1
|
Meng D, Ma J, Min X, Zang Y, Sun W. Nocturnal stomatal behaviour and its impact on water use strategies of desert herbs in the Gurbantunggut Desert, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172749. [PMID: 38670360 DOI: 10.1016/j.scitotenv.2024.172749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Nocturnal stomatal behaviour has the potential to exert a profound influence on plant-water relations, especially water use efficiency. However, we know very less about plant functional type differences in nocturnal stomatal conductance and their roles in plant stress adaptation, especially drought adaptation. To address this critical knowledge gap, we assessed diel leaf gas exchanges in eight ephemeral and perennial herbs growing on the southern edge of the Gurbantunggut Desert, Northwest China. For both ephemeral and perennial herbs, the nocturnal stomatal conductance (gs) exceeded 30 % of daytime gs, except for an ephemeral herb (Malcolmia scorpioides). The nocturnal gs in the studied perennial herbs were significantly higher than it in the ephemeral herbs. The results suggest that circadian-driven stomatal priming plays a pivotal role in accelerating the attainment of steady-state gs during the morning for perennial herbs, thereby enhancing their capacity for carbon capture. Moreover, the nocturnal stomatal behaviour of the ephemeral herbs favored water retention in the morning, consequently enhanced intrinsic water use efficiency and long-term water use efficiency. In summary, plant functional type differences in the magnitude of nocturnal stomatal opening were related to differences in water acquisition and utilization and highlighted diverse water use strategies in the desert plants.
Collapse
Affiliation(s)
- Dekun Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jianying Ma
- School of Geographical Sciences, Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China.
| | - Xiaojun Min
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Yongxin Zang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China.
| |
Collapse
|
2
|
Fang W, Liu J, Lu N, Li R. The dynamics of nocturnal sap flow components of a typical revegetation shrub species on the semiarid Loess Plateau, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1370362. [PMID: 38576789 PMCID: PMC10991760 DOI: 10.3389/fpls.2024.1370362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Introduction The components of nighttime sap flux (En), which include transpiration (Qn) and stem water recharge (Rn), play important roles in water balance and drought adaptation in plant communities in water-limited regions. However, the quantitative and controlling factors of En components are unclear. Methods This study used the heat balance method to measure sap flow density in Vitex negundo on the Loess Plateau for a normal precipitation year (2021) and a wetter year (2022). Results The results showed that the mean values were 1.04 and 2.34 g h-1 cm-2 for Qn, 0.19 and 0.45 g h-1 cm-2 for Rn in 2021 and 2022, respectively, and both variables were greater in the wetter year. The mean contributions of Qn to En were 79.76% and 83.91% in 2021 and 2022, respectively, indicating that the En was mostly used for Qn. Although the vapor pressure deficit (VPD), air temperature (Ta) and soil water content (SWC) were significantly correlated with Qn and Rn on an hourly time scale, they explained a small fraction of the variance in Qn on a daily time scale. The main driving factor was SWC between 40-200 cm on a monthly time scale for the Qn and Rn variations. Rn was little affected by meteorological and SWC factors on a daily scale. During the diurnal course, Qn and Rn initially both declined after sundown because of decreasing VPD and Ta, and Qn was significantly greater than Rn, whereas the two variables increased when VPD was nearly zero and Ta decreased, and Rn was greater than Qn. Discussion These results provided a new understanding of ecophysiological responses and adaptation of V. negundo plantations to increasing drought severity and duration under climate changes.
Collapse
Affiliation(s)
- Weiwei Fang
- Key Research Institute of Yellow Civilization and Sustainable Development and Collaborative Innovation Center of Henan Province, Henan University, Kaifeng, China
| | - Jianbo Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, China
| | - Nan Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruiping Li
- Key Research Institute of Yellow Civilization and Sustainable Development and Collaborative Innovation Center of Henan Province, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Yan Y, Ryu Y, Dechant B, Li B, Kim J. Dark respiration explains nocturnal stomatal conductance in rice regardless of drought and nutrient stress. PLANT, CELL & ENVIRONMENT 2023; 46:3748-3759. [PMID: 37651619 DOI: 10.1111/pce.14710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The ecological mechanism underlying nocturnal stomatal conductance (gsn ) in C3 and C4 plants remains elusive. In this study, we proposed a 'coordinated leaf trait' hypothesis to explain gsn in rice plants. We conducted an open-field experiment by applying drought, nutrient stress and the combined drought-nutrient stress. We found that gsn was neither strongly reduced by drought nor consistently increased by nutrient stress. With the aforementioned multiple abiotic stressors considered as random effects, gsn exhibited a strong positive correlation with dark respiration (Rn ). Notably, gsn primed early morning (5:00-7:00) photosynthesis through faster stomatal response time. This photosynthesis priming effect diminished after mid-morning (9:00). Leaves were cooled by gsn -derived transpiration. However, our results clearly suggest that evaporative cooling did not reduce dark respiration cost. Our results indicate that gsn is more closely related to carbon respiration and assimilation than water and nutrient availability, and that dark respiration can explain considerable variation of gsn .
Collapse
Affiliation(s)
- Yulin Yan
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
| | - Youngryel Ryu
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, South Korea
| | - Benjamin Dechant
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- German Centre for Integrative Biodiversity Research, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Bolun Li
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jongmin Kim
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Potkay A, Feng X. Dynamically optimizing stomatal conductance for maximum turgor-driven growth over diel and seasonal cycles. AOB PLANTS 2023; 15:plad044. [PMID: 37899972 PMCID: PMC10601388 DOI: 10.1093/aobpla/plad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 10/31/2023]
Abstract
Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants' lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective 'fitness factors' or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical 'memory' of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| |
Collapse
|
5
|
Kupper P, Tullus A, Rohula-Okunev G. Night-time water relations and gas exchange in cut shoots of five boreal dwarf shrub species: impact of soil water availability. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1193-1203. [PMID: 37829697 PMCID: PMC10564692 DOI: 10.1007/s12298-023-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
Recent findings suggest that drought may affect plants' daytime and night-time stomatal regulation differently. However, knowledge of night-time stomatal behaviour in dwarf shrubs growing in boreal ecosystems is lacking. We sampled cut shoots from dwarf shrub species to elucidate their capacity to transpire at night and the effect of drought on stomatal regulation. The shoots' water relations and gas exchange were measured under controlled conditions in a growth chamber. The studied species demonstrated considerable differences in their diurnal water use. The night-time water use percentage of daytime water use (NWU) reached up to 90% in Andromeda polifolia and Vaccinium uliginosum. In Rhododendron tomentosum, Vaccinium myrtillus and Chamaedaphne calyculata, the NWU was 62, 27 and 26%, respectively. The shoots of C. calyculata showed a significant increase (P < 0.001) in the transpiration rate (E) during the night. However, in R. tomentosum, a decrease (P < 0.05) in nightly E was observed. The shoot conductance (g) at the end of the night was lower than daytime g in all studied species, but the difference was not significant for V. uliginosum. Across the species, NWU was negatively related (P < 0.001) to the soil volumetric water content (SWC) in the plant habitat. However, daytime E and g were positively related (P < 0.05) to the habitat SWC. Only in V. myrtillus was night-time E higher (P < 0.05) in dry conditions than in wet conditions. Our results demonstrate high variability in diurnal water relations in dwarf shrubs, which can keep stomata open in the dark even when drought limits daytime g and E.
