1
|
Newell M, Goruk S, Schueler J, Mazurak V, Postovit LM, Field CJ. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J Nutr Biochem 2022; 107:109018. [PMID: 35489658 DOI: 10.1016/j.jnutbio.2022.109018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA) reduces breast cancer tumor growth in preclinical models. To better understand how DHA amplifies the actions of docetaxel (TXT) chemotherapy, we examined the effects of two doses of dietary DHA on tumor size, membrane DHA content and necroptosis using a drug resistant triple negative breast cancer (TNBC) patient derived xenograft (PDX) model. Female NSG mice bearing TNBC PDXs were randomized to one of three nutritionally complete diets (20% w/w fat): control (0% DHA), high DHA (3.8% HDHA), or low DHA (1.6% LDHA) with or without intraperitoneal injections of 5 mg/kg TXT, twice weekly for 6 weeks (n=8 per group). Tumors from mice fed either HDHA+TXT or LDHA+TXT were similar in size to each other, but were 36% and 32% smaller than tumors from mice fed control+TXT, respectively (P<0.05). A dose effect of DHA incorporation was observed in plasma total phospholipids and in phosphatidylethanolamine and phosphatidylinositol. Both doses of DHA resulted in similarly increased necrotic tissue and decreased NFκB protein expression compared to control tumors, however only the HDHA+TXT had increased expression of necroptosis related proteins: RIPK1, RIPK3 and MLKL (P<0.05). Increased MLKL was observed in the lipid raft portion of HDHA+TXT tumor extracts. This work confirms the efficacy of a combination therapy consisting of DHA supplementation and TXT chemotherapy using two doses of DHA as indicated by reduced tumor growth in a TNBC PDX model. Moreover, the results suggest that decreased growth may occur through increased DHA incorporation into tumor phospholipid membranes and necroptosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.
| |
Collapse
|
2
|
Fallone CJ, Tessier AG, Field CJ, Yahya A. Resolving the omega-3 methyl resonance with long echo time magnetic resonance spectroscopy in mouse adipose tissue at 9.4 T. NMR IN BIOMEDICINE 2021; 34:e4455. [PMID: 33269481 DOI: 10.1002/nbm.4455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Tissue omega-3 (ω-3) content is biologically important to disease; however, its quantification with magnetic resonance spectroscopy in vivo is challenging due to its low concentration. In addition, the ω-3 methyl resonance (≈ 0.98 ppm) overlaps that of the non-ω-3 (≈ 0.90 ppm), even at 9.4 T. We demonstrate that a Point-RESolved Spectroscopy (PRESS) sequence with an echo time (TE) of 109 ms resolves the ω-3 and non-ω-3 methyl peaks at 9.4 T. Sequence efficacy was verified on five oils with differing ω-3 fat content; the ω-3 content obtained correlated with that measured using 16.5 T NMR (R2 = 0.97). The PRESS sequence was also applied to measure ω-3 content in visceral adipose tissue of three different groups (all n = 3) of mice, each of which were fed a different 20% w/w fat diet. The fat portion of the diet consisted of low (1.4%), medium (9.0%) or high (16.4%) ω-3 fat. The sequence was also applied to a control mouse fed a standard chow diet (5.6% w/w fat, which was 5.9% ω-3). Gas chromatography (GC) analysis of excised tissue was performed for each mouse. The ω-3 fat content obtained with the PRESS sequence correlated with the GC measures (R2 = 0.96). Apparent T2 times of methyl protons were assessed by obtaining spectra from the oils and another group of four mice (fed the high ω-3 diet) with TE values of 109 and 399 ms. Peak areas were fit to a mono-exponentially decaying function and the apparent T2 values of the ω-3 and non-ω-3 methyl protons were 906 ± 148 and 398 ± 78 ms, respectively, in the oils. In mice, the values were 410 ± 68 and 283 ± 57 ms for ω-3 and non-ω-3 fats, respectively.
Collapse
Affiliation(s)
- Clara J Fallone
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Atiyah Yahya
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Newell M, Patel D, Goruk S, Field CJ. Docosahexaenoic Acid Incorporation Is Not Affected by Doxorubicin Chemotherapy in either Whole Cell or Lipid Raft Phospholipids of Breast Cancer Cells in vitro and Tumor Phospholipids in vivo. Lipids 2020; 55:549-565. [PMID: 32588470 DOI: 10.1002/lipd.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/07/2022]
Abstract
To better understand how docosahexaenoic acid (DHA) improves the effects of doxorubicin (DOX), we examined DHA ± DOX on changes in whole cell and lipid raft phospholipids (PL) of MDA-MB-231 and MCF-7 breast cancer cells. We sought to confirm whether the relative changes in PL DHA content of MDA-MB-231 cells could be extended to PL from MDA-MB-231 tumors grown in mice fed a DHA supplemented diet ±DOX. Treatment with DHA did not change PL composition yet DOX increased the proportion of phosphatidylserine in MCF-7 cell lipid rafts by two-fold (p < 0.001). Regardless of DOX, the relative percent incorporation of DHA was higher in MDA-MB-231 cells compared to MCF-7 cells in phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (whole cell and lipid rafts); and higher in phosphatidylethanolamine vs. phosphatidylcholine (4.4-fold in MCF-7 and 6-fold in MDA-MB-231 cells respectively). DHA treatment increased eicosapentaenoic acid and docosapentaenoic acid in MDA-MB-231 cells but not MCF-7 cells. Increased DHA content in MDA-MB-231 cells, MCF-7 cells, and MDA-MB-231 tumors in all PL moieties (except sphingomyelin) corresponded with reduced arachidonic acid (p < 0.05). Feeding mice 2.8% (w/w of fat) DHA ± DOX increased tumor necrotic regions (p < 0.05). This study established differential incorporation of DHA into whole cell and lipid rafts between human breast cancer cell lines. However, within each cell line, this incorporation was not altered by DOX confirming that DOX does not change membrane lipid composition. Furthermore, our findings indicate that membrane changes observed in vitro are translatable to in vivo changes and that DHA + DOX could contribute to the anticancer effects through increased necrosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
4
|
Role of docosahexaenoic acid in enhancement of docetaxel action in patient-derived breast cancer xenografts. Breast Cancer Res Treat 2019; 177:357-367. [DOI: 10.1007/s10549-019-05331-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
5
|
