1
|
Piemonti L, Citro A, Tomajer V, Partelli S, Caldara R. Pig Xenotransplantation in Beta Cell Replacement: Addressing Challenges and Harnessing Potential for Type 1 Diabetes Therapy. Transpl Int 2024; 37:13122. [PMID: 39512630 PMCID: PMC11540633 DOI: 10.3389/ti.2024.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
This opinion paper evaluates the potential of porcine islets as a promising alternative in beta cell replacement therapy for Type 1 Diabetes (T1D), juxtaposed with the current limitations of human donor islets. It analyzes the compatibility of pig islets with human glucose metabolism, their prospects as a limitless and high-quality source of beta cells, and the unique immunogenic challenges they present in xenotransplantation. Additionally, the paper discusses the regulatory and ethical considerations pertinent to the use of porcine islets. By synthesizing current research and expert perspectives, the paper highlights both the opportunities and significant barriers that need addressing to advance pig islets as a viable therapeutic option. The findings advocate for a balanced and forward-looking approach to the integration of pig islets in T1D treatment, underscoring the need for continued research and dialogue in this evolving field.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- Clinic Unit of Regenerative Medicine and Organ Transplants and Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- Diabetes Research Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- Clinic Unit of Regenerative Medicine and Organ Transplants and Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Valentina Tomajer
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Stefano Partelli
- Diabetes Research Institute, Università Vita-Salute San Raffaele, Milan, Italy
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants and Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Tritschler H, Fischer K, Seissler J, Fiedler J, Halbgebauer R, Huber-Lang M, Schnieke A, Brenner RE. New Insights into Xenotransplantation for Cartilage Repair: Porcine Multi-Genetically Modified Chondrocytes as a Promising Cell Source. Cells 2021; 10:cells10082152. [PMID: 34440921 PMCID: PMC8394410 DOI: 10.3390/cells10082152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Transplantation of xenogenic porcine chondrocytes could represent a future strategy for the treatment of human articular cartilage defects. Major obstacles are humoral and cellular rejection processes triggered by xenogenic epitopes like α-1,3-Gal and Neu5Gc. Besides knockout (KO) of genes responsible for the biosynthesis of respective epitopes (GGTA1 and CMAH), transgenic expression of human complement inhibitors and anti-apoptotic as well as anti-inflammatory factors (CD46, CD55, CD59, TNFAIP3 and HMOX1) could synergistically prevent hyperacute xenograft rejection. Therefore, chondrocytes from different strains of single- or multi-genetically modified pigs were characterized concerning their protection from xenogeneic complement activation. Articular chondrocytes were isolated from the knee joints of WT, GalTKO, GalT/CMAH-KO, human CD59/CD55//CD46/TNFAIP3/HMOX1-transgenic (TG), GalTKO/TG and GalT/CMAHKO/TG pigs. The tissue-specific effectiveness of the genetic modifications was tested on gene, protein and epitope expression level or by functional assays. After exposure to 20% and 40% normal human serum (NHS), deposition of C3b/iC3b/C3c and formation of the terminal complement complex (TCC, C5b-9) was quantified by specific cell ELISAs, and generation of the anaphylatoxin C5a by ELISA. Chondrocyte lysis was analyzed by Trypan Blue Exclusion Assay. In all respective KO variants, the absence of α -1,3-Gal and Neu5Gc epitope was verified by FACS analysis. In chondrocytes derived from TG animals, expression of CD55 and CD59 could be confirmed on gene and protein level, TNFAIP3 on gene expression level as well as by functional assays and CD46 only on gene expression level whereas transgenic HMOX1 expression was not evident. Complement activation in the presence of NHS indicated mainly effective although incomplete protection against C3b/iC3b/C3c deposition, C5a-generation and C5b-9 formation being lowest in single GalTKO. Chondrocyte viability under exposure to NHS was significantly improved even by single GalTKO and completely preserved by all other variants including TG chondrocytes without KO of xenoepitopes.
Collapse
Affiliation(s)
- Hanna Tritschler
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, 89081 Ulm, Germany; (H.T.); (J.F.)
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany; (K.F.); (A.S.)
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum—Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, 80336 München, Germany;
| | - Jörg Fiedler
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, 89081 Ulm, Germany; (H.T.); (J.F.)
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany; (R.H.); (M.H.-L.)
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, 89081 Ulm, Germany; (R.H.); (M.H.-L.)
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany; (K.F.); (A.S.)
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, 89081 Ulm, Germany; (H.T.); (J.F.)
- Correspondence: ; Tel.: +49-731-500-63280
| |
Collapse
|
3
|
Abstract
There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Yaron JR, Kwiecien JM, Zhang L, Ambadapadi S, Wakefield DN, Clapp WL, Dabrowski W, Burgin M, Munk BH, McFadden G, Chen H, Lucas AR. Modifying the Organ Matrix Pre-engraftment: A New Transplant Paradigm? Trends Mol Med 2019; 25:626-639. [DOI: 10.1016/j.molmed.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
|
5
|
Naeimi Kararoudi M, Hejazi SS, Elmas E, Hellström M, Naeimi Kararoudi M, Padma AM, Lee D, Dolatshad H. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation. Front Immunol 2018; 9:1711. [PMID: 30233563 PMCID: PMC6134075 DOI: 10.3389/fimmu.2018.01711] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/12/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically modified pigs have been considered favorable resources in xenotransplantation. Microinjection of randomly integrating transgenes into zygotes, somatic cell nuclear transfer, homologous recombination, zinc finger nucleases, transcription activator-like effector nucleases, and most recently, clustered regularly interspaced short palindromic repeats-cas9 (CRISPR/Cas9) are the techniques that have been used to generate these animals. Here, we provide an overview of the CRISPR approaches that have been used to modify genes which are vital in improving xenograft survival rate, including cytidine monophosphate-N-acetylneuraminic acid hydroxylase, B1,4N-acetylgalactosaminyltransferase, isoglobotrihexosylceramide synthase, class I MHC, von Willebrand factor, C3, and porcine endogenous retroviruses. In addition, we will mention the importance of potential candidate genes which could be targeted using CRISPR/Cas9.
Collapse
Affiliation(s)
| | - Seyyed S Hejazi
- Department of Basic Science of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ezgi Elmas
- The Childhood Cancer Center at Nationwide Children's Hospital, Columbus, OH, United States
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Naeimi Kararoudi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Arvind M Padma
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dean Lee
- The Childhood Cancer Center at Nationwide Children's Hospital, Columbus, OH, United States
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Costa C, Pizzolato MC, Shen Y, Wang Y, Fodor WL. CD86 Blockade in Genetically Modified Porcine Cells Delays Xenograft Rejection by Inhibiting T-Cell and NK-Cell Activation. Cell Transplant 2017; 13:75-87. [PMID: 15040608 DOI: 10.3727/000000004772664923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Porcine xenografts transplanted into primates are rejected in spite of immunosuppression. Identification of the triggering mechanisms and the strategies to overcome them is crucial to achieve long-term graft survival. We hypothesized that porcine CD86 (pCD86) contributes to xenograft rejection by direct activation of host T cells and NK cells. Formerly, we designed the human chimeric molecule hCD152-hCD59 to block pCD86 in cis. To test the efficacy in vivo, we have utilized a pig-to-mouse xenotransplant model. First, we showed that hCD152-hCD59 expression prevents the binding of murine CD28Ig to pCD86 on porcine aortic endothelial cells (PAEC) and dramatically reduces IL-2 secretion by Con A-stimulated mouse splenocytes in coculture. Moreover, IFN-γ secretion by IL-12-stimulated mouse NK cells was averted after coculture with hCD152-hCD59 PAEC. In vivo, control PAEC implanted under the kidney capsule were rapidly rejected (2–4 weeks) in BALB/c and BALB/c SCID mice. Rejection of hCD152-hCD59 PAEC was significantly delayed in both cases. Signs of immune modulation in the hCD152-hCD59-PAEC BALB/c recipients were identified such as early hyporesponsiveness and diminished antibody response. Thus, simply modifying the donor xenogeneic cell can diminish both T cell and NK cell immune responses. We specifically demonstrate that pCD86 contributes to rejection of porcine xenografts.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, CD/blood
- Antigens, CD/immunology
- Antigens, Differentiation/analysis
- Aorta
- B7-2 Antigen
- CD59 Antigens/analysis
- CTLA-4 Antigen
- Coculture Techniques
- Concanavalin A
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/transplantation
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Humans
- Interleukin-2/metabolism
- Kidney Transplantation/immunology
- Kidney Transplantation/pathology
- Killer Cells, Natural/immunology
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/blood
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Swine
- T-Lymphocytes/immunology
- Transplantation, Heterologous/immunology
Collapse
Affiliation(s)
- Cristina Costa
- Department of Molecular Science, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT 06410, USA.
