1
|
Zimina TM, Sitkov NO, Gareev KG, Mikhailova NV, Combs SE, Shevtsov MA. Hybrid-integrated devices for mimicking malignant brain tumors ("tumor-on-a-chip") for in vitro development of targeted drug delivery and personalized therapy approaches. Front Med (Lausanne) 2024; 11:1452298. [PMID: 39629230 PMCID: PMC11611596 DOI: 10.3389/fmed.2024.1452298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Acute and requiring attention problem of oncotheranostics is a necessity for the urgent development of operative and precise diagnostics methods, followed by efficient therapy, to significantly reduce disability and mortality of citizens. A perspective way to achieve efficient personalized treatment is to use methods for operative evaluation of the individual drug load, properties of specific tumors and the effectiveness of selected therapy, and other actual features of pathology. Among the vast diversity of tumor types-brain tumors are the most invasive and malignant in humans with poor survival after diagnosis. Among brain tumors glioblastoma shows exceptionally high mortality. More studies are urgently needed to understand the risk factors and improve therapy approaches. One of the actively developing approaches is the tumor-on-a-chip (ToC) concept. This review examines the achievements of recent years in the field of ToC system developments. The basics of microfluidic chips technologies are considered in the context of their applications in solving oncological problems. Then the basic principles of tumors cultivation are considered to evaluate the main challengers in implementation of microfluidic devices, for growing cell cultures and possibilities of their treatment and observation. The main achievements in the culture types diversity approaches and their advantages are being analyzed. The modeling of angiogenesis and blood-brain barrier (BBB) on a chip, being a principally important elements of the life system, were considered in detail. The most interesting examples and achievements in the field of tumor-on-a-chip developments have been presented.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, St. Petersburg Electrotechnical University “LETI” (ETU), Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Kamil G. Gareev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Natalia V. Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maxim A. Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Lee H, Fu JF, Gaudet K, Bryant AG, Price JC, Bennett RE, Johnson KA, Hyman BT, Hedden T, Salat DH, Yen YF, Huang SY. Aberrant vascular architecture in the hippocampus correlates with tau burden in mild cognitive impairment and Alzheimer's disease. J Cereb Blood Flow Metab 2024; 44:787-800. [PMID: 38000018 PMCID: PMC11197134 DOI: 10.1177/0271678x231216144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jessie Fanglu Fu
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kyla Gaudet
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annie G Bryant
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi-Fen Yen
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
3
|
Guo XY, Kwon HJ, Rhee HY, Park S, Cho AR, Ryu CW, Jahng GH. Microvascular morphology alteration using relaxation rate change with gadolinium-based magnetic resonance imaging contrast agent in patients with Alzheimer's disease. Quant Imaging Med Surg 2023; 13:1-16. [PMID: 36620129 PMCID: PMC9816741 DOI: 10.21037/qims-22-524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Background Conventional magnetic resonance imaging (MRI) techniques cannot demonstrate microvascular alterations in mild Alzheimer's disease (AD). Thus, the diagnosis of microvascular pathology commonly relies on postmortem. The purpose of this study was to evaluate alterations of microvascular structures in patients with AD using a 3T clinical MRI system with a commercially available contrast agent. Methods Eleven patients with AD and 11 cognitively normal (CN) controls were included in this cross-sectional prospective study. R2 and R2* relaxation rate changes (∆R2 and ∆R2*) before and after a Gadolinium (Gd)-based contrast agent injection were calculated from images obtained with a multi-echo turbo spin-echo sequence and multi-echo gradient-echo sequence to obtain microvascular index maps of blood volume fraction (BVf), mean vessel diameter (mVD), vessel size index (VSI), mean vessel density (Q), and microvessel-weighted imaging (MvWI). Two-sample t-test was used to compare those values between the two groups. Correlation analysis was performed to evaluate the relationship between those values and age. Results BVfs at the corpus callosum and at the thalamus were significantly increased in the AD group (P=0.024 and P=0.005, respectively). BVf at the gray matter (P=0.020) and white matter area (P=0.012) were also significantly increased in the AD group compared with the CN group. MvWIs at the hippocampus and parahippocampal gyrus were significantly increased in the AD group compared with the CN group (P=0.020 and P=0.006, respectively). Voxel-based analysis showed both mVD and VSI were significantly decreased at the prefrontal lobe in the AD group. Q were not significant difference between CN and AD groups. MvWI were significantly positively correlated with age. Conclusions Microvascular index was a useful non-invasive method to evaluate microvascular morphology alteration. The microvascular morphology of AD was manifested as increasing BVf and microvessel-weighted.
Collapse
Affiliation(s)
- Xiao-Yi Guo
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeok Jung Kwon
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ah Rang Cho
- Department of Psychiatry, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kurz FT, Schlemmer HP. Imaging in translational cancer research. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0677. [PMID: 36476372 PMCID: PMC9724222 DOI: 10.20892/j.issn.2095-3941.2022.0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
This review is aimed at presenting some of the recent developments in translational cancer imaging research, with a focus on novel, recently established, or soon to be established cross-sectional imaging techniques for computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET) imaging, including computational investigations based on machine-learning techniques.
Collapse
Affiliation(s)
- Felix T. Kurz
- Department of Radiology, German Cancer Research Center, Heidelberg 69120, Germany
| | | |
Collapse
|
5
|
Hahn A, Bode J, Schuhegger S, Krüwel T, Sturm VJF, Zhang K, Jende JME, Tews B, Heiland S, Bendszus M, Breckwoldt MO, Ziener CH, Kurz FT. Brain tumor classification of virtual NMR voxels based on realistic blood vessel-induced spin dephasing using support vector machines. NMR IN BIOMEDICINE 2022; 35:e4307. [PMID: 32289884 DOI: 10.1002/nbm.4307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 05/28/2023]
Abstract
Remodeling of tissue microvasculature commonly promotes neoplastic growth; however, there is no imaging modality in oncology yet that noninvasively quantifies microvascular changes in clinical routine. Although blood capillaries cannot be resolved in typical magnetic resonance imaging (MRI) measurements, their geometry and distribution influence the integral nuclear magnetic resonance (NMR) signal from each macroscopic MRI voxel. We have numerically simulated the expected transverse relaxation in NMR voxels with different dimensions based on the realistic microvasculature in healthy and tumor-bearing mouse brains (U87 and GL261 glioblastoma). The 3D capillary structure in entire, undissected brains was acquired using light sheet fluorescence microscopy to produce large datasets of the highly resolved cerebrovasculature. Using this data, we trained support vector machines to classify virtual NMR voxels with different dimensions based on the simulated spin dephasing accountable to field inhomogeneities caused by the underlying vasculature. In prediction tests with previously blinded virtual voxels from healthy brain tissue and GL261 tumors, stable classification accuracies above 95% were reached. Our results indicate that high classification accuracies can be stably attained with achievable training set sizes and that larger MRI voxels facilitated increasingly successful classifications, even with small training datasets. We were able to prove that, theoretically, the transverse relaxation process can be harnessed to learn endogenous contrasts for single voxel tissue type classifications on tailored MRI acquisitions. If translatable to experimental MRI, this may augment diagnostic imaging in oncology with automated voxel-by-voxel signal interpretation to detect vascular pathologies.