Newell M, Brun M, Field CJ. Treatment with DHA Modifies the Response of MDA-MB-231 Breast Cancer Cells and Tumors from nu/nu Mice to Doxorubicin through Apoptosis and Cell Cycle Arrest. J Nutr 2019; 149:46-56. [PMID: 30601995 DOI: 10.1093/jn/nxy224] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Docosahexaenoic acid (DHA) has been shown to reduce growth of breast cancer cells in vitro and in vivo; it may also benefit the action of cytotoxic cancer drugs. The mechanisms for these observations are not completely understood. Objectives We sought to explore how pretreatment of MDA-MB-231 breast cancer cells with DHA alters gene expression with doxorubicin (DOX) treatment and confirm that feeding DHA to tumor-bearing nu/nu mice improves the efficacy of DOX. Methods MDA-MB-231 cells were subjected to 4 conditions: a control mixture of 40 μM linoleic and 40 μM oleic acid (OALA), DHA (60 μM plus OALA), OALA DOX (0.41 μM), or DHA DOX (plus OALA) and assessed for effects on viability and function. Female nu/nu mice (6 wk old) bearing MDA-MB-231 tumors were randomly assigned to a nutritionally complete diet (20 g ± 2.8 g DHA/100 g diet) containing a polyunsaturated:saturated fat ratio of 0.5, with or without injections 2 times/wk of 5 mg DOX/kg for 4 wk. Results Microarray and protein analysis indicated that DHA DOX cells, compared with OALA DOX, had upregulated expression of apoptosis genes, Caspase-10 (1.3-fold), Caspase-9 (1.4-fold), and Receptor (TNFRSF)-interacting serine-threonine kinase 1 (RIPK1) (1.2-fold), while downregulating cell cycle genes, Cyclin B1 (-2.1-fold), WEE1 (-1.6-fold), and cell division cycle 25 homolog C (CDC25C) (-1.8-fold) (P < 0.05). DHA DOX-treated mice had 50% smaller tumors than control mice (P < 0.05). Analysis of proapoptotic proteins from tumors of DHA DOX mice showed increased Caspase-10 (by 68%) and BH3 interacting domain death agonist (Bid) (by 50%), decreased B-cell CLL/lymphoma 2 (BCL2) (by 24%), and decreased cell cycle proteins Cyclin B1 and Cdc25c (both by 42%), compared with control mice (P < 0.05). Conclusions Supplementation with DHA facilitates the action of DOX in MDA-MB-231 cells and in nu/nu mice, which may occur via amplification of the effect of DOX on apoptosis and cell cycle genes.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miranda Brun
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Monaco CMF, Proudfoot R, Miotto PM, Herbst EAF, MacPherson REK, Holloway GP. α-linolenic acid supplementation prevents exercise-induced improvements in white adipose tissue mitochondrial bioenergetics and whole-body glucose homeostasis in obese Zucker rats. Diabetologia 2018; 61:433-444. [PMID: 28965129 DOI: 10.1007/s00125-017-4456-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS While the underlying mechanisms in the development of insulin resistance remain inconclusive, metabolic dysfunction in both white adipose tissue (WAT) and skeletal muscle have been implicated in the process. Therefore, we investigated the independent and combined effects of α-linolenic acid (ALA) supplementation and exercise training on whole-body glucose homeostasis and mitochondrial bioenergetics within the WAT and skeletal muscle of obese Zucker rats. METHODS We randomly assigned obese Zucker rats to receive a control diet alone or supplemented with ALA and to remain sedentary or undergo exercise training for 4 weeks (CON-Sed, ALA-Sed, CON-Ex and ALA-Ex groups). Whole-body glucose tolerance was determined in response to a glucose load. Mitochondrial content and bioenergetics were examined in skeletal muscle and epididymal WAT (eWAT). Insulin sensitivity and cellular stress were assessed by western blot. RESULTS Exercise training independently improved whole-body glucose tolerance as well as insulin-induced signalling in muscle and WAT. However, the consumption of ALA during exercise training prevented exercise-mediated improvements in whole-body glucose tolerance. ALA consumption did not influence exercise-induced adaptations within skeletal muscle, insulin sensitivity and mitochondrial bioenergetics. In contrast, within eWAT, ALA supplementation attenuated insulin signalling, decreased mitochondrial respiration and increased the fraction of electron leak to reactive oxygen species (ROS). CONCLUSIONS/INTERPRETATION These findings indicate that, in an obese rodent model, consumption of ALA attenuates the favourable adaptive changes of exercise training within eWAT, which consequently impacts whole-body glucose homeostasis. The direct translation to humans, however, remains to be determined.
Collapse
Affiliation(s)
- Cynthia M F Monaco
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada
| | - Ross Proudfoot
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada
| | - Eric A F Herbst
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada
| | | | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
7
|
Barbeau PA, Holloway TM, Whitfield J, Baechler BL, Quadrilatero J, van Loon LJC, Chabowski A, Holloway GP. α-Linolenic acid and exercise training independently, and additively, decrease blood pressure and prevent diastolic dysfunction in obese Zucker rats. J Physiol 2017; 595:4351-4364. [PMID: 28345766 DOI: 10.1113/jp274036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS α-linolenic acid (ALA) and exercise training both attenuate hyperlipidaemia-related cardiovascular derangements, however, there is a paucity of information pertaining to their mechanisms of action when combined. We investigated both the independent and combined effects of exercise training and ALA consumption in obese Zucker rats, aiming to determine the potential for additive improvements in cardiovascular function. ALA and exercise training independently improved cardiac output, end-diastolic volume, left ventricular fibrosis and mean blood pressure following a 4 week intervention. Combining ALA and endurance exercise yielded greater improvements in these parameters, independent of changes in markers of oxidative stress or endogenous anti-oxidants. We postulate that divergent mechanisms of action may explain these changes: ALA increases peripheral vasodilation, and exercise training stimulates angiogenesis. ABSTRACT Although α-linolenic acid (ALA) and endurance exercise training independently attenuate hyperlipidaemia-related cardiovascular derangements, there is a paucity of information pertaining to their mechanisms of action and efficacy when combined as a preventative therapeutic approach. Therefore, we used obese Zucker rats to investigate the independent and combined effects of these interventions on cardiovascular disease. Specifically, animals were randomly assigned to one of the following groups: control diet-sedentary, ALA supplemented-sedentary, control diet-exercise trained or ALA supplemented-exercise trained. Following a 4 week intervention, although the independent and combined effects of ALA and exercise reduced (P < 0.05) the serum free/esterified cholesterol ratio, only the ALA supplemented-exercise trained animals displayed a reduction in the content of both serum free and esterified cholesterol. Moreover, although ALA and endurance training individually increased cardiac output, stroke volume and end-diastolic volume, as well as reduced left ventricle fibrosis, mean blood pressure and total peripheral resistance, these responses were all greater following the combined intervention (ALA supplemented-exercise trained). These effects occurred independent of changes in oxidative phosphorylation proteins, markers of oxidative stress or endogenous anti-oxidant capacity. We propose that the beneficial effects of a combined intervention occur as a result of divergent mechanisms of action elicited by ALA and endurance exercise because only exercise training increased the capillary content in the left ventricle and skeletal muscle, and tended to decrease protein carbonylation in the left ventricle (P = 0.06). Taken together, our data indicate that combining ALA and endurance exercise provides additional improvements in cardiovascular disease risk reduction compared to singular interventions in the obese Zucker rat.