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ. Recent advances in genome editing and creation of genetically modified pigs. Int J Surg 2015; 23:217-222. [PMID: 26231992 DOI: 10.1016/j.ijsu.2015.07.684] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/08/2015] [Accepted: 07/17/2015] [Indexed: 11/26/2022]
Abstract
The field of xenotransplantation is benefiting greatly from recent advances in genetic engineering. The efficiency and pace with which new model animals are being created has dramatically sped progress towards clinical relevance. Endonuclease-driven genome editing now allows for the efficient generation of targeted genetic alterations. Herein we review the available methods of genetic engineering that have been successfully employed to create genetically modified pigs.
Collapse
Affiliation(s)
- James R Butler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joseph M Ladowski
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gregory R Martens
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Joseph Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Boksa M, Zeyland J, Słomski R, Lipiński D. Immune modulation in xenotransplantation. Arch Immunol Ther Exp (Warsz) 2014; 63:181-92. [PMID: 25354539 PMCID: PMC4429136 DOI: 10.1007/s00005-014-0317-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/22/2014] [Indexed: 01/17/2023]
Abstract
The use of animals as donors of tissues and organs for xenotransplantations may help in meeting the increasing demand for organs for human transplantations. Clinical studies indicate that the domestic pig best satisfies the criteria of organ suitability for xenotransplantation. However, the considerable phylogenetic distance between humans and the pig causes tremendous immunological problems after transplantation, thus genetic modifications need to be introduced to the porcine genome, with the aim of reducing xenotransplant immunogenicity. Advances in genetic engineering have facilitated the incorporation of human genes regulating the complement into the porcine genome, knockout of the gene encoding the formation of the Gal antigen (α1,3-galactosyltransferase) or modification of surface proteins in donor cells. The next step is two-fold. Firstly, to inhibit processes of cell-mediated xenograft rejection, involving natural killer cells and macrophages. Secondly, to inhibit rejection caused by the incompatibility of proteins participating in the regulation of the coagulation system, which leads to a disruption of the equilibrium in pro- and anti-coagulant activity. Only a simultaneous incorporation of several gene constructs will make it possible to produce multitransgenic animals whose organs, when transplanted to human recipients, would be resistant to hyperacute and delayed xenograft rejection.
Collapse
Affiliation(s)
- Magdalena Boksa
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland,
| | | | | | | |
Collapse
|
10
|
Diswall M, Benktander J, Ångström J, Teneberg S, Breimer ME. The alpha1,3GalT knockout/alpha1,2FucT transgenic pig does not appear to have an advantage over the alpha1,3GalT knockout pig with respect to glycolipid reactivity with human serum antibodies. Xenotransplantation 2013; 21:57-71. [PMID: 24219248 DOI: 10.1111/xen.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/02/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The human H-transferase (α2FucT) was introduced in Gal-negative pigs to produce pig organs not only free from Gal-antigens, but also in which the uncapped N-acetyllactosamine precursor had been transformed into non-xenogenic blood group H type 2 compounds. This work is the first descriptive analysis of glycolipids from the GalT-KO/FucT-TG pig. The aim was to investigate the cell membrane antigens in GalT-KO/FucT-TG tissues to explore its efficacy as an organ donor. Also, detailed knowledge on the correlation between the cellular glycosyltransferase configuration and the resulting carbohydrate phenotype expression is valuable from a basic glycobiological perspective. METHODS Neutral and acidic glycolipids from GalT-KO/FucT-TG small intestine were compared with glycolipids from two wildtype and two GalT-KO pig intestines. Glycolipid reactivity was tested on thin layer chromatography plates using chemical reagents, antibodies, lectins, and human serum. Structural characterization of neutral glycolipids was performed by LC-ESI/MS and proton NMR spectroscopy. RESULTS Characterization of the glycolipid expression in GalT-KO/FucT-TG intestine showed absence of Gal antigens and decreased/unchanged levels of the N-acetyllactosamine precursor and the blood group H type 2 expression, when compared with the wildtype. The reactivity of human serum antibodies to GalT-KO/FucT-TG derived glycolipids was similar or slightly elevated when compared with GalT-KO glycolipids. Results from LC-ESI/MS and proton NMR spectroscopy revealed no established neutral xenogenic antigens in the GalT-KO/FucT-TG pig, and could thus not explain the immunologic reactivity to human serum antibodies. The antibody binding to acidic glycolipids is most likely to be explained by the abundance of N-glycolylneuraminic acid epitopes in pig tissues. Six neutral complex biantennary glycolipids with blood group H type 1, 2, Lewis(x) and Lewis(y) determinants were found, of which three were identified in this work for the first time. One of these was a nonaglycosylceramide with blood group H type 2 and lactosyl determinants linked to a lactotetraosyl core, and the other two were decaglycosylceramides with blood group H type 1 and H type 2 determinants linked to a neolactotetraosyl core, and Lewis(x) and blood group H type 1 determinants on a lactotetraosyl core, respectively. CONCLUSIONS Lipid-linked carbohydrate antigens in the GalT-KO/FucT-TG pig intestine showed no or minor qualitative difference when compared with GalT-KO pigs. The GalT-KO/FucT-TG pig did not appear to have an advantage over the GalT-KO pig with respect to reactivity with human antibodies from a xenotransplantation perspective.
Collapse
Affiliation(s)
- Mette Diswall
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy/Gothenburg University, Gothenburg, Sweden; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
11
|
Burlak C, Bern M, Brito AE, Isailovic D, Wang ZY, Estrada JL, Li P, Tector AJ. N-linked glycan profiling of GGTA1/CMAH knockout pigs identifies new potential carbohydrate xenoantigens. Xenotransplantation 2013; 20:277-91. [PMID: 24033743 DOI: 10.1111/xen.12047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/16/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND The temporary or long-term xenotransplantation of pig organs into people would save thousands of lives each year if not for the robust human antibody response to pig carbohydrates. Genetically engineered pigs deficient in galactose α1,3 galactose (gene modified: GGTA1) and N-glycolylneuraminic acid (gene modified: CMAH) have significantly improved cell survival when challenged by human antibody and complement in vitro. There remains, however, a significant portion of human antibody binding. METHODS To uncover additional xenoantigens, we compared the asparagine-linked (N-linked) glycome from serum proteins of humans, domestic pigs, GGTA1 knockout pigs, and GGTA1/CMAH knockout pigs using mass spectrometry. Carbohydrate structures were determined with assistance from GlycoWorkbench, Cartoonist, and SimGlycan software by comparison to existing database entries and collision-induced dissociation fragmentation data. RESULTS Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of reduced and solid-phase permethylated glycans resulted in the detection of high-mannose, hybrid, and complex type N-linked glycans in the 1000-4500 m/z ion range. GGTA1/CMAH knockout pig samples had increased relative amounts of high-mannose, incomplete, and xylosylated N-linked glycans. All pig samples had significantly higher amounts of core and possibly antennae fucosylation. CONCLUSIONS We provide for the first time a comparison of the serum protein glycomes of the human, domestic pig, and genetically modified pigs important to xenotransplantation.
Collapse
Affiliation(s)
- Christopher Burlak
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Monzavi-Karbassi B, Pashov A, Kieber-Emmons T. Tumor-Associated Glycans and Immune Surveillance. Vaccines (Basel) 2013; 1:174-203. [PMID: 26343966 PMCID: PMC4515579 DOI: 10.3390/vaccines1020174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 04/18/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
Changes in cell surface glycosylation are a hallmark of the transition from normal to inflamed and neoplastic tissue. Tumor-associated carbohydrate antigens (TACAs) challenge our understanding of immune tolerance, while functioning as immune targets that bridge innate immune surveillance and adaptive antitumor immunity in clinical applications. T-cells, being a part of the adaptive immune response, are the most popular component of the immune system considered for targeting tumor cells. However, for TACAs, T-cells take a back seat to antibodies and natural killer cells as first-line innate defense mechanisms. Here, we briefly highlight the rationale associated with the relative importance of the immune surveillance machinery that might be applicable for developing therapeutics.