Collapse
Affiliation(s)
- Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Sarah Schuhegger
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Volker J F Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology E010, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ke Zhang
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology E010, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian H Ziener
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology E010, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology E010, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
D'Alessandris QG, Pacioni S, Stumpo V, Buccarelli M, Lauretti L, Giordano M, Di Bonaventura R, Martini M, Larocca LM, Giannetti S, Montano N, Falchetti ML, Ricci-Vitiani L, Pallini R. Dilation of Brain Veins and Perivascular Infiltration by Glioblastoma Cells in an In Vivo Assay of Early Tumor Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8891045. [PMID: 33748283 PMCID: PMC7960033 DOI: 10.1155/2021/8891045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 01/22/2023]
Abstract
The cranial window (CW) technique provides a simple and low-cost method to assess tumor angiogenesis in the brain. The CW combined with histology using selective markers for tumor and endothelial cells can allow a sensitive monitoring of novel antiangiogenesis therapies in preclinical models. The CW was established in cyclosporine immunosuppressed rats that were stereotactically grafted with fluorescent U87MG glioblastoma cells. One to 3 weeks after grafting, brain vasculature was visualized in vivo and assessed by immunofluorescence microscopy using antibodies against endothelial and smooth-muscle cells and blood brain barrier. At 1-2 weeks after grafting, the CW reliably detected the hypertrophy of venous-venous anastomoses and cortical veins. These structures increased highly significantly their pregrafting diameter. Arterialized veins and hemorrhages were seen by three weeks after grafting. Immunofluorescence microscopy showed significant branching and dilation of microvessels, particularly those surrounded by tumor cells. Mechanistically, these changes lead to loss of vascular resistance, increased venous outflow, and opening of venous-venous anastomoses on the cortical surface. Data from the present study, namely, the hypertrophy of cortical venous-venous anastomoses, microvessel branching, and dilation of the microvessels surrounded by tumor cells, indicate the power of this in vivo model for the sensitive monitoring of early tumor angiogenesis.
Collapse
Affiliation(s)
- Quintino Giorgio D'Alessandris
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Simone Pacioni
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Vittorio Stumpo
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 0061, Italy
| | - Liverana Lauretti
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Martina Giordano
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Rina Di Bonaventura
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maurizio Martini
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luigi M. Larocca
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Stefano Giannetti
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Nicola Montano
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maria Laura Falchetti
- CNR-IBBC, Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 0061, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
7
|
Hahn A, Bode J, Krüwel T, Kampf T, Buschle LR, Sturm VJF, Zhang K, Tews B, Schlemmer HP, Heiland S, Bendszus M, Ziener CH, Breckwoldt MO, Kurz FT. Gibbs point field model quantifies disorder in microvasculature of U87-glioblastoma. J Theor Biol 2020; 494:110230. [PMID: 32142806 DOI: 10.1016/j.jtbi.2020.110230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/28/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Microvascular proliferation in glioblastoma multiforme is a biological key mechanism to facilitate tumor growth and infiltration and a main target for treatment interventions. The vascular architecture can be obtained by Single Plane Illumination Microscopy (SPIM) to evaluate vascular heterogeneity in tumorous tissue. We make use of the Gibbs point field model to quantify the order of regularity in capillary distributions found in the U87 glioblastoma model in a murine model and to compare tumorous and healthy brain tissue. A single model parameter Γ was assigned that is linked to tissue-specific vascular topology through Monte-Carlo simulations. Distributions of the model parameter Γ differ significantly between glioblastoma tissue with mean 〈ΓG〉=2.1±0.4, as compared to healthy brain tissue with mean 〈ΓH〉=4.9±0.4, suggesting that the average Γ-value allows for tissue differentiation. These results may be used for diagnostic magnetic resonance imaging, where it has been shown recently that Γ is linked to tissue-inherent relaxation parameters.
Collapse
Affiliation(s)
- Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, Heidelberg 69120, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Thomas Krüwel
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Thomas Kampf
- Department of Experimental Physics 5, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Lukas R Buschle
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Volker J F Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Ke Zhang
- Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Christian H Ziener
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
8
|
Glioblastoma multiforme restructures the topological connectivity of cerebrovascular networks. Sci Rep 2019; 9:11757. [PMID: 31409816 PMCID: PMC6692362 DOI: 10.1038/s41598-019-47567-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme alters healthy tissue vasculature by inducing angiogenesis and vascular remodeling. To fully comprehend the structural and functional properties of the resulting vascular network, it needs to be studied collectively by considering both geometric and topological properties. Utilizing Single Plane Illumination Microscopy (SPIM), the detailed capillary structure in entire healthy and tumor-bearing mouse brains could be resolved in three dimensions. At the scale of the smallest capillaries, the entire vascular systems of bulk U87- and GL261-glioblastoma xenografts, their respective cores, and healthy brain hemispheres were modeled as complex networks and quantified with fundamental topological measures. All individual vessel segments were further quantified geometrically and modular clusters were uncovered and characterized as meta-networks, facilitating an analysis of large-scale connectivity. An inclusive comparison of large tissue sections revealed that geometric properties of individual vessels were altered in glioblastoma in a relatively subtle way, with high intra- and inter-tumor heterogeneity, compared to the impact on the vessel connectivity. A network topology analysis revealed a clear decomposition of large modular structures and hierarchical network organization, while preserving most fundamental topological classifications, in both tumor models with distinct growth patterns. These results augment our understanding of cerebrovascular networks and offer a topological assessment of glioma-induced vascular remodeling. The findings may help understand the emergence of hypoxia and necrosis, and prove valuable for therapeutic interventions such as radiation or antiangiogenic therapy.
Collapse
|
9
|
Chakhoyan A, Yao J, Leu K, Pope WB, Salamon N, Yong W, Lai A, Nghiemphu PL, Everson RG, Prins RM, Liau LM, Nathanson DA, Cloughesy TF, Ellingson BM. Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry. Sci Rep 2019; 9:2846. [PMID: 30808879 PMCID: PMC6391482 DOI: 10.1038/s41598-018-37564-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 01/19/2023] Open
Abstract
To evaluate the association between a vessel size index (VSIMRI) derived from dynamic susceptibility contrast (DSC) perfusion imaging using a custom spin-and-gradient echo echoplanar imaging (SAGE-EPI) sequence and quantitative estimates of vessel morphometry based on immunohistochemistry from image-guided biopsy samples. The current study evaluated both relative cerebral blood volume (rCBV) and VSIMRI in eleven patients with high-grade glioma (7 WHO grade III and 4 WHO grade IV). Following 26 MRI-guided glioma biopsies in these 11 patients, we evaluated tissue morphometry, including vessel density and average radius, using an automated procedure based on the endothelial cell marker CD31 to highlight tumor vasculature. Measures of rCBV and VSIMRI were then compared to histological measures. We demonstrate good agreement between VSI measured by MRI and histology; VSIMRI = 13.67 μm and VSIHistology = 12.60 μm, with slight overestimation of VSIMRI in grade III patients compared to histology. rCBV showed a moderate but significant correlation with vessel density (r = 0.42, p = 0.03), and a correlation was also observed between VSIMRI and VSIHistology (r = 0.49, p = 0.01). The current study supports the hypothesis that vessel size measures using MRI accurately reflect vessel caliber within high-grade gliomas, while traditional measures of rCBV are correlated with vessel density and not vessel caliber.
Collapse
Affiliation(s)
- Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Kevin Leu
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - William Yong
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Richard G Everson
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert M Prins
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Linda M Liau
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA.