Collapse
Affiliation(s)
- Pierre-Andre Barbeau
- Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tanya M Holloway
- Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, The Netherlands
| | - Jamie Whitfield
- Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Brittany L Baechler
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, The Netherlands
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Graham P Holloway
- Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Immune dysfunction and increased oxidative stress state in diet-induced obese mice are reverted by nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids. Eur J Nutr 2017; 57:1123-1135. [DOI: 10.1007/s00394-017-1395-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/02/2017] [Indexed: 12/28/2022]
|
9
|
Gandra JR, Barletta RV, Mingoti RD, Verdurico LC, Freitas JE, Oliveira LJ, Takiya CS, Kfoury JR, Wiltbank MC, Renno FP. Effects of whole flaxseed, raw soybeans, and calcium salts of fatty acids on measures of cellular immune function of transition dairy cows. J Dairy Sci 2016; 99:4590-4606. [PMID: 27060809 DOI: 10.3168/jds.2015-9974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2023]
Abstract
The objective of the current study was to evaluate the effects of supplemental n-3 and n-6 fatty acid (FA) sources on cellular immune function of transition dairy cows. Animals were randomly assigned to receive 1 of 4 diets: control (n=11); whole flaxseed (n-3 FA source; n=11), 60 and 80g/kg of whole flaxseed [diet dry matter (DM) basis] during pre- and postpartum, respectively; whole raw soybeans (n-6 FA source; n=10), 120 and 160g/kg of whole raw soybeans (diet DM basis) during pre- and postpartum, respectively; and calcium salts of unsaturated FA (Megalac-E, n-6 FA source; n=10), 24 and 32g/kg of calcium salts of unsaturated FA (diet DM basis) during pre- and postpartum, respectively. Supplemental FA did not alter DM intake and milk yield but increased energy balance during the postpartum period. Diets containing n-3 and n-6 FA sources increased phagocytosis capacity of leukocytes and monocytes and phagocytosis activity of monocytes. Furthermore, n-3 FA source increased phagocytic capacity of leukocytes and neutrophils and increased phagocytic activity in monocytes and neutrophils when compared with n-6 FA sources. Supplemental FA effects on adaptive immune system included increased percentage of T-helper cells, T-cytotoxic cells, cells that expressed IL-2 receptors, and CD62 adhesion molecules. The results of this study suggest that unsaturated FA can modulate innate and adaptive cellular immunity and trigger a proinflammatory response. The n-3 FA seems to have a greater effect on phagocytic capacity and activity of leukocytes when compared with n-6 FA.
Collapse
Affiliation(s)
- J R Gandra
- Department of Animal Nutrition and Production, University of Sao Paulo, 13635-900, Pirassununga, Brazil
| | - R V Barletta
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706, Brazil
| | - R D Mingoti
- Department of Animal Nutrition and Production, University of Sao Paulo, 13635-900, Pirassununga, Brazil
| | - L C Verdurico
- Department of Animal Nutrition and Production, University of Sao Paulo, 13635-900, Pirassununga, Brazil
| | - J E Freitas
- Department of Animal Nutrition and Production, University of Sao Paulo, 13635-900, Pirassununga, Brazil
| | - L J Oliveira
- Department of Animal Sciences, University of Florida, Gainesville 110910, Brazil
| | - C S Takiya
- Department of Animal Nutrition and Production, University of Sao Paulo, 13635-900, Pirassununga, Brazil
| | - J R Kfoury
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, 05508-270, São Paulo, Brazil
| | - M C Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706, Brazil
| | - F P Renno
- Department of Animal Nutrition and Production, University of Sao Paulo, 13635-900, Pirassununga, Brazil; Bursar 1-C of National Council for Technological, 71605-001, Brasilia, Brazil.
| |
Collapse
|
10
|
Soh AZ, Chee CBE, Wang YT, Yuan JM, Koh WP. Dietary Cholesterol Increases the Risk whereas PUFAs Reduce the Risk of Active Tuberculosis in Singapore Chinese. J Nutr 2016; 146:1093-100. [PMID: 27075903 PMCID: PMC4841926 DOI: 10.3945/jn.115.228049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Experimental studies suggest that cholesterol enhances the intracellular survival of Mycobacterium tuberculosis, whereas marine ω-3 (n-3) and ω-6 (n-6) fatty acids (FAs) may modulate responses to M. tuberculosis in macrophage and animal models. However, there are no epidemiologic data from prospective studies of the relation between dietary cholesterol and FAs and the risk of developing active tuberculosis. OBJECTIVE We aimed to investigate the relation between dietary intake of cholesterol and FAs and the risk of active tuberculosis in a prospective cohort in Singapore. METHODS We analyzed data from the Singapore Chinese Health Study, a cohort of 63,257 Chinese men and women aged 45-74 y recruited between 1993 and 1998. Dietary intake of cholesterol and FAs was determined with the use of a validated food-frequency questionnaire. Incident cases of active tuberculosis were identified via linkage with the nationwide tuberculosis registry. Analysis was performed with the use of Cox proportional hazards models. RESULTS As of 31 December 2013, 1136 incident cases of active tuberculosis were identified. Dietary cholesterol was positively associated with an increased risk of active tuberculosis in a dose-dependent manner. Compared with the lowest intake quartile, the HR was 1.22 (95% CI: 1.00, 1.47) for the highest quartile (P-trend = 0.04). Conversely, dietary marine n-3 and n-6 FAs were associated with a reduced risk of active tuberculosis in a dose-dependent manner. Compared with the lowest quartile, the HR for the highest intake quartile was 0.77 (95% CI: 0.62, 0.95) for marine n-3 FAs (P-trend = 0.01) and 0.82 (95% CI: 0.68, 0.98) for n-6 FAs (P-trend = 0.03). There was no association with saturated, monounsaturated, or plant-based n-3 FA intake. CONCLUSION Dietary intake of cholesterol may increase the risk of active tuberculosis, whereas marine n-3 and n-6 FAs may reduce the risk of active tuberculosis in the Chinese population.
Collapse
Affiliation(s)
- Avril Z Soh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Cynthia BE Chee
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Yee-Tang Wang
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, and Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; and
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
11
|
Klek S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. J Clin Med 2016; 5:E34. [PMID: 26959070 PMCID: PMC4810105 DOI: 10.3390/jcm5030034] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Intravenous lipid emulsions are an essential component of parenteral nutrition regimens. Originally employed as an efficient non-glucose energy source to reduce the adverse effects of high glucose intake and provide essential fatty acids, lipid emulsions have assumed a larger therapeutic role due to research demonstrating the effects of omega-3 and omega-6 polyunsaturated fatty acids (PUFA) on key metabolic functions, including inflammatory and immune response, coagulation, and cell signaling. Indeed, emerging evidence suggests that the effects of omega-3 PUFA on inflammation and immune response result in meaningful therapeutic benefits in surgical, cancer, and critically ill patients as well as patients requiring long-term parenteral nutrition. The present review provides an overview of the mechanisms of action through which omega-3 and omega-6 PUFA modulate the immune-inflammatory response and summarizes the current body of evidence regarding the clinical and pharmacoeconomic benefits of intravenous n-3 fatty acid-containing lipid emulsions in patients requiring parenteral nutrition.
Collapse
Affiliation(s)
- Stanislaw Klek
- Stanley Dudrick's Memorial Hospital, General Surgery Unit, Skawina 32-050, Poland.
| |
Collapse
|
12
|
Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats. Nutrients 2015; 7:8802-17. [PMID: 26506385 PMCID: PMC4632453 DOI: 10.3390/nu7105433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7), a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains.
