1
|
Korpak K, Rossi M, Van Meerhaeghe A, Boudjeltia KZ, Compagnie M. Omega-3 long-chain polyunsaturated fatty acids and their bioactive lipids: A strategy to improve resistance to respiratory tract infectious diseases in the elderly? NUTRITION AND HEALTHY AGING 2024; 9:55-76. [DOI: 10.3233/nha-220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Age-related changes in organ function, immune dysregulation, and the effects of senescence explain in large part the high prevalence of infections, including respiratory tract infections in older persons. Poor nutritional status in many older persons increases susceptibility to infection and worsens prognosis. Interestingly, there is an association between the amount of saturated fats in the diet and the rate of community-acquired pneumonia. Polyunsaturated fatty acids, particularly omega-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have well-known anti-inflammatory, immunomodulatory, and antimicrobial effects, which may, in theory, be largely induced by PUFAs-derived lipids such as specialized pro-resolving mediators (SPMs). In adults, preliminary results of studies show that ω-3 LC-PUFAs supplementation can lead to SPM generation. SPMs have a crucial role in the resolution of inflammation, a factor relevant to survival from infection independent of the pathogen’s virulence. Moreover, the immune system of older adults appears to be more sensitive to ω-3 PUFAs. This review explores the effects of ω-3 LC-PUFAs, and PUFA bioactive lipid-derived SPMs in respiratory tract infections and the possible relevance of these data to infectious disease outcomes in the older population. The hypothesis that PUFAs have beneficial effects via SPM generation will need to be confirmed by animal experiments and patient-derived data.
Collapse
Affiliation(s)
- Kéziah Korpak
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Rossi
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
- Department of Urology, CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - A. Van Meerhaeghe
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - K. Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Compagnie
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
| |
Collapse
|
2
|
Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs) for Immunomodulation in COVID-19 Related Acute Respiratory Distress Syndrome (ARDS). J Clin Med 2022; 12:jcm12010304. [PMID: 36615103 PMCID: PMC9820910 DOI: 10.3390/jcm12010304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), might be complicated by Acute Respiratory Distress Syndrome (ARDS) caused by severe lung damage. It is relevant to find treatments for COVID-19-related ARDS. Currently, DHA and EPA n-3 PUFAs, known for their immunomodulatory activities, have been proposed for COVID-19 management, and clinical trials are ongoing. Here, examining COVID-19-related ARDS immunopathology, we reference in vitro and in vivo studies, indicating n-3 PUFA immunomodulation on lung microenvironment (bronchial and alveolar epithelial cells, macrophages, infiltrating immune cells) and ARDS, potentially affecting immune responses in COVID-19-related ARDS. Concerning in vitro studies, evidence exists of the potential anti-inflammatory activity of DHA on airway epithelial cells and monocytes/macrophages; however, it is necessary to analyze n-3 PUFA immunomodulation using viral experimental models relevant to SARS-CoV-2 infection. Then, although pre-clinical investigations in experimental acute lung injury/ARDS revealed beneficial immunomodulation by n-3 PUFAs when extracellular pathogen infections were used as lung inflammatory models, contradictory results were reported using intracellular viral infections. Finally, clinical trials investigating n-3 PUFA immunomodulation in ARDS are limited, with small samples and contradictory results. In conclusion, further in vitro and in vivo investigations are needed to establish whether n-3 PUFAs may have some therapeutic potential in COVID-19-related ARDS.
Collapse
|
3
|
Nejati M, Dehghan* P, Hashempour- Baltork* F, Alizadeh AM, Farshi P, Khosravi- Darani K. Potential Dietary Interventions for COVID-19 Infection Based on the Gut-Immune Axis: An Update Review on Bioactive Component of Macronutrients. Int J Prev Med 2021; 12:105. [PMID: 34729139 PMCID: PMC8505687 DOI: 10.4103/ijpvm.ijpvm_493_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023] Open
Abstract
Recently emerged coronavirus, known as SARS-CoV-2 or Covid-19 is considered as a serious threat for human health. Due to unavailable specific drugs for this virus, there is an urgent need for supportive cares. Epigenetic immune boosting approaches and developing anti-inflammatory agents by gut-associated bioactive macronutrients can be plausible protective cares for COVID-19. Suitable intake of bioactive macronutrients including prebiotics, fatty acids, proteins and branched-chain amino acids may result in anti-viral responses through modulating macrophages and dendritic cells via Toll-like receptors, decreasing viral load, inactivating the enveloped viruses, increasing the anti-inflammatory metabolites and inhibiting the proliferation of microbial organisms. Bioactive macronutrients may help in promotion of immunological responses and recovery acceleration against Covid-19. This review focuses on the mechanisms of bioactive macronutrients and related clinical trials on enveloped viruses with emphasis on gut-microbiome-immune axis. Macronutrients and this axis may be conducive strategies to protect host against the viral infection.
Collapse
Affiliation(s)
- Marzieh Nejati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan*
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz, University of Medical Sciences, Tabriz, Iran
| | - Fataneh Hashempour- Baltork*
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Kianoush Khosravi- Darani
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kobayashi A, Ito A, Shirakawa I, Tamura A, Tomono S, Shindou H, Hedde PN, Tanaka M, Tsuboi N, Ishimoto T, Akashi-Takamura S, Maruyama S, Suganami T. Dietary Supplementation With Eicosapentaenoic Acid Inhibits Plasma Cell Differentiation and Attenuates Lupus Autoimmunity. Front Immunol 2021; 12:650856. [PMID: 34211460 PMCID: PMC8240640 DOI: 10.3389/fimmu.2021.650856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that cholesterol accumulation in leukocytes is causally associated with the development of autoimmune diseases. However, the mechanism by which fatty acid composition influences autoimmune responses remains unclear. To determine whether the fatty acid composition of diet modulates leukocyte function and the development of systemic lupus erythematosus, we examined the effect of eicosapentaenoic acid (EPA) on the pathology of lupus in drug-induced and spontaneous mouse models. We found that dietary EPA supplementation ameliorated representative lupus manifestations, including autoantibody production and immunocomplex deposition in the kidneys. A combination of lipidomic and membrane dynamics analyses revealed that EPA remodels the lipid composition and fluidity of B cell membranes, thereby preventing B cell differentiation into autoantibody-producing plasma cells. These results highlight a previously unrecognized mechanism by which fatty acid composition affects B cell differentiation into autoantibody-producing plasma cells during autoimmunity, and imply that EPA supplementation may be beneficial for therapy of lupus.
Collapse
Affiliation(s)
- Azusa Kobayashi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ibuki Shirakawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Per Niklas Hedde
- Laboratory for Fluorescence Dynamics, Beckman Laser Institute and Medical Clinic, Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University Graduate School of Medicine, Toyoake, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Zhou Y, Pu J, Wu Y. The Role of Lipid Metabolism in Influenza A Virus Infection. Pathogens 2021; 10:303. [PMID: 33807642 PMCID: PMC7998359 DOI: 10.3390/pathogens10030303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) is an important zoonotic pathogen that can cause disease in animals such as poultry and pigs, and it can cause infection and even death in humans, posing a serious threat to public health. IAV is an enveloped virus that relies on host cell metabolic systems, especially lipid metabolism systems, to complete its life cycle in host cells. On the other side, host cells regulate their metabolic processes to prevent IAV replication and maintain their normal physiological functions. This review summarizes the roles of fatty acid, cholesterol, phospholipid and glycolipid metabolism in IAV infection, proposes future research challenges, and looks forward to the prospective application of lipid metabolism modification to limit IAV infection, which will provide new directions for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.P.)
| | - Juan Pu
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.P.)
| | - Yuping Wu
- College of Life Science and Basic Medicine/Center for Biotechnology Research, Xinxiang University, Xinxiang 453003, China
| |
Collapse
|
6
|
Darwesh AM, Bassiouni W, Sosnowski DK, Seubert JM. Can N-3 polyunsaturated fatty acids be considered a potential adjuvant therapy for COVID-19-associated cardiovascular complications? Pharmacol Ther 2021; 219:107703. [PMID: 33031856 PMCID: PMC7534795 DOI: 10.1016/j.pharmthera.2020.107703] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has currently led to a global pandemic with millions of confirmed and increasing cases around the world. The novel SARS-CoV-2 not only affects the lungs causing severe acute respiratory dysfunction but also leads to significant dysfunction in multiple organs and physiological systems including the cardiovascular system. A plethora of studies have shown the viral infection triggers an exaggerated immune response, hypercoagulation and oxidative stress, which contribute significantly to poor cardiovascular outcomes observed in COVID-19 patients. To date, there are no approved vaccines or therapies for COVID-19. Accordingly, cardiovascular protective and supportive therapies are urgent and necessary to the overall prognosis of COVID-19 patients. Accumulating literature has demonstrated the beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFA) toward the cardiovascular system, which include ameliorating uncontrolled inflammatory reactions, reduced oxidative stress and mitigating coagulopathy. Moreover, it has been demonstrated the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors to a group of potent bioactive lipid mediators, generated endogenously, which mediate many of the beneficial effects attributed to their parent compounds. Considering the favorable safety profile for n-3 PUFAs and their metabolites, it is reasonable to consider n-3 PUFAs as potential adjuvant therapies for the clinical management of COVID-19 patients. In this article, we provide an overview of the pathogenesis of cardiovascular complications secondary to COVID-19 and focus on the mechanisms that may contribute to the likely benefits of n-3 PUFAs and their metabolites.