Collapse
Affiliation(s)
- Behjatolah Monzavi-Karbassi
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anastas Pashov
- Stephan Angeloff Institute of Microbiology, BAS, Sofia 1113, Bulgaria
| | - Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
13
|
Determination of the Absolute Number of Transgene Copies in CMVFUT Transgenic Pigs. ANNALS OF ANIMAL SCIENCE 2012. [DOI: 10.2478/v10220-012-0029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Determination of the Absolute Number of Transgene Copies in CMVFUT Transgenic PigsThe aim of this research was to determine the number of transgene copies in the DNA of transgenic pigs. The copy number of the transgene was analysed in the transgenic animals with introduced pCMVFUT genetic construct containing a coding sequence of human H transferase under a control of CMV promoter. The copy number of the transgene that had integrated with the genome of the transgenic animals was analysed by qPCR with SYBR Green dye, which enabled nonspecific double-stranded DNA detection. CMVFT-2F and CMVFT-2R primers were used to amplify a 149 bp fragment of DNA. Forward primer had a sequence complementary to a promoter sequence and reverse primer to a coding sequence of H transferase. The copy number of the transgene in the examined samples was established by plotting the CT values obtained on a standard curve, which had been set by the usage of the CT values for the successive standard dilutions with known copy number (1.438-1.431 copies). As a standard we used pCMVFut genetic construct hydrolyzed with Not I restriction enzyme to a linear form. The real-time PCR results helped to establish the range of 3 - 4 as the number of the transgene copies that had integrated to the swine genome.
Collapse
|
14
|
A bioinformatic evaluation of potential allergenicity of 85 candidate genes in transgenic organisms. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012; 25:318-43. [PMID: 22491774 PMCID: PMC3346299 DOI: 10.1128/cmr.05011-11] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.
Collapse
|
16
|
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DKC. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379:672-83. [PMID: 22019026 DOI: 10.1016/s0140-6736(11)61091-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shortage of organs and cells from deceased individuals continues to restrict allotransplantation. Pigs could provide an alternative source of tissue and cells but the immunological challenges and other barriers associated with xenotransplantation need to be overcome. Transplantation of organs from genetically modified pigs into non-human primates is now not substantially limited by hyperacute, acute antibody-mediated, or cellular rejection, but other issues have become more prominent, such as development of thrombotic microangiopathy in the graft or systemic consumptive coagulopathy in the recipient. To address these problems, pigs that express one or more human thromboregulatory or anti-inflammatory genes are being developed. The results of preclinical transplantation of pig cells--eg, islets, neuronal cells, hepatocytes, or corneas--are much more encouraging than they are for organ transplantation, with survival times greater than 1 year in all cases. Risk of transfer of an infectious microorganism to the recipient is small.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Transgenic pigs for xenotransplantation: selection of promoter sequences for reliable transgene expression. Curr Opin Organ Transplant 2010; 15:201-6. [PMID: 20061949 DOI: 10.1097/mot.0b013e328336ba4a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Appropriate expression of immunomodulatory and anticoagulant proteins on endothelial cells is essential to prevent rejection of vascularized porcine organs after transplantation into primates. Here, we review the promoter sequences used for the establishment of transgenic pigs, as organ donors for xenotransplantation. RECENT FINDINGS Transgenic pigs were produced using viral, chicken, mouse, human, and porcine promoter sequences with ubiquitous or cell type-specific activity. In addition to the expression of human complement regulatory proteins, which were efficient to prevent hyperacute rejection of pig-to-primate xenografts, novel transgenes, targeting cellular rejection mechanisms, abnormal-blood coagulation, or the risk of viral transmission, have been published or announced in preliminary reports. SUMMARY Accurate spatiotemporal expression of immunomodulatory and anticoagulant proteins on the endothelial cells of transgenic pigs is required for the successful xenotransplantation of vascularized organs into primates. Targeting transgene expression specifically to the cells critical for xenograft rejection may eliminate potential side effects of ubiquitous expression. Comparison of regulatory sequences from various species indicates that carefully selected porcine promoter sequences may be beneficial to achieve this aim.
Collapse
|
18
|
Cooper DK, Hara H, Yazer M. Genetically Engineered Pigs as a Source for Clinical Red Blood Cell Transfusion. Clin Lab Med 2010; 30:365-80. [DOI: 10.1016/j.cll.2010.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Radtke C, Lankford KL, Wewetzer K, Imaizumi T, Fodor WL, Kocsis JD. Impaired spinal cord remyelination by long-term cultured adult porcine olfactory ensheathing cells correlates with altered in vitro phenotypic properties. Xenotransplantation 2010; 17:71-80. [DOI: 10.1111/j.1399-3089.2009.00562.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Klymiuk N, Aigner B, Brem G, Wolf E. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 2009; 77:209-21. [DOI: 10.1002/mrd.21127] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Loveland BE, Milland J, Kyriakou P, Thorley BR, Christiansen D, Lanteri MB, Regensburg M, Duffield M, French AJ, Williams L, Baker L, Brandon MR, Xing PX, Kahn D, McKenzie IF. Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons. Xenotransplantation 2009. [DOI: 10.1046/j.1399-3089.2003.00103_11_2.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Long C, Hara H, Pawlikowski Z, Koike N, d'Arville T, Yeh P, Ezzelarab M, Ayares D, Yazer M, Cooper DKC. Genetically engineered pig red blood cells for clinical transfusion: initial in vitro studies. Transfusion 2009; 49:2418-29. [PMID: 19624491 DOI: 10.1111/j.1537-2995.2009.02306.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pigs are a potential source of red blood cells (RBCs) and could resolve the shortage of human blood for transfusion. This study investigated in vitro the compatibility of genetically engineered pig RBCs (pRBCs) with the human innate immune response. STUDY DESIGN AND METHODS Human volunteers of all ABO blood types were sources of sera and those of O blood type were sources of circulating monocytes/macrophages. RBCs from ABO-compatible (ABO-C) and ABO-incompatible (ABO-I) humans and wild-type (WT) and alpha-1,3-galactosyltransferase gene-knockout (GTKO) pigs were tested for hemagglutination, immunoglobulin (Ig)M/IgG antibody binding, and complement-dependent cytotoxicity (CDC) using human sera. Phagocytosis of RBCs by human monocyte-derived macrophages was measured by coculture in the absence or presence of pooled human O serum. RESULTS RBCs showed significant differences (p < 0.01) with regard to hemagglutination, IgM and IgG binding, and CDC (ABO-C < GTKO < ABO-I < WT). In the absence of pooled human O serum (antibodies), there was no phagocytosis of any RBCs; in the presence of serum (antibodies), phagocytosis of ABO-I RBCs was greater than of WT (p < 0.01), which in turn was greater than of GTKO RBCs (p < 0.05). CONCLUSIONS GTKO RBCs were significantly more compatible than ABO-I and WT RBCs, but were not comparable to ABO-C combinations. In the presence of antibody, human monocyte-derived macrophages phagocytosed ABO-I RBC/sera combinations more efficiently than pRBCs. These observations contribute to our ultimate goal of using genetically engineered pRBCs for clinical blood transfusion. However, pigs will require other modifications or manipulations if they are to become suitable for human transfusion.
Collapse
Affiliation(s)
- Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Starzl Biomedical Science Tower, W1540, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li SZ, Qu YC, Liu BQ, Wang GY, Zhang Y, Ma ZF, Ma TX, Qiu M, Han RF. Synergistic effects of alpha-1,2-fucosyltransferase, DAF, and CD59 in suppression of xenogenic immunological responses. Xenotransplantation 2009; 16:27-33. [PMID: 19243558 DOI: 10.1111/j.1399-3089.2009.00509.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous studies showed that alpha-1,2-fucosyltransferase (HT), decay accelerating factor (DAF), and CD59 have an inhibitory effect on the immunological rejection of xenogenic transplantation. METHODS To investigate their possible synergistic effects in suppression of heterogeneic transplantation, we produced transgenic mouse lines expressing human HT, DAF, and/or CD59 by the standard pronuclear injection approach. PCR and Southern blot were used to identify the transgenic founder lines. Flow cytometry confirmed the high-level expression of HT, DAF, or CD59 in the transgenic mice. RESULTS The deposition of IgM, C3c, or C9 in the cardiac vascular endothelial cells of the HT, HT/CD59, and/or DAF multiple positive transgenic mice was markedly decreased. The survival time and function of the hearts of the co-transgenic mice were significantly longer and higher than that of the single HT-positive transgenic mice (P < 0.05). CONCLUSION The mice co-expressing HT/DAF or HT/CD59 could resist the hyperacute rejection better than those expressing HT alone. It is feasible to use HT and C-reactive proteins co-transgenic tissues to resist hyperacute rejection and xenograft rejection.
