections. Additionally, the emergence of C. auris creates many challenges in management and prevention due to drug resistance and the organism's ability to transmit rapidly in the healthcare setting. While the development of novel antifungals is encouraging for future management, understanding the changing epidemiology of IC is a vital step in future management and prevention.
Collapse
Affiliation(s)
- Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Emily N Jenkins
- ASRT, Inc, Atlanta, GA, USA
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan Lyman
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nora Strong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Clinical and Translational Fungal Working Group, University of California San Diego, La Jolla, CA, USA
| | - Peter G Pappas
- Division of Infectious Diseases, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George R Thompson III
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
47
|
Vargas-Casanova Y, Bravo-Chaucanés CP, Fuentes SDLC, Martinez-Lopez R, Monteoliva L, Gil C, Rivera-Monroy ZJ, Costa GM, Castañeda JEG, Parra-Giraldo CM. Antifungal Synergy: Mechanistic Insights into the R-1-R Peptide and Bidens pilosa Extract as Potent Therapeutics against Candida spp. through Proteomics. Int J Mol Sci 2024; 25:8938. [PMID: 39201622 PMCID: PMC11354716 DOI: 10.3390/ijms25168938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Previous reports have demonstrated that the peptide derived from LfcinB, R-1-R, exhibits anti-Candida activity, which is enhanced when combined with an extract from the Bidens pilosa plant. However, the mechanism of action remains unexplored. In this research, a proteomic study was carried out, followed by a bioinformatic analysis and biological assays in both the SC5314 strain and a fluconazole-resistant isolate of Candida albicans after incubation with R-1-R. The proteomic data revealed that treatment with R-1-R led to the up-regulation of most differentially expressed proteins compared to the controls in both strains. These proteins are primarily involved in membrane and cell wall biosynthesis, membrane transport, oxidative stress response, the mitochondrial respiratory chain, and DNA damage response. Additionally, proteomic analysis of the C. albicans parental strain SC5314 treated with R-1-R combined with an ethanolic extract of B. pilosa was performed. The differentially expressed proteins following this combined treatment were involved in similar functional processes as those treated with the R-1-R peptide alone but were mostly down-regulated (data are available through ProteomeXchange with identifier PXD053558). Biological assays validated the proteomic results, evidencing cell surface damage, reactive oxygen species generation, and decreased mitochondrial membrane potential. These findings provide insights into the complex antifungal mechanisms of the R-1-R peptide and its combination with the B. pilosa extract, potentially informing future studies on natural product derivatives.
Collapse
Affiliation(s)
- Yerly Vargas-Casanova
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Y.V.-C.); (C.P.B.-C.)
| | | | | | - Raquel Martinez-Lopez
- Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.-L.); (L.M.); (C.G.)
| | - Lucía Monteoliva
- Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.-L.); (L.M.); (C.G.)
| | - Concha Gil
- Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.-L.); (L.M.); (C.G.)
| | - Zuly Jenny Rivera-Monroy
- Faculty of Sciences, Universidad Nacional of Colombia, Bogotá 111321, Colombia; (Z.J.R.-M.); (J.E.G.C.)
| | - Geison Modesti Costa
- Chemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | | | - Claudia Marcela Parra-Giraldo
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Y.V.-C.); (C.P.B.-C.)
- Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.M.-L.); (L.M.); (C.G.)
| |
Collapse
|
48
|
Soriano-Martín A, Alonso R, Machado M, Reigadas E, Muñoz P, Bouza E. Candida spp.: the burden of a microorganism in a microbiology department. Microbiol Spectr 2024; 12:e0386023. [PMID: 38980031 PMCID: PMC11302065 DOI: 10.1128/spectrum.03860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
There is no precise information available on the entire workload of isolating a specific microorganism in a clinical microbiology laboratory, and the costs associated with it have not been specifically estimated. In this descriptive retrospective study conducted at the microbiology department of a general teaching hospital from January 2021 to December 2022, we assessed the workload associated with identifying Candida species in all types of clinical samples and patients. Costs were estimated from data obtained from the hospital's finance department and microbiology laboratory cost records. In 2 years, 1,008,231 samples were processed at our microbiology department, of which 8,775 had one or more Candida spp. isolates (9,683 total isolates). Overall, 5,151 samples with Candida spp. were identified from 2,383 inpatients. We isolated Candida spp. from 515.3 samples/100,000 population/year and from 92 samples/1,000 hospital admissions/year. By sample type, 90.8% were superficial, mainly mucosal. Only 9.1% Candida spp. were isolated from deep, usually sterile, samples, being mostly from ordinarily sterile fluids. Candida albicans was the main species (58.5%) identified, followed by C. parapsilosis complex, C. glabrata, C. tropicalis, and C. krusei. In admitted patients, the incidences of samples with Candida spp. isolates were 302.7 samples/100,000 population/year and 54 samples/1,000 admissions/year. The average cost of isolating and identifying Candida spp. was estimated at 25€ per culture-positive sample. To our knowledge, this is the first attempt to gage the workload and costs of Candida spp. isolation at a hospital microbiology department. These data can help assess the burden and significance of Candida isolation at other institutions and also help design measures for streamlining. IMPORTANCE We believe that this work is of interest because at present, there is no really accurate information available on the total workload involved in isolating a specific microorganism in a clinical microbiology laboratory. The costs related to this have also not been described. We have described the unrestricted workload of Candida spp. in all types of samples for all types of species and patients. We believe that this information would be necessary to collect and share this information as well as to collect it in a standardized way to know the current situation of Candida spp. workload in all clinical microbiology laboratories.