Collapse
Affiliation(s)
- Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135:111200. [PMID: 33421734 PMCID: PMC7834135 DOI: 10.1016/j.biopha.2020.111200] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of the corona virus disease (COVID-19) has had major global impact. The relationship between severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection and psychiatric diseases is of great concern, with an evident link between corona virus infections and various central and peripheral nervous system manifestations. Unmitigated neuro-inflammation has been noted to underlie not only the severe respiratory complications of the disease but is also present in a range of neuro-psychiatric illnesses. Several neurological and psychiatric disorders are characterized by immune-inflammatory states, while treatments for these disorders have distinct anti-inflammatory properties and effects. With inflammation being a common contributing factor in SARS-CoV-2, as well as psychiatric disorders, treatment of either condition may affect disease progression of the other or alter response to pharmacological treatment. In this review, we elucidate how viral infections could affect pre-existing psychiatric conditions and how pharmacological treatments of these conditions may affect overall progress and outcome in the treatment of SARS-CoV-2. We address whether any treatment-induced benefits and potential adverse effects may ultimately affect the overall treatment approach, considering the underlying dysregulated neuro-inflammatory processes and potential drug interactions. Finally, we suggest adjunctive treatment options for SARS-CoV-2-associated neuro-psychiatric symptoms.
Collapse
Affiliation(s)
- Esmé Jansen van Vuren
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Christiaan B Brink
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Francois P Viljoen
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Detopoulou P, Demopoulos CA, Antonopoulou S. Micronutrients, Phytochemicals and Mediterranean Diet: A Potential Protective Role against COVID-19 through Modulation of PAF Actions and Metabolism. Nutrients 2021; 13:nu13020462. [PMID: 33573169 PMCID: PMC7911163 DOI: 10.3390/nu13020462] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
The new coronavirus disease 2019 (COVID-19) pandemic is an emerging situation with high rates of morbidity and mortality, in the pathophysiology of which inflammation and thrombosis are implicated. The disease is directly connected to the nutritional status of patients and a well-balanced diet is recommended by official sources. Recently, the role of platelet activating factor (PAF) was suggested in the pathogenesis of COVID-19. In the present review several micronutrients (vitamin A, vitamin C, vitamin E, vitamin D, selenium, omega-3 fatty acids, and minerals), phytochemicals and Mediterranean diet compounds with potential anti-COVID activity are presented. We further underline that the well-known anti-inflammatory and anti-thrombotic actions of the investigated nutrients and/or holistic dietary schemes, such as the Mediterranean diet, are also mediated through PAF. In conclusion, there is no single food to prevent coronavirus Although the relationship between PAF and COVID-19 is not robust, a healthy diet containing PAF inhibitors may target both inflammation and thrombosis and prevent the deleterious effects of COVID-19. The next step is the experimental confirmation or not of the PAF-COVID-19 hypothesis.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, 11526 Athens, Greece;
| | - Constantinos A. Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University of Athens, 16121 Athens, Greece;
| | - Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Street, 17671 Athens, Greece
- Correspondence: ; Tel.: +30-210-954-9230; Fax: +30-210-957-7050
| |
Collapse
|
9
|
Rogero MM, Leão MDC, Santana TM, Pimentel MVDMB, Carlini GCG, da Silveira TFF, Gonçalves RC, Castro IA. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic Biol Med 2020; 156:190-199. [PMID: 32653511 PMCID: PMC7350587 DOI: 10.1016/j.freeradbiomed.2020.07.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 12/13/2022]
Abstract
Studies have shown that infection, excessive coagulation, cytokine storm, leukopenia, lymphopenia, hypoxemia and oxidative stress have also been observed in critically ill Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) patients in addition to the onset symptoms. There are still no approved drugs or vaccines. Dietary supplements could possibly improve the patient's recovery. Omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), present an anti-inflammatory effect that could ameliorate some patients need for intensive care unit (ICU) admission. EPA and DHA replace arachidonic acid (ARA) in the phospholipid membranes. When oxidized by enzymes, EPA and DHA contribute to the synthesis of less inflammatory eicosanoids and specialized pro-resolving lipid mediators (SPMs), such as resolvins, maresins and protectins. This reduces inflammation. In contrast, some studies have reported that EPA and DHA can make cell membranes more susceptible to non-enzymatic oxidation mediated by reactive oxygen species, leading to the formation of potentially toxic oxidation products and increasing the oxidative stress. Although the inflammatory resolution improved by EPA and DHA could contribute to the recovery of patients infected with SARS-CoV-2, Omega-3 fatty acids supplementation cannot be recommended before randomized and controlled trials are carried out.
Collapse
Affiliation(s)
- Marcelo M Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil
| | - Matheus de C Leão
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Tamires M Santana
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil; LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Mariana V de M B Pimentel
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Giovanna C G Carlini
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Tayse F F da Silveira
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Renata C Gonçalves
- Department of Cell and Developmental Biology. Institute of Biomedical Sciences. University of São Paulo, São Paulo, Brazil
| | - Inar A Castro
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil; LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil.
| |
Collapse
|
10
|
Quin C, Vollman DM, Ghosh S, Haskey N, Estaki M, Pither J, Barnett JA, Jay MN, Birnie BW, Gibson DL. Fish oil supplementation reduces maternal defensive inflammation and predicts a gut bacteriome with reduced immune priming capacity in infants. THE ISME JOURNAL 2020; 14:2090-2104. [PMID: 32398661 PMCID: PMC7368083 DOI: 10.1038/s41396-020-0672-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
Habitual supplementation of fish oil is thought to provide benefits to the developing infant; however, the effects on infant microbial establishment and immune development are unknown. A 6-month observational cohort study was conducted where 47 out of 91 women self-administered dietary fish oil during breastfeeding. Infant stool and mothers' breast milk were collected each month over 6 months. Gas chromatography was used to quantify breast milk fatty acids and high-throughput sequencing was used to assess the infant fecal microbiota. Immune markers and parent-reported questionnaires were used to assess infant immunity and health up to 2 years. Our results reveal that fish oil supplementation decreased secretory immunoglobulin A and increased IL-10 production in lactating women along with increased breast milk eicosapentaenoic acid, and this corresponded to increased abundances of fecal Bifidobacterium and Lactobacillus spp. in their infants. Docosahexaenoic acid levels in breast milk aligned with decreases in infant gut bacterial richness and the predicted bacterial phenotypes suggested that fish oil lowers commensal traits involved in pathogen colonization resistance. Despite this, there were no differences in sickness incidence in toddlers. This study revealed that fish oil associates with decreases in breast milk defensive inflammatory responses and corresponds with infant fecal microbiota with anti-inflammatory potential.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Deanna M Vollman
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Sanjoy Ghosh
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Natasha Haskey
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Mehrbod Estaki
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Jason Pither
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Jacqueline A Barnett
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Michael N Jay
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Blake W Birnie
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Deanna L Gibson
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada.
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
11
|
Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020; 12:E1466. [PMID: 32438620 PMCID: PMC7284818 DOI: 10.3390/nu12051466] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has engulfed the world, affecting more than 180 countries. As a result, there has been considerable economic distress globally and a significant loss of life. Sadly, the vulnerable and immunocompromised in our societies seem to be more susceptible to severe COVID-19 complications. Global public health bodies and governments have ignited strategies and issued advisories on various handwashing and hygiene guidelines, social distancing strategies, and, in the most extreme cases, some countries have adopted "stay in place" or lockdown protocols to prevent COVID-19 spread. Notably, there are several significant risk factors for severe COVID-19 infection. These include the presence of poor nutritional status and pre-existing noncommunicable diseases (NCDs) such as diabetes mellitus, chronic lung diseases, cardiovascular diseases (CVD), obesity, and various other diseases that render the patient immunocompromised. These diseases are characterized by systemic inflammation, which may be a common feature of these NCDs, affecting patient outcomes against COVID-19. In this review, we discuss some of the anti-inflammatory therapies that are currently under investigation intended to dampen the cytokine storm of severe COVID-19 infections. Furthermore, nutritional status and the role of diet and lifestyle is considered, as it is known to affect patient outcomes in other severe infections and may play a role in COVID-19 infection. This review speculates the importance of nutrition as a mitigation strategy to support immune function amid the COVID-19 pandemic, identifying food groups and key nutrients of importance that may affect the outcomes of respiratory infections.
