1
|
Hansell CE, Aneis HA, Kitsios GD, Bain WG, Zhao Y, Suber TL, Evankovich JW, Sharma L, Ramakrishnan SK, Prendergast NT, Hensley MK, Malik S, Petro N, Patel JJ, Nouraie SM, Dela Cruz CS, Zhang Y, McVerry BJ, Shah FA. Glucagon-Like Peptide-1 Is Prognostic of Mortality in Acute Respiratory Failure. Crit Care Explor 2025; 7:e1247. [PMID: 40126931 PMCID: PMC11936568 DOI: 10.1097/cce.0000000000001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVES The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) have therapeutic effects in diabetes mellitus. Prior clinical studies suggest incretins are prognostic of adverse outcomes in critical illness. We investigated whether incretin levels indicate disease severity and clinical outcomes in patients with acute respiratory failure, a common cause of critical illness. DESIGN Retrospective cohort study. SETTING ICUs in UPMC Health Systems hospitals within Western Pennsylvania. PATIENTS Two hundred ninety-seven critically ill adults with acute respiratory failure. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We measured GLP-1 and GIP levels in baseline samples collected at the time of study enrollment. We compared incretin levels across subgroups differing by severity of illness and investigated associations between incretins and markers of systemic host responses and intestinal permeability. In our primary analysis, we tested the association of each incretin level with 90-day mortality by logistic regression in unadjusted analyses and in analyses adjusted for age, Sequential Organ Failure Assessment score, and circulating interleukin-6 levels. GLP-1 levels were higher in nonsurvivors and patients with or at-risk for acute respiratory distress syndrome compared to those intubated for airway protection. GLP-1 levels also positively correlated with systemic immune response biomarkers but not with markers of intestinal permeability. GLP-1 levels positively correlated with mortality in unadjusted (odds ratio, 1.99 [1.55-2.56]; p < 0.01) and adjusted (2.02 [1.23-3.31]; p < 0.01) analyses. GIP levels were not associated with mortality or with host response biomarkers. CONCLUSIONS GLP-1 but not GIP levels were positively associated with systemic inflammation and mortality in critically ill patients with acute respiratory failure. Increased circulating GLP-1 levels may serve as prognostic biomarkers to identify patients who are likely to have worse outcomes.
Collapse
Affiliation(s)
- Cole E. Hansell
- Department of Medicine, UPMC Presbyterian-Shadyside Hospitals, Pittsburgh, PA
| | - Hamam A. Aneis
- Department of Medicine, UPMC McKeesport Hospital, Pittsburgh, PA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| | - Yanwu Zhao
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tomeka L. Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - John W. Evankovich
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Aging Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | | | - Niall T. Prendergast
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Matthew K. Hensley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Shehryar Malik
- Department of Medicine, UPMC Mercy Hospital, Pittsburgh, PA
| | - Nancy Petro
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Jayshil J. Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Charles S. Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Faraaz A. Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| |
Collapse
|
2
|
Smit MR, Reddy K, Munshi L, Bos LDJ. Toward Precision Medicine in Respiratory Failure. Crit Care Med 2025; 53:e656-e664. [PMID: 39728511 DOI: 10.1097/ccm.0000000000006559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Marry R Smit
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kiran Reddy
- Intensive Care, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Millar JE, Reddy K, Bos LDJ. Future Directions in Therapies for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:943-951. [PMID: 39443010 DOI: 10.1016/j.ccm.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is caused by a complex interplay among hyperinflammation, endothelial dysfunction, and alveolar epithelial injury. Targeted treatments toward the underlying pathways have been unsuccessful in unselected patient populations. The first reliable biological subphenotypes reflective of these biological disease states have been identified in the past decade. Subphenotype targeted intervention studies are needed to advance the pharmacologic treatment of ARDS.
Collapse
Affiliation(s)
- Jonathan E Millar
- Baillie-Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, The Roslin Institute, Easter Bush Campus, Midlothian, Edinburgh EH25 9RG, UK; Department of Critical Care, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kiran Reddy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, University Road, Belfast BT7 1NN, UK
| | - Lieuwe D J Bos
- Intensive Care Department, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
4
|
Leonard J, Sinha P. Precision Medicine in Acute Respiratory Distress Syndrome: Progress, Challenges, and the Road ahead. Clin Chest Med 2024; 45:835-848. [PMID: 39443001 PMCID: PMC11507056 DOI: 10.1016/j.ccm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Several novel high-dimensional biologic measurements are increasingly being applied to biomedical sciences. Acute respiratory distress syndrome (ARDS) is a theoretically fertile ground for such approaches. Not only are these biologic and analytic tools available to better understand ARDS but also arguably, simpler approaches such as respiratory physiology has been vastly underutilized as a means of delivering precision-based care in the field. Here we review the progress made in ARDS toward discovering biologically homogeneous phenotypes, treatment responsive subgroups, the challenges to implement these discoveries at the bedside, and the road ahead that will enable precision medicine in ARDS.
Collapse
Affiliation(s)
- Jennifer Leonard
- Department of Trauma and Acute Care Surgery, Washington University, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA; Division of Critical Care, Department of Anesthesia, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA.
