1
|
Lu X, Wu Y, Schalek RL, Meirovitch Y, Berger DR, Lichtman JW. A Scalable Staining Strategy for Whole-Brain Connectomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558265. [PMID: 37808722 PMCID: PMC10557665 DOI: 10.1101/2023.09.26.558265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mapping the complete synaptic connectivity of a mammalian brain would be transformative, revealing the pathways underlying perception, behavior, and memory. Serial section electron microscopy, via membrane staining using osmium tetroxide, is ideal for visualizing cells and synaptic connections but, in whole brain samples, faces significant challenges related to chemical treatment and volume changes. These issues can adversely affect both the ultrastructural quality and macroscopic tissue integrity. By leveraging time-lapse X-ray imaging and brain proxies, we have developed a 12-step protocol, ODeCO, that effectively infiltrates osmium throughout an entire mouse brain while preserving ultrastructure without any cracks or fragmentation, a necessary prerequisite for constructing the first comprehensive mouse brain connectome.
Collapse
Affiliation(s)
- Xiaotang Lu
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Yuelong Wu
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Yaron Meirovitch
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Daniel R. Berger
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology and The Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| |
Collapse
|
2
|
Sotoudeh Anvari M, Gharib A, Abolhasani M, Azari-Yam A, Hossieni Gharalari F, Safavi M, Zare Mirzaie A, Vasei M. Pre-analytical Practices in the Molecular Diagnostic Tests, A Concise Review. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:1-19. [PMID: 33391375 PMCID: PMC7691716 DOI: 10.30699/ijp.2020.124315.2357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/05/2020] [Indexed: 12/17/2022]
Abstract
Molecular assays for detection of nucleic acids in biologic specimens are valuable diagnostic tools supporting clinical diagnoses and therapeutic decisions. Pre-analytical errors, which occur before or during processing of nucleic acid extraction, contribute a significant role in common errors that take place in molecular laboratories. Certain practices in specimen collection, transportation, and storage can affect the integrity of nucleic acids before analysis. Applying best practices in these steps, helps to minimize those errors and leads to better decisions in patient diagnosis and treatment. Widely acceptable recommendations, which are for optimal molecular assays associated with pre-analytic variables, are limited. In this article, we have reviewed most of the important issues in sample handling from bed to bench before starting molecular tests, which can be used in diagnostic as well as research laboratories. We have addressed the most important pre-analytical points in performing molecular analysis in fixed and unfixed solid tissues, whole blood, serum, plasma, as well as most of the body fluids including urine, fecal and bronchial samples, as well as prenatal diagnosis samples.
Collapse
Affiliation(s)
- Maryam Sotoudeh Anvari
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Gharib
- Department of Pathology, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Aileen Azari-Yam
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Moeinadin Safavi
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Mirzaie
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vasei
- Cell-based Therapies Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kaludercic N, Maiuri MC, Kaushik S, Fernández ÁF, de Bruijn J, Castoldi F, Chen Y, Ito J, Mukai R, Murakawa T, Nah J, Pietrocola F, Saito T, Sebti S, Semenzato M, Tsansizi L, Sciarretta S, Madrigal-Matute J. Comprehensive autophagy evaluation in cardiac disease models. Cardiovasc Res 2020; 116:483-504. [PMID: 31504266 PMCID: PMC7064050 DOI: 10.1093/cvr/cvz233] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a highly conserved recycling mechanism essential for maintaining cellular homeostasis. The pathophysiological role of autophagy has been explored since its discovery 50 years ago, but interest in autophagy has grown exponentially over the last years. Many researchers around the globe have found that autophagy is a critical pathway involved in the pathogenesis of cardiac diseases. Several groups have created novel and powerful tools for gaining deeper insights into the role of autophagy in the aetiology and development of pathologies affecting the heart. Here, we discuss how established and emerging methods to study autophagy can be used to unravel the precise function of this central recycling mechanism in the cardiac system.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, Department of Biomedical Sciences, National Research Council of Italy (CNR), 35131, Padova, Italy
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Descartes, Université Paris Diderot, 75006, Paris, France
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Álvaro F Fernández
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny de Bruijn
- Department of Pathology, Cardiovascular Research Institute (CARIM), Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands; Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen, University, Pauwelsstrase 30, 52074, Aachen, Germany
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Descartes, Université Paris Diderot, 75006, Paris, France
| | - Yun Chen
- Departments of Medicine (Cardiology) and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Jumpei Ito
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NY, USA
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NY, USA
| | - Federico Pietrocola
- Cellular Plasticity and Disease Laboratory. Institute for Research in Biomedicine (IRB Barcelona), Barcelona; Institute of Science and Technology (BIST), Barcelona, Spain
| | - Toshiro Saito
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Salwa Sebti
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Martina Semenzato
- Department of Biology, University of Padua, Via U Bassi 58B, 35121, Padua, Italy.,Venetian Institute of Molecular Medicine, Via Orus 2, 35129, Padua, Italy
| | - Lorenza Tsansizi
- Department of Biology, University of Padua, Via U Bassi 58B, 35121, Padua, Italy.,Venetian Institute of Molecular Medicine, Via Orus 2, 35129, Padua, Italy
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, LT, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
4
|
Adam K, Hunter T. Subcellular Localization of Histidine Phosphorylated Proteins Through Indirect Immunofluorescence. Methods Mol Biol 2020; 2077:209-224. [PMID: 31707661 PMCID: PMC9717436 DOI: 10.1007/978-1-4939-9884-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunofluorescence (IF) takes advantage of biological and physical mechanisms to identify proteins in cell or tissue samples, exploiting the specificity of antibodies and stimulated fluorescence light emission. Here, we describe an immunofluorescence staining method for the identification of histidine phosphorylated proteins that uses neutral/alkaline conditions and targeted reagents to overcome the chemical lability of histidine phosphorylation. This method describes how 1- and 3-phosphohistidine (pHis) monoclonal antibodies can be used to reveal the localization of proteins containing these elusive phosphoramidate bonds in cells. Standard procedures and materials for IF staining with adherent and nonadherent cells are described.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
5
|
Bouchard C, Boudko DY, Jiang RHY. A SLC6 transporter cloned from the lion's mane jellyfish (Cnidaria, Scyphozoa) is expressed in neurons. PLoS One 2019; 14:e0218806. [PMID: 31233570 PMCID: PMC6590891 DOI: 10.1371/journal.pone.0218806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
In the course of recent comparative genomic studies conducted on nervous systems across the phylogeny, current thinking is leaning in favor of more heterogeneity among nervous systems than what was initially expected. The isolation and characterization of molecular components that constitute the cnidarian neuron is not only of interest to the physiologist but also, on a larger scale, to those who study the evolution of nervous systems. Understanding the function of those ancient neurons involves the identification of neurotransmitters and their precursors, the description of nutrients used by neurons for metabolic purposes and the identification of integral membrane proteins that bind to those compounds. Using a molecular cloning strategy targeting membrane proteins that are known to be present in all forms of life, we isolated a member of the solute carrier family 6 from the scyphozoan jellyfish Cyanea capillata. The phylogenetic analysis suggested that the new transporter sequence belongs to an ancestral group of the nutrient amino acid transporter subfamily and is part of a cluster of cnidarian sequences which may translocate the same substrate. We found that the jellyfish transporter is expressed in neurons of the motor nerve net of the animal. To this end, we established an in situ hybridization protocol for the tissues of C. capillata and developed a specific antibody to the jellyfish transporter. Finally, we showed that the gene that codes for the jellyfish transporter also expresses a long non-coding RNA. We hope that this research will contribute to studies that seek to understand what constitutes a neuron in species that belong to an ancient phylum.