Collapse
Affiliation(s)
- Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland;
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland; (R.L.); (C.N.)
| | - Ronan Lordan
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland; (R.L.); (C.N.)
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Catherine Norton
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland; (R.L.); (C.N.)
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland;
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland; (R.L.); (C.N.)
| |
Collapse
|
12
|
Ye J, Ghosh S. Omega-3 PUFA vs. NSAIDs for Preventing Cardiac Inflammation. Front Cardiovasc Med 2018; 5:146. [PMID: 30406113 PMCID: PMC6205954 DOI: 10.3389/fcvm.2018.00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jiayu Ye
- Irving K. Barber School of Arts and Sciences (IKBSAS), Department of Biology, University of University of British Columbia, Kelowna, BC, Canada
| | - Sanjoy Ghosh
- Irving K. Barber School of Arts and Sciences (IKBSAS), Department of Biology, University of University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
13
|
Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect 2016; 73:523-535. [DOI: 10.1016/j.jinf.2016.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022]
|
14
|
Berra A, Tau J, Zapata G, Chiaradia P. Effects of PUFAs in a Mouse Model of HSV-1 Chorioretinitis. Ocul Immunol Inflamm 2016; 25:844-854. [DOI: 10.1080/09273948.2016.1184287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alejandro Berra
- Centro de Imnunopatologias, Departamento de Patologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
- Division Oftalmologia, Hospital de Clinicas, Universidad de Buenos Aires, Argentina
| | - Julia Tau
- Centro de Imnunopatologias, Departamento de Patologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Gustavo Zapata
- Centro de Imnunopatologias, Departamento de Patologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pablo Chiaradia
- Centro de Imnunopatologias, Departamento de Patologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
- Division Oftalmologia, Hospital de Clinicas, Universidad de Buenos Aires, Argentina
| |
Collapse
|
15
|
Ji B, Sun TT, Ma ZL, Lu QF, Hu WL, Jian ZH, Jiang Y, Chen PF. Possible Association of IFN-γ Gene -316A/G SNP with Humoral Immune Response to Killed H5N1 HPAI Vaccine in a Red Junglefowl Population. J Interferon Cytokine Res 2015; 35:844-9. [PMID: 26154533 DOI: 10.1089/jir.2015.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To understand the role of interferon (IFN)-γ gene (IFNG) single-nucleotide polymorphisms (SNPs) in the resistance to H5N1 highly pathogenic avian influenza (HPAI), we determined the SNPs, the log2-transformed specific antibody titers, and ex vivo recall antigen-specific IFN-γ production by peripheral blood mononuclear cells (PBMCs) in 62 red junglefowls (Gallus gallus) immunized twice with inactivated H5N1 HPAI vaccine. Consequently, 52 SNPs were detected in the amplified 1137-bp length covering the promoter region and all exons, with +2133A/T SNP in the coding DNA sequence that caused a missense mutation and was identified in G. gallus for the first time. For -316A/G SNP genotypes, the chi-squared test showed that the bird sample was in the Hardy-Weinberg equilibrium (P=0.369>0.05), and the least squares analysis revealed an increasing tendency in the antibody titers with G to A substitution so that a significant difference occurred between the AA genotype (8.031±0.247) and the GG genotype (6.571±0.528) (P=0.015<0.05, 95% confidence interval [CI]: 0.0004-0.0866), as basically consistent with the antigen-induced IFN-γ protein expression, which indicated possible association of the -316A/G SNP with a secondary humoral immune response to the HPAI vaccine in the bird population. These findings may help to improve genetic resistance using cross-breeding and enhance HPAI vaccine-induced immunity in chicken production.
Collapse
Affiliation(s)
- Bin Ji
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Ting-Ting Sun
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Zhi-Liang Ma
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Qiong-Fen Lu
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Wen-Li Hu
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Zong-Hui Jian
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Yu Jiang
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| | - Pei-Fu Chen
- Key Lab of Veterinary Public Health of Yunnan Higher Education Institutes, Division of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University , Kunming, People's Republic of China
| |
Collapse
|
16
|
Dawson DR, Branch-Mays G, Gonzalez OA, Ebersole JL. Dietary modulation of the inflammatory cascade. Periodontol 2000 2013; 64:161-97. [DOI: 10.1111/j.1600-0757.2012.00458.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Fenton JI, Hord NG, Ghosh S, Gurzell EA. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes. Prostaglandins Leukot Essent Fatty Acids 2013; 89:379-90. [PMID: 24183073 PMCID: PMC3912985 DOI: 10.1016/j.plefa.2013.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 01/07/2023]
Abstract
Recommendations to consume fish for prevention of cardiovascular disease (CVD), along with the U.S. Food and Drug Administration-approved generally recognized as safe (GRAS) status for long chain omega-3 fatty acids, may have had the unanticipated consequence of encouraging long-chain omega-3 (ω-3) fatty acid [(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation and fortification practices. While there is evidence supporting a protective role for EPA/DHA supplementation in reducing sudden cardiac events, the safety and efficacy of supplementation with LCω-3PUFA in the context of other disease outcomes is unclear. Recent studies of bacterial, viral, and fungal infections in animal models of infectious disease demonstrate that LCω-3PUFA intake dampens immunity and alters pathogen clearance and can result in reduced survival. The same physiological properties of EPA/DHA that are responsible for the amelioration of inflammation associated with chronic cardiovascular pathology or autoimmune states, may impair pathogen clearance during acute infections by decreasing host resistance or interfere with tumor surveillance resulting in adverse health outcomes. Recent observations that high serum LCω-3PUFA levels are associated with higher risk of prostate cancer and atrial fibrillation raise concern for adverse outcomes. Given the widespread use of supplements and fortification of common food items with LCω-3PUFA, this review focuses on the immunomodulatory effects of the dietary LCω-3PUFAs, EPA and DHA, the mechanistic basis for potential negative health outcomes, and calls for biomarker development and validation as rational first steps towards setting recommended dietary intake levels.
Collapse
Affiliation(s)
- Jenifer I Fenton
- Department of Food Science and Human, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States; College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, United States.
| | | | | | | |
Collapse
|
18
|
Tomasdottir V, Thorleifsdottir S, Vikingsson A, Hardardottir I, Freysdottir J. Dietary omega-3 fatty acids enhance the B1 but not the B2 cell immune response in mice with antigen-induced peritonitis. J Nutr Biochem 2013; 25:111-7. [PMID: 24332949 DOI: 10.1016/j.jnutbio.2013.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022]
Abstract
The effects of omega-3 fatty acids on the adaptive immune response have mainly been analysed in vitro with varying results. How omega-3 fatty acids affect the adaptive immune response in vivo is largely unknown. This study examined the effects of dietary fish oil on the adaptive immune response in antigen-induced inflammation in mice, focusing on its effects on B cells and B cell subsets. Mice were fed a control diet with or without 2.8% fish oil, immunized twice with methylated BSA (mBSA) and peritonitis induced by intraperitoneal injection of mBSA. Serum, spleen and peritoneal exudate were collected prior to and at different time points after induction of peritonitis. Serum levels of mBSA-specific antibodies were determined by ELISA and the number of peritoneal and splenic lymphocytes by flow cytometry. The levels of germinal center B cells and IgM(+), IgG(+) and CD138(+) cells in spleen were evaluated by immunoenzyme staining. Mice fed the fish oil diet had more peritoneal B1 cells, more IgM(+) cells in spleen and higher levels of serum mBSA-specific IgM antibodies compared with that in mice fed the control diet. However, dietary fish oil did not affect the number of peritoneal B2 cells, splenic IgG(+) or CD138(+) cells or serum levels of mBSA-specific IgG antibodies in mice with mBSA-induced peritonitis. These results indicate that dietary fish oil can enhance the adaptive immune response, specifically the B1 cell response, which may lead to better protection against secondary infection as well as improvement in reaching homeostasis following antigenic challenge.