| |
Collapse
|
5
|
Moale AC, Nouraie SM, Zia H, Schaefer C, Barbash IJ, White DB, McVerry BJ, Kitsios GD. Association of Hyperinflammatory Subphenotype With Code Status De-Escalation in Patients With Acute Respiratory Failure. CHEST CRITICAL CARE 2024; 2:100098. [PMID: 39741967 PMCID: PMC11687360 DOI: 10.1016/j.chstcc.2024.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Amanda C Moale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine (A. C. M., S. M. N., C. S., I. J. B., B. J. M., and G. D. K.), University of Pittsburgh School of Medicine; the Department of Critical Care Medicine (I. J. B., D. B. W., and B. J. M.), University of Pittsburgh School of Medicine; and the Department of Medicine (H. Z.), University of Kentucky
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine (A. C. M., S. M. N., C. S., I. J. B., B. J. M., and G. D. K.), University of Pittsburgh School of Medicine; the Department of Critical Care Medicine (I. J. B., D. B. W., and B. J. M.), University of Pittsburgh School of Medicine; and the Department of Medicine (H. Z.), University of Kentucky
| | - Haris Zia
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine (A. C. M., S. M. N., C. S., I. J. B., B. J. M., and G. D. K.), University of Pittsburgh School of Medicine; the Department of Critical Care Medicine (I. J. B., D. B. W., and B. J. M.), University of Pittsburgh School of Medicine; and the Department of Medicine (H. Z.), University of Kentucky
| | - Caitlin Schaefer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine (A. C. M., S. M. N., C. S., I. J. B., B. J. M., and G. D. K.), University of Pittsburgh School of Medicine; the Department of Critical Care Medicine (I. J. B., D. B. W., and B. J. M.), University of Pittsburgh School of Medicine; and the Department of Medicine (H. Z.), University of Kentucky
| | - Ian J Barbash
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine (A. C. M., S. M. N., C. S., I. J. B., B. J. M., and G. D. K.), University of Pittsburgh School of Medicine; the Department of Critical Care Medicine (I. J. B., D. B. W., and B. J. M.), University of Pittsburgh School of Medicine; and the Department of Medicine (H. Z.), University of Kentucky
| | - Douglas B White
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine (A. C. M., S. M. N., C. S., I. J. B., B. J. M., and G. D. K.), University of Pittsburgh School of Medicine; the Department of Critical Care Medicine (I. J. B., D. B. W., and B. J. M.), University of Pittsburgh School of Medicine; and the Department of Medicine (H. Z.), University of Kentucky
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine (A. C. M., S. M. N., C. S., I. J. B., B. J. M., and G. D. K.), University of Pittsburgh School of Medicine; the Department of Critical Care Medicine (I. J. B., D. B. W., and B. J. M.), University of Pittsburgh School of Medicine; and the Department of Medicine (H. Z.), University of Kentucky
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine (A. C. M., S. M. N., C. S., I. J. B., B. J. M., and G. D. K.), University of Pittsburgh School of Medicine; the Department of Critical Care Medicine (I. J. B., D. B. W., and B. J. M.), University of Pittsburgh School of Medicine; and the Department of Medicine (H. Z.), University of Kentucky
| |
Collapse
|
6
|
Nath S, Qurashi H, Kitsios GD, Bain W, Aneis H, Suber T, Prendergast N, Hensley M, Schaefer C, Zhang Y, Bon J, McVerry BJ, Evankovich J, Shah FA. Clinical and biologic profiles of patients with acute respiratory distress syndrome by prevalence of chronic obstructive pulmonary disease or emphysema; a cohort study. Respir Res 2024; 25:400. [PMID: 39516808 PMCID: PMC11549746 DOI: 10.1186/s12931-024-03027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung injury. The impact of pre-existing chronic obstructive pulmonary disease (COPD) or emphysema on ARDS pathogenesis is not well characterized. METHODS Secondary analysis of ARDS patients enrolled in the Acute Lung Injury Registry and Biospecimen Repository at the University of Pittsburgh between June 2012 and September 2021. Patients were categorized into two mutually exclusive groups by the prevalence of COPD or emphysema at the time of ARDS diagnosis. The COPD/emphysema group comprised ARDS patients with radiological evidence of emphysema, chart diagnosis of COPD, or both. Demographics, lung mechanics, and clinical outcomes were obtained from the electronic medical record. Host-response biomarkers known to have validated associations with ARDS were previously measured in plasma and lower respiratory tract samples using a customized Luminex assay. Continuous and categorical variables were compared between groups with and without COPD/emphysema. RESULTS 217 patients with ARDS were included in the study, 57 (27%) had COPD/emphysema. Patients with COPD/emphysema were older (median 62 [interquartile range 55-69] versus 53 [41-64] years, p < 0.01), more likely to be male (62% vs. 44%, p = 0.02) and had a higher prevalence of congestive heart failure (25% vs. 4%, p < 0.01) compared to patients without COPD/emphysema. Baseline demographics, laboratory parameters, and mechanical ventilatory characteristics were otherwise similar between the two groups. No difference in 90-day mortality was observed between groups; however, patients with COPD/emphysema had shorter duration of intensive care unit (ICU) stay (median 10 [7-18] versus 16 [9-28] days, p = 0.04) and shorter duration of mechanical ventilation (median 7 [4-16] vs. 12 [6-20] days, p = 0.01). Host response biomarkers in serum and lower respiratory tract samples did not significantly differ between groups. CONCLUSION ARDS patients with COPD or emphysema had similar respiratory mechanics, host response biomarker profiles, and mortality compared to those without COPD or emphysema but with a shorter median duration of mechanical ventilation and ICU length of stay. Future studies should address differences in clinical and biological responses by disease severity, and should investigate the impact of severity of COPD and emphysema on mechanical ventilation and targeted therapeutic strategies in ARDS. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sridesh Nath
- Department of Medicine, Division of Pulmonary, and Critical Care Medicine, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hafiz Qurashi
- Department of Medicine, UPMC Health Systems, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Bain
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Hamam Aneis
- Department of Medicine, UPMC McKeesport Hospital, Pittsburgh, PA, USA
| | - Tomeka Suber
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Niall Prendergast
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Hensley
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin Schaefer
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Bon
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Bryan J McVerry
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Evankovich
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faraaz Ali Shah
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Nishikimi M, Ohshimo S, Bellani G, Fukumoto W, Anzai T, Liu K, Ishii J, Kyo M, Awai K, Takahashi K, Shime N. Identification of novel sub-phenotypes of severe ARDS requiring ECMO using latent class analysis. Crit Care 2024; 28:343. [PMID: 39449081 PMCID: PMC11515347 DOI: 10.1186/s13054-024-05143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Sub-phenotyping of acute respiratory distress syndrome (ARDS) could be useful for evaluating the severity of ARDS or predicting its responsiveness to given therapeutic strategies, but no studies have yet investigated the heterogeneity of patients with severe ARDS requiring veno-venous extracorporeal membrane oxygenation (V-V ECMO). METHODS We conducted this retrospective multicenter observational study in adult patients with severe ARDS treated by V-V ECMO. We performed latent class analysis (LCA) for identifying sub-phenotypes of severe ARDS based on the radiological and clinical findings at the start of ECMO support. Multivariate Cox regression analysis was conducted to investigate the differences in mortality and association between the PEEP setting of ≥ 10 cmH2O and mortality by the sub-phenotypes. RESULTS We identified three sub-phenotypes from analysis of the data of a total of 544 patients with severe ARDS treated by V-V ECMO, as follows: Dry type (n = 185; 34%); Wet type (n = 169; 31%); and Fibrotic type (n = 190; 35%). The 90-days in-hospital mortality risk was higher in the patients with the Fibrotic type than in those with the Dry type (adjusted hazard ratio [95% confidence interval] 1.75 [1.10-2.79], p = 0.019) or the Wet type (1.50 [1.02-2.23], p = 0.042). The PEEP setting of ≥ 10 cmH2O during the first 3 days of ECMO decreased the 90-days in-hospital mortality risk only in patients with the Wet type, and not in those with the Dry or Fibrotic type. A significant interaction effect was observed between the Wet type and the PEEP setting of ≥ 10 cmH2O in relation to the 90-day in-hospital mortality (pinteraction = 0.036). CONCLUSIONS The three sub-phenotypes showed different mortality rates and different relationships between higher PEEP settings in the early phase of V-V ECMO and patient outcomes. Our data suggest that we may need to change our management approach to patients with severe ARDS during V-V ECMO according to their clinical sub-phenotype.