Collapse
Affiliation(s)
- Christelle Bouchard
- College of Science and Mathematics, University of South Florida, Sarasota, Florida, United States of America
| | - Dmitri Y. Boudko
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois, United States of America
| | - Rays H. Y. Jiang
- Global and Planetary Health, College of Public Health, University of South Florida USF Genomics Program, Tampa, Florida, United States of America
| |
Collapse
|
6
|
Vasquez JJ, Hussien R, Aguilar-Rodriguez B, Junger H, Dobi D, Henrich TJ, Thanh C, Gibson E, Hogan LE, McCune J, Hunt PW, Stoddart CA, Laszik ZG. Elucidating the Burden of HIV in Tissues Using Multiplexed Immunofluorescence and In Situ Hybridization: Methods for the Single-Cell Phenotypic Characterization of Cells Harboring HIV In Situ. J Histochem Cytochem 2018; 66:427-446. [PMID: 29462571 PMCID: PMC5977441 DOI: 10.1369/0022155418756848] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.
Collapse
Affiliation(s)
- Joshua J. Vasquez
- Division of Experimental Medicine, Department of
Medicine, University of California, San Francisco, CA, USA
- Division of Pulmonary, Critical Care, Allergy,
and Sleep Medicine, Department of Medicine, University of California, San
Francisco, CA, USA
| | - Rajaa Hussien
- Division of Experimental Medicine, Department of
Medicine, University of California, San Francisco, CA, USA
| | - Brandon Aguilar-Rodriguez
- Division of Experimental Medicine, Department of
Medicine, University of California, San Francisco, CA, USA
| | - Henrik Junger
- Department of Pathology, University of
California, San Francisco, CA, USA
| | - Dejan Dobi
- Department of Pathology, University of
California, San Francisco, CA, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of
Medicine, University of California, San Francisco, CA, USA
- Division of HIV/AIDS, Department of Medicine,
University of California, San Francisco, CA, USA
- Division of Infectious Diseases, Department of
Medicine, University of California, San Francisco, CA, USA
| | - Cassandra Thanh
- Division of Experimental Medicine, Department
of Medicine, University of California, San Francisco, CA, USA
| | - Erica Gibson
- Division of Experimental Medicine, Department
of Medicine, University of California, San Francisco, CA, USA
| | - Louise E. Hogan
- Division of Experimental Medicine, Department
of Medicine, University of California, San Francisco, CA, USA
| | - Joseph McCune
- Division of Experimental Medicine, Department
of Medicine, University of California, San Francisco, CA, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, Department
of Medicine, University of California, San Francisco, CA, USA
- Division of HIV/AIDS, Department of Medicine,
University of California, San Francisco, CA, USA
- Division of Infectious Diseases, Department of
Medicine, University of California, San Francisco, CA, USA
| | - Cheryl A. Stoddart
- Division of Experimental Medicine, Department
of Medicine, University of California, San Francisco, CA, USA
| | - Zoltan G. Laszik
- Department of Pathology, University of
California, San Francisco, CA, USA
| |
Collapse
|
7
|
Hua R, Yu S, Liu M, Li H. A PCR-Based Method for RNA Probes and Applications in Neuroscience. Front Neurosci 2018; 12:266. [PMID: 29770110 PMCID: PMC5942160 DOI: 10.3389/fnins.2018.00266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
In situ hybridization (ISH) is a powerful technique that is used to detect the localization of specific nucleic acid sequences for understanding the organization, regulation, and function of genes. However, in most cases, RNA probes are obtained by in vitro transcription from plasmids containing specific promoter elements and mRNA-specific cDNA. Probes originating from plasmid vectors are time-consuming and not suitable for the rapid gene mapping. Here, we introduce a simplified method to prepare digoxigenin (DIG)-labeled non-radioactive RNA probes based on polymerase chain reaction (PCR) amplification and applications in free-floating mouse brain sections. Employing a transgenic reporter line, we investigate the expression of the somatostatin (SST) mRNA in the adult mouse brain. The method can be applied to identify the colocalization of SST mRNA and proteins including corticotrophin-releasing hormone (CRH) and protein kinase C delta type (PKC-δ) using double immunofluorescence, which is useful for understanding the organization of complex brain nuclei. Moreover, the method can also be incorporated with retrograde tracing to visualize the functional connection in the neural circuitry. Briefly, the PCR-based method for non-radioactive RNA probes is a useful tool that can be substantially utilized in neuroscience studies.
Collapse
Affiliation(s)
- Ruifang Hua
- Ministry of Education Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shanshan Yu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mugen Liu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haohong Li
- Ministry of Education Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Ding NZ, Qi QR, Gu XW, Zuo RJ, Liu J, Yang ZM. De novo synthesis of sphingolipids is essential for decidualization in mice. Theriogenology 2017; 106:227-236. [PMID: 29096270 DOI: 10.1016/j.theriogenology.2017.09.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/10/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
Sphingolipids play multiple roles in membrane structure, signal transduction, stress responses, neural development and immune reaction. The rate of de novo synthesis pathway of sphingolipids is regulated by two key enzymes, serine palmitoyltransferase (SPT), and ketoreductase (Kds). Here, we find that the mRNA levels of three subunits of the SPT holoenzyme (Sptlc1, Sptlc2, and Ssspta) are significantly up-regulated in mouse uterine stromal cells during decidualization. The expression of Kds, which reduces 3-keto-dihydrosphingosine to dihydrosphingosine, is co-localized with Sptlc1 in mouse uteri during early pregnancy. Moreover, l-Cycloserine, a specific inhibitor of SPT, can significantly decrease the weight and number of implantation sites, and impede the decidualization process in mouse uterine stromal cells, suggesting that blockage of de novo sphingolipid synthesis may cause defective decidualization and early pregnancy loss in mice. In addition, this study also shows progesterone (P4) can stimulate the expression of both Sptlc2 and Ssspta in mouse uterus. Therefore, our study shows that de novo synthesis of sphingolipids is necessary in implantation and plays a key role in decidualization of mouse.
Collapse
Affiliation(s)
- Nai-Zheng Ding
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Qian-Rong Qi
- Department of Biology, Shantou University, Shantou 515063, China
| | - Xiao-Wei Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ru-Juan Zuo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Liu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Vicario A, Mendoza E, Abellán A, Scharff C, Medina L. Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile. Brain Struct Funct 2016; 222:481-514. [PMID: 27160258 PMCID: PMC5225162 DOI: 10.1007/s00429-016-1229-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/21/2016] [Indexed: 02/01/2023]
Abstract
We used a battery of genes encoding transcription factors (Pax6, Islet1, Nkx2.1, Lhx6, Lhx5, Lhx9, FoxP2) and neuropeptides to study the extended amygdala in developing zebra finches. We identified different components of the central extended amygdala comparable to those found in mice and chickens, including the intercalated amygdalar cells, the central amygdala, and the lateral bed nucleus of the stria terminalis. Many cells likely originate in the dorsal striatal domain, ventral striatal domain, or the pallidal domain, as is the case in mice and chickens. Moreover, a cell subpopulation of the central extended amygdala appears to originate in the prethalamic eminence. As a general principle, these different cells with specific genetic profiles and embryonic origin form separate or partially intermingled cell corridors along the extended amygdala, which may be involved in different functional pathways. In addition, we identified the medial amygdala of the zebra finch. Like in the chickens and mice, it is located in the subpallium and is rich in cells of pallido-preoptic origin, containing minor subpopulations of immigrant cells from the ventral pallium, alar hypothalamus and prethalamic eminence. We also proposed that the medial bed nucleus of the stria terminalis is composed of several parallel cell corridors with different genetic profile and embryonic origin: preoptic, pallidal, hypothalamic, and prethalamic. Several of these cell corridors with distinct origin express FoxP2, a transcription factor implicated in synaptic plasticity. Our results pave the way for studies using zebra finches to understand the neural basis of social behavior, in which the extended amygdala is involved.