Collapse
Affiliation(s)
- Valgerdur Tomasdottir
- Center of Rheumatology Research, Landspitali - The University Hospital of Iceland, Reykjavik, Iceland; Department of Immunology, Landspitali - The University Hospital of Iceland, Reykjavik, Iceland; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, 101 Reykjavik, Iceland
| | - Sigrun Thorleifsdottir
- Center of Rheumatology Research, Landspitali - The University Hospital of Iceland, Reykjavik, Iceland; Department of Immunology, Landspitali - The University Hospital of Iceland, Reykjavik, Iceland; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, 101 Reykjavik, Iceland
| | - Arnor Vikingsson
- Center of Rheumatology Research, Landspitali - The University Hospital of Iceland, Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, 101 Reykjavik, Iceland
| | - Jona Freysdottir
- Center of Rheumatology Research, Landspitali - The University Hospital of Iceland, Reykjavik, Iceland; Department of Immunology, Landspitali - The University Hospital of Iceland, Reykjavik, Iceland; Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, 101 Reykjavik, Iceland.
| |
Collapse
|
19
|
Sharma S, Chhibber S, Mohan H, Sharma S. Dietary supplementation with omega-3 polyunsaturated fatty acids ameliorates acute pneumonia induced by Klebsiella pneumoniae in BALB/c mice. Can J Microbiol 2013; 59:503-10. [PMID: 23826960 DOI: 10.1139/cjm-2012-0521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immune benefits associated with the optimal intake of dietary fatty acids are widely known. The objective of the present investigation was to elucidate the role of omega-3 polyunsaturated fatty acids (n-3 PUFA) food source on acute pneumonia induced by Klebsiella pneumoniae. Three different n-3 PUFA preparations (cod liver oil, Maxigard, and flaxseed oil) were orally supplemented and infection was induced in different groups of experimental mice. Mice fed olive oil and normal saline served as oil and saline controls, respectively. After 2 weeks of fatty acid feeding, no effect on the establishment of infection was observed when acute pneumonia was induced in animals. On the other hand, 6 weeks of n-3 PUFA administration was found to improve resistance in mice, as reduced lung bacterial load coupled with significant improvement in pathology was seen in infected mice. Alveolar macrophages collected from all 3 groups of mice fed n-3 PUFA exhibited a significant decrease in the level of apoptosis following infection with K. pneumoniae and an enhanced in vitro phagocytic potential for the pathogen. Lower lung levels of nitric oxide, malondialdehyde, and lactate dehydrogenase were associated with a decrease in the severity of tissue damage. There was a significant increase in the lung levels of pro-inflammatory cytokines (tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β)). No significant change was observed in the levels of interleukin-10 (IL-10). This study highlights that dietary n-3 PUFA supplementation exerts an overall beneficial effect against acute experimental pneumonia. This mechanism is operative through upregulation of nonspecific and specific immune defenses of the host.
Collapse
Affiliation(s)
- Sonica Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| | | | | | | |
Collapse
|
20
|
Jaudszus A, Gruen M, Watzl B, Ness C, Roth A, Lochner A, Barz D, Gabriel H, Rothe M, Jahreis G. Evaluation of suppressive and pro-resolving effects of EPA and DHA in human primary monocytes and T-helper cells. J Lipid Res 2013; 54:923-35. [PMID: 23349208 DOI: 10.1194/jlr.p031260] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their beneficial anti-inflammatory properties, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may increase the infection risk at high doses, likely by generating an immune-depressed state. To assess the contribution of different immune cell populations to the immunomodulatory fatty acid effect, we comparatively investigated several aspects of inflammation in human T-helper (Th) cells and monocytes. Both fatty acids, but DHA to a lesser extent compared with EPA, selectively and dose-dependently reduced the percentage of cytokine-expressing Th cells in a peroxisome proliferator-activated receptor (PPAR)γ-dependent fashion, whereas the expression of the cell surface marker CD69 was unaltered on activated T cells. In monocytes, both EPA and DHA increased interleukin (IL)-10 without affecting tumor necrosis factor (TNF)-α and IL-6. Cellular incorporation of EPA and DHA occurred mainly at the expense of arachidonic acid. Concomitantly, thromboxane B (TXB)2 and leukotriene B (LTB)4 in supernatants decreased, while levels of TXB3 and LTB5 increased. This increase was independent of activation and in accordance with cyclooxygenase expression patterns in monocytes. Moreover, EPA and DHA gave rise to a variety of mono- and trihydroxy derivatives of highly anti-inflammatory potential, such as resolvins and their precursors. Our results suggest that EPA and DHA do not generally affect immune cell functions in an inhibitory manner but rather promote pro-resolving responses.
Collapse
Affiliation(s)
- Anke Jaudszus
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Snel J, Born L, van der Meer R. Dietary fish oil impairs induction of gamma-interferon and delayed-type hypersensitivity during a systemic Salmonella enteritidis infection in rats. APMIS 2010; 118:578-84. [PMID: 20666739 DOI: 10.1111/j.1600-0463.2010.02630.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fish oil that is rich in n-3 polyunsaturated fatty acids markedly modulates immunological responses. Literature data indicate that the fish oil reduces cellular immunity and therefore impairs resistance to infections. We have investigated how dietary fish oil affects the immune response against a facultative intracellular pathogen, Salmonella enteritidis. Wistar rats were fed a diet containing 16% (w/w) of either fish oil or corn oil. After a 4-week adaptation period, rats were intraperitoneally challenged with 4 x 10(5) cfu of S. enteritidis. During the 14-day infection period, urine was collected on a daily basis. At days 2 and 14, eight rats per group were sacrificed. Urinary nitrate, used as a marker for NO production, was lower on a fish oil diet during days 3-8. At day 2, serum gamma-interferon was 48 +/- 7 pg/mL in the fish oil-fed rats compared with 162 +/- 52 pg/mL in the corn oil-fed rats. No effects were found on living salmonella in liver and spleen. At day 14, as markers of an impaired T-helper 1 (Th-1) response, a 38% lower delayed-type hypersensitivity responses and a lower salmonella-specific IgG2b were observed in the fish oil-fed rats. Although here dietary fish oil has affected only immune parameters, this impairment of the innate and Th-1-mediated immune response may have implications for the host resistance against other intracellular pathogens.
Collapse
Affiliation(s)
- Johannes Snel
- NIZO Food Research, Division of Health & Safety, Ede, The Netherlands.
| | | | | |
Collapse
|
22
|
Schwerbrock NMJ, Karlsson EA, Shi Q, Sheridan PA, Beck MA. Fish oil-fed mice have impaired resistance to influenza infection. J Nutr 2009; 139:1588-94. [PMID: 19549756 PMCID: PMC2709305 DOI: 10.3945/jn.109.108027] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/14/2009] [Accepted: 05/29/2009] [Indexed: 01/21/2023] Open
Abstract
Dietary fish oils, rich in (n-3) PUFA, including eicosapentaenoic acid and docosahexaenoic acid, have been shown to have antiinflammatory properties. Although the antiinflammatory properties of fish oil may be beneficial during a chronic inflammatory illness, the same antiinflammatory properties can suppress the inflammatory responses necessary to combat acute viral infection. Given that (n-3) fatty acid-rich fish oil supplementation is on the rise and with the increasing threat of an influenza pandemic, we tested the effect of fish oil feeding for 2 wk on the immune response to influenza virus infection. Male C57BL/6 mice fed either a menhaden fish oil/corn oil diet (4 g fish oil:1 g corn oil, wt:wt at 5 g/100 g diet) or a control corn oil diet were infected with influenza A/PuertoRico/8/34 and analyzed for lung pathology and immune function. Although fish oil-fed mice had lower lung inflammation compared with controls, fish oil feeding also resulted in a 40% higher mortality rate, a 70% higher lung viral load at d 7 post infection, and a prolonged recovery period following infection. Although splenic natural killer (NK) cell activity was suppressed in fish oil-fed mice, lung NK activity was not affected. Additionally, lungs of infected fish oil-fed mice had significantly fewer CD8+ T cells and decreased mRNA expression of macrophage inflammatory protein-1-alpha, tumor necrosis factor-alpha, and interleukin-6. These results suggest that the antiinflammatory properties of fish oil feeding can alter the immune response to influenza infection, resulting in increased morbidity and mortality.