Collapse
|
13
|
Subedi K, Yu HM, Newell M, Weselake RJ, Meesapyodsuk D, Qiu X, Shah S, Field CJ. Stearidonic acid-enriched flax oil reduces the growth of human breast cancer in vitro and in vivo. Breast Cancer Res Treat 2014; 149:17-29. [DOI: 10.1007/s10549-014-3212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/14/2014] [Indexed: 12/24/2022]
|
14
|
Xie WY, Hou XY, Yan FB, Sun GR, Han RL, Kang XT. Effect of γ-aminobutyric acid on growth performance and immune function in chicks under beak trimming stress. Anim Sci J 2012; 84:121-9. [PMID: 23384353 DOI: 10.1111/j.1740-0929.2012.01051.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This experiment was undertaken to examine the effect of beak trimming stress on the growth performance and immune system, and to consider possible roles of γ-aminobutyric acid (GABA) in this stress response. Results showed that body weight, feed intake and relative spleen weight were significantly increased by GABA at 80 mg/kg (P < 0.05) under beak trimming stress, whereas the relative organ weights of the bursa of fabricius and thymus were not significantly affected (P > 0.05). Adrenocorticotropic hormone concentration in serum was highest for chicks fed the GABA-deficient water and was significantly decreased by the supplement of GABA at days 1, 3 and 5 after beak trimming (P < 0.05). The supplement of GABA significantly increased the proportions of CD4(+) and CD8(+) lymphocytes, especially at the dose of 60 mg/kg (P < 0.05). The levels of interleukin (IL)-1β, lipopolysaccharide-induced tumor necrosis factor-α and IL-6 in serum were significantly decreased by GABA at 80 mg/kg (P < 0.05). All the three cytokines expressed in the spleen were significantly decreased by GABA at 80 mg/kg when birds were under beak trimming stress (P < 0.05). It is concluded that beak trimming suppressed the immune response of chicks, whereas the immune response of chicks could be improved by GABA supplementation.
Collapse
Affiliation(s)
- Wan-ying Xie
- Department of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Research Center of Breeding Resources for Poultry, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
15
|
n-3 Fatty acids inhibit transcription of human IL-13: implications for development of T helper type 2 immune responses. Br J Nutr 2012; 109:990-1000. [PMID: 22849952 DOI: 10.1017/s0007114512002917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fish oil supplementation during pregnancy has been associated with lower levels of cord blood IL-13, suggesting that the administration of n-3 fatty acids may attenuate the development of allergic disease. The present study aimed to investigate the mechanism by which n-3 fatty acid administration influences the production of IL-13. Pregnant BALB/c mice were fed nutritionally complete high-fat diets (15 %, w/w) with an n-3 fatty acid-enriched (DHA 1 %, w/w) or control diet (0 % DHA) immediately following delivery. Pups were exposed during suckling and weaned to the maternal diet for the remainder of the study. The production of IL-13, IL-4, IL-10 and interferon-γ from the splenocytes of ovalbumin (ova)-sensitised animals was assessed following in vitro ova stimulation or unstimulated conditions. Human T helper type 2 (Th2) cells were mitogen-stimulated in the presence or absence of DHA (10 μM) and assessed for IL-13 and IL-4 expression using intracellular flow cytometry. The influence on transcriptional activation was studied using a human IL-13 promoter reporter construct and electromobility shift assay. Ova-activated splenocytes from DHA-fed mice produced less IL-13 (57.2 (se 21.7) pg/ml) and IL-4 (7.33 (SE 3.4) pg/ml) compared with cells from the animals fed the control diet (161.5 (SE 45.0), P< 0.05; 33.2 (SE 11.8), P< 0.05). In vitro, DHA inhibited the expression of IL-13 protein from human Th2 cells as well as transcriptional activation and binding of the transcription factors cyclic AMP response element binding and activating transcription factor 2 to the human IL-13 promoter. These data indicate the potential of n-3 fatty acids to attenuate IL-13 expression, and suggest that they may subsequently reduce allergic sensitisation and the development of allergic disease.
Collapse
|
16
|
Yang X, Yao J, He X, Yang Y, Zhang B, Yuan J, Guo Y. Dietary oils modulate T-cell differentiation and IL-2 bioactivity of intestinal mucosal lymphocytes in chickens. FOOD AGR IMMUNOL 2011. [DOI: 10.1080/09540105.2011.553670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Wang Y, Jacome-Sosa MM, Ruth MR, Goruk SD, Reaney MJ, Glimm DR, Wright DC, Vine DF, Field CJ, Proctor SD. Trans-11 vaccenic acid reduces hepatic lipogenesis and chylomicron secretion in JCR:LA-cp rats. J Nutr 2009; 139:2049-54. [PMID: 19759243 DOI: 10.3945/jn.109.109488] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trans-11 vaccenic acid (VA) is the predominant trans isomer in ruminant fat and a major precursor to the endogenous synthesis of cis9,trans11-conjugated linoleic acid in humans and animals. We have previously shown that 3-wk VA supplementation has a triglyceride (TG)-lowering effect in a rat model of dyslipidemia, obesity, and metabolic syndrome (JCR:LA-cp rats). The objective of this study was to assess the chronic effect (16 wk) of VA on lipid homeostasis in both the liver and intestine in obese JCR:LA-cp rats. Plasma TG (P < 0.001), total cholesterol (P < 0.001), LDL cholesterol (P < 0.01), and nonesterified fatty acid concentrations, as well as the serum haptoglobin concentration, were all lower in obese rats fed the VA diet compared with obese controls (P < 0.05). In addition, there was a decrease in the postprandial plasma apolipoprotein (apo)B48 area under the curve (P < 0.05) for VA-treated obese rats compared with obese controls. The hepatic TG concentration and the relative abundance of fatty acid synthase and acetyl-CoA carboxylase proteins were all lower (P < 0.05) in the VA-treated group compared with obese controls. Following acute gastrointestinal infusion of a VA-triolein emulsion in obese rats that had been fed the control diet for 3 wk, the TG concentration was reduced by 40% (P < 0.05) and the number of chylomicron (CM) particles (apoB48) in nascent mesenteric lymph was reduced by 30% (P < 0.01) relative to rats infused with a triolein emulsion alone. In conclusion, chronic VA supplementation significantly improved dyslipidemia in both the food-deprived and postprandial state in JCR:LA-cp rats. The appreciable hypolipidemic benefits of VA may be attributed to a reduction in both intestinal CM and hepatic de novo lipogenesis pathways.
Collapse
Affiliation(s)
- Ye Wang
- Alberta Institute for Human Nutrition, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jordao L, Lengeling A, Bordat Y, Boudou F, Gicquel B, Neyrolles O, Becker PD, Guzman CA, Griffiths G, Anes E. Effects of omega-3 and -6 fatty acids on Mycobacterium tuberculosis in macrophages and in mice. Microbes Infect 2008; 10:1379-86. [DOI: 10.1016/j.micinf.2008.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 11/26/2022]
|
19
|
Leandro CG, Castro RMD, Nascimento E, Pithon-Curi TC, Curi R. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico. REV BRAS MED ESPORTE 2007. [DOI: 10.1590/s1517-86922007000500012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O treinamento físico, de intensidade moderada, melhora os sistemas de defesa, enquanto que o treinamento intenso causa imunossupressão. Os mecanismos subjacentes estão associados à comunicação entre os sistemas nervoso, endócrino e imunológico, sugerindo vias autonômicas e modulação da resposta imune. Células do sistema imune, quando expostas a pequenas cargas de estresse, desenvolvem mecanismo de tolerância. Em muitos tecidos tem-se demonstrado que a resposta a situações agressivas parece ser atenuada pelo treinamento físico aplicado previamente, isto é, o treinamento induz tolerância para situações agressivas/estressantes. Nesta revisão são relatados estudos sugerindo os mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico.