Collapse
Affiliation(s)
- Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Gristin Rohula-Okunev
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
6
|
Blonder BW, Aparecido LMT, Hultine KR, Lombardozzi D, Michaletz ST, Posch BC, Slot M, Winter K. Plant water use theory should incorporate hypotheses about extreme environments, population ecology, and community ecology. THE NEW PHYTOLOGIST 2023; 238:2271-2283. [PMID: 36751903 DOI: 10.1111/nph.18800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/30/2023] [Indexed: 05/19/2023]
Abstract
Plant water use theory has largely been developed within a plant-performance paradigm that conceptualizes water use in terms of value for carbon gain and that sits within a neoclassical economic framework. This theory works very well in many contexts but does not consider other values of water to plants that could impact their fitness. Here, we survey a range of alternative hypotheses for drivers of water use and stomatal regulation. These hypotheses are organized around relevance to extreme environments, population ecology, and community ecology. Most of these hypotheses are not yet empirically tested and some are controversial (e.g. requiring more agency and behavior than is commonly believed possible for plants). Some hypotheses, especially those focused around using water to avoid thermal stress, using water to promote reproduction instead of growth, and using water to hoard it, may be useful to incorporate into theory or to implement in Earth System Models.
Collapse
Affiliation(s)
- Benjamin Wong Blonder
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Luiza Maria Teophilo Aparecido
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Danica Lombardozzi
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Bradley C Posch
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Balboa, Ancón, 0843-03092, Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, 0843-03092, Panama
| |
Collapse
|
7
|
Wu S, Gu X, Zheng Y, Chen L. Nocturnal sap flow as compensation for water deficits: an implicit water-saving strategy used by mangroves in stressful environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1118970. [PMID: 37223786 PMCID: PMC10200988 DOI: 10.3389/fpls.2023.1118970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
As part of the plant water-use process, plant nocturnal sap flow (Q n) has been demonstrated to have important ecophysiological significance to compensate for water loss. The purpose of this study was to explore nocturnal water-use strategies to fill the knowledge gap in mangroves, by measuring three species co-occurring in a subtropical estuary. Sap flow was monitored over an entire year using thermal diffusive probes. Stem diameter and leaf-level gas exchange were measured in summer. The data were used to explore the different nocturnal water balance maintaining mechanisms among species. The Q n existed persistently and contributed markedly over 5.5%~24.0% of the daily sap flow (Q) across species, which was associated with two processes, nocturnal transpiration (E n) and nocturnal stem water refilling (R n). We found that the stem recharge of the Kandelia obovata and Aegiceras corniculatum occurred mainly after sunset and that the high salinity environment drove higher Q n while stem recharge of the Avicennia marina mainly occurred in the daytime and the high salinity environment inhibited the Q n. The diversity of stem recharge patterns and response to sap flow to high salinity conditions were the main reasons for the differences in Q n/Q among species. For Kandelia obovata and Aegiceras corniculatum, R n was the main contributor to Q n, which was driven by the demands of stem water refilling after diurnal water depletion and high salt environment. Both of the species have a strict control over the stomata to reduce water loss at night. In contrast, Avicennia marina maintained a low Q n, driven by vapor pressure deficit, and the Q n mainly used for E n, which adapts to high salinity conditions by limiting water dissipation at night. We conclude that the diverse ways Q n properties act as water-compensating strategies among the co-occurring mangrove species might help the trees to overcoming water scarcity.
Collapse
|
8
|
Lu Y, Fricke W. Salt Stress-Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 2023; 24:ijms24098070. [PMID: 37175779 PMCID: PMC10179082 DOI: 10.3390/ijms24098070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants-tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| |
Collapse
|
9
|
Bright RM, Miralles DG, Poyatos R, Eisner S. Simple Models Outperform More Complex Big-Leaf Models of Daily Transpiration in Forested Biomes. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL100100. [PMID: 36583013 PMCID: PMC9786846 DOI: 10.1029/2022gl100100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Transpiration makes up the bulk of total evaporation in forested environments yet remains challenging to predict at landscape-to-global scales. We harnessed independent estimates of daily transpiration derived from co-located sap flow and eddy-covariance measurement systems and applied the triple collocation technique to evaluate predictions from big leaf models requiring no calibration. In total, four models in 608 unique configurations were evaluated at 21 forested sites spanning a wide diversity of biophysical attributes and environmental backgrounds. We found that simpler models that neither explicitly represented aerodynamic forcing nor canopy conductance achieved higher accuracy and signal-to-noise levels when optimally configured (rRMSE = 20%; R 2 = 0.89). Irrespective of model type, optimal configurations were those making use of key plant functional type dependent parameters, daily LAI, and constraints based on atmospheric moisture demand over soil moisture supply. Our findings have implications for more informed water resource management based on hydrological modeling and remote sensing.
Collapse
Affiliation(s)
- Ryan M. Bright
- Department of Forests and ClimateDivision of Forestry and Forest ResourcesNorwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
| | - Diego G. Miralles
- Hydro‐Climate Extremes Lab (H‐CEL)Department of the EnvironmentGhent UniversityGhentBelgium
| | - Rafael Poyatos
- CREAFCerdanyola del VallèsSpain
- Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Stephanie Eisner
- Department of Forests and ClimateDivision of Forestry and Forest ResourcesNorwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
| |
Collapse
|
10
|
Multiple-Temporal Scale Variations in Nighttime Sap Flow Response to Environmental Factors in Ficus concinna over a Subtropical Megacity, Southern China. FORESTS 2022. [DOI: 10.3390/f13071059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With ongoing climate change and rapid urbanization, the influence of extreme weather conditions on long-term nocturnal sap flow (Qn) dynamics in subtropical urban tree species is poorly understood despite the importance of Qn for the water budgets and development plantation. We continuously measured nighttime sap flow in Ficus concinna over multiple years (2014–2020) in a subtropical megacity, Shenzhen, to explore the environmental controls on Qn and dynamics in plant water consumption at different timescales. Nocturnally, Qn was shown to be positively driven by the air temperature (Ta), vapor pressure deficit (VPD), and canopy conductance (expressed as a ratio of transpiration to VPD), yet negatively regulated by relative humidity (RH). Seasonally, variations in Qn were determined by VPD in fast growth, Ta, T/VPD, and meteoric water input to soils in middle growth, and RH in the terminal growth stages of the trees. Annual mean Qn varied from 2.87 to 6.30 kg d−1 with an interannual mean of 4.39 ± 1.43 kg d−1 (± standard deviation). Interannually, the key regulatory parameters of Qn were found to be Ta, T/VPD, and precipitation (P)-induced-soil moisture content (SMC), which individually explained 69, 63, 83, and 76% of the variation, respectively. The proportion of the nocturnal to the total 24-h sap flow (i.e., Qn/Q24-h × 100) ranged from 0.18 to 17.39%, with an interannual mean of 8.87%. It is suggested that high temperatures could increase transpirational demand and, hence, water losses during the night. Our findings can potentially assist in sustainable water management in subtropical areas and urban planning under increasing urban heat islands expected with future climate change.