Collapse
Affiliation(s)
- Nicole M J Schwerbrock
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
23
|
Thors VS, Thórisdóttir A, Erlendsdóttir H, Einarsson I, Gudmundsson S, Gunnarsson E, Haraldsson A. The effect of dietary fish oil on survival after infection with Klebsiella pneumoniae or Streptococcus pneumoniae. ACTA ACUST UNITED AC 2009; 36:102-5. [PMID: 15061662 DOI: 10.1080/00365540310018914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dietary fish oil is believed to have a beneficial effect in various infections and in autoimmune disorders. This effect may correspond to an altered immune response. In order to discover whether the effect of dietary fish oil is different in various infections, we studied the survival of mice fed fish oil or corn oil supplemented diets and infected in the lungs with either Klebsiella pneumoniae or Streptococcus pneumoniae. 120 NMRI mice were divided into 4 groups, of which 2 groups were fed a fish oil supplemented diet and 2 a corn oil supplemented diet. After 6 weeks the mice were infected in the lungs with Klebsiella pneumoniae (fish oil groups and corn oil groups) or with Streptococcus pneumoniae serotype 3 (both groups). The survival rate was monitored. The experiment was performed twice. The survival of the mice fed fish oil enriched diet and infected with Klebsiella pneumoniae was significantly better compared with the mice fed corn oil enriched diet (p = 0.0001 and p = 0.0013). No difference was found between the mice fed corn oil enriched diet or fish oil enriched diet and infected with Streptococcus pneumoniae serotype 3 (p = 0.74 and p = 0.15). Our results indicate that dietary fish oil has a beneficial effect on survival of mice after experimental pneumoniae when infected with Klebsiella pneumoniae, but not after infection with Streptococcus pneumoniae serotype 3.
Collapse
|
24
|
Gorjão R, Azevedo-Martins AK, Rodrigues HG, Abdulkader F, Arcisio-Miranda M, Procopio J, Curi R. Comparative effects of DHA and EPA on cell function. Pharmacol Ther 2009; 122:56-64. [PMID: 19318040 DOI: 10.1016/j.pharmthera.2009.01.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 02/07/2023]
Abstract
Fish oil supplementation has been reported to be generally beneficial in autoimmune, inflammatory and cardiovascular disorders. Most researchers have attributed these beneficial effects to the high content of omega-3 fatty acids in fish oil (FO). The effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are not differentiated in most studies. In fact, up to 1990, purified DHA was not available for human use and there was no study regarding its effects on human immune response. In this review, the differences in the effects of these two fatty acids on cell function are discussed. Studies have shown that EPA and DHA have also different effects on leukocyte functions such as phagocytosis, chemotactic response and cytokine production. DHA and EPA modulate differently expression of genes in lymphocytes. Activation of intracellular signaling pathways involved with lymphocyte proliferation is also differently affected by these two fatty acids. In relation to insulin producing cell line RINm5F, DHA and EPA are cytotoxic at different concentrations and the proteins involved with cell death are differently modulated by these two fatty acids. Substantial improvement in the therapeutic usage of omega-3 fatty acid-rich FO will be possible with the discovery of the different mechanisms of actions of DHA and EPA.
Collapse
Affiliation(s)
- Renata Gorjão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ballou M, DePeters E. Supplementing Milk Replacer with Omega-3 Fatty Acids from Fish Oil on Immunocompetence and Health of Jersey Calves. J Dairy Sci 2008; 91:3488-500. [DOI: 10.3168/jds.2008-1017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Friesecke S, Lotze C, Köhler J, Heinrich A, Felix SB, Abel P. Fish oil supplementation in the parenteral nutrition of critically ill medical patients: a randomised controlled trial. Intensive Care Med 2008; 34:1411-20. [PMID: 18357434 DOI: 10.1007/s00134-008-1072-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To test whether supplementation of parenteral nutrition with fish oil - aimed at increasing the n-3:n-6 ratio of polyunsaturated fatty acids (PUFA) to 1:2 - affects systemic inflammation and clinical outcome compared to standard parenteral nutrition with an n-3/n-6 ratio of 1:7 in medical intensive care unit (ICU) patients. DESIGN Single-centre, placebo-controlled, double-blind, randomised clinical trial. SETTING Twelve-bed medical ICU of a university hospital. PATIENTS A total of 166 consecutive patients anticipated to need parenteral nutrition for more than 6 days. Patients were stratified for the presence of systemic inflammatory response syndrome (SIRS) at baseline (115 SIRS, 51 non-SIRS). INTERVENTION Patients were randomly assigned to receive either a 1:1-mixture of medium-chain triglycerides (MCT) and long-chain triglycerides (LCT) with an n-3/n-6 PUFA ratio of 1:7, or the same MCT/LCT emulsion supplemented with fish oil (resulting in an n-3/n-6 ratio of 1:2). MEASUREMENTS AND RESULTS Primary endpoints were changes in interleukin 6 (IL-6) and monocyte HLA-DR expression relative to baseline. Secondary endpoints were incidence of nosocomial infections, duration of mechanical ventilation, length of ICU stay, and 28-day mortality. Bleeding complications were recorded as a possible side effect of fish oil. Between standard and intervention groups, overall as well as stratified for SIRS or non-SIRS, no significant difference was detected in any of the endpoints or frequency and severity of bleeding events. CONCLUSIONS In unselected critically ill medical patients, fish oil supplementation that increased the n-3/n-6 PUFA ratio to 1:2 did not affect inflammation or clinical outcome, compared to parenteral lipid nutrition with an MCT/LCT emulsion.
Collapse
Affiliation(s)
- Sigrun Friesecke
- Department of Internal Medicine, Ernst Moritz Arndt University of Greifswald, 17475, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Beli E, Li M, Cuff C, Pestka JJ. Docosahexaenoic acid-enriched fish oil consumption modulates immunoglobulin responses to and clearance of enteric reovirus infection in mice. J Nutr 2008; 138:813-9. [PMID: 18356340 DOI: 10.1093/jn/138.4.813] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We hypothesized that consumption of the (n-3) PUFA, docosahexaenoic acid (DHA), modulates the mucosal immune response to enteric infection with respiratory enteric orphan virus (reovirus), a model intestinal pathogen. Mice were fed either AIN-93G control diet, containing 10 g/kg corn oil and 60 g/kg high oleic acid safflower oil, or AIN-93G, containing 10 g/kg corn oil and 60 g/kg DHA-enriched fish oil, for 4 wk and then orally gavaged with reovirus strain Type 1 Lang, (T1/L). Reovirus-specific IgA antibody was first detectable in the feces of mice fed a control diet at 6 d postinfection (PI) and was further elevated at 8 and 10 d PI. IgA responses in DHA-fed mice were similar at 6 and 8 d PI but greater at 10 d PI (P < 0.05). Both reovirus-specific serum IgA and IgG(2a) were comparably induced in mice fed control or DHA diets. Reovirus-specific IgA and IgG(2a) secretion by ex vivo Peyer's patch, lamina propria, and spleen cultures derived from control and DHA groups were comparable. Although both groups carried similar numbers of reovirus plaque forming units per intestine, DHA-fed mice shed nearly 10 times more viral RNA in feces than control mice at 2, 4, and 6 d PI (P < 0.05). However, viral RNA was not detectable in either group at 8 and 10 d. Taken together, these data suggest that DHA consumption did not markedly alter mucosal or systemic Ig responses to reovirus but delayed clearance of the virus from the intestinal tract.
Collapse
Affiliation(s)
- Eleni Beli
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Gold DR, Willwerth BM, Tantisira KG, Finn PW, Schaub B, Perkins DL, Tzianabos A, Ly NP, Schroeter C, Gibbons F, Campos H, Oken E, Gillman MW, Palmer LJ, Ryan LM, Weiss ST. Associations of cord blood fatty acids with lymphocyte proliferation, IL-13, and IFN-gamma. J Allergy Clin Immunol 2006; 117:931-8. [PMID: 16630954 PMCID: PMC1508138 DOI: 10.1016/j.jaci.2005.12.1322] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND N-3 and n-6 polyunsaturated fatty acids (PUFAs) have been hypothesized to have opposing influences on neonatal immune responses that might influence the risk of allergy or asthma. However, both n-3 eicosapentaenoic acid (EPA) and n-6 arachidonic acid (AA) are required for normal fetal development. OBJECTIVE We evaluated whether cord blood fatty acid levels were related to neonatal immune responses and whether n-3 and n-6 PUFA responses differed. METHODS We examined the relation of cord blood plasma n-3 and n-6 PUFAs (n = 192) to antigen- and mitogen-stimulated cord blood lymphocyte proliferation (n = 191) and cytokine (IL-13 and IFN-gamma; n = 167) secretion in a US birth cohort. RESULTS Higher levels of n-6 linoleic acid were correlated with higher IL-13 levels in response to Bla g 2 (cockroach, P = .009) and Der f 1 (dust mite, P = .02). Higher n-3 EPA and n-6 AA levels were each correlated with reduced lymphocyte proliferation and IFN-gamma levels in response to Bla g 2 and Der f 1 stimulation. Controlling for potential confounders, EPA and AA had similar independent effects on reduced allergen-stimulated IFN-gamma levels. If neonates had either EPA or AA levels in the highest quartile, their Der f 1 IFN-gamma levels were 90% lower (P = .0001) than those with both EPA and AA levels in the lowest 3 quartiles. Reduced AA/EPA ratio was associated with reduced allergen-stimulated IFN-gamma level. CONCLUSION Increased levels of fetal n-3 EPA and n-6 AA might have similar effects on attenuation of cord blood lymphocyte proliferation and IFN-gamma secretion. CLINICAL IMPLICATIONS The implications of these findings for allergy or asthma development are not yet known.