- UCLA Neuro Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Schwarz D, Niederle T, Münch P, Hielscher T, Hassel JC, Schlemmer HP, Platten M, Winkler F, Wick W, Heiland S, Delorme S, Bendszus M, Bäumer P, Breckwoldt MO. Susceptibility-weighted imaging in malignant melanoma brain metastasis. J Magn Reson Imaging 2019; 50:1251-1259. [PMID: 30793419 DOI: 10.1002/jmri.26692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The value of cerebral susceptibility-weighted imaging (SWI) in malignant melanoma (MM) patients remains controversial and the effect of melanin on SWI is not well understood. PURPOSE To systematically analyze the spectrum of intracerebral findings in MM brain metastases (BM) on SWI and to determine the diagnostic value of SWI. STUDY TYPE Retrospective. POPULATION/SUBJECTS In all, 100 patients with melanoma BM (69 having received radiotherapy [RT] and 31 RT-naïve) and a control group of 100 melanoma patients without BM were included. For detailed analysis of signal characteristics, 175 metastases were studied. FIELD STRENGTH/SEQUENCE Gradient echo SWI sequence at 1.5, 3.0, and 9.4 T. ASSESSMENT Signal characteristics from melanotic and amelanotic BMs on SWI with a focus on blooming artifacts were analyzed, as well as the presence and longitudinal dynamics of isolated SWI blooming artifacts in patients with and without BM. STATISTICAL TESTS Chi-squared and Student's t-test were used for contingency table measures and group data of signal and clinical characteristics, respectively. RESULTS Melanotic and amelanotic metastases did not show significant differences of SWI blooming artifacts (38% vs. 43%, P = 0.61). Most metastases without an initial SWI artifact developed a signal dropout during follow-up (80%; 65/81). Isolated SWI artifacts were detected more frequently in patients with BM (20 vs. 9, P = 0.03), of which the majority were found in patients who had received RT (17 vs. 3, P = 0.08). None of these isolated SWI blooming artifacts turned into overt metastases over time (median follow-up: 8.5 months). Similar findings persisted as remnants of successfully treated metastases (88%; 7/8). DATA CONCLUSION We conclude that SWI provides little additional diagnostic benefit over standard T1 -weighted imaging, as melanin content alone does not cause diagnostically relevant SWI blooming. Signal transition of SWI may rather indicate secondary phenomena like microbleeding and/or metal scavenging. Our results suggest that isolated SWI artifacts do not constitute vital tumor tissue but represent unspecific microbleedings, RT-related parenchymal changes or posttherapeutic remnants of former metastatic lesions. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019;50:1251-1259.
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Niederle
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Münch
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jessica C Hassel
- Dematology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany.,Neurology Clinic, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Delorme
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Bäumer
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
11
|
Breckwoldt MO, Bode J, Sahm F, Krüwel T, Solecki G, Hahn A, Wirthschaft P, Berghoff AS, Haas M, Venkataramani V, von Deimling A, Wick W, Herold-Mende C, Heiland S, Platten M, Bendszus M, Kurz FT, Winkler F, Tews B. Correlated MRI and Ultramicroscopy (MR-UM) of Brain Tumors Reveals Vast Heterogeneity of Tumor Infiltration and Neoangiogenesis in Preclinical Models and Human Disease. Front Neurosci 2019; 12:1004. [PMID: 30686972 PMCID: PMC6335617 DOI: 10.3389/fnins.2018.01004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
Diffuse tumor infiltration into the adjacent parenchyma is an effective dissemination mechanism of brain tumors. We have previously developed correlated high field magnetic resonance imaging and ultramicroscopy (MR-UM) to study neonangiogenesis in a glioma model. In the present study we used MR-UM to investigate tumor infiltration and neoangiogenesis in a translational approach. We compare infiltration and neoangiogenesis patterns in four brain tumor models and the human disease: whereas the U87MG glioma model resembles brain metastases with an encapsulated growth and extensive neoangiogenesis, S24 experimental gliomas mimic IDH1 wildtype glioblastomas, exhibiting infiltration into the adjacent parenchyma and along white matter tracts to the contralateral hemisphere. MR-UM resolves tumor infiltration and neoangiogenesis longitudinally based on the expression of fluorescent proteins, intravital dyes or endogenous contrasts. Our study demonstrates the huge morphological diversity of brain tumor models regarding their infiltrative and neoangiogenic capacities and further establishes MR-UM as a platform for translational neuroimaging.
Collapse
Affiliation(s)
- Michael O Breckwoldt
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Gergely Solecki
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany
| | - Artur Hahn
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Wirthschaft
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Anna S Berghoff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany
| | - Maximilian Haas
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Varun Venkataramani
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sabine Heiland
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Bendszus
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| |
Collapse
|
12
|
Microvascular characteristics of lower-grade diffuse gliomas: investigating vessel size imaging for differentiating grades and subtypes. Eur Radiol 2018; 29:1893-1902. [PMID: 30276676 PMCID: PMC6420610 DOI: 10.1007/s00330-018-5738-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 11/26/2022]
Abstract
Objectives Vessel size imaging (VSI) could reveal average microvessel diameter. The aim was to investigate microvascular characteristics and the efficacy of VSI in lower-grade glioma (LGG) grading and subtype differentiation based on 2016 classification of central nervous system tumours. Methods Fifty-seven LGG (grade II/III, 36/21) patients who received VSI examination before surgery were retrospectively analysed. The average (Rmean) and maximum (Rmax) vessel size indexes were obtained. The long (VDmax) and short (VDmin) vascular diameter, microvascular area (MVA) and density (MVD) were obtained using paraffin specimens. The patients were divided into grades II and III, and histological and molecular subtypes. The differences among microvascular parameters of different subtypes and grades were compared. Two-sample t-test, analysis of variance test, Mann-Whitney test, the Kruskal-Wallis test and Pearson correlation analysis were used for statistics. Results Rmean, Rmax, VDmin, VDmax, and MVA were higher in grade-III than in grade-II LGGs (p < 0.05) in each type except the isocitrate dehydrogenase (IDH) mutant with 1p/19q-intact type. For grade II, the IDH mutant with 1p/19q co-deleted and IDH wildtype possessed more dominant angiogenesis than IDH mutant with 1p/19q-intact type, revealed by lower Rmean, Rmax and VDmin while higher MVD for the former (p < 0.05), the same as oligodendroglioma versus astrocytoma. Rmean and Rmax correlated with VDmin (r = 0.804, 0.815, p < 0.05), VDmax (r = 0.766, 0.774, p < 0.05) and MVA (r = 0.755, 0.759, p < 0.05), respectively, while they had no correlation with MVD (r = -0.085, -0.080, p > 0.05). Conclusions VSI holds great potential for non-invasively revealing microvascular characteristics of LGGs pre-surgery and differentiating their grades and molecular subtypes. Key Points • VSI can assist in differentiating grade-II and -III gliomas. • The IDH gene and 1p/19q chromosome may influence the angiogenesis in grade-II gliomas. • VSI is valuable for differentiating the molecular subtypes of grade-II gliomas. Electronic supplementary material The online version of this article (10.1007/s00330-018-5738-y) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 458] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Kim C, Suh JY, Heo C, Lee CK, Shim WH, Park BW, Cho G, Lee DW, Woo DC, Kim SY, Kim YJ, Bae DJ, Kim JK. Spatiotemporal heterogeneity of tumor vasculature during tumor growth and antiangiogenic treatment: MRI assessment using permeability and blood volume parameters. Cancer Med 2018; 7:3921-3934. [PMID: 29983002 PMCID: PMC6089152 DOI: 10.1002/cam4.1624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Tumor heterogeneity is an important concept when assessing intratumoral variety in vascular phenotypes and responses to antiangiogenic treatment. This study explored spatiotemporal heterogeneity of vascular alterations in C6 glioma mice during tumor growth and antiangiogenic treatment on serial MR examinations (days 0, 4, and 7 from initiation of vehicle or multireceptor tyrosine kinase inhibitor administration). Transvascular permeability (TP) was quantified on dynamic‐contrast‐enhanced MRI (DCE‐MRI) using extravascular extracellular agent (Gd‐DOTA); blood volume (BV) was estimated using intravascular T2 agent (SPION). With regard to region‐dependent variability in vascular phenotypes, the control group demonstrated higher TP in the tumor center than in the periphery, and greater BV in the tumor periphery than in the center. This distribution pattern became more apparent with tumor growth. Antiangiogenic treatment effect was regionally heterogeneous: in the tumor center, treatment significantly suppressed the increase in TP and decrease in BV (ie, typical temporal change in the control group); in the tumor periphery, treatment‐induced vascular alterations were insignificant and BV remained high. On histopathological examination, the control group showed greater CD31, VEGFR2, Ki67, and NG2 expression in the tumor periphery than in the center. After treatment, CD31 and Ki67 expression was significantly suppressed only in the tumor center, whereas VEGFR2 and α‐caspase 3 expression was decreased and NG2 expression was increased in the entire tumor. These results demonstrate that MRI can reliably depict spatial heterogeneity in tumor vascular phenotypes and antiangiogenic treatment effects. Preserved angiogenic activity (high BV on MRI and high CD31) and proliferation (high Ki67) in the tumor periphery after treatment may provide insights into the mechanism of tumor resistance to antiangiogenic treatment.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Yeon Suh
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Changhoe Heo
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chang Kyung Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Hyun Shim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bum Woo Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gyunggoo Cho
- Bio-imaging Research Team, Korea Basic Science Institute, Chungbuk, South Korea
| | - Do-Wan Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Yun Jae Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Jeong Kon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Vessel radius mapping in an extended model of transverse relaxation. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:531-551. [DOI: 10.1007/s10334-018-0677-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
16
|
Chen X, Xie T, Fang J, Xue W, Kang H, Tong H, Guo Y, Zhang B, Wang S, Yang Y, Zhang W. Dynamic MR imaging for functional vascularization depends on tissue factor signaling in glioblastoma. Cancer Biol Ther 2018; 19:416-426. [PMID: 29333924 DOI: 10.1080/15384047.2018.1423924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glomeruloid vascular proliferation (GVP) is a diagnostic hallmark and links to aggressive behavior, therapy resistance and poor prognosis in glioblastoma (GBM). It lacks clinical approaches to predict and monitor its formation and dynamic change. Yet the mechanism of GVPs also remains largely unknown. Using an in situ GBM xenograft mouse model, combined clinical MRI images of pre-surgery tumor and pathological investigation, we demonstrated that the inhibition of tissue factor (TF) decreased GVPs in Mouse GBM xenograft model. TF shRNA reduced microvascular area and diameter, other than bevacizumab. TF dominantly functions via PAR2/HB-EGF-dependent activation under hypoxia in endothelial cells (ECs), resulting in a reduction of GVPs and cancer cells invasion. TF expression strongly correlated to GVPs and microvascular area (MVA) in GBM specimens from 56 patients, which could be quantitatively evaluated in an advanced MRI images system in 33 GBM patients. This study presented an approach to assess GVPs that could be served as a MRI imaging biomarker in GBM and uncovered a molecular mechanism of GVPs.