Collapse
|
11
|
Su Y, Wang X, Sun Y, Wu H. Sap Flow Velocity in Fraxinus pennsylvanica in Response to Water Stress and Microclimatic Variables. FRONTIERS IN PLANT SCIENCE 2022; 13:884526. [PMID: 35620691 PMCID: PMC9127660 DOI: 10.3389/fpls.2022.884526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
In arid and semiarid regions with water shortage, forestry development is limited by water availability. Understanding how tree sap flow responds to water stress and microclimatic variables is essential for the management of trees and the understanding of the eco-physiological properties of trees in arid areas. In the city of Tianjin in northern China, we measured the sap flow of Fraxinus pennsylvanica, a widely distributed urban greening tree species in semiarid regions of China. We measured the sap flow in four F. pennsylvanica trees over 6 months (April-September 2021), using a thermal diffusion probe method, and simultaneously monitored microclimatic variables and soil moisture. Results indicated that high nighttime sap flow velocity might be produced under the water stress condition. In addition, the nighttime sap flow velocity under the water stress condition was more susceptible to the combined effects of meteorological factors at night. The daytime sap flow velocity exerted a highly significant positive effect on the nighttime sap flow velocity during the whole research period, and the model fit was higher in the early growing season than that in the late growing season (early growing season: R 2 = 0.51, P < 0.01; late growing season: R 2 = 0.36, P < 0.01). Vapor pressure deficit had a positive effect on daytime sap flow. However, net vapor pressure deficit restrained daytime sap flow velocity when the intercorrelation between the microclimatic variables was removed. Our study highlights that drought areas perhaps have higher nighttime sap flow and that more emphasis should be placed on nighttime sap flow and the response of nighttime sap flow to microclimatic variables. In addition, the influence of other microclimatic variables on vapor pressure deficit needs to be considered when analyzing the relationship between daytime sap flow and vapor pressure deficit. An increase in net VPD can suppress the daytime sap flow.
Collapse
|
12
|
Chowdhury FI, Arteaga C, Alam MS, Alam I, Resco de Dios V. Drivers of nocturnal stomatal conductance in C 3 and C 4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151952. [PMID: 34843766 DOI: 10.1016/j.scitotenv.2021.151952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Nocturnal water losses were for long considered negligible, but it is now known that incomplete stomatal closure during the night leads to significant water losses at leaf, plant and ecosystem scales. However, only daytime transpiration is currently accounted for in evapotranspiration studies. Important uncertainties on the drivers of nocturnal water fluxes hinder its incorporation within modelling frameworks because some studies indicate that night-time stomatal drivers may differ from day-time responses. Here, we synthesise the studies on nocturnal stomatal conductance (gn) to determine underlying drivers through a systematic literature review and, whenever possible, meta-analytical techniques. Similar to daytime responses, we found negative effects of vapour pressure deficit, predawn water potential, air temperature, and salinity on gn across the plant species. However, the most apparent trend was an increase of gn from the beginning until the end of the night, indicating significant and widespread endogenous regulation by the circadian clock. We further observed how neither elevated CO2 nor nutrient status affected gn significantly across species. We also did not find any significant associations between gn and elevated ozone or increasing plant age. There was a paucity of studies on climatic extremes such heat waves and also few studies connected gn with anatomical features such as leaf specific area or stomatal density. Further studies are also needed to address the effects of plant sex, abscisic acid concentrations and genotypic variations on gn. Our findings solve the long-term conundrum on whether stomatal responses to daytime drivers are the same as those that during the nighttime.
Collapse
Affiliation(s)
- Faqrul Islam Chowdhury
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram 4331, Bangladesh; Erasmus Mundus Master Course in Mediterranean Forestry and Natural Resources Management, University of Lleida, Lleida, Spain.
| | - Carles Arteaga
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Mohammed Shafiul Alam
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Iftakharul Alam
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain; School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China; Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida, Spain
| |
Collapse
|
13
|
Suárez JC, Casanoves F, Bieng MAN, Melgarejo LM, Di Rienzo JA, Armas C. Prediction model for sap flow in cacao trees under different radiation intensities in the western Colombian Amazon. Sci Rep 2021; 11:10512. [PMID: 34006966 PMCID: PMC8131689 DOI: 10.1038/s41598-021-89876-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we measured diurnal patterns of sap flow (Vs) in cacao trees growing in three types of agroforestry systems (AFs) that differ in the incident solar radiation they receive. We modeled the relationship of Vs with several microclimatic characteristics of the AFs using mixed linear models. We characterized microclimatic variables that may have an effect on diurnal patterns of sap flow: air relative humidity, air temperature, photosynthetically active radiation and vapor pressure deficit. Overall, our model predicted the differences between cacao Vs in the three different AFs, with cacao plants with dense Musaceae plantation and high mean diurnal incident radiation (HPAR) displaying the highest differences compared to the other agroforestry arrangements. The model was also able to predict situations such as nocturnal transpiration in HPAR and inverse nocturnal sap flows indicative of hydraulic redistribution in the other AFs receiving less incident radiation. Overall, the model we present here can be a useful and cost-effective tool for predicting transpiration and water use in cacao trees, as well as for managing cacao agroforestry systems in the Amazon rainforest.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia-Caquetá, Colombia. .,Facultad de Ciencias Agropecuarias, Maestría Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia-Caquetá, Colombia. .,Centro de Investigaciónes Amazónicas CIMAZ Macagual, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia, Caqueta ́, Colombia.