Collapse
Affiliation(s)
- Mitsuaki Nishikimi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Giacomo Bellani
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento Largo Medaglie d'Oro Trento, Trento, Italy
| | - Wataru Fukumoto
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tatsuhiko Anzai
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Non-Profit Organization ICU Collaboration Network (ICON), Tokyo, Japan
| | - Junki Ishii
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Michihito Kyo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Kunihiko Takahashi
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
8
|
Tunstead C, Volkova E, Dunbar H, Hawthorne IJ, Bell A, Crowe L, Masterson JC, Dos Santos CC, McNicholas B, Laffey JG, English K. The ARDS microenvironment enhances MSC-induced repair via VEGF in experimental acute lung inflammation. Mol Ther 2024; 32:3422-3432. [PMID: 39108095 PMCID: PMC11489539 DOI: 10.1016/j.ymthe.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Clinical trials investigating the potential of mesenchymal stromal cells (MSCs) for the treatment of inflammatory diseases, such as acute respiratory distress syndrome (ARDS), have been disappointing, with less than 50% of patients responding to treatment. Licensed MSCs show enhanced therapeutic efficacy in response to cytokine-mediated activation signals. There are two distinct sub-phenotypes of ARDS: hypo- and hyper-inflammatory. We hypothesized that pre-licensing MSCs in a hyper-inflammatory ARDS environment would enhance their therapeutic efficacy in acute lung inflammation (ALI). Serum samples from patients with ARDS were segregated into hypo- and hyper-inflammatory categories based on interleukin (IL)-6 levels. MSCs were licensed with pooled serum from patients with hypo- or hyper-inflammatory ARDS or healthy serum controls. Our findings show that hyper-inflammatory ARDS pre-licensed MSC conditioned medium (MSC-CMHyper) led to a significant enrichment in tight junction expression and enhanced barrier integrity in lung epithelial cells in vitro and in vivo in a vascular endothelial growth factor (VEGF)-dependent manner. Importantly, while both MSC-CMHypo and MSC-CMHyper significantly reduced IL-6 and tumor necrosis factor alpha (TNF-α) levels in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharide (LPS)-induced ALI mice, only MSC-CMHyper significantly reduced lung permeability and overall clinical outcomes including weight loss and clinical score. Thus, the hypo- and hyper-inflammatory ARDS environments may differentially influence MSC cytoprotective and immunomodulatory functions.
Collapse
Affiliation(s)
- Courteney Tunstead
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Evelina Volkova
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Alison Bell
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - Louise Crowe
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Allergy, Inflammation & Remodelling Research Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Joanne C Masterson
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Allergy, Inflammation & Remodelling Research Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Claudia C Dos Santos
- Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada
| | - Bairbre McNicholas
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - John G Laffey
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - Karen English
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
9
|
Prendergast NT, Franz CA, Schaefer C, Covell NB, Balish K, Onyemekwu CA, Potter KM, Zhang Y, Bain WG, Shah FA, Nouraie SM, McVerry BJ, Kitsios GD, Girard TD. Inflammatory Subphenotype Is Associated with Acute Brain Dysfunction in Mechanically Ventilated Patients. Ann Am Thorac Soc 2024; 21:1329-1333. [PMID: 38935638 PMCID: PMC11376364 DOI: 10.1513/annalsats.202311-996rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
| | | | | | | | | | | | | | - Yingze Zhang
- University of PittsburghPittsburgh, Pennsylvania
| | - William G. Bain
- University of PittsburghPittsburgh, Pennsylvania
- VA Pittsburgh Healthcare SystemPittsburgh, Pennsylvania
| | - Faraaz A. Shah
- University of PittsburghPittsburgh, Pennsylvania
- VA Pittsburgh Healthcare SystemPittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
10
|
Gordon AC, Alipanah-Lechner N, Bos LD, Dianti J, Diaz JV, Finfer S, Fujii T, Giamarellos-Bourboulis EJ, Goligher EC, Gong MN, Karakike E, Liu VX, Lumlertgul N, Marshall JC, Menon DK, Meyer NJ, Munroe ES, Myatra SN, Ostermann M, Prescott HC, Randolph AG, Schenck EJ, Seymour CW, Shankar-Hari M, Singer M, Smit MR, Tanaka A, Taccone FS, Thompson BT, Torres LK, van der Poll T, Vincent JL, Calfee CS. From ICU Syndromes to ICU Subphenotypes: Consensus Report and Recommendations for Developing Precision Medicine in the ICU. Am J Respir Crit Care Med 2024; 210:155-166. [PMID: 38687499 PMCID: PMC11273306 DOI: 10.1164/rccm.202311-2086so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.
Collapse
Affiliation(s)
| | - Narges Alipanah-Lechner
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Departamento de Cuidados Intensivos, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | | | - Simon Finfer
- School of Public Health, Imperial College London, London, United Kingdom
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Tomoko Fujii
- Jikei University School of Medicine, Jikei University Hospital, Tokyo, Japan
| | | | - Ewan C. Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Ng Gong
- Division of Critical Care Medicine and
- Division of Pulmonary Medicine, Department of Medicine and Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Eleni Karakike
- Second Department of Critical Care Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vincent X. Liu
- Division of Research, Kaiser Permanente, Oakland, California
| | - Nuttha Lumlertgul
- Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - John C. Marshall
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David K. Menon
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth S. Munroe
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sheila N. Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- King’s College London, Guy’s & St Thomas’ Hospital, London, United Kingdom
| | - Hallie C. Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Anaesthesia and
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Edward J. Schenck
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Christopher W. Seymour
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | | | - Aiko Tanaka
- Department of Intensive Care, University of Fukui Hospital, Yoshida, Fukui, Japan
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fabio S. Taccone
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lisa K. Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, and
- Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Louis Vincent
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
11
|
Kitsios GD, Sayed K, Fitch A, Yang H, Britton N, Shah F, Bain W, Evankovich JW, Qin S, Wang X, Li K, Patel A, Zhang Y, Radder J, Dela Cruz C, Okin DA, Huang CY, Van Tyne D, Benos PV, Methé B, Lai P, Morris A, McVerry BJ. Longitudinal multicompartment characterization of host-microbiota interactions in patients with acute respiratory failure. Nat Commun 2024; 15:4708. [PMID: 38830853 PMCID: PMC11148165 DOI: 10.1038/s41467-024-48819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Critical illness can significantly alter the composition and function of the human microbiome, but few studies have examined these changes over time. Here, we conduct a comprehensive analysis of the oral, lung, and gut microbiota in 479 mechanically ventilated patients (223 females, 256 males) with acute respiratory failure. We use advanced DNA sequencing technologies, including Illumina amplicon sequencing (utilizing 16S and ITS rRNA genes for bacteria and fungi, respectively, in all sample types) and Nanopore metagenomics for lung microbiota. Our results reveal a progressive dysbiosis in all three body compartments, characterized by a reduction in microbial diversity, a decrease in beneficial anaerobes, and an increase in pathogens. We find that clinical factors, such as chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, are associated with specific patterns of dysbiosis. Interestingly, unsupervised clustering of lung microbiota diversity and composition by 16S independently predicted survival and performed better than traditional clinical and host-response predictors. These observations are validated in two separate cohorts of COVID-19 patients, highlighting the potential of lung microbiota as valuable prognostic biomarkers in critical care. Understanding these microbiome changes during critical illness points to new opportunities for microbiota-targeted precision medicine interventions.