Collapse
|
20
|
Hill AM, Worthley C, Murphy KJ, Buckley JD, Ferrante A, Howe PRC. n-3 Fatty acid supplementation and regular moderate exercise: differential effects of a combined intervention on neutrophil function. Br J Nutr 2007; 98:300-9. [PMID: 17391558 DOI: 10.1017/s0007114507707286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CVD is associated with a cellular inflammatory/immune response.n-3 PUFA and moderate aerobic exercise independently alter cytokine production and leucocyte function. There is limited evidence for the combined effect of these treatments on immune function, particularly in patients with risk factors for CVD. We hypothesised that exercise would enhance the anti-inflammatory effects ofn-3 PUFA. In a randomised, placebo-controlled study, fifty volunteers were allocated double-blind to consume either sunflower oil (6 g/d, placebo) or DHA-rich fish oil (6 g/d; about 2 gn-3 PUFA; 1·6 g DHA /d) for 12 weeks. Volunteers were further randomised to undertake regular exercise (walking 3 d/week for 45 min at 75 % of maximum heart rate) or maintain their usual physical activity for 12 weeks. Immune functions were assessed in blood taken initially and after 12 weeks. There was no effect on cytokine production by T cells and monocytes. Superoxide anion production from stimulated blood neutrophils was decreased by fish oil (19·5 (sem8·5) %,P = 0·016) but not by exercise, and this change was negatively correlated with the incorporation of DHA into erythrocytes (r–0·385,P = 0·047). Participation in regular exercise maintained neutrophil bactericidal activity, which decreased in non-exercising subjects (2·9 (sem0·7) %,P = 0·013). Neutrophil chemotaxis and adherence were not significantly affected by exercise, oil, or the combination of the two. Thus the combination of moderate exercise and fish-oil supplementation, which reduces cardiovascular risk, may also help to counteract inflammation.
Collapse
Affiliation(s)
- Alison M Hill
- Nutritional Physiology Research Center, University of South Australia, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Hillyer LM, Woodward B. A comparison of the capacity of six cold-pressed plant oils to support development of acquired immune competence in the weanling mouse: superiority of low-linoleic-acid oils. Br J Nutr 2007. [DOI: 10.1079/bjn2002602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this investigation was to compare, at several levels of intake, the capacity of diverse cold-pressed plant oils to support development of acquired immune competence assessed in vivo in the weanling mouse. Safflower, maize, soyabean, rapeseed, flaxseed and olive oils were selected to represent widely differing 18: 1n-9, 18: 2n-6 and 18: 3n-3 contents, and each oil was fed at three dietary levels (40, 80 and 160 g/kg) as the exclusive source of fat. C57BL/6J mice, ten males and ten females, had free access to each diet for 28 d beginning at 19 d of age. The primary serum haemagglutinin response to sheep red blood cells and the primary cutaneous delayed hypersensitivity response to dinitrochlorobenzene were used to assess humoral and cell-mediated competence respectively, on day 28. A zero-time control group, assessed immunologically at 19 d of age, was also included (n 32). Independently of dietary oil level, flaxseed, rapeseed, olive and soyabean oils supported development of a more vigorous antibody response than safflower (a useful point of reference, being rich in 18: 2n-6 but low in 18: 1n-9 and 18: 3n-3), whereas only flaxseed oil supported development of cell-mediated responsiveness exceeding that of safflower-fed mice. Independently of oil type, development of both immunological indices correlated negatively with intake of 18: 2n-6, and development of humoral competence varied inversely with dietary oil level. A low content of 18: 2n-6, perhaps less than 20 g/100 g fatty acids, appears important to the capacity of a plant oil to support development of acquired immune competence in the young.
Collapse
|
22
|
Yang X, Guo Y. Modulation of intestinal mucosal immunity by dietary polyunsaturated fatty acids in chickens. FOOD AGR IMMUNOL 2006. [DOI: 10.1080/09540100600918169] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
23
|
Goel V, Lovlin R, Chang C, Slama JV, Barton R, Gahler R, Bauer R, Goonewardene L, Basu TK. A proprietary extract from the echinacea plant (Echinacea purpurea) enhances systemic immune response during a common cold. Phytother Res 2006; 19:689-94. [PMID: 16177972 DOI: 10.1002/ptr.1733] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a previous paper, it was reported that Echinilin (Factors R & D Technologies, Burnaby, British Columbia, Canada) a formulation prepared from freshly harvested Echinacea purpurea plants and standardized on the basis of three known active components (alkamides, cichoric acid and polysaccharides) is effective for the treatment of a naturally acquired common cold. However, the mechanism by which this effect is achieved remains unknown. In the present study, Echinilin or placebo were administered to volunteers at the onset of their cold for a period of 7 days, with eight doses (5 mL/dose) on day 1 and three doses on subsequent days. Fasting blood samples were obtained before and during their colds. The decrease in total daily symptomatic score was more evident in the echinacea group than in the placebo group. These effects of echinacea were associated with a significant and sustained increase in the number of circulating total white blood cells, monocytes, neutrophils and NK cells. In the later part of the cold, the echinacea treatment suppressed the cold-related increase in superoxide production by the neutrophils. These results suggest that Echinilin, by enhancing the non-specific immune response and eliciting free radical scavenging properties, may have led to a faster resolution of the cold symptoms.
Collapse
Affiliation(s)
- Vinti Goel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Predy GN, Goel V, Lovlin RE, Basu TK. Immune Modulating Effects of Daily Supplementation of COLD-fX (a Proprietary Extract of North American Ginseng) in Healthy Adults. J Clin Biochem Nutr 2006. [DOI: 10.3164/jcbn.39.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Foley JM, Stark KD, Zajchowski S, Meckling KA. Fatty acids and exercise affect glucose transport but not tumour growth in F-344 rats. ACTA ACUST UNITED AC 2005; 29:604-22. [PMID: 15507696 DOI: 10.1139/h04-039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effect of diet and exercise on tumour growth, and the effect of dietary fatty acids on glucose uptake. Male Fischer 344 rats were divided into 4 dietary groups and fed for 2 weeks. The diets were 5% (wt/wt) safflower oil, 10% safflower oil, 5% docosahexaenoic acid(DHA)-rich, and 10% DHA-rich. On Day 14 the animals were injected with rat fibrosarcoma tumour cells. After 3 days of tumour growth the animals in each diet group were divided into exercise and nonexercise groups. Exercise was achieved by voluntary wheel running. Dietary intake, body weight, tumour growth, and distance run were determined daily. Two weeks later the animals were euthanized and the following tissues were dissected out: tumour, liver, heart, epididymal fat pads, gastrocnemius, epitrochlearis, and soleus muscles. Glucose transport experiments were performed on the epitrochlearis and soleus muscles whereas phospholipid analysis was completed on the gastrocnemius muscle. We observed no effect of either diet or exercise on tumour growth. The glucose transport data demonstrates that short-term voluntary running can cause increased insulin-sensitive transport and that DHA may inhibit transport. DHA-containing diets were associated with increased oxidation products TBARM. In conclusion, exercise benefits on glucose disposal are maintained in tumour-bearing animals but are influenced by fat content and composition. High DHA diets may also increase oxidative damage in muscle through enhanced TBARM production.