| | - Fernando Casanoves
- CATIE - Centro Agronómico Tropical de Investigación y Enseñanza , Turrialba, 30501, Costa Rica
| | - Marie Ange Ngo Bieng
- CATIE - Centro Agronómico Tropical de Investigación y Enseñanza , Turrialba, 30501, Costa Rica.,CIRAD, UR Forêts et Sociétés, 34398, Montpellier Cedex 5, France
| | - Luz Marina Melgarejo
- Departamento de Biología, Laboratorio de Fisiología y Bioquímica Vegetal, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Julio A Di Rienzo
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristina Armas
- Estación Experimental de Zonas Áridas, Spanish National Research Council (CSIC), Carretera de Sacramento s/n, E-04120 La Cañada de San Urbano, Almería, Spain
| |
Collapse
|
14
|
Wang Y, Anderegg WRL, Venturas MD, Trugman AT, Yu K, Frankenberg C. Optimization theory explains nighttime stomatal responses. THE NEW PHYTOLOGIST 2021; 230:1550-1561. [PMID: 33576001 DOI: 10.1111/nph.17267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Nocturnal transpiration is widely observed across species and biomes, and may significantly impact global water, carbon, and energy budgets. However, it remains elusive why plants lose water at night and how to model it at large scales. We hypothesized that plants optimize nighttime leaf diffusive conductance (gwn ) to balance potential daytime photosynthetic benefits and nocturnal transpiration benefits. We quantified nighttime benefits from respiratory reductions due to evaporative leaf cooling. We described nighttime costs in terms of a reduced carbon gain during the day because of water use at night. We measured nighttime stomatal responses and tested our model with water birch (Betula occidentalis) saplings grown in a glasshouse. The gwn of water birch decreased with drier soil, higher atmospheric CO2 , wetter air, lower leaf temperature, and lower leaf respiration rate. Our model predicted all these responses correctly, except for the response of gwn to air humidity. Our results also suggested that the slow decrease in gwn after sunset could be associated with decreasing leaf respiration. The optimality-based nocturnal transpiration model smoothly integrates with daytime stomatal optimization approaches, and thus has the potential to quantitatively predict nocturnal transpiration across space and time.
Collapse
Affiliation(s)
- Yujie Wang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Martin D Venturas
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Anna T Trugman
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kailiang Yu
- Le Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCECEA/CNRS/UVSQ Saclay, Gif-sur-Yvette, 91191, France
| | - Christian Frankenberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| |
Collapse
|
15
|
Kangur O, Steppe K, Schreel JDM, von der Crone JS, Sellin A. Variation in nocturnal stomatal conductance and development of predawn disequilibrium between soil and leaf water potentials in nine temperate deciduous tree species. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:483-492. [PMID: 33453751 DOI: 10.1071/fp20091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
It is widely acknowledged that many plant species can keep stomata open during night. We examined how nocturnal stomatal conductance differs among potted saplings of nine temperate tree species from diverse native habitats in wet and dry soil conditions, and how it affects plant predawn water status. Nocturnal stomatal conductance in dry soil conditions was low in all the species (with a maximum value of 14.6 mmol m-2 s-1); in wet conditions, it was the highest in Populus tremula L., a fast-growing and anisohydric pioneer species, and the lowest in Quercus robur L., a late-successional and isohydric species. Relatively high nocturnal stomatal conductance in wet conditions in P. tremula compared with the other species resulted in the highest difference in water potential values between the leaves and soil at predawn. As drought progressed, different species tended to keep stomata almost closed at night, and the observed differences between anisohydric and isohydric species disappeared. At an ample soil water supply, nocturnal stomatal behaviour was species dependent and varied according to both the water-use and the life strategies of the species. Keeping that in mind, one should therefore be careful when using predawn leaf water potential as a proxy for soil water potential, sampling different species.
Collapse
Affiliation(s)
- Ott Kangur
- Laboratory of Ecophysiology, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia; and Corresponding author.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Jonas S von der Crone
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Arne Sellin
- Laboratory of Ecophysiology, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| |
Collapse
|
16
|
Kupper P, Kaasik A, Kukumägi M, Rohula-Okunev G, Rusalepp L, Sõber A. Predawn leaf conductance depends on previous day irradiance but is not related to growth in aspen saplings grown under artificially manipulated air humidity. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:422-433. [PMID: 33287949 DOI: 10.1071/fp20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Recent studies have suggested that predawn stomatal opening may enhance early-morning photosynthesis (A) and improve the relative growth rate of trees. However, the causality between night-time stomatal conductance, A, and tree growth is disputable because stomatal opening in darkness can be mediated by previous day photosynthate loads and might be a consequence of growth-related processes like dark respiration (R). To identify linkages between night-time leaf conductance (gl_night), A, R, and tree growth, we conducted an experiment in hybrid aspen saplings grown under different air relative humidity (RH) conditions and previous day irradiance level (IR_pday). Predawn leaf conductance (gl_predawn) depended on RH, IR_pday and R (P < 0.05), whereas early-morning gross A (Agross_PAR500) depended on IR_pday and gl_predawn (P < 0.001). Daytime net A was positively related to Agross_PAR500 and leaf [N] (P < 0.05). Tree diameter and height increment correlated positively with gl at the beginning and middle of the night (P < 0.05) but not before dawn. Although our results demonstrate that gl_night was related to tree growth, the relationship was not determined by R. The linkage between gl_predawn and Agross_PAR500 was modified by IR_pday, indicating that daily CO2 assimilation probably provides feedback for stomatal opening before dawn.
Collapse
Affiliation(s)
- Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; and Corresponding author.
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - Mai Kukumägi
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | | | - Linda Rusalepp
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - Anu Sõber
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| |
Collapse
|
17
|
Chieppa J, Brown T, Giresi P, Juenger TE, Resco de Dios V, Tissue DT, Aspinwall MJ. Climate and stomatal traits drive covariation in nighttime stomatal conductance and daytime gas exchange rates in a widespread C 4 grass. THE NEW PHYTOLOGIST 2021; 229:2020-2034. [PMID: 33037633 DOI: 10.1111/nph.16987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Nighttime stomatal conductance (gsn ) varies among plant functional types and species, but factors shaping the evolution of gsn remain unclear. Examinations of intraspecific variation in gsn as a function of climate and co-varying leaf traits may provide new insight into the evolution of gsn and its adaptive significance. We grew 11 genotypes of Panicum virgatum (switchgrass) representing differing home-climates in a common garden experiment and measured nighttime and daytime leaf gas exchange, as well as stomatal density (SD) and size during early-, mid-, and late-summer. We used piecewise structural equation modelling to determine direct and indirect relationships between home-climate, gas exchange, and stomatal traits. We found no direct relationship between home-climate and gsn . However, genotypes from hotter climates possessed higher SD, which resulted in higher gsn . Across genotypes, higher gsn was associated with higher daytime stomatal conductance and net photosynthesis. Our results indicate that higher gsn may arise in genotypes from hotter climates via increased SD. High SD may provide benefits to genotypes from hotter climates through enhanced daytime transpirational cooling or by permitting maximal gas exchange when conditions are suitable. These results highlight the role of climate and trait coordination in shaping genetic differentiation in gsn .