Collapse
Affiliation(s)
- Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - John W Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Das S, Kaminski TW, Schlegel BT, Bain W, Hu S, Patel A, Kale SL, Chen K, Lee JS, Mallampalli RK, Kagan VE, Rajasundaram D, McVerry BJ, Sundd P, Kitsios GD, Ray A, Ray P. Neutrophils and galectin-3 defend mice from lethal bacterial infection and humans from acute respiratory failure. Nat Commun 2024; 15:4724. [PMID: 38830855 PMCID: PMC11148175 DOI: 10.1038/s41467-024-48796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.
Collapse
Affiliation(s)
- Sudipta Das
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tomasz W Kaminski
- VERSITI Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Sanmei Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Akruti Patel
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sagar L Kale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rama K Mallampalli
- Department of Medicine, The Ohio State University (OSU), Columbus, OH, 43210, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Prithu Sundd
- VERSITI Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Antcliffe DB, Mi Y, Santhakumaran S, Burnham KL, Prevost AT, Ward JK, Marshall TJ, Bradley C, Al-Beidh F, Hutton P, McKechnie S, Davenport EE, Hinds CJ, O'Kane CM, McAuley DF, Shankar-Hari M, Gordon AC, Knight JC. Patient stratification using plasma cytokines and their regulators in sepsis: relationship to outcomes, treatment effect and leucocyte transcriptomic subphenotypes. Thorax 2024; 79:515-523. [PMID: 38471792 PMCID: PMC11137467 DOI: 10.1136/thorax-2023-220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
RATIONALE Heterogeneity of the host response within sepsis, acute respiratory distress syndrome (ARDS) and more widely critical illness, limits discovery and targeting of immunomodulatory therapies. Clustering approaches using clinical and circulating biomarkers have defined hyper-inflammatory and hypo-inflammatory subphenotypes in ARDS associated with differential treatment response. It is unknown if similar subphenotypes exist in sepsis populations where leucocyte transcriptomic-defined subphenotypes have been reported. OBJECTIVES We investigated whether inflammatory clusters based on cytokine protein abundance were seen in sepsis, and the relationships with previously described transcriptomic subphenotypes. METHODS Hierarchical cluster and latent class analysis were applied to an observational study (UK Genomic Advances in Sepsis (GAinS)) (n=124 patients) and two clinical trial datasets (VANISH, n=155 and LeoPARDS, n=484) in which the plasma protein abundance of 65, 21, 11 circulating cytokines, cytokine receptors and regulators were quantified. Clinical features, outcomes, response to trial treatments and assignment to transcriptomic subphenotypes were compared between inflammatory clusters. MEASUREMENTS AND MAIN RESULTS We identified two (UK GAinS, VANISH) or three (LeoPARDS) inflammatory clusters. A group with high levels of pro-inflammatory and anti-inflammatory cytokines was seen that was associated with worse organ dysfunction and survival. No interaction between inflammatory clusters and trial treatment response was found. We found variable overlap of inflammatory clusters and leucocyte transcriptomic subphenotypes. CONCLUSIONS These findings demonstrate that differences in response at the level of cytokine biology show clustering related to severity, but not treatment response, and may provide complementary information to transcriptomic sepsis subphenotypes. TRIAL REGISTRATION NUMBER ISRCTN20769191, ISRCTN12776039.
Collapse
Affiliation(s)
- David Benjamin Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Centre for Perioperative and Critical Care Research, Imperial College Healthcare NHS Trust, London, UK
| | - Yuxin Mi
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Shalini Santhakumaran
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - A Toby Prevost
- Nightingale-Saunders Clinical Trials and Epidemiology Unit, King's College London, London, UK
| | - Josie K Ward
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Timothy J Marshall
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Central Clinical School Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Bradley
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Farah Al-Beidh
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Paula Hutton
- Adult Intensive Care Unit, John Radcliffe Hospital, Oxford, UK
| | | | | | - Charles J Hinds
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Daniel Francis McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
- Northern Ireland Clinical Trials Unit, Royal Hospitals, Belfast, UK
| | - Manu Shankar-Hari
- The Queen's Medical Research Institute, The University of Edinburgh College of Medicine and Veterinary Medicine, Edinburgh, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Centre for Perioperative and Critical Care Research, Imperial College Healthcare NHS Trust, London, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Shah FA, Bahudhanapati H, Jiang M, Tabary M, van der Geest R, Tolman NJ, Kochin M, Xiong Z, Al-Yousif N, Sayed K, Benos PV, Raffensperger K, Evankovich J, Neal MD, Snyder ME, Eickelberg O, Ray P, Dela Cruz C, Bon J, McVerry BJ, Straub AC, Jurczak MJ, Suber TL, Zhang Y, Chen K, Kitsios GD, Lee JS, Alder JK, Bain WG. Lung Epithelium Releases Growth Differentiation Factor 15 in Response to Pathogen-mediated Injury. Am J Respir Cell Mol Biol 2024; 70:379-391. [PMID: 38301257 PMCID: PMC11109583 DOI: 10.1165/rcmb.2023-0429oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.