Collapse
Affiliation(s)
- Jennifer M Foley
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON
| | | | | | | |
Collapse
|
26
|
Field CJ, Schley PD. Evidence for potential mechanisms for the effect of conjugated linoleic acid on tumor metabolism and immune function: lessons from n-3 fatty acids. Am J Clin Nutr 2004; 79:1190S-1198S. [PMID: 15159256 DOI: 10.1093/ajcn/79.6.1190s] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Conjugated linoleic acid (CLA) and the long-chain polyunsaturated n-3 fatty acids have been shown in vivo and in vitro to reduce tumor growth. Tumor growth could occur by slowing or stopping cell replication (by interfering with transition through the cell cycle), increasing cell death (via necrosis and/or apoptosis), or both. The anticancer effects of fatty acids, shown in vivo, could also be mediated by effects on the host's immune system. Although it is widely recognized that n-3 fatty acids can alter immune and inflammatory responses, considerably less is known about CLA. For n-3 fatty acids, several candidate mechanisms have been proposed for their immune effects, including changes in 1) membrane structure and composition, 2) membrane-mediated functions and signals (eg, proteins, eicosanoids), 3) gene expression, and 4) immune development. Considerable work has been done that shows the potential importance of CLA as an anticancer treatment; however, many questions remain as to how this effect occurs. This review summarizes the CLA and cancer literature and then uses the evidence for the anticancer immune and tumor properties of the long-chain n-3 fatty acids docosahexaenoic and eicosapentaenoic acids to suggest future research directions for mechanistic studies on CLA and cancer.
Collapse
Affiliation(s)
- Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
27
|
Selvaraj RK, Cherian G. Dietaryn-3 fatty acids reduce the delayed hypersensitivity reaction and antibody production more thann-6 fatty acids in broiler birds. EUR J LIPID SCI TECH 2004. [DOI: 10.1002/ejlt.200300848] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Choudhry MA, Haque F, Khan M, Fazal N, Al-Ghoul W, Ravindranath T, Gamelli RL, Sayeed MM. Enteral nutritional supplementation prevents mesenteric lymph node T-cell suppression in burn injury. Crit Care Med 2003; 31:1764-70. [PMID: 12794418 DOI: 10.1097/01.ccm.0000063053.31485.df] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the effects of an immune-enhancing diet supplemented with glutamine, arginine, fish oil, and dietary nucleotides on mesenteric lymph node T-cell functional disturbances encountered after burn injury in rats. DESIGN A prospective animal study. SETTING University medical center research laboratory. SUBJECTS Adult male Sprague-Dawley rats. INTERVENTIONS Rats received a 30%, total body surface, full-thickness burn. Burn-injury rats received the IMPACT diet supplemented with glutamine, arginine, fish oil, and nucleotides or arginine, fish oil, and nucleotides, or an isocaloric/isonitrogenous diet without supplementation with glutamine, arginine, fish oil, or nucleotides. MEASUREMENTS AND MAIN RESULTS Two days after injury, we found a significant decrease in the proliferation and interleukin-2 production by mesenteric lymph node T cells derived from rats fed on conventional chow compared with sham rats. The burn-related suppression of mesenteric lymph node T-cell proliferation and interleukin-2 production was prevented when the rats were fed on a high-protein diet rich in glutamine, arginine, fish oil, and nucleotides. We found that the immunostimulatory effects of the enriched diet are dependent on the presence of glutamine, arginine, fish oil, and nucleotides as feeding of rats on the isocaloric/isonitrogenous diet deficient in glutamine, arginine, fish oil, and nucleotides did not prevent the burn-related suppression of mesenteric lymph node T-cell dysfunction. Finally, our studies suggested that immunostimulatory effects of the diet are mediated by prostaglandin E(2) regulation of T-cell activation signaling molecule P59fyn. CONCLUSION These results suggest that a diet rich in arginine, fish oil, and nucleotides, with and without glutamine, can effectively prevent T-cell dysfunction encountered after burn injury.
Collapse
Affiliation(s)
- Mashkoor A Choudhry
- Critical Care Research Labs, Burn and Shock Trauma Institute, Department of Surgery, Loyola University/Chicago Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Papakonstantinou E, Ryan DH, Harris RBS. Dietary fish oil does not protect rats exposed to restraint or sleep deprivation stress. Physiol Behav 2003; 78:759-65. [PMID: 12782233 DOI: 10.1016/s0031-9384(03)00080-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been suggested that fish oil (FO) prevents weight loss caused by physiological stress such as cancer, injury, or cardiovascular disorders. Previously, we observed that a high-fat diet containing corn and coconut oil exaggerated weight loss caused by the mixed physiological and psychological stress of repeated restraint (RR). This experiment tested the effects of a high-fat diet containing FO as the predominant lipid source in rats exposed to the mixed physiological and psychological stress of either RR or sleep deprivation (SD). FO did not prevent stress-induced hypophagia or weight loss in RR or SD rats but exaggerated the negative effects of stress on body weight in SD rats by promoting loss of lean body mass. RR caused a reduction in body fat content irrespective of dietary treatment. In SD rats, both stress and FO independently reduced body fat mass. FO did not have any effect on adrenal and thymus weights during RR or SD and did not influence corticosterone levels after 1 h of RR or after 48 or 96 h of SD. In conclusion, our results suggest that high levels of dietary FO do not improve the response to stress in rats exposed to mixed stressors.
Collapse
Affiliation(s)
- Emilia Papakonstantinou
- Department of Foods and Nutrition, University of Georgia, Dawson Hall, Athens, GA 30602, USA.
| | | | | |
Collapse
|
30
|
Lima TM, Kanunfre CC, Pompéia C, Verlengia R, Curi R. Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis. Toxicol In Vitro 2002; 16:741-7. [PMID: 12423658 DOI: 10.1016/s0887-2333(02)00095-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The fatty acids have an important role in the control of leukocyte metabolism and function. Higher concentrations of certain fatty acids, particularly polyunsaturated fatty acids (PUFAs) and volatile fatty acids, can cause cell death via apoptosis or, when concentrations are greater, necrosis. In this study, we determined the highest concentrations of various fatty acids that are non-toxic to two human leukemic cell lines, Jurkat (T-lymphocyte) and Raji (B-lymphocyte). Toxicity was evaluated by either loss of membrane integrity and/or DNA fragmentation using flow cytometric analysis. There were no remarkable differences for the toxicity of the fatty acids between B and T cell lines. The cytotoxicity of the fatty acids was related to the carbon chain length and number of double bonds: docosahexaenoic acid=eicosapentaenoic acid=arachidonic acid=gamma-linolenic acid=stearic acid=palmitic acid > linoleic acid=palmitoleic acid > vacenic acid=lauric acid > oleic acid > elaidic acid > capric acid > butyric acid > caprylic acid=caproic acid=propionic acid. The proportion of cells undergoing apoptosis or necrosis, induced by the fatty acids tested, remains to be investigated.