Collapse
Affiliation(s)
- Jeff Chieppa
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tia Brown
- Department of Biology, Haverford College, Haverford, PA, 19041, USA
| | - Presley Giresi
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78717, USA
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Michael J Aspinwall
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
18
|
Xiong D, Nadal M. Linking water relations and hydraulics with photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:800-815. [PMID: 31677190 DOI: 10.1111/tpj.14595] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 05/28/2023]
Abstract
For land plants, water is the principal governor of growth. Photosynthetic performance is highly dependent on the stable and suitable water status of leaves, which is balanced by the water transport capacity, the water loss rate as well as the water capacitance of the plant. This review discusses the links between leaf water status and photosynthesis, specifically focussing on the coordination of CO2 and water transport within leaves, and the potential role of leaf capacitance and elasticity on CO2 and water transport.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Institute of Agro-Environmental Research and Water Economy (INAGEA), Carretera de Valldemossa, 07122, Palma, Spain
| |
Collapse
|
19
|
Hoshika Y, De Carlo A, Baraldi R, Neri L, Carrari E, Agathokleous E, Zhang L, Fares S, Paoletti E. Ozone-induced impairment of night-time stomatal closure in O 3-sensitive poplar clone is affected by nitrogen but not by phosphorus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:713-722. [PMID: 31539979 DOI: 10.1016/j.scitotenv.2019.07.288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Nocturnal transpiration may be a key factor influencing water use in plants. Tropospheric ozone (O3) and availability of nutrients such as nitrogen (N) and phosphorus (P) in the soil can affect daytime water use through stomata, but the combined effects of O3, N and P on night-time stomatal conductance (gs) are not known. We investigated the effects of O3 and soil availability of N and P on nocturnal gs and the dynamics of stomatal response after leaf severing in an O3-sensitive poplar clone (Oxford) subjected to combined treatments over a growing season in an O3 free air controlled exposure (FACE) facility. The treatments were two soil N levels (0 and 80 kg N ha-1; N0 and N80), three soil P levels (0, 40 and 80 kg P ha-1; P0, P40 and P80) and three O3 levels (ambient concentration, AA [35.0 ppb as hourly mean]; 1.5 × AA; 2.0 × AA). The analysis of stomatal dynamics after leaf severing suggested that O3 impaired stomatal closure execution. As a result, nocturnal gs was increased by 2.0 × AA O3 in August (+39%) and September (+108%). Night-time gs was correlated with POD0 (phytotoxic O3 dose) and increased exponentially after 40 mmol m-2 POD0. Such increase of nocturnal gs was attributed to the emission of ethylene due to 2.0 × AA O3 exposure, while foliar abscisic acid (ABA) or indole-3-acetic acid (IAA) did not affect gs at night. Interestingly, the O3-induced stomatal opening at night was limited by N treatments in August, but not limited in September. Phosphorus decreased nocturnal gs, although P did not modify the O3-induced stomatal dysfunction. The results suggest that the increased nocturnal gs may be associated with a need to improve N acquisition to cope with O3 stress.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy.
| | - Anna De Carlo
- Istituto di Bioeconomia (IBE), National Research Council (CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Rita Baraldi
- Istituto di Bioeconomia (IBE), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Luisa Neri
- Istituto di Bioeconomia (IBE), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Elisa Carrari
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030 Harbin, China
| | - Silvano Fares
- Research Centre for Forestry and Wood, Council for Agricultural Research and Economics, Roma, Italy
| | - Elena Paoletti
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
O'Keefe K, Nippert JB, McCulloh KA. Plant water uptake along a diversity gradient provides evidence for complementarity in hydrological niches. OIKOS 2019. [DOI: 10.1111/oik.06529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Vialet-Chabrand S, Lawson T. Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2839-2855. [PMID: 30793211 PMCID: PMC6506762 DOI: 10.1093/jxb/erz068] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
In spite of the significant progress made in recent years, the use of thermography to derive biologically relevant traits remains a challenge under fluctuating conditions. The aim of this study was to rethink the current method to process thermograms and derive temporal responses of stomatal conductance (gsw) using dynamic energy balance equations. Time-series thermograms provided the basis for a spatial and temporal characterization of gsw responses in wheat (Triticum aestivum). A leaf replica with a known conductance was used to validate the approach and to test the ability of our model to be used with any material and under any environmental conditions. The results highlighted the importance of the co-ordinated stomatal responses that run parallel to the leaf blade despite their patchy distribution. The diversity and asymmetry of the temporal response of gsw observed after a step increase and step decrease in light intensity can be interpreted as a strategy to maximize photosynthesis per unit of water loss and avoid heat stress in response to light flecks in a natural environment. This study removes a major bottleneck for plant phenotyping platforms and will pave the way to further developments in our understanding of stomatal behaviour.
Collapse
Affiliation(s)
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
22
|
Zeppel MJB, Anderegg WRL, Adams HD, Hudson P, Cook A, Rumman R, Eamus D, Tissue DT, Pacala SW. Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin. Ecol Evol 2019; 9:5348-5361. [PMID: 31110684 PMCID: PMC6509402 DOI: 10.1002/ece3.5126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Drought-induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross-biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi-arid environments, to drought under ambient and elevated CO2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid-zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome-specific responses that partially depended on species climate-of-origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change.
Collapse
Affiliation(s)
- Melanie J. B. Zeppel
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | | | - Henry D. Adams
- Department of Plant Biology, Ecology, and EvolutionOklahoma State UniversityStillwaterOklahoma
| | - Patrick Hudson
- Department of BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Alicia Cook
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Rizwana Rumman
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Derek Eamus
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - David T. Tissue
- Hawkesbury Institute of the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Stephen W. Pacala
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew Jersey
| |
Collapse
|
23
|
Berry ZC, Emery NC, Gotsch SG, Goldsmith GR. Foliar water uptake: Processes, pathways, and integration into plant water budgets. PLANT, CELL & ENVIRONMENT 2019; 42:410-423. [PMID: 30194766 DOI: 10.1111/pce.13439] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 05/04/2023]
Abstract
Nearly all plant families, represented across most major biomes, absorb water directly through their leaves. This phenomenon is commonly referred to as foliar water uptake. Recent studies have suggested that foliar water uptake provides a significant water subsidy that can influence both plant water and carbon balance across multiple spatial and temporal scales. Despite this, our mechanistic understanding of when, where, how, and to what end water is absorbed through leaf surfaces remains limited. We first review the evidence for the biophysical conditions necessary for foliar water uptake to occur, focusing on the plant and atmospheric water potentials necessary to create a gradient for water flow. We then consider the different pathways for uptake, as well as the potential fates of the water once inside the leaf. Given that one fate of water from foliar uptake is to increase leaf water potentials and contribute to the demands of transpiration, we also provide a quantitative synthesis of observed rates of change in leaf water potential and total fluxes of water into the leaf. Finally, we identify critical research themes that should be addressed to effectively incorporate foliar water uptake into traditional frameworks of plant water movement.