Collapse
Affiliation(s)
- Faraaz A. Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | | | - Mao Jiang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | | | | | | | - Megan Kochin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Zeyu Xiong
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Nameer Al-Yousif
- Division of Pulmonary, Critical Care, and Sleep Medicine, MetroHealth Medical Center, Cleveland, Ohio
| | - Khaled Sayed
- Electrical & Computer Engineering and Computer Science Department, University of New Haven, West Haven, Connecticut
- Department of Epidemiology, University of Florida, Gainesville, Florida
| | | | | | - John Evankovich
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | | | - Mark E. Snyder
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | | | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Jessica Bon
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology and
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tomeka L. Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | | | - Janet S. Lee
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, Missouri
| | | | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Baedorf-Kassis E, Murn M, Dzierba AL, Serra AL, Garcia I, Minus E, Padilla C, Sarge T, Goodspeed VM, Matthay MA, Gong MN, Cook D, Loring SH, Talmor D, Beitler JR. Respiratory drive heterogeneity associated with systemic inflammation and vascular permeability in acute respiratory distress syndrome. Crit Care 2024; 28:136. [PMID: 38654391 PMCID: PMC11036740 DOI: 10.1186/s13054-024-04920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND In acute respiratory distress syndrome (ARDS), respiratory drive often differs among patients with similar clinical characteristics. Readily observable factors like acid-base state, oxygenation, mechanics, and sedation depth do not fully explain drive heterogeneity. This study evaluated the relationship of systemic inflammation and vascular permeability markers with respiratory drive and clinical outcomes in ARDS. METHODS ARDS patients enrolled in the multicenter EPVent-2 trial with requisite data and plasma biomarkers were included. Neuromuscular blockade recipients were excluded. Respiratory drive was measured as PES0.1, the change in esophageal pressure during the first 0.1 s of inspiratory effort. Plasma angiopoietin-2, interleukin-6, and interleukin-8 were measured concomitantly, and 60-day clinical outcomes evaluated. RESULTS 54.8% of 124 included patients had detectable respiratory drive (PES0.1 range of 0-5.1 cm H2O). Angiopoietin-2 and interleukin-8, but not interleukin-6, were associated with respiratory drive independently of acid-base, oxygenation, respiratory mechanics, and sedation depth. Sedation depth was not significantly associated with PES0.1 in an unadjusted model, or after adjusting for mechanics and chemoreceptor input. However, upon adding angiopoietin-2, interleukin-6, or interleukin-8 to models, lighter sedation was significantly associated with higher PES0.1. Risk of death was less with moderate drive (PES0.1 of 0.5-2.9 cm H2O) compared to either lower drive (hazard ratio 1.58, 95% CI 0.82-3.05) or higher drive (2.63, 95% CI 1.21-5.70) (p = 0.049). CONCLUSIONS Among patients with ARDS, systemic inflammatory and vascular permeability markers were independently associated with higher respiratory drive. The heterogeneous response of respiratory drive to varying sedation depth may be explained in part by differences in inflammation and vascular permeability.
Collapse
Affiliation(s)
- Elias Baedorf-Kassis
- Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Murn
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Amy L Dzierba
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
- Department of Pharmacy, New York-Presbyterian Hospital, New York, NY, USA
| | - Alexis L Serra
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Ivan Garcia
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Emily Minus
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Clarissa Padilla
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Todd Sarge
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Valerie M Goodspeed
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Michelle N Gong
- Department of Critical Care Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deborah Cook
- St. Joseph's Hospital and McMaster University, Hamilton, ON, Canada
| | - Stephen H Loring
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Talmor
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jeremy R Beitler
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA.
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
16
|
Patel BM, Reilly JP, Bhalla AK, Smith LS, Khemani RG, Jones TK, Meyer NJ, Harhay MO, Yehya N. Association between Age and Mortality in Pediatric and Adult Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2024; 209:871-878. [PMID: 38306669 PMCID: PMC10995578 DOI: 10.1164/rccm.202310-1926oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024] Open
Abstract
Rationale: The epidemiology, management, and outcomes of acute respiratory distress syndrome (ARDS) differ between children and adults, with lower mortality rates in children despite comparable severity of hypoxemia. However, the relationship between age and mortality is unclear.Objective: We aimed to define the association between age and mortality in ARDS, hypothesizing that it would be nonlinear.Methods: We performed a retrospective cohort study using data from two pediatric ARDS observational cohorts (n = 1,236), multiple adult ARDS trials (n = 5,547), and an adult observational ARDS cohort (n = 1,079). We aligned all datasets to meet Berlin criteria. We performed unadjusted and adjusted logistic regression using fractional polynomials to assess the potentially nonlinear relationship between age and 90-day mortality, adjusting for sex, PaO2/FiO2, immunosuppressed status, year of study, and observational versus randomized controlled trial, treating each individual study as a fixed effect.Measurements and Main Results: There were 7,862 subjects with median ages of 4 years in the pediatric cohorts, 52 years in the adult trials, and 61 years in the adult observational cohort. Most subjects (43%) had moderate ARDS by Berlin criteria. Ninety-day mortality was 19% in the pediatric cohorts, 33% in the adult trials, and 67% in the adult observational cohort. We found a nonlinear relationship between age and mortality, with mortality risk increasing at an accelerating rate between 11 and 65 years of age, after which mortality risk increased more slowly.Conclusions: There was a nonlinear relationship between age and mortality in pediatric and adult ARDS.
Collapse
Affiliation(s)
- Bhavesh M Patel
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
- Center for Translational Lung Biology, and
| | - Anoopindar K Bhalla
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, California; and
| | - Lincoln S Smith
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Robinder G Khemani
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, California; and
| | - Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
- Center for Translational Lung Biology, and
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
- Center for Translational Lung Biology, and
| | - Michael O Harhay
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nadir Yehya
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Sinha P, Neyton L, Sarma A, Wu N, Jones C, Zhuo H, Liu KD, Sanchez Guerrero E, Ghale R, Love C, Mick E, Delucchi KL, Langelier CR, Thompson BT, Matthay MA, Calfee CS. Molecular Phenotypes of Acute Respiratory Distress Syndrome in the ROSE Trial Have Differential Outcomes and Gene Expression Patterns That Differ at Baseline and Longitudinally over Time. Am J Respir Crit Care Med 2024; 209:816-828. [PMID: 38345571 PMCID: PMC10995566 DOI: 10.1164/rccm.202308-1490oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
Rationale: Two molecular phenotypes have been identified in acute respiratory distress syndrome (ARDS). In the ROSE (Reevaluation of Systemic Early Neuromuscular Blockade) trial of cisatracurium in moderate to severe ARDS, we addressed three unanswered questions: 1) Do the same phenotypes emerge in a more severe ARDS cohort with earlier recruitment; 2) Do phenotypes respond differently to neuromuscular blockade? and 3) What biological pathways most differentiate inflammatory phenotypes?Methods: We performed latent class analysis in ROSE using preenrollment clinical and protein biomarkers. In a subset of patients (n = 134), we sequenced whole-blood RNA using enrollment and Day 2 samples and performed differential gene expression and pathway analyses. Informed by the differential gene expression analysis, we measured additional plasma proteins and evaluated their abundance relative to gene expression amounts.Measurements and Main Results: In ROSE, we identified the hypoinflammatory (60.4%) and hyperinflammatory (39.6%) phenotypes with similar biological and clinical characteristics as prior studies, including higher mortality at Day 90 for the hyperinflammatory phenotype (30.3% vs. 61.6%; P < 0.0001). We observed no treatment interaction between the phenotypes and randomized groups for mortality. The hyperinflammatory phenotype was enriched for genes associated with innate immune response, tissue remodeling, and zinc metabolism at Day 0 and collagen synthesis and neutrophil degranulation at Day 2. Longitudinal changes in gene expression patterns differed dependent on survivorship. For most highly expressed genes, we observed correlations with their corresponding plasma proteins' abundance. However, for the class-defining plasma proteins in the latent class analysis, no correlation was observed with their corresponding genes' expression.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have different clinical, protein, and dynamic transcriptional characteristics. These findings support the clinical and biological potential of molecular phenotypes to advance precision care in ARDS.