Collapse
Affiliation(s)
- Sheng-Zhi Li
- Tianjin Institute of Urology and Second Hospital of Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fagerberg D, Angström J, Halim A, Hultberg A, Rakhimova L, Hammarström L, Borén T, Teneberg S. Novel Leb-like Helicobacter pylori-binding glycosphingolipid created by the expression of human alpha-1,3/4-fucosyltransferase in FVB/N mouse stomach. Glycobiology 2008; 19:182-91. [PMID: 18997175 DOI: 10.1093/glycob/cwn125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The "Le(b) mouse" was established as a model for investigations of the molecular events following Le(b)-mediated adhesion of Helicobacter pylori to the gastric epithelium. By the expression of a human alpha-1,3/4-fucosyltransferase in the gastric pit cell lineage of FVB/N transgenic mice, a production of Le(b) glycoproteins in gastric pit and surface mucous cells was obtained in this "Le(b) mouse," as demonstrated by binding of monoclonal anti-Le(b) antibodies. To explore the effects of the human alpha-1,3/4-fucosyltransferase on glycosphingolipid structures, neutral glycosphingolipids were isolated from stomachs of transgenic alpha-1,3/4-fucosyltransferase-expressing mice. A glycosphingolipid recognized by BabA-expressing H. pylori was isolated and characterized by mass spectrometry and proton NMR as Fuc alpha 2Gal beta 3(Fuc alpha 4)GalNAc beta 4 Gal beta 4 Glc beta 1Cer, i.e., a novel Le(b)-like glycosphingolipid on a ganglio core. In addition, two other novel glycosphingolipids were isolated from the mouse stomach epithelium that were found to be nonbinding with regard to H. pylori. The first was a pentaglycosylceramide, GalNAc beta 3 Gal alpha 3(Fuc alpha 2)Gal beta 4 Glc beta 1Cer, in which the isoglobotetrasaccharide has been combined with Fuc alpha 2 to yield an isoglobotetraosylceramide with an internal blood group B determinant. The second one was an elongated fucosyl-gangliotetraosylceramide, GalNAc beta 3(Fuc alpha 2)Gal beta 3GalNAc beta 4Gal beta 4 Glc beta 1Cer.
Collapse
Affiliation(s)
- David Fagerberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, PO Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hara H, Long C, Lin YJ, Tai HC, Ezzelarab M, Ayares D, Cooper DKC. In vitro investigation of pig cells for resistance to human antibody-mediated rejection. Transpl Int 2008; 21:1163-74. [PMID: 18764834 DOI: 10.1111/j.1432-2277.2008.00736.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although human complement-dependent cytotoxicity (CDC) of alpha1,3-galactosyltransferase gene-knockout (GTKO) pig cells is significantly weaker than that of wild-type (WT) cells, successful xenotransplantation will require pigs with multiple genetic modifications. Sera from healthy humans were tested by (i) flow cytometry for binding of IgM/IgG, and (ii) CDC assay against peripheral blood mononuclear cells and porcine aortic endothelial cells from five types of pig - WT, GTKO, GTKO transgenic for H-transferase (GTKO/HT), WT transgenic for human complement regulatory protein CD46 (CD46) and GTKO/CD46. There was significantly higher mean IgM/IgG binding to WT and CD46 cells than to GTKO, GTKO/HT, and GTKO/CD46, but no difference between GTKO, GTKO/HT, and GTKO/CD46 cells. There was significantly higher mean CDC to WT than to GTKO, GTKO/HT, CD46, and GTKO/CD46 cells, but no difference between GTKO and GTKO/HT. Lysis of GTKO/CD46 cells was significantly lower than that of GTKO or CD46 cells. CD46 expression provided partial protection against serum from a baboon sensitized to a GTKO pig heart. GTKO/CD46 cells were significantly resistant to lysis by human serum and sensitized baboon serum. In conclusion, the greatest protection from CDC was obtained by the combination of an absence of Gal expression and the presence of CD46 expression, but the expression of HT appeared to offer no advantage over GTKO. Organs from GTKO/CD46 pigs are likely to be significantly less susceptible to CDC.
Collapse
Affiliation(s)
- Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cartilage engineering is the object of intense research as a result of major medical needs and therapeutic prospects. Porcine xenogeneic cells/tissues may help in the development of clinical applications such as articular cartilage repair. However, unmodified porcine cartilage is rejected in primates by humoral and cellular mechanisms. We previously showed that porcine articular chondrocytes (PAC) isolated from H-transferase (HT) transgenic pigs show markedly reduced expression of the Galalpha1,3Gal antigen (alphaGal) and prolonged survival when transplanted into alpha1,3galactosyltransferase-deficient mice. In this work, we further studied the protective mechanisms of HT transgenic expression in cartilage, particularly its effects on monocyte adhesion. To this end, PAC isolated from control and HT transgenic pigs were assayed for human complement deposition and adhesion to the human monoblastic cell line U937. Consistent with a reduction in complement activation by the classical pathway, the HT transgenic PAC showed a 2-fold reduction in the deposition of complement components C4 and C3 relative to controls. Adhesion of U937 cells to HT PAC was also diminished under various conditions. This reduction was more dramatic at high effector:target ratios and especially observed when combined with anti-alphaGal antibodies (5-fold difference). Nevertheless, this effect was also observed in the absence of anti-alphaGal. antibodies and after tumor necrosis factor treatment. These results suggest that HT expression on porcine chondrocytes protects them from both humoral and cellular rejection.
Collapse
Affiliation(s)
- C Costa
- Department of Molecular Sciences, Alexion Pharmaceuticals, Inc, Cheshire, Connecticut, USA.
| | | | | |
Collapse
|
27
|
Petersen B, Carnwath JW, Niemann H. The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 2008; 32:91-105. [PMID: 18280567 DOI: 10.1016/j.cimid.2007.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2007] [Indexed: 10/22/2022]
Abstract
The shortage of donated human organs for transplantation continues to be a life threatening problem for patients suffering from complete organ failure. Although this gap is increasing due to the demographic changes in aging Western populations, it is generally accepted that international trading in human organ is not an ethical solution. Alternatives to the use of human organs for transplantation must be developed and these alternatives include stem cell therapy, artificial organs and organs from other species, i.e. xenografts. For practical reasons but most importantly because of its physiological similarity with humans, the pig is generally accepted as the species of choice for xenotransplantation. Nevertheless, before porcine organs can be used in human xenotransplantation, it is necessary to make a series of precise genetic modifications to the porcine genome, including the addition of genes for factors which suppress the rejection of transplanted porcine tissues and the inactivation or removal of undesirable genes which can only be accomplished at this time by targeted recombination and somatic nuclear transfer. This review will give an insight into the advances in transgenic manipulation and cloning in pigs--in the context of porcine-to-human xenotransplantation.
Collapse
Affiliation(s)
- Bjoern Petersen
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | | | | |
Collapse
|
28
|
The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta Gen Subj 2007; 1780:75-88. [PMID: 18047841 DOI: 10.1016/j.bbagen.2007.11.003] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/10/2007] [Accepted: 11/13/2007] [Indexed: 11/22/2022]
Abstract
In 1985, we reported that a naturally occurring human antibody (anti-Gal), produced as the most abundant antibody (1% of immunoglobulins) throughout the life of all individuals, recognizes a carbohydrate epitope Galalpha1-3Galbeta1-4GlcNAc-R (the alpha-gal epitope). Since that time, an extensive literature has developed on discoveries related to the alpha-gal epitope and the anti-Gal antibody, including the barrier they form in xenotransplantation and their reciprocity in mammalian evolution. This review covers these topics and new avenues of clinical importance related to this unique antigen/antibody system (alpha-gal epitope/anti-Gal) in improving the efficacy of viral vaccines and in immunotherapy against cancer.