Collapse
Affiliation(s)
- Xiao Chen
- a Department of Radiology , Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China
| | - Tian Xie
- a Department of Radiology , Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China
| | - Jingqin Fang
- a Department of Radiology , Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China
| | - Wei Xue
- a Department of Radiology , Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China
| | - Houyi Kang
- a Department of Radiology , Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China
| | - Haipeng Tong
- a Department of Radiology , Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China
| | - Yu Guo
- a Department of Radiology , Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China
| | - Bo Zhang
- b Four and the State key laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China
| | - Sumei Wang
- c Department of Radiology, Division of Neuroradiology , Hospital of the University of Pennsylvania , Philadelphia , PA , USA
| | - Yizeng Yang
- d Department of Medicine, Gastroenterology Division , University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - Weiguo Zhang
- a Department of Radiology , Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing , China.,e Chongqing Clinical Research Center for Imaging and Nuclear Medicine , Chongqing , China
| |
Collapse
|
17
|
Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, Dosa E, Finn JP, Gahramanov S, Harisinghani M, Macdougall I, Neuwelt A, Vasanawala SS, Ambady P, Barajas R, Cetas JS, Ciporen J, DeLoughery TJ, Doolittle ND, Fu R, Grinstead J, Guimaraes AR, Hamilton BE, Li X, McConnell HL, Muldoon LL, Nesbit G, Netto JP, Petterson D, Rooney WD, Schwartz D, Szidonya L, Neuwelt EA. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 2017; 92:47-66. [PMID: 28434822 PMCID: PMC5505659 DOI: 10.1016/j.kint.2016.12.037] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 12/06/2016] [Indexed: 01/18/2023]
Abstract
Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material.
Collapse
Affiliation(s)
- Gerda B Toth
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Csanad G Varallyay
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea Horvath
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, 3808, Durham, North Carolina, USA; Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Section of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Stanford, California, USA
| | - Edit Dosa
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - John Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Seymur Gahramanov
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Mukesh Harisinghani
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Iain Macdougall
- Department of Renal Medicine, King's College Hospital, London, UK
| | - Alexander Neuwelt
- Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Prakash Ambady
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ramon Barajas
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Justin S Cetas
- Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeremy Ciporen
- Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas J DeLoughery
- Department of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Nancy D Doolittle
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Rongwei Fu
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | - Bronwyn E Hamilton
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Heather L McConnell
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Leslie L Muldoon
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gary Nesbit
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joao P Netto
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - David Petterson
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Schwartz
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Laszlo Szidonya
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA; Portland Veterans Affairs Medical Center, Portland, Oregon, USA.
| |
Collapse
|
18
|
Fredrickson J, Serkova NJ, Wyatt SK, Carano RAD, Pirzkall A, Rhee I, Rosen LS, Bessudo A, Weekes C, de Crespigny A. Clinical translation of ferumoxytol-based vessel size imaging (VSI): Feasibility in a phase I oncology clinical trial population. Magn Reson Med 2017; 77:814-825. [PMID: 26918893 PMCID: PMC5677523 DOI: 10.1002/mrm.26167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE To assess the feasibility of acquiring vessel size imaging (VSI) metrics using ferumoxytol injections and stock pulse sequences in a multicenter Phase I trial of a novel therapy in patients with advanced metastatic disease. METHODS Scans were acquired before, immediately after, and 48 h after injection, at screening and after 2 weeks of treatment. ΔR2 , ΔR2*, vessel density (Q), and relative vascular volume fractions (VVF) were estimated in both normal tissue and tumor, and compared with model-derived theoretical and experimental estimates based on preclinical murine xenograft data. RESULTS R2 and R2* relaxation rates were still significantly elevated in tumors and liver 48 h after ferumoxytol injection; liver values returned to baseline by week 2. Q was relatively insensitive to changes in ΔR2*, indicating lack of dependence on contrast agent concentration. Variability in Q was higher among human tumors compared with xenografts and was mostly driven by ΔR2 . Relative VVFs were higher in human tumors compared with xenografts, while values in muscle were similar between species. CONCLUSION Clinical ferumoxytol-based VSI is feasible using standard MRI techniques in a multicenter study of patients with lesions outside of the brain. Ferumoxytol accumulation in the liver does not preclude measurement of VSI parameters in liver metastases. Magn Reson Med 77:814-825, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jill Fredrickson
- Oncology Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Shelby K. Wyatt
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | | | - Andrea Pirzkall
- Oncology Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Ina Rhee
- Oncology Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Lee S. Rosen
- Department of Medicine, Division of Hematology and Oncology, UCLA, Santa Monica, CA, USA
| | - Alberto Bessudo
- San Diego Pacific Oncology Hematology Associates, Inc., Encinitas, CA, USA
| | - Colin Weekes
- Department of Medical Oncology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Alex de Crespigny
- Oncology Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
19
|
Kim JH, Suh JY, Woo DC, Sung YS, Son WC, Choi YS, Pae SJ, Kim JK. Difference in the intratumoral distributions of extracellular-fluid and intravascular MR contrast agents in glioblastoma growth. NMR IN BIOMEDICINE 2016; 29:1688-1699. [PMID: 27723161 DOI: 10.1002/nbm.3591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Contrast enhancement by an extracellular-fluid contrast agent (CA) (Gd-DOTA) depends primarily on the blood-brain-barrier permeability (bp), and transverse-relaxation change caused by intravascular T2 CA (superparamagnetic iron oxide nanoparticles, SPIONs) is closely associated with the blood volume (BV). Pharmacokinetic (PK) vascular characterization based on single-CA-using dynamic contrast-enhanced MRI (DCE-MRI) has shown significant measurement variation according to the molecular size of the CA. Based on this recognition, this study used a dual injection of Gd-DOTA and SPIONs for tracing the changes of bp and BV in C6 glioma growth (Days 1 and 7 after the tumor volume reached 2 mL). bp was quantified according to the non-PK parameters of Gd-DOTA-using DCE-MRI (wash-in rate, maximum enhancement ratio and initial area under the enhancement curve (IAUC)). BV was estimated by SPION-induced ΔR2 * and ΔR2 . With validated measurement reliability of all the parameters (coefficients of variation ≤10%), dual-contrast MRI demonstrated a different region-oriented