Collapse
Affiliation(s)
- T M Lima
- Thais Martins de Lima, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900, Butantã, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
31
|
Robinson LE, Clandinin MT, Field CJ. The role of dietary long-chain n-3 fatty acids in anti-cancer immune defense and R3230AC mammary tumor growth in rats: influence of diet fat composition. Breast Cancer Res Treat 2002; 73:145-60. [PMID: 12088117 DOI: 10.1023/a:1015261111605] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We determined if long-chain n-3 fatty acids fed as part of a: (1) high polyunsaturated fat diet (currently recommended by several health agencies) or (2) low polyunsaturated fat diet (representative of that consumed by a large segment of the North American population) improved antitumor immune defense and inhibited tumor growth. Rats were fed one of four semi-purified diets (20% w/w fat) for 21 days pre- and 17 days post- R3230AC mammary tumor implantation. The polyunsaturated to saturated fatty acid (P/S) ratio was either 1 (high P/S diet) or 0.35 (low P/S diet). At each P/S ratio, diets provided long-chain n-3 fatty acids at 0 or 5% w/w of total fat. Long-chain n-3 fatty acids fed in a high P/S diet did not affect tumor growth or host immune responses. In contrast, feeding long-chain n-3 fatty acids in a low P/S diet increased natural killer cell cytotoxicity, splenocyte nitric oxide and interleukin-2 production, and the proportion of activated (CD25+) CD8+ and CD28+ cells, but did not significantly inhibit tumor growth. For both P/S diets, tumor cells from rats fed long-chain n-3 fatty acids had a higher n-3 content and n-3/n-6 ratio in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Furthermore, the magnitude of increase in n-3 fatty acid incorporation into tumor phospholipids was greater when fed in a low P/S diet. We demonstrated that the dietary P/S ratio significantly influences the effect of long-chain n-3 fatty acids on host immune responses and n-3 fatty acid incorporation into tumor cells. These findings warrant further consideration when designing dietary recommendations.
Collapse
Affiliation(s)
- Lindsay E Robinson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
32
|
Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Ian R. Johnson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Patricia D. Schley
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
33
|
Modèles animaux pour les études métaboliques et nutritionnelles lors de la croissance tumorale. NUTR CLIN METAB 2001. [DOI: 10.1016/s0985-0562(01)00082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Avula CP, Muthukumar AR, Zaman K, McCarter R, Fernandes G. Inhibitory effects of voluntary wheel exercise on apoptosis in splenic lymphocyte subsets of C57BL/6 mice. J Appl Physiol (1985) 2001; 91:2546-52. [PMID: 11717217 DOI: 10.1152/jappl.2001.91.6.2546] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two-month-old mice were placed in cages with (Ex) or without exercise running wheels with free access to the wheel 24 h/day for 10 mo. An equal amount of food for both groups was provided daily. Ex mice ran an average of 33.67 km/wk initially, and exercise decreased gradually with age. Ex mice had gained an average of 43.5% less body weight at the end of the experiment. Although serum lipid peroxides were not altered by exercise, superoxide dismutase and glutathione peroxidase activities in serum were significantly increased. Flow cytometric analysis of spleen cells revealed an increased percentage of CD8+ T cells and a decreased percentage of CD19+ B cells in Ex mice (P < 0.05). Exercise decreased apoptosis in total splenocytes and CD4+ cells incubated with medium alone or with H(2)O(2), dexamethasone, tumor necrosis factor-alpha (TNF-alpha), or anti-CD3 monoclonal antibody (P < 0.05) and CD8+ cells with medium alone or with TNF-alpha (P < 0.05). Even though exercise did not alter the intracellular cytokines (TNF-alpha and interleukin-2) or Fas ligand, it did significantly lower interferon-gamma in CD4+ and CD8+ cells (P < 0.05). In summary, voluntary wheel exercise appears to decrease H(2)O(2)-induced apoptosis in immune cells as well as decrease interferon-gamma production.
Collapse
Affiliation(s)
- C P Avula
- Department of Medicine, Division of Clinical Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
35
|
Field CJ, Clandinin MT, Van Aerde JE. Polyunsaturated fatty acids and T-cell function: implications for the neonate. Lipids 2001; 36:1025-32. [PMID: 11724454 DOI: 10.1007/s11745-001-0813-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Infant survival depends on the ability to respond effectively and appropriately to environmental challenges. Infants are born with a degree of immunological immaturity that renders them susceptible to infection and abnormal dietary responses (allergies). T-lymphocyte function is poorly developed at birth. The reduced ability of infants to respond to mitogens may be the result of the low number of CD45RO+ (memory/antigen-primed) T cells in the infant or the limited ability to produce cytokines [particularly interferon-y, interleukin (IL)-4, and IL-10. There have been many important changes in optimizing breast milk substitutes for infants; however, few have been directed at replacing factors in breast milk that convey immune benefits. Recent research has been directed at the neurological, retinal, and membrane benefits of adding 20:4n-6 (arachidonic acid; AA) and 22:6n-3 (docosahexaenoic acid; DHA) to infant formula. In adults and animals, feeding DHA affects T-cell function. However, the effect of these lipids on the development and function of the infant's immune system is not known. We recently reported the effect of adding DHA + AA to a standard infant formula on several functional indices of immune development. Compared with standard formula, feeding a formula containing DHA + AA increased the proportion of antigen mature (CD45RO+) CD4+ cells, improved IL-10 production, and reduced IL-2 production to levels not different from those of human milk-fed infants. This review will briefly describe T-cell development and the potential immune effect of feeding long-chain polyunsaturated fatty acids to the neonate.
Collapse
Affiliation(s)
- C J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
36
|
Robinson LE, Clandinin MT, Field CJ. R3230AC rat mammary tumor and dietary long-chain (n-3) fatty acids change immune cell composition and function during mitogen activation. J Nutr 2001; 131:2021-7. [PMID: 11435524 DOI: 10.1093/jn/131.7.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Because anticancer immunity declines progressively with tumor growth, a major focus of current research in tumor immunology is the development of means to stimulate the host immune system. This study determined the effects of dietary long-chain (n-3) fatty acids and tumor burden on immune cell phospholipid composition and membrane-mediated immune defense in rats implanted with the R3230AC mammary adenocarcinoma. Fischer 344 rats (145 +/- 2 g) were fed one of two semipurified diets (20 g/100 g fat) for 21 d before and 17 d after tumor implantation. Diets provided long-chain (n-3) fatty acids at 0 or 50 g/kg of total fat. Mammary tumor growth was 31% lower (P = 0.1) in rats fed long-chain (n-3) fatty acids. Dietary long-chain (n-3) fatty acids had beneficial effects on several host immune defenses, including activation of CD8(+) T cells and type-1 cytokine (interferon-gamma and tumor necrosis factor-alpha) production (P < 0.05). Upregulated immune function in tumor-bearing rats fed the high (n-3) diet occurred concurrently with specific changes in the major membrane phospholipids phosphatidylcholine and phosphatidylethanolamine in high (n-3)-fed rats. Because membrane composition plays a critical role in immune function, additional work is needed to determine the relationship between alterations in the phospholipid composition of immune cells during cancer and subsequent upregulation of host defense in the tumor-bearing state.
Collapse
Affiliation(s)
- L E Robinson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | |
Collapse
|
37
|
Wang YW, Field CJ, Sim JS. Dietary polyunsaturated fatty acids alter lymphocyte subset proportion and proliferation, serum immunoglobulin G concentration, and immune tissue development in chicks. Poult Sci 2000; 79:1741-8. [PMID: 11194036 DOI: 10.1093/ps/79.12.1741] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of fat source on immune response of the offspring of the Single Comb White Leghorn laying hens were investigated. The laying hens were fed for 6 wk with a wheat-soybean meal basal diet with added sunflower oil (SO), animal oil (AO), linseed oil (LO), or menhaden fish oil (FO) at 5% (wt/wt). Upon hatching, the chicks (30/group) were given the same types of diets for 8 wk. The dietary SO, AO, and LO provided different n-6 to n-3 polyunsaturated fatty acids (PUFA) ratios. The FO and LO had ratios of n-6 to n-3 PUFA that were close but had different components of n-3 PUFA. The results demonstrated that the chicks fed LO or FO had significantly lower (P < 0.05) splenocyte proliferative response to ConA than the chicks fed SO or AO at either 4 wk or 8 wk of age, with a stronger (P < 0.05) suppressive effect produced by LO at 4 wk. A significantly lower (P < 0.05) splenocyte response to PWM was produced by the chicks fed AO, LO, and FO compared with the chicks fed SO at 8 wk. The thymus lymphocyte proliferation in response to ConA at 4 wk was lower (P < 0.05) in the chicks fed AO, LO, and FO than in the chicks fed SO. Both LO and FO elevated (P < 0.05) the proportion of IgM+ lymphocytes in spleen, but only FO increased (P < 0.05) the serum IgG concentration. The LO elevated (P < 0.05) the percentage of CD8+ T-lymphocytes but not the ratio of CD4+ to CD8+ cells (P > 0.05) in spleen. Growths of thymus, spleen, and bursa were impacted significantly (P < 0.05) by the amount of dietary PUFA, the ratio of n-6 to n-3 fatty acids, and n-3 PUFA components.