Collapse
Affiliation(s)
- Pratik Sinha
- Division of Clinical and Translational Research, Division of Critical Care, Department of Anesthesia, Washington University School of Medicine, St. Louis, Missouri
| | - Lucile Neyton
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
| | - Aartik Sarma
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
| | - Nelson Wu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
| | - Chayse Jones
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
| | - Hanjing Zhuo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
| | - Kathleen D. Liu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Division of Nephrology, and
| | | | - Rajani Ghale
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Division of Infectious Diseases, Department of Medicine
| | | | - Eran Mick
- Division of Infectious Diseases, Department of Medicine
- Chan Zuckerberg Biohub, San Francisco, California; and
| | | | - Charles R. Langelier
- Division of Infectious Diseases, Department of Medicine
- Chan Zuckerberg Biohub, San Francisco, California; and
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael A. Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| |
Collapse
|
18
|
Kitsios GD, Bain W. "Now We Got Bad Blood": Beyond Phenotype Labels in an "Era" of Meta-omics in Critical Illness. Am J Respir Crit Care Med 2024; 209:772-774. [PMID: 38306578 PMCID: PMC10995563 DOI: 10.1164/rccm.202401-0004ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/04/2024] Open
Affiliation(s)
- Georgios D Kitsios
- School of Medicine University of Pittsburgh Pittsburgh, Pennsylvania
- University of Pittsburgh Medical Center Pittsburgh, Pennsylvania
| | - William Bain
- School of Medicine University of Pittsburgh Pittsburgh, Pennsylvania
- University of Pittsburgh Medical Center Pittsburgh, Pennsylvania
- Veterans Affairs Pittsburgh Healthcare System Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Al-Yousif N, Nouraie SM, Broerman MJ, Zhang Y, Suber TL, Evankovich J, Bain WG, Kitsios GD, McVerry BJ, Shah FA. Glucocorticoid use in acute respiratory failure from pulmonary causes and association with early changes in the systemic host immune response. Intensive Care Med Exp 2024; 12:24. [PMID: 38441708 PMCID: PMC10914652 DOI: 10.1186/s40635-024-00605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Glucocorticoids are commonly used in patients with or at-risk for acute respiratory distress syndrome (ARDS), but optimal use remains unclear despite well-conducted clinical trials. We performed a secondary analysis in patients previously enrolled in the Acute Lung Injury and Biospecimen Repository at the University of Pittsburgh. The primary aim of our study was to investigate early changes in host response biomarkers in response to real-world use of glucocorticoids in patients with acute respiratory failure due to ARDS or at-risk due to a pulmonary insult. Participants had baseline plasma samples obtained on study enrollment and on follow-up 3 to 5 days later to measure markers of innate immunity (IL-6, IL-8, IL-10, TNFr1, ST2, fractalkine), epithelial injury (sRAGE), endothelial injury (angiopoietin-2), and host response to bacterial infections (procalcitonin, pentraxin-3). In our primary analyses, we investigated the effect of receiving glucocorticoids between baseline and follow-up samples on host response biomarkers measured at follow-up by doubly robust inverse probability weighting analysis. In exploratory analyses, we examined associations between glucocorticoid use and previously characterized host response subphenotypes (hyperinflammatory and hypoinflammatory). RESULTS 67 of 148 participants (45%) received glucocorticoids between baseline and follow-up samples. Dose and type of glucocorticoids varied. Regimens that used hydrocortisone alone were most common (37%), and median daily dose was equivalent to 40 mg methylprednisolone (interquartile range: 21, 67). Participants who received glucocorticoids were more likely to be female, to be on immunosuppressive therapy at baseline, and to have higher baseline levels of ST-2, fractalkine, IL-10, pentraxin-3, sRAGE, and TNFr1. Glucocorticoid use was associated with decreases in IL-6 and increases in fractalkine. In exploratory analyses, glucocorticoid use was more frequent in participants in the hyperinflammatory subphenotype (58% vs 40%, p = 0.05), and was not associated with subphenotype classification at the follow-up time point (p = 0.16). CONCLUSIONS Glucocorticoid use varied in a cohort of patients with or at-risk for ARDS and was associated with early changes in the systemic host immune response.
Collapse
Affiliation(s)
- Nameer Al-Yousif
- Division of Pulmonary, Critical Care, and Sleep Medicine, MetroHealth Medical Center, Cleveland, OH, USA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Matthew J Broerman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Tomeka L Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - John Evankovich
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Aging Institute, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - William G Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Faraaz A Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA.
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA.
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Yehya N, Zinter MS, Thompson JM, Lim MJ, Hanudel MR, Alkhouli MF, Wong H, Alder MN, McKeone DJ, Halstead ES, Sinha P, Sapru A. Identification of molecular subphenotypes in two cohorts of paediatric ARDS. Thorax 2024; 79:128-134. [PMID: 37813544 PMCID: PMC10850835 DOI: 10.1136/thorax-2023-220130] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Two subphenotypes of acute respiratory distress syndrome (ARDS), hypoinflammatory and hyperinflammatory, have been reported in adults and in a single paediatric cohort. The relevance of these subphenotypes in paediatrics requires further investigation. We aimed to identify subphenotypes in two large observational cohorts of paediatric ARDS and assess their congruence with prior descriptions. METHODS We performed latent class analysis (LCA) separately on two cohorts using biomarkers as inputs. Subphenotypes were compared on clinical characteristics and outcomes. Finally, we assessed overlap with adult cohorts using parsimonious classifiers. FINDINGS In two cohorts from the Children's Hospital of Philadelphia (n=333) and from a multicentre study based at the University of California San Francisco (n=293), LCA identified two subphenotypes defined by differential elevation of biomarkers reflecting inflammation and endotheliopathy. In both cohorts, hyperinflammatory subjects had greater illness severity, more sepsis and higher mortality (41% and 28% in hyperinflammatory vs 11% and 7% in hypoinflammatory). Both cohorts demonstrated overlap with adult subphenotypes when assessed using parsimonious classifiers. INTERPRETATION We identified hypoinflammatory and hyperinflammatory subphenotypes of paediatric ARDS from two separate cohorts with utility for prognostic and potentially predictive, enrichment. Future paediatric ARDS trials should identify and leverage biomarker-defined subphenotypes in their analysis.