distribution between Gd-DOTA and SPIONs within a tumor as follows: (a) the BV increased stepwise from the tumor center to the periphery; (b) the tumor periphery maintained the augmented BV to support continuous tumor expansion from Day 1 to Day 7; (c) the internal tumor area underwent significant vascular shrinkage (i.e. decreased ΔR2 and ΔR2 ) as the tumor increased in size; (d) the tumor center showed greater bp-indicating parameters, i.e. wash-in rate, maximum enhancement ratio and IAUC, than the periphery on both Days 1 and 7 and (e) the tumor center showed a greater increase of bp than the tumor periphery in tumor growth, as suggested to support tumor viability when there is insufficient blood supply. In the MRI-histologic correlation, a prominent BV increase in the tumor periphery seen in MRI was verified with increased fluorescein isothiocyanate-dextran signals and up-regulated immunoreactivity of CD31-VEGFR. In conclusion, the spatiotemporal alterations of BV and bp in glioblastoma growth, i.e. augmented BV in the tumor periphery and increased bp in the center, can be sufficiently evaluated by MRI with dual injection of extracellular-fluid Gd chelates and intravascular SPION.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Radiology, Research Institute of Radiology, Bioimaging Infrastructure, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Yeon Suh
- Department of Radiology, Research Institute of Radiology, Bioimaging Infrastructure, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Center for Bioimaging of New Drug Development, Asan Institute for life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong-Cheol Woo
- Department of Radiology, Research Institute of Radiology, Bioimaging Infrastructure, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Center for Bioimaging of New Drug Development, Asan Institute for life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yu Sub Sung
- Department of Radiology, Research Institute of Radiology, Bioimaging Infrastructure, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Center for Bioimaging of New Drug Development, Asan Institute for life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo-Chan Son
- Center for Bioimaging of New Drug Development, Asan Institute for life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Seok Choi
- Center for Bioimaging of New Drug Development, Asan Institute for life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Joon Pae
- Department of Surgery, National Health Insurance Service, Ilsan, South Korea
| | - Jeong Kon Kim
- Department of Radiology, Research Institute of Radiology, Bioimaging Infrastructure, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Center for Bioimaging of New Drug Development, Asan Institute for life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Kumar V, Boucher Y, Liu H, Ferreira D, Hooker J, Catana C, Hoover AJ, Ritter T, Jain RK, Guimaraes AR. Noninvasive Assessment of Losartan-Induced Increase in Functional Microvasculature and Drug Delivery in Pancreatic Ductal Adenocarcinoma. Transl Oncol 2016; 9:431-437. [PMID: 27751347 PMCID: PMC5067928 DOI: 10.1016/j.tranon.2016.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 01/04/2023] Open
Abstract
PURPOSE: Losartan, an angiotensin II receptor blocker, can reduce desmoplasia and enhance drug delivery and efficacy through improving interstitial transport and vascular perfusion in pancreatic ductal adenocarcinoma (PDAC) models in mice. The purpose of this study was to determine whether magnetic resonance imaging (MRI) of magnetic iron oxide nanoparticles (MNPs) and micro–positron emission tomography (PET) measurements could respectively detect improvements in tumor vascular parameters and drug uptake in orthotopic PDAC in mice treated with losartan. METHOD AND MATERIALS: All experiments were approved by the local Institutional Animal Care and Use Committee. FVB mice with orthotopic PDAC were treated daily with an i.p. injection of losartan (70 mg/kg) or saline (control vehicle) for 5 days. In order to calculate the fractional blood volume, vessel size index, and vessel density index, MRI was performed at 4.7 T following the injection of 3 mg/kg iron ferumoxytol (i.v.). Dynamic PET images were also acquired for 60 minutes using an 18F-5FU tracer dose of 200 μCi and analyzed for time activity curves normalized to muscle. Statistical analyses compared both cohorts using an unpaired two-tailed t test. RESULTS: In comparison to the control treatment, the losartan administration significantly increased the fractional blood volume (mean ± SEM) [12.1 ± 1.7 (n = 19) vs 6.7 ± 1.1 (n = 20); P < .02] and vessel size index (128.2 ± 35.6 vs 57.5 ± 18; P < .05). Losartan also induced a significant increase in the intratumoral uptake of 18F-5FU by 53% (P < .0001). CONCLUSION: MRI using FDA-approved MNPs provides a noninvasive, translatable means of assaying microvascular parameters induced by losartan in pancreatic cancer. PET measurements demonstrated that losartan significantly increased the uptake of 18F-5FU.
Collapse
Affiliation(s)
- Vidhya Kumar
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Yves Boucher
- E.L. Steele Laboratories Department of Radiation Oncology Harvard Medical School and Massachusetts General Hospital 100 Blossom Street, Cox 7 Boston, MA 02114
- Address all correspondence to: Alexander R. Guimaraes, MD, PhD, Associate Professor of Radiology, Section Chief, Body Imaging, Department of Diagnostic Radiology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Mail Code L340, Office SJH 10B77, Portland, OR, 97239, or Yves Boucher, PhD, Steele Lab for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13th St., Charlestown, MA, 02129.Department of Diagnostic RadiologyOregon Health Sciences UniversitySteele Lab for Tumor Biology, Department of Radiation OncologyMassachusetts General Hospital3181 SW Sam Jackson Park Road, Mail Code L340, Office SJH 10B77PortlandOR97239
| | - Hao Liu
- E.L. Steele Laboratories Department of Radiation Oncology Harvard Medical School and Massachusetts General Hospital 100 Blossom Street, Cox 7 Boston, MA 02114
| | - Diego Ferreira
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Jacob Hooker
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Andrew J. Hoover
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Tobias Ritter
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Max-Planck-Institut fü r Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mü lheim an der Ruhr, Germany
| | - Rakesh K. Jain
- E.L. Steele Laboratories Department of Radiation Oncology Harvard Medical School and Massachusetts General Hospital 100 Blossom Street, Cox 7 Boston, MA 02114
| | - Alexander R. Guimaraes
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
- Division of Body Imaging, Department of Diagnostic Radiology, Oregon Health Sciences University, Portland, OR
- Address all correspondence to: Alexander R. Guimaraes, MD, PhD, Associate Professor of Radiology, Section Chief, Body Imaging, Department of Diagnostic Radiology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Mail Code L340, Office SJH 10B77, Portland, OR, 97239, or Yves Boucher, PhD, Steele Lab for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13th St., Charlestown, MA, 02129.Department of Diagnostic RadiologyOregon Health Sciences UniversitySteele Lab for Tumor Biology, Department of Radiation OncologyMassachusetts General Hospital3181 SW Sam Jackson Park Road, Mail Code L340, Office SJH 10B77PortlandOR97239
| |
Collapse
|
21
|
Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF. Iron Oxide as an MRI Contrast Agent for Cell Tracking. MAGNETIC RESONANCE INSIGHTS 2015; 8:15-29. [PMID: 26483609 PMCID: PMC4597836 DOI: 10.4137/mri.s23557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
Abstract
Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation.