Collapse
Affiliation(s)
- Alba Vicario
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Antonio Abellán
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain.
| |
Collapse
|
10
|
Vicario A, Abellán A, Medina L. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:139-69. [DOI: 10.1159/000381004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
In a recent study, we tentatively identified different subdivisions of the central extended amygdala (EAce) in chicken based on the expression of region-specific transcription factors (including Pax6 and Islet1) and several phenotypic markers during embryonic development. Such a proposal was partially based on the suggestion that, similarly to the subdivisions of the EAce of mammals, the Pax6 and Islet1 neurons of the comparable chicken subdivisions derive from the dorsal (Std) or ventral striatal embryonic domains (Stv), respectively. To investigate whether this is true, in the present study, we carried out cell migration assays from chicken Std or Stv combined with immunofluorescence for Pax6 or Islet1. Our results showed that the cells of the proposed chicken EAce truly originate in either Std (expressing Pax6) or Stv (expressing Islet1). This includes lateral subdivisions previously compared to the intercalated amygdalar cells and the central amygdala of mammals, also rich in Std-derived Pax6 cells and/or Stv-derived Islet1 cells. In the medial region of the chicken EAce, the dorsal part of the lateral bed nucleus of the stria terminalis (BSTL) contains numerous cells expressing Nkx2.1 (mostly derived from the pallidal domain), but our migration assays showed that it also contains neuron subpopulations from the Stv (expressing Islet1) and Std (expressing Pax6), resembling the mouse BSTL. These findings, together with those previously published in different species of mammals, birds and reptiles, support the homology of the chicken EAce to that of other vertebrates, and reinforce the existence of several cell subcorridors inside the EAce. In addition, together with previously published data on neuropeptidergic cells, these results led us to propose the existence of at least seventeen neuron subtypes in the EAce in rodents and/or some birds (chicken and pigeon). The functional significance and the evolutionary origin of each subtype needs to be analyzed separately, and such studies are mandatory in order to understand the multifaceted modulation by the EAce of fear responses, ingestion, motivation and pain in different vertebrates.
Collapse
|
11
|
Vicario A, Abellán A, Desfilis E, Medina L. Genetic identification of the central nucleus and other components of the central extended amygdala in chicken during development. Front Neuroanat 2014; 8:90. [PMID: 25309337 PMCID: PMC4159986 DOI: 10.3389/fnana.2014.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/19/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the central extended amygdala shows a highly complex organization, and is essential for animal survival due to its implication in fear responses. However, many aspects of its evolution are still unknown, and this structure is especially poorly understood in birds. The aim of this study was to define the central extended amygdala in chicken, by means of a battery of region-specific transcription factors (Pax6, Islet1, Nkx2.1) and phenotypic markers that characterize these different subdivisions in mammals. Our results allowed the identification of at least six distinct subdivisions in the lateral part of the avian central extended amygdala: (1) capsular central subdivision; (2) a group of intercalated-like cell patches; (3) oval central nucleus; (4) peri-intrapeduncular (peri-INP) island field; (5) perioval zone; and (6) a rostral part of the subpallial extended amygdala. In addition, we identified three subdivisions of the laterodorsal bed nucleus of the stria terminalis (BSTLd) belonging to the medial region of the chicken central extended amygdala complex. Based on their genetic profile, cellular composition and apparent embryonic origin of the cells, we discuss the similarity of these different subdivisions of chicken with different parts of the mouse central amygdala and surrounding cell masses, including the intercalated amygdalar masses and the sublenticular part of the central extended amygdala. Most of the subdivisions include various subpopulations of cells that apparently originate in the dorsal striatal, ventral striatal, pallidal, and preoptic embryonic domains, reaching their final location by either radial or tangential migrations. Similarly to mammals, the central amygdala and BSTLd of chicken project to the hypothalamus, and include different neurons expressing proenkephalin, corticotropin-releasing factor, somatostatin or tyrosine hydroxylase, which may be involved in the control of different aspects of fear/anxiety-related behavior.
Collapse
Affiliation(s)
- Alba Vicario
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| |
Collapse
|
12
|
Visigalli D, Strangio A, Palmieri D, Manduca P. Hind limb unloading of mice modulates gene expression at the protein and mRNA level in mesenchymal bone cells. BMC Musculoskelet Disord 2010; 11:147. [PMID: 20602768 PMCID: PMC2906435 DOI: 10.1186/1471-2474-11-147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 07/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background We investigated the extent, modalities and reversibility of changes at cellular level in the expression of genes and proteins occurring upon Hind limb unloading (HU) in the tibiae of young C57BL/6J male mice. We focused on the effects of HU in chondrogenic, osteogenic, and marrow mesenchymal cells. Methods We analyzed for expression of genes and proteins at two time points after HU (7 and 14 days), and at 14 days after recovery from HU. Levels of mRNAs were tested by in situ hybridization. Protein levels were tested by immunohistochemistry. We studied genes involved in osteogenesis (alkaline phosphatase (AP), osteocalcin (OC), bonesialoprotein (BSP), membrane type1 matrix metalloproteinase (MT1-MMP)), in extracellular matrix (ECM) formation (procollagenases (BMP1), procollagenase enhancer proteins (PCOLCE)) and remodeling (metalloproteinase-9 (MMP9), RECK), and in bone homeostasis (Stro-1, CXCL12, CXCR4, CD146). Results We report the following patterns and timing of changes in gene expression induced by HU: 1) transient or stable down modulations of differentiation-associated genes (AP, OC), genes of matrix formation, maturation and remodelling, (BMP1, PCOLCEs MMP9) in osteogenic, chondrogenic and bone marrow cells; 2) up modulation of MT1-MMP in these same cells, and uncoupling of its expression from that of AP; 3) transient down modulation of the osteoblast specific expression of BSP; 4) for genes involved in bone homeostasis, up modulation in bone marrow cells at distal epiphysis for CXCR4, down modulation of CXCL12, and transient increases in osteoblasts and marrow cells for Stro1. 14 days after limb reloading expression returned to control levels for most genes and proteins in most cell types, except AP in all cells, and CXCL12, only in bone marrow. Conclusions HU induces the coordinated modulation of gene expression in different mesenchymal cell types and microenvironments of tibia. HU also induces specific patterns of expression for homeostasis related genes and modulation of mRNAs and proteins for ECM deposition, maturation and remodeling which may be key factors for bone maintenance.