Collapse
Affiliation(s)
- Z Carter Berry
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Nathan C Emery
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Sybil G Gotsch
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
24
|
Hölttä T, Dominguez Carrasco MDR, Salmon Y, Aalto J, Vanhatalo A, Bäck J, Lintunen A. Water relations in silver birch during springtime: How is sap pressurised? PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:834-847. [PMID: 29732663 DOI: 10.1111/plb.12838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known. We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non-structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period. The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations. Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed.
Collapse
Affiliation(s)
- T Hölttä
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
- Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - M D R Dominguez Carrasco
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
- Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Y Salmon
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
- Department of Physics, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - J Aalto
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
- Hyytiälä Forestry Station, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - A Vanhatalo
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
- Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - J Bäck
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
- Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - A Lintunen
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
- Department of Physics, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Brito C, Dinis LT, Ferreira H, Moutinho-Pereira J, Correia C. The role of nighttime water balance on Olea europaea plants subjected to contrasting water regimes. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:56-63. [PMID: 29702427 DOI: 10.1016/j.jplph.2018.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 04/08/2018] [Indexed: 05/16/2023]
Abstract
The climate change scenarios besides foreseeing a severe drought imposition also emphasize the temperature rising in the Mediterranean region, with special prominence at nighttime. Despite the high olive tree tolerance to severe environmental conditions, stomatal nighttime water loss can change plant water relations, and the related consequences and opportunities, especially under water scarcity, must be clarified. A set of 3-year-old potted olive trees were subjected to three cycles of drought, imposed by withholding irrigation, while another group were continuously irrigated. At the end of the latter and more severe drought cycle, daytime gas exchange parameters, water status and membrane integrity was negatively affected by drought imposition. Moreover, the nighttime transpiration rate was far above cuticular water loss, suggesting sustained stomatal aperture during nighttime, leading to substantial water losses, which was higher under drought in the first hours of darkness. The higher nighttime stomatal conductance of droughted plants were related with higher starch concentration in their leaves, a thicker trichome layer and a lower intercellular CO2 concentration, in a closely association with an inferior nighttime respiration. Still, whole-plant transpiration on droughted plants were much lower than leaf transpiration-based estimates, which is interpreted as compensation by water inputs due to dew deposition on leaves. Although unexpected, the increased of stomatal conductance in the first hours of the night, until a certain level of water deficit intensity, could be linked with potential benefits to the plants.
Collapse
Affiliation(s)
- Cátia Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - Lia-Tânia Dinis
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - Helena Ferreira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - José Moutinho-Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - Carlos Correia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal.
| |
Collapse
|
26
|
Effects of a Heat Wave on Nocturnal Stomatal Conductance in Eucalyptus camaldulensis. FORESTS 2018. [DOI: 10.3390/f9060319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Affiliation(s)
- Kimberly O'Keefe
- Division of Biology Kansas State University Manhattan KS USA
- Kimberly O’Keefe, Department of Botany University of Wisconsin Madison WI USA
| | | |
Collapse
|
28
|
Yu T, Feng Q, Si J, Mitchell PJ, Forster MA, Zhang X, Zhao C. Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphratica Oliv. in situ measurement. Ecol Evol 2018; 8:2607-2616. [PMID: 29531680 PMCID: PMC5838069 DOI: 10.1002/ece3.3875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 11/15/2022] Open
Abstract
During the night, plant water loss can occur either through the roots, as hydraulic redistribution (HR), or through the leaves via the stoma, as nocturnal transpiration (En), which was methodologically difficult to separate from stem refilling (Re). While HR and En have been reported across a range of species, ecosystem, and climate zone, there is little understanding on the interactions between En and/or Re and HR. As water movement at night occurs via gradients of water potential, it is expected that during periods of high atmospheric vapor pressure deficit (VPD), water loss via En will override water loss via HR. To test this hypothesis, sap flow in stems and roots of Populus euphratica Oliv. trees, growing in a riparian zone in a hyperarid climate, was measured once in a year. Nocturnal stem sap flow was separated into En and Re using the "forecasted refilling" method. Substantial nocturnal sap flow (38% of 24-hr flux on average) was observed and positively correlated with VPD; however, the strength of the correlation was lower (R2 = .55) than diurnal sap flow (Ed) (R2 = .72), suggesting that nocturnal stem sap flow was attributed to both water loss through the canopy and replenishment of water in stem tissues. Partitioning of nocturnal sap flow shows that Re constituted approximately 80%, and En ~20%, of nocturnal sap flow. The amount of root sap flow attributed to redistribution was negatively related to Ed (R2 = .69) and the amount of acropetally sap flow in stems, Re (R2 = .41) and En (R2 = .14). It was suggested that the magnitude of HR is more strongly depressed by Re that was recharge to the water loss via Ed than by En. It was consistent with whole-tree water balance theory, that the nighttime upward sap flow to xylem, stem refilling and transpiration, may depress hydraulic redistribution of roots.
Collapse
Affiliation(s)
- Tengfei Yu
- Alxa Desert Ecohydrology Experimental Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
- Key Laboratory of Ecohydrology of Inland River BasinChinese Academy of SciencesLanzhouChina
| | - Qi Feng
- Alxa Desert Ecohydrology Experimental Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
- Key Laboratory of Ecohydrology of Inland River BasinChinese Academy of SciencesLanzhouChina
| | - Jianhua Si
- Alxa Desert Ecohydrology Experimental Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
- Key Laboratory of Ecohydrology of Inland River BasinChinese Academy of SciencesLanzhouChina
| | | | - Michael A. Forster
- Edaphic Scientific Pty LtdPort MacquarieNSWAustralia
- School of Agriculture and Food ScienceThe University of QueenslandBrisbaneAustralia
| | - Xiaoyou Zhang
- Alxa Desert Ecohydrology Experimental Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
- Key Laboratory of Ecohydrology of Inland River BasinChinese Academy of SciencesLanzhouChina
| | - Chunyan Zhao
- Alxa Desert Ecohydrology Experimental Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| |
Collapse
|
29
|
Orieux C, Demarest G, Decau ML, Beauclair P, Bataillé MP, Le Deunff E. Changes in 15NO 3 - Availability and Transpiration Rate Are Associated With a Rapid Diurnal Adjustment of Anion Contents as Well as 15N and Water Fluxes Between the Roots and Shoots. FRONTIERS IN PLANT SCIENCE 2018; 9:1751. [PMID: 30559754 PMCID: PMC6287045 DOI: 10.3389/fpls.2018.01751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/12/2018] [Indexed: 05/13/2023]
Abstract
Background and Aims: Understanding interactions between water and nitrate fluxes in response to nitrate availability and transpiration rate is crucial to select more efficient plants for the use of water and nitrate. Methods: Some of these interactions were investigated in intact Brassica napus plants by combining a non-destructive gravimetric device with 15NO3 - labeling. The set-up allowed high-resolution measurement of the effects of a cross-combination of two concentrations of KNO3 or KCl (0.5 and 5 mM) with two different rates of transpiration controlled by the relative humidity during a day-night cycle. Key Results: Results show that (1) high external nitrate concentrations increased root water uptake significantly whatever the transpiration rate, (2) nitrate translocation depended both on the rate of nitrate uptake and loading into xylem (3) dilution-concentration effect of nitrate in the xylem was mainly modulated by both external nitrate availability and transpiration rate, (4) dynamic changes in 15N translocation in the xylem modified shoot growth and capacitance, and (5) variations in tissue concentrations of NO3 - induced by the experimental conditions were balanced by changes in concentrations of chloride and sulfate ions. These effects were even more amplified under low transpiration condition and 0.5 mM external nitrate concentration. Conclusion: Taken together, these results highlight the fine and rapid adjustment of anion contents, nitrate and water flows to changes in transpiration rate and nitrate availability during a day-night cycle. The use of this non-invasive gravimetric device is therefore a powerful tool to assess candidates genes involved in nitrogen and water use efficiency.