Collapse
Affiliation(s)
- Daniel J. Korchinski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Taha
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Runze Yang
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nabeela Nathoo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,CORRESPONDENCE:
| |
Collapse
|
22
|
Kwon HJ, Shim WH, Cho G, Cho HJ, Jung HS, Lee CK, Lee YS, Baek JH, Kim EJ, Suh JY, Sung YS, Woo DC, Kim YR, Kim JK. Simultaneous evaluation of vascular morphology, blood volume and transvascular permeability using SPION-based, dual-contrast MRI: imaging optimization and feasibility test. NMR IN BIOMEDICINE 2015; 28:624-632. [PMID: 25865029 DOI: 10.1002/nbm.3293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
Exploiting ultrashort-T(E) (UTE) MRI, T1-weighted positive contrast can be obtained from superparamagnetic iron oxide nanoparticles (SPIONs), which are widely used as a robust T2-weighted, negative contrast agent on conventional MR images. Our study was designed (a) to optimize the dual-contrast MRI method using SPIONs and (b) to validate the feasibility of simultaneously evaluating the vascular morphology, blood volume and transvascular permeability using the dual-contrast effect of SPIONs. All studies were conducted using 3 T MRI. According to numerical simulation, 0.15 mM was the optimal blood SPION concentration for visualizing the positive contrast effect using UTE MRI (T(E) = 0.09 ms), and a flip angle of 40° could provide sufficient SPION-induced enhancement and acceptable measurement noise for UTE MR angiography. A pharmacokinetic study showed that this concentration can be steadily maintained from 30 to 360 min after the injection of 29 mg/kg of SPIONs. An in vivo study using these settings displayed image quality and CNR of SPION-enhanced UTE MR angiography (image quality score 3.5; CNR 146) comparable to those of the conventional, Gd-enhanced method (image quality score 3.8; CNR 148) (p > 0.05). Using dual-contrast MR images obtained from SPION-enhanced UTE and conventional spin- and gradient-echo methods, the transvascular permeability (water exchange index 1.76-1.77), cerebral blood volume (2.58-2.60%) and vessel caliber index (3.06-3.10) could be consistently quantified (coefficient of variation less than 9.6%; Bland-Altman 95% limits of agreement 0.886-1.111) and were similar to the literature values. Therefore, using the optimized setting of combined SPION-based MRI techniques, the vascular morphology, blood volume and transvascular permeability can be comprehensively evaluated during a single session of MR examination.
Collapse
Affiliation(s)
- Heon-Ju Kwon
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, South Korea
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woo Hyun Shim
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, South Korea
| | - Gyunggoo Cho
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon, Chungbuk, South Korea
| | - Hyung Joon Cho
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hoe Su Jung
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Chang Kyung Lee
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, South Korea
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon, Chungbuk, South Korea
| | - Yong Seok Lee
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, South Korea
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon, Chungbuk, South Korea
| | - Jin Hee Baek
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, South Korea
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon, Chungbuk, South Korea
| | | | - Ji-Yeon Suh
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon, Chungbuk, South Korea
| | - Yu Sub Sung
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, South Korea
| | - Dong-Cheol Woo
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, South Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jeong Kon Kim
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, South Korea
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon, Chungbuk, South Korea
| |
Collapse
|
23
|
Suh JY, Shim WH, Cho G, Fan X, Kwon SJ, Kim JK, Dai G, Wang X, Kim YR. Reduced microvascular volume and hemispherically deficient vasoreactivity to hypercapnia in acute ischemia: MRI study using permanent middle cerebral artery occlusion rat model. J Cereb Blood Flow Metab 2015; 35:1033-43. [PMID: 25690471 PMCID: PMC4640250 DOI: 10.1038/jcbfm.2015.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 11/09/2022]
Abstract
Vasoreactivity to hypercapnia has been used for assessing cerebrovascular tone and control altered by ischemic stroke. Despite the high prognostic potential, traits of hypercapnia-induced hemodynamic changes have not been fully characterized in relation with baseline vascular states and brain tissue damage. To monitor cerebrovascular responses, T2- and T2*-weighted magnetic resonance imaging (MRI) images were acquired alternatively using spin- and gradient-echo echo plannar imaging (GESE EPI) sequence with 5% CO2 gas inhalation in normal (n=5) and acute stroke rats (n=10). Dynamic relative changes in cerebrovascular volume (CBV), microvascular volume (MVV), and vascular size index (VSI) were assessed from regions of interest (ROIs) delineated by the percent decrease of apparent diffusion coefficient (ADC). The baseline CBV was not affected by middle cerebral artery occlusion (MCAO) whereas the baseline MVV in ischemic areas was significantly lower than that in the rest of the brain and correlated with ADC. Vasoreactivity to hypercapnic challenge was considerably attenuated in the entire ipsilesional hemisphere including normal ADC regions, in which unsolicited, spreading depression-associated increases of CBV and MVV were observed. The lesion-dependent inhomogeneity in baseline MVV indicates the effective perfusion reserve for accurately delineating the true ischemic damage while the cascade of neuronal depolarization is probably responsible for the hemispherically lateralized changes in overall neurovascular physiology.
Collapse
Affiliation(s)
- J Y Suh
- 1] Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Division of Magnetic Resonance Research, Korea Basic Science Institute, Cheongwon, Chungbuk, The Republic of Korea
| | - Woo H Shim
- 1] Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, The Republic of Korea
| | - Gyunggoo Cho
- Division of Magnetic Resonance Research, Korea Basic Science Institute, Cheongwon, Chungbuk, The Republic of Korea
| | - Xiang Fan
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Seon J Kwon
- 1] Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Neurology, Kang's Medical Center, Pocheon, The Republic of Korea
| | - Jeong K Kim
- 1] Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, The Republic of Korea
| | - George Dai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Young R Kim
- 1] Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] School of Nano-Bioscience and Chemical Engineering, UNIST (Ulsan National Institute of Science and Technology), Ulsan, The Republic of Korea
| |
Collapse
|
24
|
Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi O, Rosen B. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res 2015; 74:4622-4637. [PMID: 25183787 DOI: 10.1158/0008-5472.can-14-0383] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research."
Collapse
Affiliation(s)
- Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Departments of Radiology, Oslo University Hospital, Oslo, Norway
| | - Elizabeth R Gerstner
- Neurology, Massachusetts General Hospital and Harvard Medical School, Oslo University Hospital, Oslo, Norway
| | - Kyrre E Emblem
- Athinoula A. Martinos Center for Biomedical Imaging, Departments of Radiology, Oslo University Hospital, Oslo, Norway.,The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Ovidiu Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Departments of Radiology, Oslo University Hospital, Oslo, Norway
| | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Departments of Radiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
25
|
Magnetic resonance-imaging of the effect of targeted antiangiogenic gene delivery in a melanoma tumour model. Eur Radiol 2014; 25:1107-18. [PMID: 25432291 DOI: 10.1007/s00330-014-3492-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/24/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES We investigated the effect of targeted gene therapy to melanoma tumours (M21) by MR-imaging. METHODS M21 and M21-L tumours were grown to a size of 850 mm(3). M21 and M21-L tumours were intravenously treated with an αvβ3-integrin-ligand-coupled nanoparticle (RGDNP)/RAF(-) complex five times every 72 hours. MRI was performed at set time intervals 24h and 72h after the i.v. injection of the complex. The MRI protocol was T1-wt-SE±CM, T2-wt-FSE, DCE-MRI, Diffusion-wt-STEAM-sequence, T2-time obtained on a 1.5-T-GE-MRI device. RESULTS The size of the treated M21 tumours kept nearly constant during the treatment phase (847.8±31.4 mm(3) versus 904.8±44.4 mm(3)). The SNR value (T2-weighted images) of the tumours was 36.7±0.6 and dropped down to 30.6±1.9 (p=0.004). At the beginning the SNR value (T1-weighted images) of the tumours after contrast medium application was 42.3±1.9 and dropped down to 28.5±3.0 (p<0.001). In the treatment group the diffusion coefficient increased significantly under therapy (0.54±0.01x10(-3) mm(2)/s versus 0.67±0.04x10(-3) mm(2)/s). The DCE-MRI showed a reduction of the slope and of the Akep of 67.8±4.3 % respectively 64.8±3.3 % compared to baseline. CONCLUSIONS Targeted gene delivery therapy induces significant changes in MR-imaging. MRI showed a significant reduction of contrast medium uptake parameters and increase of the diffusion coefficient of the tumours. KEY POINT • Treatment with targeted gene-delivery therapy can be monitored by MR imaging • DCE and diffusion-weighted imaging are appropriate methods for monitoring this therapy • Functional changes are significant prior to any morphological changes.