Collapse
Affiliation(s)
- Davide Visigalli
- Genetics, DIBIO, University of Genoa, (Corso Europa 26), Genoa, (I-16132), Italy
| | | | | | | |
Collapse
|
13
|
Blaschke C, Valencia A. Can bibliographic pointers for known biological data be found automatically? Protein interactions as a case study. Comp Funct Genomics 2010; 2:196-206. [PMID: 18628915 PMCID: PMC2447212 DOI: 10.1002/cfg.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Accepted: 06/25/2001] [Indexed: 11/11/2022] Open
Abstract
The Dictionary of Interacting Proteins (DIP) (Xenarios et al., 2000) is a large repository
of protein interactions: its March 2000 release included 2379 protein pairs whose
interactions have been detected by experimental methods. Even if many of these
correspond to poorly characterized proteins, the result of massive yeast two-hybrid
screenings, as many as 851 correspond to interactions detected using direct biochemical
methods. We used information retrieval technology to search automatically for sentences in
Medline abstracts that support these 851 DIP interactions. Surprisingly, we found
correspondence between DIP protein pairs and Medline sentences describing their
interactions in only 30% of the cases. This low coverage has interesting consequences
regarding the quality of annotations (references) introduced in the database and the
limitations of the application of information extraction (IE) technology to Molecular
Biology. It is clear that the limitation of analyzing abstracts rather than full papers and the
lack of standard protein names are difficulties of considerably more importance than the
limitations of the IE methodology employed. A positive finding is the capacity of the IE
system to identify new relations between proteins, even in a set of proteins previously
characterized by human experts. These identifications are made with a considerable degree
of precision. This is, to our knowledge, the first large scale assessment of IE capacity to detect
previously known interactions: we thus propose the use of the DIP data set as a biological
reference to benchmark IE systems.
Collapse
Affiliation(s)
- C Blaschke
- Protein Design Group, National Centre for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | | |
Collapse
|
14
|
Felix DA, Aboobaker AA. The TALE class homeobox gene Smed-prep defines the anterior compartment for head regeneration. PLoS Genet 2010; 6:e1000915. [PMID: 20422023 PMCID: PMC2858555 DOI: 10.1371/journal.pgen.1000915] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/19/2010] [Indexed: 11/18/2022] Open
Abstract
Planaria continue to blossom as a model system for understanding all aspects of regeneration. They provide an opportunity to understand how the replacement of missing tissues from preexisting adult tissue is orchestrated at the molecular level. When amputated along any plane, planaria are capable of regenerating all missing tissue and rescaling all structures to the new size of the animal. Recently, rapid progress has been made in understanding the developmental pathways that control planarian regeneration. In particular Wnt/beta-catenin signaling is central in promoting posterior fates and inhibiting anterior identity. Currently the mechanisms that actively promote anterior identity remain unknown. Here, Smed-prep, encoding a TALE class homeodomain, is described as the first gene necessary for correct anterior fate and patterning during planarian regeneration. Smed-prep is expressed at high levels in the anterior portion of whole animals, and Smed-prep(RNAi) leads to loss of the whole brain during anterior regeneration, but not during lateral regeneration or homeostasis in intact worms. Expression of markers of different anterior fated cells are greatly reduced or lost in Smed-prep(RNAi) animals. We find that the ectopic anterior structures induced by abrogation of Wnt signaling also require Smed-prep to form. We use double knockdown experiments with the S. mediterranea ortholog of nou-darake (that when knocked down induces ectopic brain formation) to show that Smed-prep defines an anterior fated compartment within which stem cells are permitted to assume brain fate, but is not required directly for this differentiation process. Smed-prep is the first gene clearly implicated as being necessary for promoting anterior fate and the first homeobox gene implicated in establishing positional identity during regeneration. Together our results suggest that Smed-prep is required in stem cell progeny as they form the anterior regenerative blastema and is required for specifying anterior cell fates and correct patterning.
Collapse
Affiliation(s)
- Daniel A. Felix
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Sawitzke AL, Chapman SC, Bleyl SB, Schoenwolf GC. Improvements in histological quality and signal retention following in situ hybridization in early chick embryos using plastic resin and recolorization. Biotech Histochem 2009; 80:35-41. [PMID: 15804825 DOI: 10.1080/10520290500050957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We describe a novel method that allows reliable detection of in situ hybridization signals in thin sections of plastic embedded embryos. Sections from plastic embedded embryos are thinner and have superior histological quality compared to paraffin, gelatin, agarose embedded sections or cryosections; however, plastic resin traditionally has not been used as an embedding medium following in situ hybridization because of loss of signal. When signal is detected with alkaline phosphatase and NBT/BCIP, the resulting colored precipitate is subject to fading when samples are exposed to organic compounds. The colored precipitate can be redeposited by repeating the NBT/BCIP reaction following plastic sectioning. This recolorization shows no loss of specificity, because signal is detected only where the anti-digoxigenin/alkaline phosphatase conjugated antibody is bound to the riboprobe. Strong signals can be detected without recolorization; however, weaker signals require the recolorization step. This novel method of re-depositing colored precipitate after processing and sectioning allows accurate determination of the location of gene expression and study of this expression in high quality histological sections of early chick embryos.
Collapse
Affiliation(s)
- A L Sawitzke
- Division of Natural Sciences, Salt Lake Community College, 4600 S. Redwood Road, Salt Lake City, Utah 84123, USA
| | | | | | | |
Collapse
|
16
|
McCabe KL, Bronner-Fraser M. Essential role for PDGF signaling in ophthalmic trigeminal placode induction. Development 2008; 135:1863-74. [PMID: 18417621 DOI: 10.1242/dev.017954] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much of the peripheral nervous system of the head is derived from ectodermal thickenings, called placodes, that delaminate or invaginate to form cranial ganglia and sense organs. The trigeminal ganglion, which arises lateral to the midbrain, forms via interactions between the neural tube and adjacent ectoderm. This induction triggers expression of Pax3, ingression of placode cells and their differentiation into neurons. However, the molecular nature of the underlying signals remains unknown. Here, we investigate the role of PDGF signaling in ophthalmic trigeminal placode induction. By in situ hybridization, PDGF receptor beta is expressed in the cranial ectoderm at the time of trigeminal placode formation, with the ligand PDGFD expressed in the midbrain neural folds. Blocking PDGF signaling in vitro results in a dose-dependent abrogation of Pax3 expression in recombinants of quail ectoderm with chick neural tube that recapitulate placode induction. In ovo microinjection of PDGF inhibitor causes a similar loss of Pax3 as well as the later placodal marker, CD151, and failure of neuronal differentiation. Conversely, microinjection of exogenous PDGFD increases the number of Pax3+ cells in the trigeminal placode and neurons in the condensing ganglia. Our results provide the first evidence for a signaling pathway involved in ophthalmic (opV) trigeminal placode induction.
Collapse
Affiliation(s)
- Kathryn L McCabe
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
17
|
McCabe KL, Shiau CE, Bronner-Fraser M. Identification of candidate secreted factors involved in trigeminal placode induction. Dev Dyn 2008; 236:2925-35. [PMID: 17879314 DOI: 10.1002/dvdy.21325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cranial ectodermal placodes are critical for normal development of the peripheral nervous system of the head. However, many aspects of the molecular and tissue interactions involved in their induction have yet to be elucidated. The trigeminal placode is induced by an unidentified secreted factor(s) from the dorsal neural tube. To determine candidates that may be involved in this induction process, we have performed reverse transcriptase-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization to screen for receptors expressed by uninduced presumptive trigeminal level ectoderm. We have found that receptors for fibroblast growth factors, insulin-like growth factors, platelet-derived growth factors, Sonic hedgehog, the transforming growth factor-beta superfamily, and Wnts all are expressed in patterns consistent with a role in trigeminal placode formation. This RT-PCR screen for candidate receptors expressed in presumptive trigeminal ectoderm is the first systematic screen to identify potential interactions underlying induction of the trigeminal placode and represents a critical step for understanding this complex process.