Collapse
Affiliation(s)
- Charline Orieux
- Ecophysiologie Végétale Agronomie et Nutritions N.C.S., UNICAEN, INRA, EVA, Normandie Université, Caen, France
| | - Gilles Demarest
- Ecophysiologie Végétale Agronomie et Nutritions N.C.S., UNICAEN, INRA, EVA, Normandie Université, Caen, France
| | - Marie-Laure Decau
- INRA FERLUS-SOERE, INRA – Auvergne Rhône-Alpes Centre, Lusignan, France
| | - Patrick Beauclair
- Ecophysiologie Végétale Agronomie et Nutritions N.C.S., UNICAEN, INRA, EVA, Normandie Université, Caen, France
| | - Marie-Paule Bataillé
- Centre Michel de Boüard et LETG-Caen Geophen, UNICAEN, CNRS, CRAHAM, LETG, Normandie Université, Caen, France
| | - Erwan Le Deunff
- Structure Fédérative Interactions Cellules ORganismes Environnement, UNICAEN, ICORE, Normandie Université, Caen, France
- *Correspondence: Erwan Le Deunff,
| |
Collapse
|
30
|
Flesch AD, Rosen PC, Holm P. Long-term changes in abundances of Sonoran Desert lizards reveal complex responses to climatic variation. GLOBAL CHANGE BIOLOGY 2017; 23:5492-5508. [PMID: 28712135 DOI: 10.1111/gcb.13813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Understanding how climatic variation affects animal populations and communities is essential for addressing threats posed by climate change, especially in systems where impacts are projected to be high. We evaluated abundance dynamics of five common species of diurnal lizards over 25 years in a Sonoran Desert transition zone where precipitation decreased and temperature increased across time, and assessed hypotheses for the influence of climatic flux on spatiotemporal variation in abundances. We repeatedly surveyed lizards in spring and summer of each year at up to 32 sites, and used hierarchical mixture models to estimate detection probabilities, abundances, and population growth rates. Among terrestrial species, abundances of a short-lived, winter-spring breeder increased markedly by an estimated 237%-285% across time, while two larger spring-summer breeders with higher thermal preferences declined by up to 64%. Abundances of two arboreal species that occupy shaded and thus sheltered microhabitats fluctuated but did not decline systematically. Abundances of all species increased with precipitation at short lag times (1-1.5 years) likely due to enhanced food availability, but often declined after periods of high precipitation at longer lag times (2-4 years) likely due to predation and other biotic pressures. Although rising maximum daily temperatures (Tmax ) are expected to drive global declines of lizards, associations with Tmax were variable and weak for most species. Instead, abundances of all species declined with rising daily minimum temperatures, suggesting degradation of cool refugia imposed widespread metabolic or other costs. Our results suggest climate warming and drying are having major impacts on lizard communities by driving declines in species with traits that augment exposure to abiotic extremes and by modifying species interactions. The complexity of patterns we report indicates that evaluating and responding to the influence of climate change on biodiversity must consider a broad array of ecological processes.
Collapse
Affiliation(s)
- Aaron D Flesch
- The Desert Laboratory, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Philip C Rosen
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Peter Holm
- National Park Service, Organ Pipe Cactus National Monument, Ajo, AZ, USA
| |
Collapse
|
31
|
Eller F, Jensen K, Reisdorff C. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species. TREE PHYSIOLOGY 2017; 37:428-440. [PMID: 27974652 DOI: 10.1093/treephys/tpw113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Nighttime water flow varies between plant species and is a phenomenon for which the magnitude, purpose and consequences are widely discussed. A potential benefit of nighttime stomata opening may be increased nutrient availability during the night since transpiration affects the mass flow of soil water towards plant roots. We investigated how nitrogen (N) and phosphorus (P) fertilization, and short-term drought affected stomatal conductance of Fraxinus excelsior L. and Ulmus laevis Pallas during the day (gs) and night (gn), and how these factors affected growth for a period of 18 weeks. Both species were found to open their stomata during the night, and gn responded to nutrients and water in a different manner than gs. Under N-deficiency, F. excelsior had higher gn, especially when P was sufficient, and lower pre-dawn leaf water potential (Ψpd), supporting our assumption that nutrient limitation leads to increases in nighttime water uptake. Under P-deficiency, F. excelsior had higher relative root production and, thus, adjusted its biomass allocation under P shortage, while sufficient N but not P contributed to overall higher biomasses. In contrast, U. laevis had higher gn and lower root:shoot ratio under high nutrient (especially N) availability, whereas both sufficient N and P produced higher biomasses. Compared with well-watered trees, the drought treatment did not affect any growth parameter but it resulted in lower gn, minimum stomatal conductance and Ψpd of F. excelsior. For U. laevis, only gs during July was lower when drought-treated. In summary, the responses of gs and gn to nutrients and drought depended on the species and its nutrient uptake strategy, and also the timing of measurement during the growing season. Eutrophication of floodplain forests dominated by F. excelsior and U. laevis may, therefore, considerably change nighttime transpiration rates, leading to ecosystem-level changes in plant-water dynamics. Such changes may have more severe consequences in the future as a higher frequency of drought events is predicted under climate change.
Collapse
Affiliation(s)
- Franziska Eller
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
- Aarhus University, Department of Bioscience, Ole Worms Alle 1, 8000 Aarhus C, Denmark
| | - Kai Jensen
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Christoph Reisdorff
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| |
Collapse
|
32
|
The Relationship between Sap Flow Density and Environmental Factors in the Yangtze River Delta Region of China. FORESTS 2017. [DOI: 10.3390/f8030074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM, Pereira JS. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:54-64. [PMID: 27593463 DOI: 10.1016/j.plantsci.2016.06.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 05/24/2023]
Abstract
Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed.