Collapse
|
29
|
Abstract
The first blood transfusions in humans were xenotransfusions, carried out by Jean-Baptiste Denis beginning in 1667. Richard Lower, Matthäus Purmann and Georges Mercklin also experimented with the use of animal blood for transfusion until this practice was forbidden in 1670, after the death of one of Denis's patients. In the middle of the 19th century, xenotransfusion was rescued from oblivion by the work of Pierre Cyprien Oré. Franz Gesellius and Oscar Hasse fervently defended xenotransfusion, but Emil Ponfick and Leonard Landois stressed the potentially harmful effects of inter-species transfusion from 1874 onward. Xenotransfusion was abandoned completely following the discovery of blood groups by Karl Landsteiner in 1900. From 2000, because of progress in xenotransplantation and the need of blood supply, xenotransfusion is again being considered. Pigs are the best potential donors. The development of alpha-1,3-galactosyltransferase gene-knockout pigs has overcome the first hurdle to xenotransfusion. The main obstacle to porcine red blood cell transfusion is now the cellular response involving macrophages or natural killer cells.
Collapse
Affiliation(s)
- Françoise A Roux
- Department of Cellular and Molecular Immuno-Endocrinology, INRA, Nantes School of Veterinary Medicine, Nantes Cedex, France
| | | | | |
Collapse
|
30
|
Galili U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol 2005; 83:674-86. [PMID: 16266320 DOI: 10.1111/j.1440-1711.2005.01366.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The alpha-gal epitope (Galalpha1-3Galbeta1-(3)4GlcNAc-R) is abundantly synthesized on glycolipids and glycoproteins of non-primate mammals and New World monkeys by the glycosylation enzyme alpha1,3galactosyltransferase (alpha1,3GT). In humans, apes and Old World monkeys, this epitope is absent because the alpha1,3GT gene was inactivated in ancestral Old World primates. Instead, humans, apes and Old World monkeys produce the anti-Gal antibody, which specifically interacts with alpha-gal epitopes and which constitutes approximately 1% of circulating immunoglobulins. Anti-Gal has functioned as an immunological barrier, preventing the transplantation of pig organs into humans, because anti-Gal binds to the alpha-gal epitopes expressed on pig cells. The recent generation of alpha1,3GT knockout pigs that lack alpha-gal epitopes has resulted in the elimination of this immunological barrier. Anti-Gal can be exploited for clinical use in cancer immunotherapy by targeting autologous tumour vaccines to APC, thereby increasing their immunogenicity. Autologous intact tumour cells from haematological malignancies, or autologous tumour cell membranes from solid tumours are processed to express alpha-gal epitopes by incubation with neuraminidase, recombinant alpha1,3GT and with uridine diphosphate galactose. Subsequent immunization with such autologous tumour vaccines results in in vivo opsonization by anti-Gal IgG binding to these alpha-gal epitopes. The interaction of the Fc portion of the vaccine-bound anti-Gal with Fcgamma receptors of APC induces effective uptake of the vaccinating tumour cell membranes by the APC, followed by effective transport of the vaccinating tumour membranes to the regional lymph nodes, and processing and presentation of the tumour-associated antigen (TAA) peptides. Activation of tumour-specific T cells within the lymph nodes by autologous TAA peptides may elicit an immune response that in some patients will be potent enough to eradicate the residual tumour cells that remain after completion of standard therapy. A similar expression of alpha-gal epitopes can be achieved by transduction of tumour cells with an adenovirus vector (or other vectors) containing the alpha1,3GT gene, thus enabling anti-Gal-mediated targeting of the vaccinating transduced cells to APC. Intratumoral delivery of the alpha1,3GT gene by various vectors results in the expression of alpha-gal epitopes. Such expression of the xenograft carbohydrate phenotype is likely to induce anti-Gal-mediated destruction of the tumour lesion, similar to rejection of xenografts by this antibody. Opsonization of the destroyed tumour cell membranes by anti-Gal IgG further targets them to APC, thus converting the tumour lesion, treated by the alpha1,3GT gene, into an in situ autologous tumour vaccine.
Collapse
Affiliation(s)
- Uri Galili
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
31
|
Abstract
The rejection caused by the presence of Galalpha1,3Gal (Gal) on the pig vascular endothelium and of natural anti-Gal antibodies in human blood has recently been prevented by the breeding of pigs that do not express Gal, achieved by knocking out the gene for the enzyme, alpha1,3-galactosyltransferase. However, prior to the introduction of nuclear transfer/embryo transfer techniques, a major effort was directed towards reducing Gal expression on pig cells by other methods, such as by cleaving Gal from the underlying substrate, or replacing Gal with an alternative, innocuous oligosaccharide by a process that has been termed 'competitive glycosylation'. Gal has been cleaved by alpha-galactosidase or endo-beta-galactosidase C. Competitive glycosylation has largely targeted replacement of Gal by insertion of a gene for a fucosyltransferase or a sialyltransferase, or by insertions of the gene for N-acetylglucosaminyltransferase III to reduce cell-surface expression of several oligosaccharides. The results of these approaches to render the pig cells less immunogenic to the human immune system are summarized. With regard to the problem provided by Gal expression, the above approaches may be considered by some to be largely obsolete, but the principles underlying them may prove valuable when other antigen targets for human antibodies are definitively identified, if these prove to be carbohydrates.
Collapse
Affiliation(s)
- Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
32
|
Yu L, Miao H, Guo L. Effect of RNA interference on Gal alpha 1,3 Gal expression in PIEC cells. DNA Cell Biol 2005; 24:235-43. [PMID: 15812240 DOI: 10.1089/dna.2005.24.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Xenotransplantation from pigs to human beings is viewed as a potential solution for the acute organ shortage. However, consequent xenorejection induced by Gal alpha 1,3 Gal (a Gal, Gal antigen) prevents xenotransplantation from clinical application. Thus, the most attracting attempt to prevent xenorejection is the elimination of Gal. Our study suggested that compared with the human alpha 1,2 fucosyltransferase (FT) gene and the porcine antisense alpha 1,3 galactosyltransferase gene, sequence-specific siRNA targeting Gal was capable of suppressing Gal expression markedly, and therefore, significantly inhibiting xenoreactivity and the complement activation with human serum in PIEC cells. We also demonstrated the concordant inhibitory effect of siRNA and the human FT gene on Gal and corresponding functions, which implied a practical significance of combined transgenic strategy. The successful application of vector-based dsRNA-GT may extend the list of available modalities in the abrogation of xenorejection in xenotransplantation.
Collapse
Affiliation(s)
- Luyang Yu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
33
|
Hansen W, Grabenhorst E, Nimtz M, Müller K, Conradt HS, Wirth M. Generation of serum-stabilized retroviruses: Reduction of α1,3gal-epitope synthesis in a murine NIH3T3-derived packaging cell line by expression of chimeric glycosyltransferases. Metab Eng 2005; 7:221-8. [PMID: 15885620 DOI: 10.1016/j.ymben.2005.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 02/08/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Retroviral vectors released from mouse-derived packaging cell lines are inactivated in human sera by naturally occurring antibodies due to the recognition of Galalpha1,3Galbeta1,4GlcNAc (alphagal-epitope) decorated surface proteins. In this study, an extensive analysis of the glycosylation potential of NIH3T3-derived PA317 packaging cells using combined MALDI/TOF-MS and HPAE-PAD reveals that 34% of the N-glycan moiety represents alphagal-epitope containing structures. Stable expression of glycosyltransferases and transport signal chimeras has been demonstrated to represent an efficient tool to alter cell- and species-specific glycosylation (Grabenhorst and Conradt, 1999. J. Biol. Chem. 274, 36107-36116). In order to reduce alphagal-epitope synthesis selected chimeric glycosyltransferases were constructed by fusing Golgi-signal sequences for compartment-specific localization with the catalytic domain of alpha2,3-sialyltransferase (ST3). Stable expression of these constructs in these cells resulted in a significant reduced alphagal-epitope synthesis, and moreover, a release of retroviral vectors showing an up to 3.5-fold increase in serum stability. Thus, our results suggest that the stably transfected cells stably transfected with chimeric glycosyltransferases compete efficiently with endogenous alpha1,3-galactosyltransferase. This approach allows favored glycodesign and we anticipate the applicability of such improved retroviral vectors produced by glycosylation engineered host cells for in vivo gene therapy and, furthermore, suggest the therapeutic benefit of this technology for xenotransplantation.