Collapse
Affiliation(s)
- Nadir Yehya
- Division of Pediatric Critical Care, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Matt S Zinter
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Jill M Thompson
- Division of Pediatric Critical Care, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle J Lim
- Department of Pediatrics, UC Davis, Davis, California, USA
| | - Mark R Hanudel
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| | - Mustafa F Alkhouli
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Hector Wong
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew N Alder
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Daniel J McKeone
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - E Scott Halstead
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Pratik Sinha
- Division of Clinical and Translational Research, Washington University School of Medicine, St. Louis, MO, USA
- Division of Critical Care, Department of Anesthesia, Washington University, St. Louis, MO, USA
| | - Anil Sapru
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
21
|
Bowman EML, Brummel NE, Caplan GA, Cunningham C, Evered LA, Fiest KM, Girard TD, Jackson TA, LaHue SC, Lindroth HL, Maclullich AMJ, McAuley DF, Oh ES, Oldham MA, Page VJ, Pandharipande PP, Potter KM, Sinha P, Slooter AJC, Sweeney AM, Tieges Z, Van Dellen E, Wilcox ME, Zetterberg H, Cunningham EL. Advancing specificity in delirium: The delirium subtyping initiative. Alzheimers Dement 2024; 20:183-194. [PMID: 37522255 PMCID: PMC10917010 DOI: 10.1002/alz.13419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Delirium, a common syndrome with heterogeneous etiologies and clinical presentations, is associated with poor long-term outcomes. Recording and analyzing all delirium equally could be hindering the field's understanding of pathophysiology and identification of targeted treatments. Current delirium subtyping methods reflect clinically evident features but likely do not account for underlying biology. METHODS The Delirium Subtyping Initiative (DSI) held three sessions with an international panel of 25 experts. RESULTS Meeting participants suggest further characterization of delirium features to complement the existing Diagnostic and Statistical Manual of Mental Disorders Fifth Edition Text Revision diagnostic criteria. These should span the range of delirium-spectrum syndromes and be measured consistently across studies. Clinical features should be recorded in conjunction with biospecimen collection, where feasible, in a standardized way, to determine temporal associations of biology coincident with clinical fluctuations. DISCUSSION The DSI made recommendations spanning the breadth of delirium research including clinical features, study planning, data collection, and data analysis for characterization of candidate delirium subtypes. HIGHLIGHTS Delirium features must be clearly defined, standardized, and operationalized. Large datasets incorporating both clinical and biomarker variables should be analyzed together. Delirium screening should incorporate communication and reasoning.
Collapse
Affiliation(s)
- Emily M. L. Bowman
- Centre for Public HealthQueen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital SiteBelfastNorthern Ireland
- Centre for Experimental MedicineQueen's University Belfast, Wellcome‐Wolfson Institute for Experimental MedicineBelfastNorthern Ireland
| | - Nathan E. Brummel
- The Ohio State University College of MedicineDivision of PulmonaryCritical Care, and Sleep MedicineColumbusOhioUSA
| | - Gideon A. Caplan
- Department of Geriatric MedicinePrince of Wales Hospital, Sydney, Australia University of New South WalesSydneyAustralia
| | - Colm Cunningham
- School of Biochemistry & ImmunologyTrinity Biomedical Sciences InstituteTrinity College, DublinRepublic of Ireland
| | - Lis A. Evered
- Department of AnesthesiologyWeill Cornell MedicineNew YorkNew YorkUSA
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
- Department of Anaesthesia & Acute Pain MedicineSt. Vincent's HospitalMelbourneAustralia
| | - Kirsten M. Fiest
- Department of Community Health SciencesCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Critical Care MedicineUniversity of Calgary and Alberta Health ServicesCalgaryAlbertaCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Timothy D. Girard
- Clinical ResearchInvestigation, and Systems Modeling of Acute Illness (CRISMA) CenterDepartment of Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Thomas A. Jackson
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Sara C. LaHue
- Department of NeurologySchool of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Weill Institute for NeurosciencesDepartment of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Buck Institute for Research on AgingNovatoCaliforniaUSA
| | - Heidi L. Lindroth
- Department of NursingMayo ClinicRochesterMinnesotaUSA
- Center for Aging ResearchRegenstrief InstituteSchool of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Alasdair M. J. Maclullich
- Edinburgh Delirium Research Group, Ageing and HealthUsher InstituteUniversity of EdinburghEdinburghUK
| | - Daniel F. McAuley
- Centre for Experimental MedicineQueen's University Belfast, Wellcome‐Wolfson Institute for Experimental MedicineBelfastNorthern Ireland
| | - Esther S. Oh
- Departments of MedicinePsychiatry and Behavioral Sciences and PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mark A. Oldham
- Department of PsychiatryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | | | - Pratik P. Pandharipande
- Departments of Anesthesiology and SurgeryDivision of Anesthesiology Critical Care Medicine and Critical IllnessBrain Dysfunction, and Survivorship CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kelly M. Potter
- Clinical ResearchInvestigation, and Systems Modeling of Acute Illness (CRISMA) CenterDepartment of Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Pratik Sinha
- Division of Clinical and Translational ResearchWashington University School of MedicineSt. LouisMissouriUSA
| | - Arjen J. C. Slooter
- Departments of Psychiatry and Intensive Care Medicine and UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
- Department of NeurologyUZ Brussel and Vrije Universiteit BrusselBrusselsBelgium
| | - Aoife M. Sweeney
- Centre for Public HealthQueen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital SiteBelfastNorthern Ireland
| | - Zoë Tieges
- Edinburgh Delirium Research Group, Ageing and HealthUsher InstituteUniversity of EdinburghEdinburghUK
- School of ComputingEngineering and Built EnvironmentGlasgow Caledonian UniversityGlasgowScotland
| | - Edwin Van Dellen
- Departments of Psychiatry and Intensive Care Medicine and UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
- Department of NeurologyUZ Brussel and Vrije Universiteit BrusselBrusselsBelgium
| | - Mary Elizabeth Wilcox
- Department of Critical Care MedicineFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Emma L. Cunningham
- Centre for Public HealthQueen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital SiteBelfastNorthern Ireland
| |
Collapse
|
22
|
El-Dehaibi F, Zamora R, Radder J, Yin J, Shah AM, Namas RA, Situ M, Zhao Y, Bain W, Morris A, McVerry BJ, Barclay DA, Billiar TR, Zhang Y, Kitsios GD, Vodovotz Y. A common single nucleotide polymorphism is associated with inflammation and critical illness outcomes. iScience 2023; 26:108333. [PMID: 38034362 PMCID: PMC10684809 DOI: 10.1016/j.isci.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Acute inflammation is heterogeneous in critical illness and predictive of outcome. We hypothesized that genetic variability in novel, yet common, gene variants contributes to this heterogeneity and could stratify patient outcomes. We searched algorithmically for significant differences in systemic inflammatory mediators associated with any of 551,839 SNPs in one derivation (n = 380 patients with blunt trauma) and two validation (n = 75 trauma and n = 537 non-trauma patients) cohorts. This analysis identified rs10404939 in the LYPD4 gene. Trauma patients homozygous for the A allele (rs10404939AA; 27%) had different trajectories of systemic inflammation along with persistently elevated multiple organ dysfunction (MOD) indices vs. patients homozygous for the G allele (rs10404939GG; 26%). rs10404939AA homozygotes in the trauma validation cohort had elevated MOD indices, and non-trauma patients displayed more complex inflammatory networks and worse 90-day survival compared to rs10404939GG homozygotes. Thus, rs10404939 emerged as a common, broadly prognostic SNP in critical illness.