Collapse
Affiliation(s)
- Diane R Gold
- Channing Laboratory, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kew S, Wells S, Thies F, McNeill GP, Quinlan PT, Clark GT, Dombrowsky H, Postle AD, Calder PC. The Effect of Eicosapentaenoic Acid on Rat Lymphocyte Proliferation Depends Upon Its Position in Dietary Triacylglycerols. J Nutr 2003; 133:4230-8. [PMID: 14652377 DOI: 10.1093/jn/133.12.4230] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal and human studies have shown that greatly increasing the amount of fish oil [rich in long-chain (n-3) PUFA] in the diet can decrease lymphocyte functions. The effects of a more modest provision of long-chain (n-3) PUFA and whether eicosapentaenoic acid (20:5) and docosahexaenoic acid (22:6) have the same effects as one another are unclear. Whether the position of 20:5 or 22:6 in dietary triacylglycerols (TAG) influences their incorporation into immune cells and their subsequent functional effects is not known. In this study, male weanling rats were fed for 6 wk one of 9 diets that contained 178 g lipid/kg and that differed in the type of (n-3) PUFA and in the position of these in dietary TAG. The control diet contained 4.4 g alpha-linolenic acid (18:3)/100 g total fatty acids. In the other diets, 20:5 or 22:6 replaced a portion (50 or 100%) of 18:3, and were in the sn-2 or the sn-1(3) position of dietary TAG. There were significant dose-dependent increases in the proportion of 20:5 or 22:6 in spleen mononuclear cell phospholipids when 20:5 or 22:6 was fed. These increases were at the expense of arachidonic acid and were largely independent of the position of 20:5 or 22:6 in dietary TAG. Spleen lymphocyte proliferation increased dose dependently when 20:5 was fed in the sn-1(3) position of dietary TAG. There were no significant differences in interleukin-2, interferon-gamma or interleukin-10 production among spleen cells from rats fed the different diets. Prostaglandin E(2) production by spleen mononuclear cells was decreased by inclusion of either 20:5 or 22:6 in the diet in the sn-1(3) position. Thus, incorporation of 20:5 or 22:6 into spleen mononuclear cell phospholipids is not influenced by the position in dietary TAG. However, the pattern of incorporation may be influenced, and there are some differential functional effects of the position of long-chain (n-3) PUFA in dietary TAG. A moderate increase in the intake of 20:5 at the sn-1(3) position of dietary TAG increases lymphocyte proliferation.
Collapse
Affiliation(s)
- S Kew
- Institute of Human Nutrition, Division of Infection, Inflammation and Repair, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oarada M, Tsuduki T, Suzuki T, Miyazawa T, Nikawa T, Hong-quan G, Kurita N. Dietary supplementation with docosahexaenoic acid, but not with eicosapentaenoic acid, reduces host resistance to fungal infection in mice. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1622:151-60. [PMID: 12928111 DOI: 10.1016/s0304-4165(03)00136-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of dietary docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on host resistance to Paracoccidioides brasiliensis infection was investigated. Mice fed palm oil supplemented with DHA showed reduced antifungal activity in the spleen and liver, as compared with mice fed palm oil or soybean oil without supplementation with DHA. Mice fed DHA-supplemented soybean oil also showed reduced antifungal activity in the liver, but the extent of reduction was less profound. This reduction in antifungal activity was not observed with EPA-supplemented palm or EPA-supplemented soybean oil. These results suggest that two factors, DHA and palm oil in combination, are involved in reducing the host resistance. DHA-enriched palm oil was also responsible for an increase in DHA concentration and a marked decrease in arachidonic acid content in the spleen and liver. However, this group did not show elevated spleen and liver phospholipid hydroperoxide levels compared with the other groups, excluding the possibility that the reduction in antifungal activity observed with DHA-enriched palm oil is due to acceleration of in vivo lipid peroxidation. Greater infection-induced increases in spleen and serum interferon-gamma concentrations were observed in mice fed DHA-enriched palm oil compared with the other groups.
Collapse
Affiliation(s)
- Motoko Oarada
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8673, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Harbige LS. Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 2003; 38:323-41. [PMID: 12848277 DOI: 10.1007/s11745-003-1067-z] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The essentiality of n-6 polyunsaturated fatty acids (PUFA) is described in relation to a thymus/thymocyte accretion of arachidonic acid (20:4n-6, AA) in early development, and the high requirement of lymphoid and other cells of the immune system for AA and linoleic acid (1 8:2n-6, LA) for membrane phospholipids. Low n-6 PUFA intakes enhance whereas high intakes decrease certain immune functions. Evidence from in vitro and in vivo studies for a role of AA metabolites in immune cell development and functions shows that they can limit or regulate cellular immune reactions and can induce deviation toward a T helper (Th)2-like immune response. In contrast to the effects of the oxidative metabolites of AA, the longer-chain n-6 PUFA produced by gamma-linolenic acid (18:3n-6, GLA) feeding decreases the Th2 cytokine and immunoglobulin (Ig)G1 antibody response. The n-6 PUFA, GLA, dihomo-gamma-linolenic acid (20:3n-6, DHLA) and AA, and certain oxidative metabolites of AA can also induce T-regulatory cell activity, e.g., transforming growth factor (TGF)-beta-producing T cells; GLA feeding studies also demonstrate reduced proinflammatory interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha production. Low intakes of long-chain n-3 fatty acids (fish oils) enhance certain immune functions, whereas high intakes are inhibitory on a wide range of functions, e.g., antigen presentation, adhesion molecule expression, Th1 and Th2 responses, proinflammatory cytokine and eicosanoid production, and they induce lymphocyte apoptosis. Vitamin E has a demonstrable critical role in long-chain n-3 PUFA interactions with immune functions, often reversing the effects of fish oil. The effect of dietary fatty acids on animal autoimmune disease models depends on both the autoimmune model and the amount and type of fatty acids fed. Diets low in fat, essential fatty acid deficient (EFAD), or high in long-chain n-3 PUFA from fish oils increase survival and reduce disease severity in spontaneous autoantibody-mediated disease, whereas high-fat LA-rich diets increase disease severity. In experimentally induced T cell-mediated autoimmune disease, EFAD diets or diets supplemented with long-chain n-3 PUFA augment disease, whereas n-6 PUFA prevent or reduce the severity. In contrast, in both T cell- and antibody-mediated autoimmune disease, the desaturated/elongated metabolites of LA are protective. PUFA of both the n-6 and n-3 families are clinically useful in human autoimmune-inflammatory disorders, but the precise mechanisms by which these fatty acids exert their clinical effects are not well understood. Finally, the view that all n-6 PUFA are proinflammatory requires revision, in part, and their essential regulatory and developmental role in the immune system warrants appreciation.
Collapse
Affiliation(s)
- Laurence S Harbige
- School of Chemical and Life Sciences, University of Greenwich at Medway, Chatham Maritime, Kent ME4 4TB, United Kingdom.
| |
Collapse
|
33
|
Abstract
The current view of the manner in which (n-3) polyunsaturated fatty acids (PUFA) affect the immune system is centered on their ability to alter cytokine production and secondarily to diminish eicosanoid biosynthesis. The purpose of this article is to review the evidence that (n-3) PUFA affect host infectious disease resistance. Although there have been a few human clinical trials involving (n-3) PUFA and human infectious disease, the data are equivocal and the study designs confounded by the simultaneous inclusion of other immunonutrients (i.e., arginine and nucleotides) with the (n-3) PUFA. Thus, this review focuses on animal feeding trials that include an in vivo challenge of the host with a live infectious agent. Host survival and pathogen clearance are the most common end points measured in these studies. The data suggest that (n-3) PUFA can both improve and impair host resistance to a number of pathogens. However, the data are still quite limited in breadth and depth. For those pathogens for which data exist, the number of published studies in general does not exceed two or three. Emphasis is placed on defining important microbiological and immunological differences in various host-pathogen interactions that might help explain the incongruity in the findings published to date. The authors believe that direct examination of (n-3) PUFA on human infectious disease resistance is warranted.