Collapse
Affiliation(s)
- M M Chaves
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - J M Costa
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - O Zarrouk
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - C Pinheiro
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - C M Lopes
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - J S Pereira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
34
|
Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F, Doligez A, Simonneau T. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci U S A 2016; 113:8963-8. [PMID: 27457942 PMCID: PMC4987834 DOI: 10.1073/pnas.1600826113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.
Collapse
Affiliation(s)
- Aude Coupel-Ledru
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France;
| | - Eric Lebon
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Angélique Christophe
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Agustina Gallo
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Pilar Gago
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), 36143 Pontevedra, Spain
| | - Florent Pantin
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Agnès Doligez
- UMR Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), Institut National de la Recherche Agronomique (INRA), F-34060 Montpellier, France
| | - Thierry Simonneau
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France;
| |
Collapse
|
35
|
Cirelli D, Equiza MA, Lieffers VJ, Tyree MT. Populus species from diverse habitats maintain high night-time conductance under drought. TREE PHYSIOLOGY 2016; 36:229-242. [PMID: 26420792 DOI: 10.1093/treephys/tpv092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
We investigated the interspecific variability in nocturnal whole-plant stomatal conductance under well-watered and drought conditions in seedlings of four species of Populus from habitats characterized by abundant water supply (mesic and riparian) or from drier upland sites. The study was carried out to determine whether (i) nocturnal conductance varies across different species of Populus according to their natural habitat, (ii) nocturnal conductance is affected by water stress similarly to daytime conductance based on species habitat and (iii) differences in conductance among species could be explained partly by differences in stomatal traits. We measured whole-plant transpiration and conductance (G) of greenhouse-grown seedlings using an automated high-resolution gravimetric technique. No relationship was found between habitat preference and daytime G (GD), but night-time G (GN) was on average 1.5 times higher in riparian and mesic species (P. deltoides Bartr. ex Marsh. and P. trichocarpa Torr. & Gray) than in those from drier environments (P. tremuloides Michx. and P. × petrowskyana Schr.). GN was not significantly reduced under drought in riparian species. Upland species restricted GN significantly in response to drought, but it was still at least one order of magnitude greater that the cuticular conductance until leaf death was imminent. Under both well-watered and drought conditions, GN declined with increasing vapour pressure deficit (D). Also, a small increase in GN towards the end of the night period was observed in P. deltoides and P. × petrowskyana, suggesting the involvement of endogenous regulation. The anatomical analyses indicated a positive correlation between G and variable stomatal pore index among species and revealed that stomata are not likely to be leaky but instead seem capable of complete occlusion, which raises the question of the possible physiological role of the significant GN observed under drought. Further comparisons among closely related species that occupy ecologically diverse habitats may provide a better understanding of the genetic versus environmental regulations of nocturnal water loss.
Collapse
Affiliation(s)
- Damián Cirelli
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Mapping Atmospheric Moisture Climatologies across the Conterminous United States. PLoS One 2015; 10:e0141140. [PMID: 26485026 PMCID: PMC4618743 DOI: 10.1371/journal.pone.0141140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/04/2015] [Indexed: 12/05/2022] Open
Abstract
Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981–2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4-km resolution data, images, metadata, pedigree information, and station inventory files.
Collapse
|
37
|
McNellis B, Howard AR. Phylogenetic and ecological patterns in nighttime transpiration among five members of the genus Rubus co-occurring in western Oregon. Ecol Evol 2015; 5:3557-69. [PMID: 26380686 PMCID: PMC4567861 DOI: 10.1002/ece3.1608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/19/2015] [Accepted: 05/27/2015] [Indexed: 11/22/2022] Open
Abstract
Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use.
Collapse
Affiliation(s)
- Brandon McNellis
- Department of Biology, Western Oregon UniversityMonmouth, Oregon, 97361
- Department of Biology, University of California-RiversideRiverside, California, 92507
| | - Ava R Howard
- Department of Biology, Western Oregon UniversityMonmouth, Oregon, 97361
| |
Collapse
|
38
|
Pfautsch S, Hölttä T, Mencuccini M. Hydraulic functioning of tree stems--fusing ray anatomy, radial transfer and capacitance. TREE PHYSIOLOGY 2015; 35:706-22. [PMID: 26163488 DOI: 10.1093/treephys/tpv058] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/20/2015] [Indexed: 05/11/2023]
Abstract
Not long ago, textbooks on plant physiology divulged the view that phloem and xylem are separate transport systems with exclusive functions. Phloem was flowing downwards providing roots with carbohydrates. Xylem transported water upwards from roots to leaves. This simplified view has changed forever. Today we have a much-refined understanding of the complex transport mechanisms, regulatory functions and surprisingly ingenuous solutions trees have evolved to distribute carbohydrates and water internally to fuel growth and help mediate biotic and abiotic stresses. This review focuses on functional links between tissues of the inner bark region (i.e., more than just phloem) and the xylem, facilitated by radially aligned and interconnected parenchyma cells, called rays. Rays are usually found along the entire vertical axis of tree stems, mediating a number of transport processes. We use a top-down approach to unveil the role of rays in these processes. Due to the central role of rays in facilitating the coupling of inner bark and xylem we dedicate the first section to ray anatomy, pathways and control mechanisms involved in radial transport. In the second section, basic concepts and models for radial movement through rays are introduced and their impacts on water and carbon fluxes at the whole-tree level are discussed. This section is followed by a closer look at the capacitive function of composite tissues in stems where gradual changes in water potential generate a diurnal 'pulse'. We explain how this pulse can be measured and interpreted, and where the limitations of such analyses are. Towards the end of this review, we include a brief description of the role of radial transport during limited availability of water. By elucidating the strong hydraulic link between inner bark and xylem, the traditional view of two separate transport systems dissolves and the idea of one interconnected, yet highly segregated transport network for carbohydrates and water arises.
Collapse
Affiliation(s)
- Sebastian Pfautsch
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, PO Box 27, FIN-00014, Finland
| | - Maurizio Mencuccini
- School of Geo-Science, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, UK ICREA at CREAF, Campus de UAB, Cerdanyola del Valles 08023, Barcelona, Spain
| |
Collapse
|
39
|
Steppe K, Vandegehuchte MW, Tognetti R, Mencuccini M. Sap flow as a key trait in the understanding of plant hydraulic functioning. TREE PHYSIOLOGY 2015; 35:341-5. [PMID: 25926534 DOI: 10.1093/treephys/tpv033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium;
| | - Maurits W Vandegehuchte
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Roberto Tognetti
- Dipartimento di Bioscienze e Territorio, Universita' degli Studi del Molise, 86090 Pesche, Italy
| | - Maurizio Mencuccini
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh EH9 3JN, UK; ICREA at CREAF, Universidad Autonoma de Barcelona, Cerdanyola del Valles, Barcelona, Spain
| |
Collapse
|