Collapse
Affiliation(s)
- Kathryn L McCabe
- Division of Biology MC 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
18
|
Hamoud MM, Villegas P, Williams SM. Detection of infectious bursal disease virus from formalin-fixed paraffin-embedded tissue by immunohistochemistry and real-time reverse transcription-polymerase chain reaction. J Vet Diagn Invest 2007; 19:35-42. [PMID: 17459830 DOI: 10.1177/104063870701900106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Formalin fixed paraffin embedded tissues blocks are used routinely to diagnose the economically important immunosuppressive infectious bursal disease virus (IBDV) in chickens. Immunohistochemical detection of viruses in tissue blocks has been done with varying results between laboratories. Extraction of IBDV RNA from tissue blocks allows IBDV strain identification at a molecular level. This allows correlation between virus identity and histological lesions present in the tissue. Experimentally reverse transcription-polymerase chain reaction (RT-PCR) detectable IBDV RNA could always be extracted from tissue blocks with acute +3 or higher histological lesion scores. However, many blocks from diagnostic field cases did not yield detectable IBDV RNA, in spite of having severe IBDV histological lesion scores. The reason for this can be the effect different formalin fixation conditions have on RNA detection from tissue blocks. To study the effect of various fixation parameters on RNA extraction and immunohistochemical detection of IBDV, bursas with maximum histological lesion score of 4 for IBDV were fixed in formalin under various conditions (different pH levels, temperatures, concentrations of formalin, and fixation duration). Only tissues fixed in formalin with a pH of 7.0, concentration of 5 or 10% formaldehyde, storage temperature of 25 degrees C or less, and kept for up to 2 weeks in formalin yielded detectable IBDV RNA upon extraction. No RNA could be detected from tissues fixed under extreme temperature, pH, or formalin concentrations. Optimal fixation conditions for IHC detection of IBDV were 10% formalin concentration, pH 7.0, and temperature of 4 degrees C, where maximum intensity of immunostaining was observed.
Collapse
Affiliation(s)
- Mohamed M Hamoud
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
19
|
Foltenyi K, Greenspan RJ, Newport JW. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 2007; 10:1160-7. [PMID: 17694052 DOI: 10.1038/nn1957] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/13/2007] [Indexed: 01/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) signaling in the mammalian hypothalamus is important in the circadian regulation of activity. We have examined the role of this pathway in the regulation of sleep in Drosophila melanogaster. Our results demonstrate that rhomboid (Rho)- and Star-mediated activation of EGFR and ERK signaling increases sleep in a dose-dependent manner, and that blockade of rhomboid (rho) expression in the nervous system decreases sleep. The requirement of rho for sleep localized to the pars intercerebralis, a part of the fly brain that is developmentally and functionally analogous to the hypothalamus in vertebrates. These results suggest that sleep and its regulation by EGFR signaling may be ancestral to insects and mammals.
Collapse
Affiliation(s)
- Krisztina Foltenyi
- Department of Biology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | | | | |
Collapse
|
20
|
Gaetje R, Holtrich U, Karn T, Cikrit E, Engels K, Rody A, Kaufmann M. Characterization of WNT7A expression in human endometrium and endometriotic lesions. Fertil Steril 2007; 88:1534-40. [PMID: 17588571 DOI: 10.1016/j.fertnstert.2007.01.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To characterize the expression of WNT7A in human eutopic and ectopic endometrium. DESIGN Experimental study using real-time polymerase chain reaction, laser microdissection, in situ hybridization, and immunofluorescence. SETTING University-based laboratory. PATIENT(S) Patients with and without endometriosis undergoing surgery for benign indications. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Relative expression values compared with housekeeping genes using real-time polymerase chain reaction. Detection of positive cells by immunofluorescence and in situ hybridization. RESULT(S) In endometriosis, statistically significant higher WNT7A mRNA expression was observed compared with eutopic endometrium. Expression of WNT7A was found in the luminal and glandular epithelial cells as well as stroma cells in endometrium and endometriosis by immunofluorescence, in situ hybridization, and polymerase chain reaction of laser microdissected tissue. CONCLUSION(S) The results of the present study suggest that WNT7A plays a role in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Regine Gaetje
- Department of Obstetrics and Gynecology, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhao X, Patton JR, Ghosh SK, Fischel-Ghodsian N, Shen L, Spanjaard RA. Pus3p- and Pus1p-Dependent Pseudouridylation of Steroid Receptor RNA Activator Controls a Functional Switch that Regulates Nuclear Receptor Signaling. Mol Endocrinol 2007; 21:686-99. [PMID: 17170069 DOI: 10.1210/me.2006-0414] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
It was previously shown that mouse Pus1p (mPus1p), a pseudouridine synthase (PUS) known to modify certain transfer RNAs (tRNAs), can also bind with nuclear receptors (NRs) and function as a coactivator through pseudouridylation and likely activation of an RNA coactivator called steroid receptor RNA activator (SRA). Use of cell extract devoid of human Pus1p activity derived from patients with mitochondrial myopathy and sideroblastic anemia, however, still showed SRA-modifying activity suggesting that other PUS(s) can also target this coactivator. Here, we show that related mPus3p, which has a different tRNA specificity than mPus1p, also serves as a NR coactivator. However, in contrast to mPus1p, it does not stimulate sex steroid receptor activity, which is likely due to lack of binding to this class of NRs. As expected from their tRNA activities, in vitro pseudouridylation assays show that mPus3p and mPus1p modify different positions in SRA, although some may be commonly targeted. Interestingly, the order in which these enzymes modify SRA determines the total number of pseudouridines. mPus3p and SRA are mainly cytoplasmic; however, mPus3p and SRA are also localized in distinct nuclear subcompartments. Finally, we identified an in vivo modified position in SRA, U206, which is likely a common target for both mPus1p and mPus3p. When U206 is mutated to A, SRA becomes hyperpseudouridylated in vitro, and it acquires dominant-negative activity in vivo. Thus, Pus1p- and Pus3p-dependent pseudouridylation of SRA is a highly complex posttranscriptional mechanism that controls a coactivator-corepressor switch in SRA with major consequences for NR signaling.
Collapse
Affiliation(s)
- Xiansi Zhao
- Department of Otolaryngology and Biochemistry, Cancer Research Center, Boston University School of Medicine, 715 Albany Street R903, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
22
|
Gaetje R, Holtrich U, Engels K, Kissler S, Rody A, Karn T, Kaufmann M. Endometriosis may be generated by mimicking the ontogenetic development of the female genital tract. Fertil Steril 2007; 87:651-6. [DOI: 10.1016/j.fertnstert.2006.07.1533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 07/25/2006] [Accepted: 07/25/2006] [Indexed: 10/23/2022]
|
23
|
Cuellar H, Kim JA, Unguez GA. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus. FASEB J 2006; 20:2540. [PMID: 17077280 DOI: 10.1096/fj.06-6474fje] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrocytes, the current-producing cells of electric organs (EOs) in electric fish, are unique in that they derive from striated muscle and they possess biochemical characteristics of both muscle and non-muscle cells. In the freshwater teleost Sternopygus macrurus, electrocytes are multinucleated cells that do not contract yet retain expression of some proteins common to skeletal muscle cells. Given the role that transcriptional regulation plays in the activation of the myogenic program in vertebrates, we examined the expression patterns of several genes associated with multiple functions of skeletal muscle in mature electrocytes of S. macrurus. Our expression analyses detected transcripts for alpha-actin, alpha-acetylcholine (ACh) receptor (alpha-AChR), desmin, muscle creatine kinase (MCK), myosin heavy chain (MHC) isoforms, titin, tropomyosin, and troponin-T genes in the EO. However, immunolabeling studies revealed that electrocytes do not contain MCK, MHCs, or tropomyosin or troponin-T proteins. These results underscore the contribution of gene regulatory mechanisms in the maintenance of the muscle-like phenotype of EO that may be transcriptional-independent. We also report the classification and frequency of distinct transcripts from a random selection of 420 clones from an EO cDNA library. This is the first characterization of expressed genes in an EO, and it is an important step toward identifying mechanisms that affect different muscle protein systems for the evolution of highly specialized noncontractile tissues. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus.