Collapse
Affiliation(s)
- Michele Anderson
- Department of Nutritional Sciences, University of Missouri, Columbia 65211, USA
| | | |
Collapse
|
34
|
Abstract
Recognition that specific nutrients can be beneficial when consumed in amounts above the accepted daily requirements has provided a major impetus for the critical examination of dietary approaches with single or multiple nutrient supplements chosen to modulate the inflammatory response, enhance immune function, or improve the blood-gut barrier. Patients suffering the effects of hypercatabolism caused by surgery, cancer, or extensive burns are prime candidates for immunonutrition, as the intervention has come to be known, as are immunosuppressed patients with the human immunodeficiency virus or other overwhelming infections. This review focuses on key nutrients used in clinical trials for which a body of information on the mode of action and metabolic pathways is available. The topics covered include the amino acids, glutamine and arginine; omega-3 fatty acids, eicosapentaenoic acid and docosahexanoic acid; vitamin A; and zinc. Lastly, we address the area of pre- and probiotics and how "friendly" microorganisms are being incorporated into therapeutic regimens aimed at sustaining health. The use of immunonutrition requires judicious consideration of the potential undesirable effects of certain additives in clinical settings where enhanced immune responsiveness can translate into tissue damage and altered mucosal defenses.
Collapse
Affiliation(s)
- Joseph Levy
- Children's Hospital of New York-Presbyterian, Columbia University, College of Physicians and Surgeons, New York, New York, USA.
| | | |
Collapse
|
35
|
de Pablo MA, Puertollano MA, Alvarez de Cienfuegos G. Biological and clinical significance of lipids as modulators of immune system functions. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:945-50. [PMID: 12204942 PMCID: PMC120072 DOI: 10.1128/cdli.9.5.945-950.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel A de Pablo
- Unit of Microbiology, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, E-23071, Jaén, Spain.
| | | | | |
Collapse
|
36
|
Puertollano MA, de Pablo MA, Alvarez de Cienfuegos G. Relevance of dietary lipids as modulators of immune functions in cells infected with Listeria monocytogenes. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:352-7. [PMID: 11874877 PMCID: PMC119940 DOI: 10.1128/cdli.9.2.352-357.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nutritional status may have significant importance for the immune system, and particularly, unsaturated fatty acids may serve as modulators of immune functions. Clinical and epidemiological studies have demonstrated that fatty acids are involved in the reduction of the inflammatory processes that occur in diseases characterized by an overactivation of the immune system. At the same time, an increase in susceptibility to infection has also been reported. The importance of immune system modulation by dietary lipids in the presence of an intracellular bacterial pathogen, such as Listeria monocytogenes, was evaluated in the present study. BALB/c mice were divided into four groups which were each fed a low-fat (2.5% by weight) diet, an olive oil (OO; 20% by weight) diet, a fish oil (FO; 20% by weight) diet, or a hydrogenated coconut oil (HCO; 20% by weight) diet for 4 weeks. In each group, lymphocye proliferation was measured, and a reduction in the stimulation index was observed in the FO and HCO groups. Cytotoxicity exerted by L. monocytogenes was increased in the groups fed diets containing OO and FO after 6 h of incubation with the bacterium. An important increase in the production of reactive oxygen species was found in the groups fed the HCO diet after 12 h of incubation with L. monocytogenes. Finally, invasion and adhesion factors were not modified substantially by the action of dietary lipids, although these factors were reduced in cells from mice fed an FO diet. These results underline the importance of several dietary lipids as biological modulators of immune functions and their crucial role in the alteration of host natural resistance.
Collapse
Affiliation(s)
- María A Puertollano
- Unit of Microbiology, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, E-23071-Jaén, Spain
| | | | | |
Collapse
|
37
|
Calder PC, Yaqoob P, Thies F, Wallace FA, Miles EA. Fatty acids and lymphocyte functions. Br J Nutr 2002; 87 Suppl 1:S31-48. [PMID: 11895154 DOI: 10.1079/bjn2001455] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system acts to protect the host against pathogenic invaders. However, components of the immune system can become dysregulated such that their activities are directed against host tissues, so causing damage. Lymphocytes are involved in both the beneficial and detrimental effects of the immune system. Both the level of fat and the types of fatty acid present in the diet can affect lymphocyte functions. The fatty acid composition of lymphocytes, and other immune cells, is altered according to the fatty acid composition of the diet and this alters the capacity of those cells to produce eicosanoids, such as prostaglandin E2, which are involved in immunoregulation. A high fat diet can impair lymphocyte function. Cell culture and animal feeding studies indicate that oleic, linoleic, conjugated linoleic, gamma-linolenic, dihomo-gamma-linolenic, arachidonic, alpha-linolenic, eicosapentaenoic and docosahexaenoic acids can all influence lymphocyte proliferation, the production of cytokines by lymphocytes, and natural killer cell activity. High intakes of some of these fatty acids are necessary to induce these effects. Among these fatty acids the long chain n-3 fatty acids, especially eicosapentaenoic acid, appear to be the most potent when included in the human diet. Although not all studies agree, it appears that fish oil, which contains eicosapentaenoic acid, down regulates the T-helper 1-type response which is associated with chronic inflammatory disease. There is evidence for beneficial effects of fish oil in such diseases; this evidence is strongest for rheumatoid arthritis. Since n-3 fatty acids also antagonise the production of inflammatory eicosanoid mediators from arachidonic acid, there is potential for benefit in asthma and related diseases. Recent evidence indicates that fish oil may be of benefit in some asthmatics but not others.
Collapse
Affiliation(s)
- P C Calder
- Institute of Human Nutrition, University of Southampton, UK.
| | | | | | | | | |
Collapse
|
38
|
Puertollano MA, de Pablo MA, Alvarez de Cienfuegos G. Immunomodulatory effects of dietary lipids alter host natural resistance of mice to Listeria monocytogenes infection. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 32:47-52. [PMID: 11750222 DOI: 10.1111/j.1574-695x.2001.tb00533.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the past two decades, unsaturated fatty acids have received particular attention due to their ability to suppress immune functions. Nevertheless, suppression of immune functions also involves a reduction of host natural resistance to eliminate the infectious agents. We have analyzed the role of dietary lipids on immune functions in cells cultured with Listeria monocytogenes. Bactericidal efficiency of peritoneal cells from mice fed a fish oil diet against this bacterium was reduced and the incubation of peritoneal cells with polyunsaturated fatty acids led to similar results. The levels of superoxide radicals in the presence of L. monocytogenes increased in cells from mice fed olive oil or fish oil diets. Proteasome activity, a mechanism that participates in T cell activation, was inhibited in all of the dietary groups assayed in the presence of L. monocytogenes, but this inhibition was abolished in the presence of both MG132 (a proteasome inhibitor) and L. monocytogenes. Overall, these results underline the potential role of fatty acids in the modulation of many functions of the immune system.
Collapse
Affiliation(s)
- M A Puertollano
- University of Jaén, Faculty of Experimental Sciences, Department of Health Sciences, Unit of Microbiology, E-23071, Jaén, Spain
| | | | | |
Collapse
|
39
|
Abstract
The fatty acid composition of inflammatory and immune cells is sensitive to change according to the fatty acid composition of the diet. In particular, the proportion of different types of polyunsaturated fatty acids (PUFA) in these cells is readily changed, and this provides a link between dietary PUFA intake, inflammation, and immunity. The n-6 PUFA arachidonic acid (AA) is the precursor of prostaglandins, leukotrienes, and related compounds, which have important roles in inflammation and in the regulation of immunity. Fish oil contains the n-3 PUFA eicosapentaenoic acid (EPA). Feeding fish oil results in partial replacement of AA in cell membranes by EPA. This leads to decreased production of AA-derived mediators. In addition, EPA is a substrate for cyclooxygenase and lipoxygenase and gives rise to mediators that often have different biological actions or potencies than those formed from AA. Animal studies have shown that dietary fish oil results in altered lymphocyte function and in suppressed production of proinflammatory cytokines by macrophages. Supplementation of the diet of healthy human volunteers with fish oil-derived n-3 PUFA results in decreased monocyte and neutrophil chemotaxis and decreased production of proinflammatory cytokines. Fish oil feeding has been shown to ameliorate the symptoms of some animal models of autoimmune disease. Clinical studies have reported that fish oil supplementation has beneficial effects in rheumatoid arthritis, inflammatory bowel disease, and among some asthmatics, supporting the idea that the n-3 PUFA in fish oil are anti-inflammatory and immunomodulatory.