Collapse
|
26
|
Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJH, Rosen BR, Sorensen AG, Jain RK. Vessel caliber--a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol 2014; 11:566-84. [PMID: 25113840 PMCID: PMC4445139 DOI: 10.1038/nrclinonc.2014.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research.
Collapse
Affiliation(s)
- Kyrre E Emblem
- The Intervention Centre, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Christian T Farrar
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Tracy T Batchelor
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Ronald J H Borra
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce R Rosen
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - A Gregory Sorensen
- Siemens Healthcare Health Services, 51 Valley Stream Parkway, Malvern, PA 19355, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
27
|
Troprès I, Pannetier N, Grand S, Lemasson B, Moisan A, Péoc'h M, Rémy C, Barbier EL. Imaging the microvessel caliber and density: Principles and applications of microvascular MRI. Magn Reson Med 2014; 73:325-41. [DOI: 10.1002/mrm.25396] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Irène Troprès
- IRMaGe; Université Grenoble Alpes; Grenoble France
- UMS 3552; CNRS; Grenoble France
- US 017; INSERM; Grenoble France
- IRMaGe, Hôpital Michallon; Centre Hospitalier Universitaire de Grenoble; Grenoble France
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France. INSERM; U836 Grenoble France
| | - Nicolas Pannetier
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| | - Sylvie Grand
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
- CLUNI, Hôpital Michallon; Centre Hospitalier Universitaire de Grenoble; Grenoble France
| | - Benjamin Lemasson
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| | - Anaïck Moisan
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| | - Michel Péoc'h
- Service d'anatomo-pathologie; Centre Hospitalier Universitaire de Saint Etienne; Saint-Etienne France
- EA 2521; Université Jean Monnet; Saint-Etienne France
| | - Chantal Rémy
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| | - Emmanuel L. Barbier
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| |
Collapse
|
28
|
Persigehl T, Ring J, Budny T, Hahnenkamp A, Stoeppeler S, Schwartz LH, Spiegel HU, Heindel W, Remmele S, Bremer C. Vessel Size Imaging (VSI) by Robust Magnetic Resonance (MR) Relaxometry: MR-VSI of Solid Tumors in Correlation with Immunohistology and Intravital Microscopy. Mol Imaging 2013. [DOI: 10.2310/7290.2013.00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Thorsten Persigehl
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Janine Ring
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Tymoteusz Budny
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Anke Hahnenkamp
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Sandra Stoeppeler
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Lawrence H. Schwartz
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Hans-Ullrich Spiegel
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Walter Heindel
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Stefanie Remmele
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| | - Christoph Bremer
- From the Department of Radiology, University Hospital Cologne, Cologne, Germany; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Department of Radiology, Columbia University Medical Center, New York, NY; Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany; Philips Research Europe, Hamburg, Germany; and Department of Radiology, St. Franziskus Hospital, Muenster, Germany
| |
Collapse
|
29
|
Alexander S, Weigelin B, Winkler F, Friedl P. Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr Opin Cell Biol 2013; 25:659-71. [PMID: 23896198 DOI: 10.1016/j.ceb.2013.07.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
Key steps of cancer progression and therapy response depend upon interactions between cancer cells with the reactive tumour microenvironment. Intravital microscopy enables multi-modal and multi-scale monitoring of cancer progression as a dynamic step-wise process within anatomic and functional niches provided by the microenvironment. These niches deliver cell-derived and matrix-derived signals that enable cell subsets or single cancer cells to survive, migrate, grow, undergo dormancy, and escape immune surveillance. Beyond basic research, intravital microscopy has reached preclinical application to identify mechanisms of tumour-stroma interactions and outcome. We here summarise how n-dimensional 'dynamic histopathology' of tumours by intravital microscopy shapes mechanistic insight into cell-cell and cell-tissue interactions that underlie single-cell and collective cancer invasion, metastatic seeding at distant sites, immune evasion, and therapy responses.
Collapse
Affiliation(s)
- Stephanie Alexander
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
30
|
Kim E, Cebulla J, Ward BD, Rhie K, Zhang J, Pathak AP. Assessing breast cancer angiogenesis in vivo: which susceptibility contrast MRI biomarkers are relevant? Magn Reson Med 2012; 70:1106-16. [PMID: 23225578 DOI: 10.1002/mrm.24530] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 01/17/2023]
Abstract
PURPOSE There is an impending need for noninvasive biomarkers of breast cancer angiogenesis to evaluate the efficacy of new anti-angiogenic therapies in vivo. The purpose of this study was to systematically evaluate the sensitivity of in vivo steady-state susceptibility contrast-MRI biomarkers of angiogenesis in a human breast cancer model. METHODS Orthotopic MDA-MB-231 human breast cancer xenografts were imaged by steady-state susceptibility contrast-MRI at post-inoculation week 3 and post-inoculation week 5, followed by ex vivo whole tumor 3D micro-CT angiography. "Absolute" (i.e., measures of vascular morphology in appropriate units) and "relative" (i.e., proportional to measures of vascular morphology) MRI biomarkers of tumor blood volume, vessel size, and vessel density were computed and their ability to predict the corresponding micro-CT analogs assessed using cross-validation analysis. RESULTS All MRI biomarkers significantly correlated with their micro-CT analogs and were sensitive to the micro-CT-measured decreases in tumor blood volume and vessel density from post-inoculation week 3 to post-inoculation week 5. However, cross-validation analysis revealed there was no significant difference between the predictive accuracy of "absolute" and "relative" biomarkers. CONCLUSION As "relative" biomarkers are more easily computed from steady-state susceptibility contrast-MRI (i.e., without additional MRI measurements) than "absolute" biomarkers, it makes them promising candidates for assessing breast cancer angiogenesis in vivo.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
31
|
Burrell JS, Bradley RS, Walker-Samuel S, Jamin Y, Baker LCJ, Boult JKR, Withers PJ, Halliday J, Waterton JC, Robinson SP. MRI measurements of vessel calibre in tumour xenografts: comparison with vascular corrosion casting. Microvasc Res 2012; 84:323-9. [PMID: 22921880 PMCID: PMC3657196 DOI: 10.1016/j.mvr.2012.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 02/08/2023]
Abstract
Vessel size index (Rv, μm) has been proposed as a quantitative magnetic resonance imaging (MRI) derived imaging biomarker in oncology, for the non-invasive assessment of tumour blood vessel architecture and vascular targeted therapies. Appropriate pre-clinical evaluation of Rv in animal tumour models will improve the interpretation and guide the introduction of the biomarker into clinical studies. The objective of this study was to compare Rv measured in vivo with vessel size measurements from high-resolution X-ray computed tomography (μCT) of vascular corrosion casts measured post mortem from the same tumours, with and without vascular targeted therapy. MRI measurements were first acquired from subcutaneous SW1222 colorectal xenografts in mice following treatment with 0 (n = 6), 30 (n = 6) or 200 mg/kg (n = 3) of the vascular disrupting agent ZD6126. The mice were then immediately infused with a low viscosity resin and, following polymerisation and maceration of surrounding tissues, the resulting tumour vascular casts were dissected and subsequently imaged using an optimised μCT imaging approach. Vessel diameters were not measurable by μCT in the 200 mg/kg group as the high dose of ZD6126 precluded delivery of the resin to the tumour vascular bed. The mean Rv for the three treatment groups was 24, 23 and 23.5 μm respectively; the corresponding μCT measurements from corrosion casts from the 0 and 30 mg/kg cohorts were 25 and 28 μm. The strong association between the in vivo MRI and post mortem μCT values supports the use of Rv as an imaging biomarker in clinical trials of investigational vascular targeted therapies.