Collapse
Affiliation(s)
- Heriberto Cuellar
- Department of Biology, Foster Hall, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
24
|
Basyuk E, Coulon V, Le Digarcher A, Coisy-Quivy M, Moles JP, Gandarillas A, Journot L. The candidate tumor suppressor gene ZAC is involved in keratinocyte differentiation and its expression is lost in basal cell carcinomas. Mol Cancer Res 2005; 3:483-92. [PMID: 16179495 DOI: 10.1158/1541-7786.mcr-05-0019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ZAC is a zinc finger transcription factor that induces apoptosis and cell cycle arrest in various cell lines. The corresponding gene is maternally imprinted and localized on chromosome 6q24-q25, a region harboring an unidentified tumor suppressor gene for a variety of solid neoplasms. ZAC expression is lost or down-regulated in some breast, ovary, and pituitary tumors and in an in vitro model of ovary epithelial cell transformation. In the present study, we examined ZAC expression in normal skin and found a high expression level in basal keratinocytes and a lower, more heterogeneous, expression in the first suprabasal differentiating layers of epidermis. In vitro, ZAC was up-regulated following induction of keratinocyte differentiation. Conversely, ZAC expression triggered keratinocyte differentiation as indicated by induction of involucrin expression. Interestingly, we found a dramatic loss of ZAC expression in basal cell carcinoma, a neoplasm characterized by a relatively undifferentiated morphology. In contrast, ZAC expression was maintained in squamous cell carcinomas that retain the squamous differentiated phenotype. Altogether, these data suggest a role for ZAC at an early stage of keratinocyte differentiation and further support its role in carcinogenesis.
Collapse
Affiliation(s)
- Eugenia Basyuk
- Institut de Génomique Fonctionnelle, 141, rue de la cardonille, F-34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Rait VK, Zhang Q, Fabris D, Mason JT, O’Leary TJ. Conversions of formaldehyde-modified 2'-deoxyadenosine 5'-monophosphate in conditions modeling formalin-fixed tissue dehydration. J Histochem Cytochem 2005; 54:301-10. [PMID: 16116034 PMCID: PMC1783762 DOI: 10.1369/jhc.5a6725.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formalin-fixed, paraffin-embedded specimens typically provide molecular biologists with low yields of extractable nucleic acids that exhibit extensive strand cleavage and covalent modification of nucleic acid bases. This study supports the idea that these deleterious effects are promoted by the first step in formalin-fixed tissue processing--i.e., tissue dehydration with a graded series of alcohols. We analyzed the conversions of formaldehyde-modified 2'-deoxyadenosine 5'-monophosphate (dAMP) by reverse-phase ion-pair, high-performance liquid chromatography and found that dehydration does not stabilize N-methylol groups in the modified nucleotide. Furthermore, spontaneous demodification in a dry state or in anhydrous ethanol can be as fast as it is in aqueous solutions if the preparation is contaminated with salts of orthophosphoric acid. In ethanol, orthophosphates also catalyze formation of abundant N6-ethoxymethyl-dAMP, as well as cross-linking and depurination of nucleotides present in the mixture. Identification of the products was performed using ultraviolet absorbance spectroscopy and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Alternatives to the traditional processing of formalin-fixed tissues are discussed.
Collapse
Affiliation(s)
- Vladimir K. Rait
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, Maryland
| | - Qingrong Zhang
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland; and
| | - Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland; and
| | - Jeffrey T. Mason
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, Maryland
| | - Timothy J. O’Leary
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, Maryland
- Biomedical Laboratory Research and Development Service, Veteran Health Administration, Washington, District of Columbia
- Correspondence to: Timothy J. O’Leary, Biomedical Laboratory R&D Service, Department of Veterans Affairs, 810 Vermont Avenue, NW, Washington, DC 20420. E-mail:
| |
Collapse
|
26
|
Allanson M, Reeve VE. Immunoprotective UVA (320–400 nm) Irradiation Upregulates Heme Oxygenase-1 in the Dermis and Epidermis of Hairless Mouse Skin. J Invest Dermatol 2004; 122:1030-6. [PMID: 15102094 DOI: 10.1111/j.0022-202x.2004.22421.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The induction of heme oxygenase-1 (HO-1) by ultraviolet A (UVA) (320-400 nm) radiation provides a protective cellular defence against oxidative stress, and has been well demonstrated in cultured human skin fibroblasts, although keratinocytes were unreactive. The UVA responsiveness of HO-1 however, has not been confirmed in intact skin. Previously, we reported that UVA-inducible HO enzyme activity in mouse skin is protective against UVB-induced immunosuppression. This study identifies the induced HO isoform and its localization in mouse skin irradiated in vivo with such an immunoprotective UVA dose. We found that HO-1 mRNA was expressed in UVA-irradiated skin, but not in normal or UVB-irradiated skin, whereas constitutive HO-2 was always present. UVA-irradiated skin had increased HO enzyme activity and bilirubin content, and decreased heme content, consistent with HO-1 induction. In situ hybridization and immunohistochemical staining localized HO-1 mRNA and protein to both epidermis and dermis, with strongest expression in basal keratinocytes and weaker expression in dermal fibroblast-like and other cells, in contrast with UVA-induced HO-1 in cultured human skin fibroblasts. This suggests that cultured skin cells may not fully represent skin functions in vivo, or that there may be inherent differences between human and hairless mouse skin HO-1 responses.
Collapse
Affiliation(s)
- Munif Allanson
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
27
|
Kaplan DD, Meigs TE, Kelly P, Casey PJ. Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem 2004; 279:10829-32. [PMID: 14744872 DOI: 10.1074/jbc.c400035200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Catenin is a multifunctional protein that is known to participate in two well defined cellular processes, cell-cell adhesion and Wnt-stimulated transcriptional activation. Here we report that beta-catenin participates in a third cellular process, the establishment of a bipolar mitotic spindle. During mitosis, beta-catenin relocalizes to mitotic spindle poles and to the midbody. Furthermore, biochemical fractionation demonstrates the presence of beta-catenin in purified centrosome preparations. Reduction of cellular beta-catenin by RNA interference leads to the failure of centrosomes to fully separate, resulting in a marked increase in the frequency of monoastral mitotic spindles. Our results define a new and important function for beta-catenin in mitosis and demonstrate that beta-catenin is involved in vital biological processes beyond cell adhesion and Wnt signaling.