Collapse
Affiliation(s)
- Wiebke Hansen
- Department of Regulation and Differentiation, Molecular Biotechnology, German Research Centre of Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Yu L, Miao H, Guo L. Effect of RNA interference on Gal alpha 1,3 Gal expression in PIEC cells. DNA Cell Biol 2005; 24:180-8. [PMID: 15767784 DOI: 10.1089/dna.2005.24.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Xenotransplantation from pig to human being is viewed as a potential solution for the acute organ shortage. However, consequent xenorejection induced by Gal alpha 1,3 Gal (Gal, Gal antigen) prevents xenotransplantation from clinical application. Thus, the most attracting attempt to prevent xenorejection is the elimination of Gal. Our study suggested that compared with the human alpha 1,2 fucosyltransferase (FT) gene and porcine antisense alpha 1,3 galactosyltransferase gene, sequence-specific siRNA targeting Gal were capable of suppressing Gal expression markedly, and therefore, significantly inhibiting xenoreactivity and the complement activation with human serum in PIEC cells. We also demonstrated the concordant inhibitory effect of siRNA and human FT gene on Gal and corresponding functions, which implied a practical significance of combined transgenic strategy. The successful application of vector-based dsRNA-GT may extend the list of available modalities in the abrogation of xenorejection in xenotransplantation.
Collapse
Affiliation(s)
- Luyang Yu
- Graduate School of the Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | |
Collapse
|
35
|
Halberstadt C, Emerich DF, Gores P. Use of Sertoli cell transplants to provide local immunoprotection for tissue grafts. Expert Opin Biol Ther 2005; 4:813-25. [PMID: 15174964 DOI: 10.1517/14712598.4.6.813] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The recent success of allogeneic islet transplantation for the treatment of type I diabetes has renewed interest in cell therapy for diseases of secretory cell dysfunction. Unfortunately, widespread clinical use of cell transplantation is limited by tissue availability and the need for long-term immunosuppresion. Testicular Sertoli cells can confer local immunoprotection for co-transplanted cells and may provide a means of overcoming the obstacles associated with cell transplantation. Sertoli cell grafts protect islets in animal models of diabetes and can be transplanted into the brain to enhance regeneration and promote the survival of co-grafted tissues. This review describes the role that Sertoli cells normally play in testicular immunology, details the preclinical data using transplanted Sertoli cells in models of diabetes and Parkinson's disease and discusses some of the possible mechanisms involved in this phenomena, as well as the future of this technology.
Collapse
Affiliation(s)
- Craig Halberstadt
- Carolinas Medical Center, General Surgery Research, Cannon Research Center, P.O. Box 32861, Charlotte, NC 28232-2861, USA.
| | | | | |
Collapse
|
36
|
Loveland BE, Milland J, Kyriakou P, Thorley BR, Christiansen D, Lanteri MB, Regensburg M, Duffield M, French AJ, Williams L, Baker L, Brandon MR, Xing PX, Kahn D, McKenzie IFC. Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons. Xenotransplantation 2004; 11:171-83. [PMID: 14962279 DOI: 10.1046/j.1399-3089.2003.00103.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against complement-mediated rejection, as shown here using non-immunosuppressed baboons and heterotopic CD46 transgenic pig kidney xenografts. This report is of a carefully engineered transgene that enables high-level CD46 expression. A novel CD46 minigene was validated by transfection and production of a transgenic pig line. Pig lymphocytes were tested for resistance to antibody and complement-mediated lysis, transgenic tissues were characterized for CD46 expression, and kidneys were transplanted to baboons without immunosuppression. Absorption of anti-Galalpha(1,3)Gal epitope (anti-GAL) serum antibodies was measured. Transgenic pigs expressed high levels of CD46 in all tissues, especially vascular endothelium, with stable expression through three generations that was readily monitored by flow cytometry of transgenic peripheral blood mononuclear cells (PBMC). Transgenic PBMC pre-sensitized with antibody were highly resistant to human complement-mediated lysis which readily lysed normal pig PBMC. Normal pig kidneys transplanted without cold ischemia into non-immunosuppressed adult baboons survived a median of 3.5 h (n = 7) whereas transgenic grafts (n = 9), harvested at approximately 24-h intervals, were either macroscopically normal (at 29, 48 and 68 h) or showed limited macroscopic damage (median > 50 h). Microscopic assessment of transplanted transgenic kidneys showed only focal tubular infarcts with viable renal tissue elsewhere, no endothelial swelling or polymorph adherence and infiltration by lymphocytes beginning at 3 days. Coagulopathy was not a feature of the histology in four kidneys not rejected and assessed at 48 h or later after transplantation. Baboon anti-GAL serum antibody titers were high before transplantation and, in one extensively analyzed recipient, reduced approximately 8-fold within 5.5 h. The data demonstrate that a single CD46 transgene controls hyperacute kidney graft rejection in untreated baboons despite the presence of antibody and complement deposition. The expression levels, tissue distribution and in vitro functional tests indicate highly efficient CD46 function, controlling both classical and alternative pathway complement activation, which suggests it might be the complement regulator of choice to protect xenografts.
Collapse
|
37
|
Costa C, Bell NK, Stabel TJ, Fodor WL. Use of porcine tumor necrosis factor receptor 1-Ig fusion protein to prolong xenograft survival. Xenotransplantation 2004; 11:491-502. [PMID: 15479458 DOI: 10.1111/j.1399-3089.2004.00169.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Delayed rejection of xenografts is a major hurdle that needs to be addressed to achieve long-term engraftment in the pig-to-primate transplant setting. Both vascular and avascular xenografts are susceptible to a delayed rejection process that comprises humoral and cellular responses. Tumor necrosis factor (TNF) is believed to play a role in this process by promoting cell activation, apoptosis and the recruitment of inflammatory cells. To address this problem, we engineered the donor cell in such a way that it could block both human and porcine TNF. METHODS We produced a recombinant fusion protein containing the extracellular domain of the porcine TNF-Receptor 1 and an IgG Fc moiety (pTNFR1Ig). We first evaluated by flow cytometry the pTNFR1Ig capacity to prevent TNF alpha-induced expression of SLAI, SLAII, VCAM-1, ICAM-1 and E-selectin on the cell surface of porcine aortic endothelial cells (PAEC). The effect on TNF alpha-mediated cell death was also assessed by propidium iodide staining after incubating PAEC with TNF alpha plus cycloheximide for 24 h. PAEC and porcine fibroblasts were subsequently engineered by retroviral infection to express and secrete pTNFR1Ig and their resistance to the TNF alpha effects was tested in vitro. Finally, we transplanted mock-control and pTNFR1Ig-expressing PAEC under the kidney capsule of BALB/c mice in the absence of immunosuppression and examined the degree of rejection at 2 and 3 weeks post-transplantation. RESULTS Treatment with pTNFR1Ig resulted in a very potent blockade of human, porcine and murine TNF alpha activity on porcine cells. It inhibited the upregulation of all cell surface markers of activation tested as well as the TNF alpha-mediated cell death. Moreover, pTNFR1Ig-expressing PAEC showed prolonged engraftment in a pig-to-mouse xenotransplant model. CONCLUSIONS Incorporation of strategies that block TNF may prove useful in the development of xenografts resistant to delayed rejection.
Collapse
Affiliation(s)
- C Costa
- Department of Molecular and Preclinical Sciences, Alexion Pharmaceuticals Inc, Cheshire, CT, USA.
| | | | | | | |
Collapse
|
38
|
Baumann BC, Forte P, Hawley RJ, Rieben R, Schneider MKJ, Seebach JD. Lack of Galactose-α-1,3-Galactose Expression on Porcine Endothelial Cells Prevents Complement-Induced Lysis but Not Direct Xenogeneic NK Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2004; 172:6460-7. [PMID: 15128838 DOI: 10.4049/jimmunol.172.10.6460] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.
Collapse
MESH Headings
- Animals
- Antibodies, Heterophile/metabolism
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antigens, Heterophile/immunology
- Antigens, Heterophile/physiology
- Binding Sites, Antibody/genetics
- Cell Adhesion/genetics
- Cell Adhesion/immunology
- Cell Line
- Cell Line, Transformed
- Clone Cells
- Complement System Proteins/physiology
- Cytotoxicity, Immunologic/genetics
- Disaccharides/deficiency
- Disaccharides/genetics
- Disaccharides/immunology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Humans
- Immune Tolerance/genetics
- Killer Cells, Natural/immunology
- Stress, Mechanical
- Swine
Collapse
Affiliation(s)
- Bettina C Baumann
- Department of Internal Medicine, Laboratory for Transplantation Immunology, University Hospital, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Michael X Pham
- Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94304-5406, USA.
| | | | | |
Collapse
|
40
|
Piedrahita JA, Mir B. Cloning and transgenesis in mammals: implications for xenotransplantation. Am J Transplant 2004; 4 Suppl 6:43-50. [PMID: 14871273 DOI: 10.1111/j.1600-6135.2004.0344.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Availability of suitable organs for transplantation remains of major concern and projections indicate that the problem will continue to increase. Therefore, alternatives to the use of human organs for transplantation, continue to be explored including use of stem cells, artificial organs, and organs from other species (xenotransplantation). In xenotransplantation, the species of choice remains the pig due to its physiological similarities to humans, reduced costs, ease of manipulation, and reduced ethical concerns to its use. However, in order to develop pig organs that are suitable for xenotransplantation, complex genetic modification need to be undertaken. These modifications require the introduction of precise genetic changes into the pig that can only be accomplished at this time using somatic cell nuclear transfer. We cover in this review advances in transgenic manipulation and cloning in swine and how the development of these two technologies is critical to the eventual utilization of the pig as a human organ donor.