Collapse
Affiliation(s)
- P C Calder
- Institute of Human Nutrition, University of Southampton, Southampton 5016 7PX, United Kingdom.
| |
Collapse
|
40
|
|
41
|
Abstract
Rheumatoid arthritis is characterized by infiltration of T lymphocytes, macrophages and plasma cells into the synovium, and the initiation of a chronic inflammatory state that involves overproduction of proinflammatory cytokines and a dysregulated T-helper-1-type response. Eicosanoids synthesized from arachidonic acid and cytokines cause progressive destruction of cartilage and bone. The n-6 polyunsaturated fatty acid gamma-linolenic acid is the precursor of di-homo-gamma-linolenic acid. The latter and the n-3 polyunsaturated fatty acid eicosapentaenoic acid, which is found in fish oil, are able to decrease the production of arachidonic acid-derived eicosanoids and to decrease the production of proinflammatory cytokines and reactive oxygen species, and the reactivity of lymphocytes. A number of double-blind, placebo-controlled trials of gamma-linolenic acid and fish oil in rheumatoid arthritis have shown significant improvements in a variety of clinical outcomes. These fatty acids should be included as part of the normal therapeutic approach to rheumatoid arthritis. However, it is unclear what the optimal dosage of the fatty acids is, or whether there would be extra benefit from using them in combination.
Collapse
Affiliation(s)
- P C Calder
- Institute of Human Nutrition, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | |
Collapse
|
42
|
Thies F, Nebe-von-Caron G, Powell JR, Yaqoob P, Newsholme EA, Calder PC. Dietary supplementation with eicosapentaenoic acid, but not with other long-chain n-3 or n-6 polyunsaturated fatty acids, decreases natural killer cell activity in healthy subjects aged >55 y. Am J Clin Nutr 2001; 73:539-48. [PMID: 11237929 DOI: 10.1093/ajcn/73.3.539] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Animal studies showed that dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid alpha-linolenic acid (ALA)], evening primrose oil [rich in the n-6 polyunsaturated fatty acid gamma-linolenic acid (GLA)], and fish oil [rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] can decrease natural killer (NK) cell activity. There have been no studies of the effect on NK cell activity of adding these oils to the diet of humans. OBJECTIVE Our objective was to determine the effect of dietary supplementation with oil blends rich in ALA, GLA, arachidonic acid (AA), DHA, or EPA plus DHA (fish oil) on the NK cell activity of human peripheral blood mononuclear cells. DESIGN A randomized, placebo-controlled, double-blind, parallel study was conducted. Healthy subjects aged 55-75 y consumed 9 capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil and oils rich in ALA, GLA, AA, DHA, or EPA plus DHA. Subjects in these groups consumed 2 g ALA, 770 mg GLA, 680 mg AA, 720 mg DHA, or 1 g EPA plus DHA (720 mg EPA + 280 mg DHA) daily, respectively. Total fat intake from the capsules was 4 g/d. RESULTS The fatty acid composition of plasma phospholipids changed significantly in the GLA, AA, DHA, and fish oil groups. NK cell activity was not significantly affected by the placebo, ALA, GLA, AA, or DHA treatment. Fish oil caused a significant reduction (mean decline: 48%) in NK cell activity that was fully reversed by 4 wk after supplementation had ceased. CONCLUSION A moderate amount of EPA but not of other n-6 or n-3 polyunsaturated fatty acids can decrease NK cell activity in healthy subjects.
Collapse
Affiliation(s)
- F Thies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
de Pablo MA, Angeles Puertollano M, Alvarez de Cienfuegos G. Immune cell functions, lipids and host natural resistance. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2000; 29:323-8. [PMID: 11118914 DOI: 10.1111/j.1574-695x.2000.tb01540.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nutritional status may exert a profound effect on immune system functions. Hence, several parameters of immune system are modified by dietary lipid administration, as lymphocyte proliferation, cytokine production, natural killer activity, antigen presentation, etc. Thus, numerous studies have indicated the key role of lipids as immune response modulators. These properties have been applied in the treatment of autoimmune and inflammatory diseases. As a result, the reduction or suppression of immune status due to lipid incorporation promotes an impairment in the ability of host natural response to eliminate infectious microorganisms as bacteria or parasites. In the present review, we analyze the current status about the relationship among dietary lipids, reduction of immune parameters and reduction of host natural response against infectious diseases. Many discrepancies are discussed, although several studies indicate a close association between dietary lipid manipulation and impairment in the elimination of bacteria, viruses or parasites. On the other hand, other studies point out a beneficial effect of dietary lipid manipulation on the host natural response. Future investigations will determine the events involved in the regulation of immune response by fatty acids and their role in the elimination of pathogenic agents.
Collapse
Affiliation(s)
- M A de Pablo
- University of Jaén, Faculty of Experimental Sciences, Department of Health Sciences, Unit of Microbiology, E-23071, Jaén, Spain.
| | | | | |
Collapse
|
44
|
Volker DH, FitzGerald PE, Garg ML. The eicosapentaenoic to docosahexaenoic acid ratio of diets affects the pathogenesis of arthritis in Lew/SSN rats. J Nutr 2000; 130:559-65. [PMID: 10702585 DOI: 10.1093/jn/130.3.559] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary-induced changes in tissue levels of polyunsaturated fatty acids modify inflammatory reactions through changes in the synthesis of lipid and peptide mediators of inflammation. Four semipurified 20% fat diets, based on beef tallow (BT), safflower oil (SFO), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were provided. The DHA and EPA ratios of the (n-3) fatty acid-based diets were 1.1 and 3.4, respectively. The effect of prefeeding diets differing in EPA to DHA ratios prior to the induction of streptococcal cell wall (SCW) arthritis in female Lew/SSN rats was examined. Weanling rats were fed diets for 5 wk before arthritis induction and 5 wk post-arthritis induction. Footpad thickness, hock circumference, plasma and macrophage fatty acids and histological assessment were compared. There were no differences in food intake and final body weights among the groups. Footpad inflammation, reported as percentage change (adjusted for growth) was greatest for rats fed the BT-based diet, intermediate in those fed the SFO-based diet and least for the rats fed the EPA- and DHA-based diets (P < 0.05). Macrophage phospholipids revealed cellular incorporation of EPA and DHA from the fish-oil based diets which modified lipid and peptide mediators of inflammation. Histological sections of rat hocks ranked by severity of arthritis-related changes suggested that the SFO- and EPA-based diets were more successful in ameliorating the destructive arthritic phase in hock joints than the BT- and DHA-based diets (P = 0.09) in this model of arthritis. The course of SCW-induced arthritis can be altered by diet-induced changes in macrophage fatty acid composition. The EPA-based diet is more effective in suppression of inflammation than the DHA-based diet.
Collapse
Affiliation(s)
- D H Volker
- Discipline of Nutrition & Dietetics, Faculty of Medicine & Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
45
|
Affiliation(s)
- P Fürst
- Institute for Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
46
|
Byleveld M, Pang GT, Clancy RL, Roberts DC. Fish oil feeding enhances lymphocyte proliferation but impairs virus-specific T lymphocyte cytotoxicity in mice following challenge with influenza virus. Clin Exp Immunol 2000; 119:287-92. [PMID: 10632664 PMCID: PMC1905511 DOI: 10.1046/j.1365-2249.2000.01135.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of a fish oil diet on virus-specific cytotoxicity and lymphocyte proliferation was investigated. Mice were fed fish oil (17 g fish oil and 3 g sunflower/100 g) or beef tallow (17 g tallow and 3 g sunflower/100 g) diets for 14 days before intranasal challenge with influenza virus. At day 5 after infection, lung virus-specific T lymphocyte, but not macrophage or natural killer (NK) cell, cytotoxicity was significantly lower in mice fed fish oil, while bronchial lymph node cell proliferation to virus was significantly higher. In mice fed fish oil, spleen cell proliferation to virus was also significantly higher following immunization. The results showed that, despite improved lymphocyte proliferation, fish oil impairs primary virus-specific T lymphocyte cytotoxicity. This impairment may explain the delayed virus clearance that we have previously reported in infected mice fed the fish oil diet.
Collapse
Affiliation(s)
- M Byleveld
- Discipline of Nutrition and Dietetics, University of Newcastle, Newcastle, Australia
| | | | | | | |
Collapse
|