Collapse
Affiliation(s)
- Daniel D Kaplan
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Calmodulin (CaM) mRNAs are expressed with low abundancy in the adult rat neural retina. However, when digoxigenin (DIG)-labeled cRNA probes specific for each CaM mRNA population were hybridized at slightly alkaline pH (pH 8.0), the widespread distribution of CaM mRNA-expressing cells was revealed, with similar abundance for all three CaM genes. The CaM genes displayed a uniquely similar, layer-specific expression throughout the retina, and no significant differences were found in the distribution patterns of the CaM mRNA populations or the labeled cell types. The strongest signal for all CaM mRNAs was demonstrated in the ganglion cell layer and the inner nuclear layer, where the highest signal intensity was found within the inner sublamina. Similarly intermediate signal intensities for all CaM genes were detected in the inner and outer plexiform layers, within the vicinity of the outer limiting membrane and in the retinal pigment epithelium. A very low specific signal was characteristic in the outer nuclear layer and the photoreceptor inner segment layer, while no specific hybridization signal was observed in the photoreceptor outer segment layer. In summary, all CaM genes exhibited a similar and a characteristically layer-specific expression pattern in the adult rat retina.
Collapse
Affiliation(s)
- Beatrix Kovacs
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem u., POB 659, Szeged, H-6722, Hungary
| | | |
Collapse
|
29
|
Gilligan P, Brenner S, Venkatesh B. Neurone-specific expression and regulation of the pufferfish isotocin and vasotocin genes in transgenic mice. J Neuroendocrinol 2003; 15:1027-36. [PMID: 14622432 DOI: 10.1046/j.1365-2826.2003.01090.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used comparative genetics to investigate the location, structure and evolution of the oxytocin and vasopressin gene regulatory regions. The pufferfish, Fugu rubripes, is an attractive vertebrate model for comparison because of its maximal evolutionary distance from mammals and short intergenic regions. To determine whether regulatory DNA is conserved between oxytocin and vasopressin, and their Fugu homologs, isotocin and vasotocin, we generated transgenic mice bearing overlapping Fugu cosmids that contained the isotocin and/or vasotocin genes as well as short isotocin (5 kb) and vasotocin (9 kb) constructs. Our study shows that the Fugu isotocin and vasotocin genes express specifically in the mouse oxytocinergic and vasopressinergic neurones, respectively, and that the cis-regulatory elements which mediate neurone-specific expression are located within the short transgene constructs tested. Thus, the neurone-specific expression of the oxytocin and vasopressin gene families, and the mechanisms mediating the cell-specificity, evolved before the divergence of the fish and mammalian lineages. Salt-loading of transgenic mice induced an increase in abundance of isotocin, but not vasotocin mRNA in the cognate neurones. It appears that either the vasotocin gene does not respond to osmotic perturbations or the vasotocin transgene construct tested lacks osmotic response elements. Comparisons of homologous flanking sequences of the Fugu and mouse genes identified several short matching sequences, which are candidate regulatory elements.
Collapse
Affiliation(s)
- P Gilligan
- Institute of Molecular and Cell Biology, Singapore
| | | | | |
Collapse
|
30
|
Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1961-71. [PMID: 12466110 PMCID: PMC1850907 DOI: 10.1016/s0002-9440(10)64472-0] [Citation(s) in RCA: 889] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clinical and molecular medicines are undergoing a revolution based on the accelerated advances in biotechnology such as DNA microarrays and proteomics. Answers to fundamental questions such as how does the DNA sequence differ between individuals and what makes one individual more prone for a certain disease are eagerly being sought in this postgenomic era. Several government and nonprofit organizations provide the researchers access to human tissues for molecular studies. The tissues procured by the different organizations may differ with respect to fixation and processing parameters that may affect significantly the molecular profile of the tissues. It is imperative that a prospective investigator be aware of the potential contributing factors before designing a project. The purpose of this review is to provide an overview of the methods of human tissue acquisition, fixation, and preservation. In addition, the parameters of procurement and fixation that affect the quality of the tissues at the molecular level are discussed.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Pathology, Tzagournis Medical Research Facility, The Ohio State University, 420 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
31
|
Kovacs B, Gulya K. Differential expression of multiple calmodulin genes in cells of the white matter of the rat spinal cord. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:28-34. [PMID: 12191491 DOI: 10.1016/s0169-328x(02)00159-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calmodulin (CaM) displays complex cytoplasmic and synaptic functions in the nervous system. However, the very little information that is available on the gene expression of the multiple CaM genes in different glial cell types are from brain tissues of rodents, and no data have been published on their CaM gene expression in the spinal cord. Therefore, we have modified and tested a color in situ hybridization method sensitive enough to detect mRNA populations in cells with low CaM mRNA abundances in the white matter of the rat lumbar spinal cord. Morphologically, two distinct cell types expressing CaM mRNAs were detected. Differential CaM gene expression was demonstrated in medium-sized astrocyte-like cells that reside predominantly in the dorsal column of the spinal cord, where CaM I mRNA was most abundant, followed by the CaM III and CaM II mRNA populations. The oligodendrocytes displayed a less differential CaM gene expression in both the dorsal and the lateral columns, but the CaM I gene had a slightly higher expression level than those of the other CaM genes. The results indicate that the CaM gene expression profile of the spinal cord is richer and more complex than previously thought on the basis of conventional radioactive in situ hybridization techniques. Thus, when a method that is sufficiently sensitive was used, more cell types could be demonstrated to express CaM mRNAs; hence, in spite of their lower CaM expression, glial cells could also be visualized.
Collapse
Affiliation(s)
- Beatrix Kovacs
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem u., P.O. Box 659, Szeged, Hungary
| | | |
Collapse
|
32
|
Christensen RN, Weinstein M, Tassava RA. Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma. Dev Dyn 2002; 223:193-203. [PMID: 11836784 DOI: 10.1002/dvdy.10049] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the fibroblast growth factor (FGF) family of molecules are critical to limb outgrowth. Here, we examine the expression of Fgfs in three types of limbs-embryonic (developing), mature (differentiated), and regenerating-as well as in the surrounding non-limb tissues in the Mexican axolotl, Ambystoma mexicanum. We have previously cloned partial cDNAs of Fgf4, 8, and 10 from the axolotl (Christensen et al., 2001); the complete Fgf10 cDNA sequence is presented here. Axolotl Fgf10 showed deduced amino acid sequence identity with all other vertebrate Fgf10 coding sequences of >62%, and also included conserved 5' and 3' untranslated regions in nucleotide sequence comparisons. Semiquantitative reverse transcriptase-polymerase chain reaction showed that fibroblast growth factors are differentially expressed in axolotl limbs. Only Fgf8 and 10 were highly expressed during axolotl limb development, although Fgf4, 8, and 10 are all highly expressed during limb development of other vertebrates. Fgf4 expression, however, was highly expressed in the differentiated salamander limb, whereas expression levels of Fgf8 and 10 decreased. Expression levels of Fgf8 and 10 then increased during limb regeneration, whereas Fgf4 expression was completely absent. In addition, axolotl limb regeneration contrasted to limb development of other vertebrates in that Fgf8 did not seem to be as highly expressed in the distal epithelium; rather, its highest expression was found in the blastema mesenchyme. Finally, we investigated the expression of these Fgfs in non-limb tissues. The Fgfs were clearly expressed in developing flank tissue and then severely downregulated in mature flank tissue. Differential Fgf expression levels in the limb and shoulder (limb field) versus in the flank (non-limb field) suggest that FGFs may be instrumental during limb field specification as well as instrumental in maintaining the salamander limb in a state of preparation for regeneration.