Collapse
Affiliation(s)
- Ana Soriano-Martín
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Roberto Alonso
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Marina Machado
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Elena Reigadas
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Emilio Bouza
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| |
Collapse
|
49
|
Belgacem S, Chebil W, Ben Salem S, Babba O, Mastouri M, Babba H. Identification and antifungal susceptibility profile of uncommon yeast species at Fattouma Bourguiba University Hospital in Tunisia. Med Mycol 2024; 62:myae070. [PMID: 38986508 DOI: 10.1093/mmy/myae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Despite the severe impact of uncommon yeast fungal infections and the pressing need for more research on the topic, there are still few studies available on the identification, epidemiology, and susceptibility profile of those pathogens. The aims of the current study were to define the profile of uncommon yeast species at Fattouma Bourguiba University Hospital using phenotypic, molecular, and proteomic methods and to study their antifungal susceptibility profile. Pre-identified uncommon yeast species were collected from 2018 to 2021. These isolates were further identified using phenotypic methods (ID32C® system and Vitek2® YST), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and sequencing. The antifungal susceptibility profile was studied using the reference CLSI broth microdilution method. In total, 30 strains were collected during the study period. Referring to the sequencing, the most isolated uncommon species were Saprochaete capitata, Candida lusitaniae, Candida kefyr, Candida inconspicua, and Candida guilliermondii. A total of 90% of isolates were correctly identified by MALDI-TOF MS compared to 76.7% and 63.3% by ID32® C and VITEK® 2 YST, respectively. The isolated species showed variable responses to antifungals. Candida guilliermondii showed increased azole minimum inhibitory concentrations. Misidentification of uncommon yeast species was common using commercial phenotypic methods. The high percentage of concordance of MALDI-TOF results with sequencing highlights its high performance and usefulness as a routine diagnosis tool.
Collapse
Affiliation(s)
- Sameh Belgacem
- Unit of Parasitology-Mycology, Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Safa Ben Salem
- Unit of Parasitology-Mycology, Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Oussama Babba
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Maha Mastouri
- Unit of Parasitology-Mycology, Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
50
|
Rojas OC, Montoya AM, Treviño-Rangel RDJ. Clavispora lusitaniae: From a saprophytic yeast to an emergent pathogen. Fungal Biol 2024; 128:1933-1938. [PMID: 39059848 DOI: 10.1016/j.funbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 07/28/2024]
Abstract
Clavispora lusitaniae has been isolated from different substrates, such as soil, water, fruit, vegetables, plants, and the gastrointestinal tract of animals and humans. However, its importance lies in being isolated from in invasive infections, particularly in pediatric patients with hematologic malignancies. It is an emerging nosocomial pathogen commonly associated with fatal prognosis in immunocompromised hosts. C. lusitaniae has attracted attention in the last decade because of resistance to amphotericin B, 5- flucytosine, and fluconazole. The adaptations of this yeast to the human host may contribute to its pathogenicity. Further study will be needed to understand C. lusitaniae's ability as a potential pathogen. This mini-review highlights the importance of the growing number of invasive disease cases caused by this yeast.
Collapse
Affiliation(s)
- Olga C Rojas
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Colonia Mitras Centro, Monterrey, NL, 64460, Mexico; Vicerrectoría de Ciencias de la Salud. Departamento de Ciencias Básicas, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte, San Pedro Garza García, NL, 66238, Mexico.
| | - Alexandra M Montoya
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Colonia Mitras Centro, Monterrey, NL, 64460, Mexico.
| | - Rogelio de J Treviño-Rangel
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Colonia Mitras Centro, Monterrey, NL, 64460, Mexico.
| |
Collapse
|