Collapse
Affiliation(s)
- Jorge A Piedrahita
- Department of Molecular Biomedical Sciences, College Of Veterinary Medicine, North Carolina State University, USA.
| | | |
Collapse
|
41
|
Chung TW, Kim KS, Kim CH. Reduction of the Gal-alpha1,3-Gal epitope of mouse endothelial cells by transfection with the N-acetylglucosaminyltransferase III gene. Mol Cells 2003; 16:368-376. [PMID: 14744028 DOI: 10.1016/s1016-8478(23)13814-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
In order to prevent hyperacute rejection in pig-to-human xenotransplantation, it would be very useful to be able to down-regulate the Gal alpha1-3 Galbeta 1-4 GlcNAc-R (alpha-Gal epitope) in mouse and swine tissues. When the beta-D-mannoside beta-1,4-N-acetylglucosaminyl-transferase III (GnT-III) gene was introduced into mouse aorta endothelial cells (MEC) their susceptibility to complement-mediated cell lysis by normal human serum (NHS) was reduced. Expression of GnT-III also suppressed the antigenicity of MEC to human natural antibodies as shown by binding of Griffonia simplicifolia 1 isolectin (GS1B4 lectin) to the alpha-Gal epitope. Western blot analysis indicated that the reactivity of the glycoproteins of the transfectants to NHS and GSIB4 lectin was reduced to approximately the same extent. Thus GnT-III, a key enzyme involved in the formation of branched N-linked sugars, reduces the expression of xenoantigens, suggesting that this approach may be of value in clinical xenotransplantation.
Collapse
Affiliation(s)
- Tae-Wook Chung
- National Research Laboratory for Glycobiology, Korean Ministry of Science and Technology, Department of Biochemistry and Molecular Biology, Dongguk University College of Oriental Medicine, Kyungju 780-714, Korea
| | | | | |
Collapse
|
42
|
Chung TW, Kim KS, Kang SK, Lee JW, Song EY, Chung TH, Yeom YI, Kim CH. Remodeling of the major mouse xenoantigen, Galalpha1-3Galbeta1-4GlcNAc-R, by N-acetylglucosaminyltransferase-III. Mol Cells 2003; 16:343-353. [PMID: 14744025 DOI: 10.1016/s1016-8478(23)13811-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
beta-D-Mannoside beta-1,4-N-acetylglucosaminyltransferase III (GnT-III) catalyses the attachment of an N-acetylglucosamine (GlcNAc) residue to mannose in the beta(1-4) configuration in N-glycans, and forms a bisecting GlcNAc. We have generated transgenic mice that contain the human GnT-III gene under the control of the mouse albumin enhancer/promoter [Lee et al., (2003)]. Overexpression of this gene in mice reduced the antigenicity of N-glycans to human natural antibodies, especially in the case of the alpha-Gal epitope, Galalpha1-3Galbeta1-4GlcNAc-R. Study of endothelial cells from the GnT-III transgenic mice revealed a significant reduction in antigenicity, and a dramatic decrease in both complement- and natural killer cell-mediated mouse cell lysis. Changes in the enzymatic activities of other glycosyltransferases, such as alpha1,3-galactosyltransferase, and alpha-6-D-mannoside beta-1,6 N-acetylglucosaminyltransferase V, did not point to any interaction between GnT-III and these enzymes in the transgenic mice, suggesting that this approach may be useful in clinical xenotransplantation.
Collapse
Affiliation(s)
- Tae-Wook Chung
- National Research Laboratory for Glycobiology, Korean Ministry of Science and Technology, Department of Biochemistry and Molecular Biology, Dongguk University COM, Kyungju 780-714, Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Radtke C, Akiyama Y, Brokaw J, Lankford KL, Wewetzer K, Fodor WL, Kocsis JD. Remyelination of the nonhuman primate spinal cord by transplantation of H-transferase transgenic adult pig olfactory ensheathing cells. FASEB J 2003; 18:335-7. [PMID: 14657003 PMCID: PMC2605365 DOI: 10.1096/fj.03-0214fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Olfactory ensheathing cells (OECs) have been shown to mediate remyelination and to stimulate axonal regeneration in a number of in vivo rodent spinal cord studies. However, whether OECs display similar properties in the primate model has not been tested so far. In the present study, we thus transplanted highly-purified OECs isolated from transgenic pigs expressing the alpha1,2 fucosyltransferase gene (H-transferase or HT) gene into a demyelinated lesion of the African green monkey spinal cord. Four weeks posttransplantation, robust remyelination was found in 62.5% of the lesion sites, whereas there was virtually no remyelination in the nontransplanted controls. This together with the immunohistochemical demonstration of the grafted cells within the lesioned area confirmed that remyelination was indeed achieved by OECs. Additional in vitro assays demonstrated 1) that the applied cell suspension consisted of >98% OECs, 2) that the majority of the cells expressed the transgene, and 3) that expression of the HT gene reduced complement activation more than twofold compared with the nontransgenic control. This is the first demonstration that xenotransplantation of characterized OECs into the primate spinal cord results in remyelination.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
- CTR. Anatomy, Hannover Medical School, Hannover, Germany
| | - Yukinori Akiyama
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| | - Jane Brokaw
- Alexion Pharmaceuticals Inc., Cheshire, Connecticut 06410
| | - Karen L. Lankford
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| | | | | | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| |
Collapse
|
44
|
Fodor WL. Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Reprod Biol Endocrinol 2003; 1:102. [PMID: 14614775 PMCID: PMC293418 DOI: 10.1186/1477-7827-1-102] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 11/13/2003] [Indexed: 01/22/2023] Open
Abstract
The field of Regenerative Biology as it applies to Regenerative Medicine is an increasingly expanding area of research with hopes of providing therapeutic treatments for diseases and/or injuries that conventional medicines and even new biologic drug therapies cannot effectively treat. Extensive research in the area of Regenerative Medicine is focused on the development of cells, tissues and organs for the purpose of restoring function through transplantation. The general belief is that replacement, repair and restoration of function is best accomplished by cells, tissues or organs that can perform the appropriate physiologic/metabolic duties better than any mechanical device, recombinant protein therapeutic or chemical compound. Several strategies are currently being investigated and include, cell therapies derived from autologous primary cell isolates, cell therapies derived from established cell lines, cell therapies derived from a variety of stem cells, including bone marrow/mesenchymal stem cells, cord blood stem cells, embryonic stem cells, as well as cells tissues and organs from genetically modified animals. This mini-review is not meant to be exhaustive, but aims to highlight clinical applications for the four areas of research listed above and will address a few key advances and a few of the hurdles yet to be overcome as the technology and science improve the likelihood that Regenerative Medicine will become clinically routine.
Collapse
Affiliation(s)
- William L Fodor
- Center for Regenerative Biology and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06250-4243, USA.
| |
Collapse
|
45
|
Ramsoondar JJ, Macháty Z, Costa C, Williams BL, Fodor WL, Bondioli KR. Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol Reprod 2003; 69:437-45. [PMID: 12672664 DOI: 10.1095/biolreprod.102.014647] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The production of genetically engineered pigs as xenotransplant donors aims to solve the severe shortage of organs for transplantation in humans. The first barrier to successful xenotransplantation is hyperacute rejection (HAR). HAR is a rapid and massive humoral immune response directed against the pig carbohydrate Galalpha 1,3-Gal epitope, which is synthesized by alpha 1,3-galactosyltransferase (alpha1,3-GT). The Galalpha 1,3-Gal antigen also contributes to subsequent acute vascular rejection events. Genetic modifications of donor pigs transgenic for human complement regulatory proteins or different glycosyltransferases to downregulate Galalpha 1,3-Gal expression have been shown to significantly delay xenograft rejection. However, the complete removal of the Galalpha 1,3-Gal antigen is the most attractive option. In this study, the 5' end of the alpha 1,3-GT gene was efficiently targeted with a nonisogenic DNA construct containing predominantly intron sequences and a Kozak translation initiation site to initiate translation of the neomycin resistance reporter gene. We developed two novel polymerase chain reaction screening methods to detect and confirm the targeted G418-resistant clones. This is the first study to use Southern blot analysis to demonstrate the disruption of the alpha 1,3-GT gene in somatic HT-transgenic pig cells before they were used for nuclear transfer. Transgenic male pigs were produced that possess an alpha 1,3-GT knockout allele and express a randomly inserted human alpha 1,2-fucosylosyltransferase (HT) transgene. The generation of homozygous alpha 1,3-GT knockout pigs with the HT-transgenic background is underway and will be unique. This approach intends to combine the alpha 1,3-GT knockout genotype with a ubiquitously expressed fucosyltransferase transgene producing the universally tolerated H antigen. This approach may prove to be more effective than the null phenotype alone in overcoming HAR and delayed xenograft rejection.