Collapse
|
33
|
Collarini EJ, Nagy D, Cain CA, Gammon D, Schueler PA, Mahoney WC. A novel method for depositing erythroid cells onto glass slides for fetal cell analysis. CYTOMETRY 2001; 45:304-9. [PMID: 11746100 DOI: 10.1002/1097-0320(20011201)45:4<304::aid-cyto10022>3.0.co;2-#] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND We have developed a method for selecting erythroblasts from blood, the first step toward identifying fetal cells in maternal blood for diagnostic purposes. Because the selection method results in a large number of positive cells, we needed to develop new methods to deposit the cells onto slides and to modify in situ hybridization procedures to enable detection of fetal cells. METHODS We utilized Nunc flaskettes to increase the slide surface area available for cell deposition. The ability of erythroid lineage cells to adhere to several surface modifications was examined. In situ hybridization methods were tested to find the best approach that is compatible with these cell preparations. RESULTS The best glass slide coating for erythroid cells was found to be an antibody to glycophorin A, a red cell surface antigen. We were able to get excellent in situ hybridization signals in cells on flaskettes by modifying fixation and pretreatment parameters. CONCLUSIONS The methods described here appear to be the best way of attaching a large number of erythroid lineage cells to slides and of detecting them by in situ hybridization.
Collapse
Affiliation(s)
- E J Collarini
- Chief Technology Office, Roche Diagnostics, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
34
|
Brandau O, Meindl A, Fässler R, Aszódi A. A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I. Dev Dyn 2001; 221:72-80. [PMID: 11357195 DOI: 10.1002/dvdy.1126] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chondromodulin-I (CHM1) was identified recently as an angiogenesis inhibitor in cartilage. It is highly expressed in the avascular zones of cartilage but is absent in the late hypertrophic region, which is invaded by blood vessels during enchondral ossification. Blast searches with the C-terminal part of CHM1 in available databases led to the identification of human and mouse cDNAs encoding a new protein, Tendin, that shares high homology with CHM1. Based on computer predictions, Tendin is a type II transmembrane protein containing a putative proteinase cleavage and two glycosylation sites. Northern assays with mouse RNAs demonstrated strong expression of a 1.5-kb tendin transcript in the diaphragm, skeletal muscle, and the eye and low levels of expression in all other tissues investigated. In 17.5-day-old mouse embryos, in situ hybridization revealed high levels of tendin transcript in tendons and ligaments. Additional signals were detected in brain and spinal cord, liver, lung, bowels, thymus, and eye. Cartilage, where CHM1 is found, revealed low levels of tendin m-RNA. In adult mice, tendin is expressed in neurons of all brain regions and the spinal cord. The tendin gene is localized in the human Xq22 region, to which several human diseases have been mapped.
Collapse
Affiliation(s)
- O Brandau
- Department of Experimental Pathology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
35
|
Cavaillé J, Vitali P, Basyuk E, Hüttenhofer A, Bachellerie JP. A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J Biol Chem 2001; 276:26374-83. [PMID: 11346658 DOI: 10.1074/jbc.m103544200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antisense box C/D small nucleolar RNAs (snoRNAs) guide the 2'-O-ribose methylations of eukaryotic rRNAs and small nuclear RNAs (snRNAs) through formation of a specific base pairing at each RNA methylation site. By analysis of a box C/D snoRNA cDNA library constructed from rat brain RNAs, we have identified a novel box C/D snoRNA, RBII-36, which is devoid of complementarity to rRNA or an snRNA and exhibits a brain-specific expression pattern. It is uniformly expressed in all major areas of adult rat brain (except for choroid plexus) and throughout rat brain ontogeny but exclusively detected in neurons in which it exhibits a nucleolar localization. In vertebrates, known methylation guide snoRNAs are intron-encoded and processed from transcripts of housekeeping genes. In contrast, RBII-36 snoRNA is intron-encoded in a gene preferentially expressed in the rat central nervous system and not in proliferating cells. Remarkably, this host gene, which encodes a previously reported noncoding RNA, Bsr, spans tandemly repeated 0.9-kilobase units including the snoRNA-containing intron. The novel brain-specific snoRNA appears to result not only from processing of the debranched lariat but also from endonucleolytic cleavages of unspliced Bsr RNA (i.e. an alternative splicing-independent pathway unreported so far for mammalian intronic snoRNAs). Sequences homologous to RBII-36 snoRNA were exclusively detected in the Rattus genus of rodents, suggesting a very recent origin of this brain-specific snoRNA.
Collapse
Affiliation(s)
- J Cavaillé
- UMR5099, Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul-Sabatier, 118 route de Narbonne, Toulouse 31062, France.
| | | | | | | | | |
Collapse
|
36
|
Rheinhardt JM, Finkbeiner WE. Protease XXIV increases detection of mucin gene expression during in situ hybridization in archival tissue. J Histochem Cytochem 2001; 49:923-4. [PMID: 11410618 DOI: 10.1177/002215540104900714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Digoxigenin-labeled riboprobes of six groups of human mucins were evaluated for sensitivity in archival tissue, using protease XXIV or proteinase K during in situ hybridization. (J Histochem Cytochem 49:923-924, 2001)
Collapse
Affiliation(s)
- J M Rheinhardt
- Department of Pathology, University of California-Davis, Davis, California, USA.
| | | |
Collapse
|
37
|
Daujat S, Neel H, Piette J. Preferential expression of Mdm2 oncogene during the development of neural crest and its derivatives in mouse early embryogenesis. Mech Dev 2001; 103:163-5. [PMID: 11335127 DOI: 10.1016/s0925-4773(01)00339-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Mdm2 oncoprotein acts as the principal negative regulator of p53 activities and is essential for its control during mouse early development, at least before implantation. We analyzed Mdm2 expression between 7.5 and 9 days post-coitum (dpc) by whole-mount in situ hybridization and report here a novel expression pattern during neural crest development. At 7.5 dpc Mdm2 becomes preferentially expressed at the top of the neural folds. Between 8 and 9 dpc, this preferential expression is also observed in neural crest cells migrating from the closing brain towards craniofacial regions and the first three branchial arches. It persists in the craniofacial mesenchyme and the first branchial arch in 9 dpc embryos. Migrating neural crest cells in the tail region are also preferentially labeled at this stage. At day 9.5 Mdm2 becomes more ubiquitously expressed throughout the embryo as reported before.
Collapse
Affiliation(s)
- S Daujat
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535-IFR 24, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | | | | |
Collapse
|
38
|
O'Reilly LA, Print C, Hausmann G, Moriishi K, Cory S, Huang DC, Strasser A. Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ 2001; 8:486-94. [PMID: 11423909 DOI: 10.1038/sj.cdd.4400835] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Revised: 12/21/2000] [Accepted: 12/21/2000] [Indexed: 11/08/2022] Open
Abstract
Anti-apoptotic members of the Bcl-2 family, such as Bcl-w, maintain cell viability by preventing the activation of the cell death effectors, the caspases. Gene targeting experiments in mice have demonstrated that Bcl-w is required for spermatogenesis and for survival of damaged epithelial cells in the gut. Bcl-w is, however, dispensable for physiological cell death in other tissues. Here we report on the analysis of Bcl-w protein expression using a panel of novel monoclonal antibodies. Bcl-w is found in a diverse range of tissues including colon, brain and testes. A survey of transformed cell lines and purified hematopoietic cells demonstrated that Bcl-w is expressed in cells of myeloid, lymphoid and epithelial origin. Subcellular fractionation and confocal laser scanning microscopy demonstrated that Bcl-w protein is associated with intracellular membranes. The implications of these results are discussed in the context of the phenotype of Bcl-w-null mice and recent data that suggest that Bcl-w may play a role in colon carcinogenesis.
Collapse
Affiliation(s)
- L A O'Reilly
- The Walter and Eliza Hall Institute, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|