Collapse
Affiliation(s)
- Y W Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
38
|
Field CJ, Thomson CA, Van Aerde JE, Parrott A, Euler A, Lien E, Clandinin MT. Lower proportion of CD45R0+ cells and deficient interleukin-10 production by formula-fed infants, compared with human-fed, is corrected with supplementation of long-chain polyunsaturated fatty acids. J Pediatr Gastroenterol Nutr 2000; 31:291-9. [PMID: 10997375 DOI: 10.1097/00005176-200009000-00017] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND The immune consequences of adding 20:4n-6 and 22:6n-3 fatty acids to preterm infant formula are not known. METHODS The effect of feeding preterm infants (14-42 days of age) human milk (Human Milk group), infant formula (Formula group), or formula with added long-chain polyunsaturated fatty acids 20:4n-6 and 22:6n-3 (Formula + LCP group) on isolated peripheral blood lymphocytes (by flow cytometry) and lipid composition (by gas-liquid chromatography) was determined. Lymphocytes were stimulated in vitro with phytohemagglutinin to measure soluble interleukin (sIL)-2R and IL-10 production (by enzyme-linked immunosorbent assay). RESULTS With age, the percentage of CD3+ CD4+ T cells and the percentage of CD20+ cells increased in the Human Milk and Formula + LCP groups (P < 0.05), but not in the unsupplemented Formula group. Compared with the Formula group, CD4+ cells from the Formula + LCP and Human Milk groups expressed more CD45R0 (antigen mature) and less CD45RA (antigen naive) at 42 days of age (P < 0.05). At 42 days, IL-10 production was lower (P < 0.05) in cells of the Formula group than in cells of the Human Milk group. Production of IL-10 by the cells of the Formula + LCP group was not different from that produced by the Human Milk group cells. An age-related decrease (P < 0.05) in sIL-2R production by Formula + LCP lymphocytes was observed, but sIL-2R production at 42 days in the Formula + LCP group did not differ significantly from that in the Human Milk group. Compared with Formula alone, adding LCP to formula resulted in a lower C18:2n-6 and higher C20:4n-6 content in lymphocyte phospholipids (P < 0.05). CONCLUSIONS Adding LCP to a preterm infant formula resulted in lymphocyte populations, phospholipid composition, cytokine production, and antigen maturity that are more consistent with that in human milk-fed infants. This may affect the ability of the infant to respond to immune challenges.
Collapse
Affiliation(s)
- C J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Field CJ. Use of T cell function to determine the effect of physiologically active food components. Am J Clin Nutr 2000; 71:1720S-5S; discussion 1726S-7S. [PMID: 10837328 DOI: 10.1093/ajcn/71.6.1720s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interdependency between the disciplines of nutrition and immunology was recognized in the 1970s when immunologic measures were introduced as a component of assessing nutritional status. Today, the immune response is considered integral to the pathophysiology of many chronic diseases in which diet plays a major role in prevention or treatment. T lymphocytes are an important adaptive cellular component of the immune system. Because of the difficulty in quantifying and isolating T cell function through clinical measures and in vivo immune challenges, most assessments of the effect of nutrition on immunity have been performed in vitro. A frequently used in vitro method to assess the cell-mediated response to nutritional intervention is lymphocyte blastogenesis. During the past 20 y, many soluble factors (cytokines) that influence cells involved in the immune and inflammatory responses have been described. Changes in dietary fat can modulate cytokine production in the absence of disease. Apoptosis (programmed cell death) is an exciting new area; a decrease in the rate of apoptosis may play a role in the pathogenesis of autoimmune disease and age-related events such as tumorigenesis. Energy restriction increases apoptosis. The goal of studying biomarkers of immune function is to understand how specific nutrients or foods directly and indirectly affect immunity. Biomarkers must be identified that can predict with reasonable accuracy resistance to infection and other illnesses associated with poor immune function.
Collapse
Affiliation(s)
- C J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.
| |
Collapse
|
40
|
Field CJ, McBurney MI, Massimino S, Hayek MG, Sunvold GD. The fermentable fiber content of the diet alters the function and composition of canine gut associated lymphoid tissue. Vet Immunol Immunopathol 1999; 72:325-41. [PMID: 10628676 DOI: 10.1016/s0165-2427(99)00148-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ingestion of plant fibers and their susceptibility to microbial fermentation in the large bowel modulate intestinal morphology but little is known about effects on the gut associated lymphoid tissue (GALT). The aim of the present study was to determine the effect of consuming diets containing different levels of fermentability fiber on immune function. Sixteen adult mongrel dogs (23 +/- 2 kg) were fed (14 days) in a randomized cross over design two isoenergetic isonitrogenous diets containing 8.3 g/kg non-fermentable or 8.7 g/kg fermentable fibers. Lymphocytes were isolated from blood prior to starting the study and at the end of each diet period. At study completion, lymphocytes were isolated from the gut associated lymphoid tissue (GALT) of the small intestine for characterization by immunofluorescence and to determine their ability to respond to mitogenic stimulation. Feeding high fermentable fibers increased (P < 0.05) the CD4/CD8 ratio and decreased (P < 0.05) the proportion of B cells in peripheral blood without changing natural killer cell activity or the response to mitogens. Mesenteric lymph node cells from dogs fed the low then high fermentable fiber diet contained a higher (P < 0.05) proportion of CD4+ cells and a higher (P < 0.05) response to mitogens. Intraepithelial, Peyer's patches and lamina propria cells contained a greater (P < 0.05) proportion of CD8+ cells when dogs were fed a low fermentable fiber diet followed by a high fermentable fiber diet. T cell mitogen responses in vitro were higher for intraepithelial but lower for Peyer's patches and lamina propria cells from dogs who were fed the low fermentable fiber diet followed by the high fermentable fiber diet (P < 0.05). In conclusion, the fermentable fiber content of the diet had very little effect on the type and function of immune cells in peripheral blood. However, feeding dogs a high fermentable fiber diet for 2 weeks (after 2 weeks of consuming a low fermentable fiber diet) altered the T-cell composition of GALT and produced a higher mitogen response in the predominantly T cell tissues and a lower response in areas involved in B cell functions. In conclusion, the level of fermentable fiber in the diet appears to alter GALT properties. Further studies are required to determine the direct contribution of a high or low fiber diet to these changes and the physiological implications to the health of the animal.
Collapse
Affiliation(s)
- C J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.
| | | | | | | | | |
Collapse
|