Collapse
|
46
|
Miyagawa S, Nakai R, Matsunami K, Kusama T, Shirakura R. Co-effect of HLA-G1 and glycosyltransferases in reducing NK cell-mediated pig endothelial cell lysis. Transpl Immunol 2003; 11:147-53. [PMID: 12799197 DOI: 10.1016/s0966-3274(02)00151-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural killer (NK) cells play an important role in xenograft rejection. The aim of this study was to evaluate the co-effect of human leukocyte antigen (HLA)-G1 expression and the remodeling of glycoantigens such as the alpha-Gal epitope, Galalpha1,3Galbeta1,4GlcNAc-R, by the introduction of glycosyltransferase genes related to NK cell-mediated direct cytotoxicity. Human peripheral blood mononuclear cells or an NK-like cell line, YT cells, was used as an effector and pig endothelial cells (PEC) as the target. A PEC transfectant with HLA-G1 was first prepared by the transfection of HLA-G1 and human beta2 microglobulin. Several new transfectants were then established by the transfection of glycosyltransferase to the HLA-G1 transfectant. The effect of HLA-G1 on NK cell-mediated PEC lysis was lower than that by the glycosyltransferases. Therefore, in the case of the co-transfectants except for HLA-G1+alpha2,6sialyltransferase, such as HLA-G1+N-acetylglucosaminyltransferase-III and HLA-G1+alpha1,2fucosyltransferase, the effect of HLA-G1 expression on NK-mediated killing appeared to be accounted for by the transfected glycosyltransferase activities and the reduced alpha-Gal expression on the cell surface. However, these transfectants showed significant reductions in direct NK cell-mediated cytotoxicity, compared with the single HLA-G1 transfectant. The results herein suggest that a combination of HLA-G1 and glycosyltransferases has considerable potential for the downregulation of NK cell-mediated cytolysis.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Division of Organ Transplantation, Department of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | | | | | | | | |
Collapse
|
47
|
Pizzolato MC, Fodor WL. An engineered bifunctional recombinant molecule that regulates humoral and cellular effector functions of the immune system. Transplantation 2003; 75:542-9. [PMID: 12605124 DOI: 10.1097/01.tp.0000048492.91165.fc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Humoral and cellular defense mechanisms mediate the rejection of transplanted cells, tissues, and organs after allogeneic or xenogeneic transplantation. Inhibition of complement and T-cell costimulation are strategies aimed at increasing transplant survival. METHODS Engineered novel fusion proteins that contain the functional domains of human CD152 (hCTLA4) or porcine CD152 (pCD152) and human CD59 (hCD152-hCD59, pCD152-hCD59) were developed to form bifunctional chimeric proteins that retain the effector functions of both moieties. Porcine aortic endothelial cells and murine Balb/3T3 cells were transduced or transfected to express the novel fusion proteins. RESULTS Fluorescence-activated cell sorter analysis of hCD152-hCD59 transduced primary porcine aortic endothelial cells or hCD152-hCD59 and pCD152-hCD59 transfected Balb/3T3 cells determined that the molecules were expressed on the cell surface, and that they retained conformational epitopes. We demonstrate that hCD152-hCD59 and pCD152-hCD59 chimeric proteins inhibit complement-mediated cell lysis. In addition, hCD152-hCD59 or pCD152-hCD59 expression resulted in a significant reduction in T-cell activation as the result of CD152 engagement of porcine CD86 or murine CD80 in when Jurkat cells were cocultured with the hCD152-hCD59 or pCD152-hCD59 expressing cells. Antibody-blocking experiments or phosphatidylinositol phospholipase C removal of the glycosyl-phosphatidylinositol-linked molecules resulted in increased serum-mediated cytolysis and eliminated the costimulatory blockade. CONCLUSIONS These data illustrate that a single molecule can confer resistance to humoral and cellular immune attack.
Collapse
|
48
|
Cicchetti F, Fodor W, Deacon TW, van Horne C, Rollins S, Burton W, Costantini LC, Isacson O. Immune parameters relevant to neural xenograft survival in the primate brain. Xenotransplantation 2003; 10:41-9. [PMID: 12535224 DOI: 10.1034/j.1399-3089.2003.01130.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The lack of supply and access to human tissue has prompted the development of xenotransplantation as a potential clinical modality for neural cell transplantation. The goal of the present study was to achieve a better understanding of the immune factors involved in neural xenograft rejection in primates. Initially, we quantified complement mediated cell lysis of porcine fetal neurons by primate serum and demonstrated that anti-C5 antibody treatment inhibited cell death. We then developed an immunosuppression protocol that included in vivo anti-C5 monoclonal antibody treatment, triple drug therapy (cyclosporine, methylprednisolone, azathioprine) and donor tissue derived from CD59 or H-transferase transgenic pigs and applied it to pig-to-primate neural cell transplant models. Pre-formed alphaGal, induced alphaGal and primate anti-mouse antibody (PAMA) titers were monitored to assess the immune response. Four primates were transplanted. The three CD59 neural cell recipients showed an induced anti-alphaGal response, whereas the H-transferase neural cell recipient exhibited consistently low anti-alphaGal titers. Two of these recipients contained surviving grafts as detected by immunohistochemistry using selected neural markers. Graft survival correlated with high dose cyclosporine treatment, complete complement blockade and the absence of an induced PAMA response to the murine anti-C5 monoclonal antibodies.
Collapse
Affiliation(s)
- F Cicchetti
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Prather RS, Hawley RJ, Carter DB, Lai L, Greenstein JL. Transgenic swine for biomedicine and agriculture. Theriogenology 2003; 59:115-23. [PMID: 12499023 DOI: 10.1016/s0093-691x(02)01263-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Initial technologies for creating transgenic swine only permitted random integration of the construct. However, by combining the technology for homologous recombination in fetal somatic cells with that of nuclear transfer (NT), it is now possible to create specific modifications to the swine genome. The first such example is that of knocking out a gene that is responsible for hyperacute rejection (HAR) when organs from swine are transferred to primates. Because swine are widely used as models of human diseases, there are opportunities for genetic modification to alter these models or to create additional models of human disease. Unfortunately, some of the offspring resulting from NT have abnormal phenotypes. However, it appears that these abnormal phenotypes are a result of epigenetic modifications and, thus, are not transmitted to the offspring of the clones. Although the technique of producing animals with specific genetic modifications by NT has been achieved, improvements to the NT technique as well as improvements in the culture conditions for somatic cells and the techniques for genetic modification are still needed.
Collapse
Affiliation(s)
- R S Prather
- Department of Animal Sciences, University of Missouri-Columbia, 920 East Campus Drive, Columbia, MO 65211-5300, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Treatment of liver disease has been greatly improved by the advent and evolution of liver transplantation. However, as demand for donor organs continues to increase beyond their availability, the need for alternative liver therapies is clear. Several approaches including extracorporeal devices, cell transplantation, and tissue-engineered constructs have been proposed as potential adjuncts or even replacements for transplantation. Simultaneously, experience from the liver biology community have provided valuable insight into tissue morphogenesis and in vitro stabilization of the hepatocyte phenotype. The next generation of cellular therapies must therefore consider incorporating cell sources and cellular microenvironments that provide both a large population of cells and strategies to maintain liver-specific functions over extended time frames. As cell-based therapies evolve, their success will require contribution from many diverse disciplines including regenerative medicine, developmental biology, and transplant medicine.
Collapse
Affiliation(s)
- Jared W Allen
- Microscale Tissue Engineering Laboratory, Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|