Collapse
Affiliation(s)
- Jake S Burrell
- CR-UK & EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road Sutton, Surrey, SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hundt W, Steinbach S, O'Connell-Rodwell CE, Mayer D, Burbelko M, Guccione S. In vivo monitoring of antiangiogenic therapy by magnetic resonance and bioluminescence imaging in an M21 tumor model through activation of an hsp70 promoter-luciferase reporter construct. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:450-9. [PMID: 22821879 DOI: 10.1002/cmmi.1472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the effect of targeted gene therapy on the melanoma cell line M21, using a combination of bioluminescence imaging (BLI) and magnetic resonance imaging (MRI). M21 cells transfected with a plasmid containing either an hsp70 (Hspa1b) or a CMV promoter fragment, along with the luciferase reporter gene, were grown to a tumor size of 900 mm(3) . Five mice in each group were intravenously treated every 72 h with a complex consisting of a nanoparticle, an Arg-Gly-Asp-peptide, and a dominant negative mutant protein kinase inhibitor gene. BLI and MRI were performed at specific time intervals. The MRI scan protocol included T(1) -weighted-spin-echo ± contrast medium, T(2) -weighted-fast-spin-echo, dynamic contrast-enhanced MRI (DCE-MRI), and diffusion-weighted-stimulated-echo-acquisition-mode-sequence. The T(2) times were obtained using a 1.5 T GE MRI scanner. The size of the treated M21 tumors remained almost constant during the treatment phase (837.8 ± 133.4 vs 914.8 ± 134.4 mm(3) ). BLI showed that, if transcription was controlled by the CMV promoter, the luciferase activity decreased to 51.1 ± 8.3%. After transcription was controlled by the hsp70 promoter, the highest luciferase activity (4.4 ± 0.3 fold) was seen after 24 h. The signal-to-noise ratio (SNR; T(2) -weighted images) of the tumors was 36.7 ± 0.6 and subsequently dropped to 31.2 ± 4.4 (p=0.004). DCE-MRI showed a reduction of the slope and the Ak(ep) of 67.8% ± 4.3 and 64.8% ± 3.3%, respectively, compared with the baseline. The SNR value (T(1) -weighted images) of the tumors was 42.3 ± 1.9 immediately following contrast medium application and subsequently dropped to 28.5 ± 3.0 (p<0.001). In the treatment group, the diffusion coefficient increased significantly under therapy (0.66 ± 0.05 vs the pretreatment value of 0.54 ± 0.009 p<0.01). Thus, we observed that targeted antiangiogenic therapy can induce activation of the hsp70 promoter through a heat shock/luciferase reporter system. Moreover, MRI showed a significant reduction of the contrast medium uptake parameters and an increase in the diffusion coefficient of the tumors.
Collapse
Affiliation(s)
- Walter Hundt
- Department of Radiology, Lucas MRS Research Center, Stanford School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Lemasson B, Valable S, Farion R, Krainik A, Rémy C, Barbier EL. In vivo imaging of vessel diameter, size, and density: A comparative study between MRI and histology. Magn Reson Med 2012; 69:18-26. [DOI: 10.1002/mrm.24218] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 11/08/2022]
|
34
|
Pannetier N, Lemasson B, Christen T, Tachrount M, Troprès I, Farion R, Segebarth C, Rémy C, Barbier EL. Vessel size index measurements in a rat model of glioma: comparison of the dynamic (Gd) and steady-state (iron-oxide) susceptibility contrast MRI approaches. NMR IN BIOMEDICINE 2012; 25:218-226. [PMID: 21751270 DOI: 10.1002/nbm.1734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 02/16/2011] [Accepted: 03/28/2011] [Indexed: 05/31/2023]
Abstract
Vessel size index (VSI), a parameter related to the distribution of vessel diameters, may be estimated using two MRI approaches: (i) dynamic susceptibility contrast (DSC) MRI following the injection of a bolus of Gd-chelate. This technique is routinely applied in the clinic to assess intracranial tissue perfusion in patients; (ii) steady-state susceptibility contrast with USPIO contrast agents, which is considered here as the standard method. Such agents are not available for human yet and the steady-state approach is currently limited to animal studies. The aim is to compare VSI estimates obtained with these two approaches on rats bearing C6 glioma (n = 7). In a first session, VSI was estimated from two consecutive injections of Gd-Chelate (Gd(1) and Gd(2)). In a second session (4 hours later), VSI was estimated using USPIO. Our findings indicate that both approaches yield comparable VSI estimates both in contralateral (VSI{USPIO} = 7.5 ± 2.0 µm, VSI{Gd(1)} = 6.5 ± 0.7 µm) and in brain tumour tissues (VSI{USPIO} = 19.4 ± 7.1 µm, VSI{Gd(1)} = 16.6 ± 4.5 µm). We also observed that, in the presence of BBB leakage (as it occurs typically in brain tumours), applying a preload of Gd-chelate improves the VSI estimate with the DSC approach both in contralateral (VSI{Gd(2)} = 7.1 ± 0.4 µm) and in brain tumour tissues (VSI{Gd(2)} = 18.5 ± 4.3 µm) but is not mandatory. VSI estimates do not appear to be sensitive to T(1) changes related to Gd extravasation. These results suggest that robust VSI estimates may be obtained in patients at 3 T or higher magnetic fields with the DSC approach.
Collapse
|
35
|
In vivo time-course imaging of tumor angiogenesis in colorectal liver metastases in the same living mice using two-photon laser scanning microscopy. JOURNAL OF ONCOLOGY 2011; 2012:265487. [PMID: 22131993 PMCID: PMC3216265 DOI: 10.1155/2012/265487] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/19/2011] [Accepted: 08/30/2011] [Indexed: 01/12/2023]
Abstract
In vivo real-time visualization of the process of angiogenesis in secondary tumors in the same living animals presents a major challenge in metastasis research. We developed a technique for intravital imaging of colorectal liver metastasis development in live mice using two-photon laser scanning microscopy (TPLSM). We also developed time-series TPLSM in which intravital TPLSM procedures were performed several times over periods of days to months. Red fluorescent protein-expressing colorectal cancer cells were inoculated into the spleens of green fluorescent protein-expressing mice. First- and second-round intravital TPLSM allowed visualization of viable cancer cells (red) in hepatic sinusoids or the space of Disse. Third-round intravital TPLSM demonstrated liver metastatic colonies consisting of viable cancer cells and surrounding stroma with tumor vessels (green). In vivo time-course imaging of tumor angiogenesis in the same living mice using time-series TPLSM could be an ideal tool for antiangiogenic drug evaluation, reducing the effects of interindividual variation.
Collapse
|
36
|
Dickson JD, Ash TWJ, Williams GB, Sukstanskii AL, Ansorge RE, Yablonskiy DA. Quantitative phenomenological model of the BOLD contrast mechanism. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:17-25. [PMID: 21782488 PMCID: PMC6373771 DOI: 10.1016/j.jmr.2011.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 05/12/2023]
Abstract
Different theoretical models of the BOLD contrast mechanism are used for many applications including BOLD quantification (qBOLD) and vessel size imaging, both in health and disease. Each model simplifies the system under consideration, making approximations about the structure of the blood vessel network and diffusion of water molecules through inhomogeneities in the magnetic field created by deoxyhemoglobin-containing blood vessels. In this study, Monte-Carlo methods are used to simulate the BOLD MR signal generated by diffusing water molecules in the presence of long, cylindrical blood vessels. Using these simulations we introduce a new, phenomenological model that is far more accurate over a range of blood oxygenation levels and blood vessel radii than existing models. This model could be used to extract physiological parameters of the blood vessel network from experimental data in BOLD-based experiments. We use our model to establish ranges of validity for the existing analytical models of Yablonskiy and Haacke, Kiselev and Posse, Sukstanskii and Yablonskiy (extended to the case of arbitrary time in the spin echo sequence) and Bauer et al. (extended to the case of randomly oriented cylinders). Although these models are shown to be accurate in the limits of diffusion under which they were derived, none of them is accurate for the whole physiological range of blood vessels radii and blood oxygenation levels. We also show the extent of systematic errors that are introduced due to the approximations of these models when used for BOLD signal quantification.
Collapse
Affiliation(s)
- John D Dickson
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|