Collapse
Affiliation(s)
- Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashti M. Shah
- Physician Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michelle Situ
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanwu Zhao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Derek A. Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Redaelli S, von Wedel D, Fosset M, Suleiman A, Chen G, Alingrin J, Gong MN, Gajic O, Goodspeed V, Talmor D, Schaefer MS, Jung B. Inflammatory subphenotypes in patients at risk of ARDS: evidence from the LIPS-A trial. Intensive Care Med 2023; 49:1499-1507. [PMID: 37906258 DOI: 10.1007/s00134-023-07244-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/23/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE Latent class analysis (LCA) has identified hyper- and non-hyper-inflammatory subphenotypes in patients with acute respiratory distress syndrome (ARDS). It is unknown how early inflammatory subphenotypes can be identified in patients at risk of ARDS. We aimed to test for inflammatory subphenotypes upon presentation to the emergency department. METHODS LIPS-A was a trial of aspirin to prevent ARDS in at-risk patients presenting to the emergency department. In this secondary analysis, we performed LCA using clinical, blood test, and biomarker variables. RESULTS Among 376 (96.4%) patients from the LIPS-A trial, two classes were identified upon presentation to the emergency department (day 0): 72 (19.1%) patients demonstrated characteristics of a hyper-inflammatory and 304 (80.9%) of a non-hyper-inflammatory subphenotype. 15.3% of patients in the hyper- and 8.2% in the non-hyper-inflammatory class developed ARDS (p = 0.07). Patients in the hyper-inflammatory class had fewer ventilator-free days (median [interquartile range, IQR] 28[23-28] versus 28[27-28]; p = 0.010), longer intensive care unit (3[2-6] versus 0[0-3] days; p < 0.001) and hospital (9[6-18] versus 5[3-9] days; p < 0.001) length of stay, and higher 1-year mortality (34.7% versus 20%; p = 0.008). Subphenotypes were identified on day 1 and 4 in a subgroup with available data (n = 244). 77.9% of patients remained in their baseline class throughout day 4. Patients with a hyper-inflammatory subphenotype throughout the study period (n = 22) were at higher risk of ARDS (36.4% versus 10.4%; p = 0.003). CONCLUSION Hyper- and non-hyper-inflammatory subphenotypes may precede ARDS development, remain identifiable over time, and can be identified upon presentation to the emergency department. A hyper-inflammatory subphenotype predicts worse outcomes.
Collapse
Affiliation(s)
- Simone Redaelli
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
- Center for Anesthesia Research Excellence (CARE), Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Dario von Wedel
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
- Center for Anesthesia Research Excellence (CARE), Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maxime Fosset
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
- Center for Anesthesia Research Excellence (CARE), Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Medical Intensive Care Unit and PhyMedExp, Montpellier University Hospital, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INRIA, Montpellier, France
| | - Aiman Suleiman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
- Center for Anesthesia Research Excellence (CARE), Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia and Intensive Care, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Guanqing Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
- Center for Anesthesia Research Excellence (CARE), Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Julie Alingrin
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille Université, Assistance Publique Hôpitaux Universitaire de Marseille, Nord Hospital, Marseille, France
| | - Michelle N Gong
- Division of Critical Care Medicine, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ognjen Gajic
- Mayo Clinic, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Valerie Goodspeed
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
- Center for Anesthesia Research Excellence (CARE), Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Maximilian S Schaefer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
- Center for Anesthesia Research Excellence (CARE), Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany.
| | - Boris Jung
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
- Center for Anesthesia Research Excellence (CARE), Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Medical Intensive Care Unit and PhyMedExp, Montpellier University Hospital, Montpellier, France
- Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Lu M, Drohan C, Bain W, Shah FA, Bittner M, Evankovich J, Prendergast NT, Hensley M, Suber TL, Fitzpatrick M, Ramanan R, Murray H, Schaefer C, Qin S, Wang X, Zhang Y, Nouraie SM, Gentry H, Murray C, Patel A, Macatangay BJ, Jacobs J, Mellors JW, Lee JS, Ray P, Ray A, Methé B, Morris A, McVerry BJ, Kitsios GD. Trajectories of Host-Response Subphenotypes in Patients With COVID-19 Across the Spectrum of Respiratory Support. CHEST CRITICAL CARE 2023; 1:100018. [PMID: 38250011 PMCID: PMC10798236 DOI: 10.1016/j.chstcc.2023.100018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Hospitalized patients with severe COVID-19 follow heterogeneous clinical trajectories, requiring different levels of respiratory support and experiencing diverse clinical outcomes. Differences in host immune responses to SARS-CoV-2 infection may account for the heterogeneous clinical course, but we have limited data on the dynamic evolution of systemic biomarkers and related subphenotypes. Improved understanding of the dynamic transitions of host subphenotypes in COVID-19 may allow for improved patient selection for targeted therapies. RESEARCH QUESTION We examined the trajectories of host-response profiles in severe COVID-19 and evaluated their prognostic impact on clinical outcomes. STUDY DESIGN AND METHODS In this prospective observational study, we enrolled 323 inpatients with COVID-19 receiving different levels of baseline respiratory support: (1) low-flow oxygen (37%), (2) noninvasive ventilation (NIV) or high-flow oxygen (HFO; 29%), (3) invasive mechanical ventilation (27%), and (4) extracorporeal membrane oxygenation (7%). We collected plasma samples on enrollment and at days 5 and 10 to measure host-response biomarkers. We classified patients by inflammatory subphenotypes using two validated predictive models. We examined clinical, biomarker, and subphenotype trajectories and outcomes during hospitalization. RESULTS IL-6, procalcitonin, and angiopoietin 2 persistently were elevated in patients receiving higher levels of respiratory support, whereas soluble receptor of advanced glycation end products (sRAGE) levels displayed the inverse pattern. Patients receiving NIV or HFO at baseline showed the most dynamic clinical trajectory, with 24% eventually requiring intubation and exhibiting worse 60-day mortality than patients receiving invasive mechanical ventilation at baseline (67% vs 35%; P < .0001). sRAGE levels predicted NIV failure and worse 60-day mortality for patients receiving NIV or HFO, whereas IL-6 levels were predictive in all patients regardless of level of support (P < .01). Patients classified to a hyperinflammatory subphenotype at baseline (< 10%) showed worse 60-day survival (P < .0001) and 50% of them remained classified as hyperinflammatory at 5 days after enrollment. INTERPRETATION Longitudinal study of the systemic host response in COVID-19 revealed substantial and predictive interindividual variability influenced by baseline levels of respiratory support.
Collapse
Affiliation(s)
- Michael Lu
- Internal Medicine Residency Program, University of Pittsburgh, Pittsburgh, PA
| | - Callie Drohan
- Internal Medicine Residency Program, University of Pittsburgh, Pittsburgh, PA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Faraaz A Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Matthew Bittner
- Internal Medicine Residency Program, University of Pittsburgh, Pittsburgh, PA
| | - John Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Niall T Prendergast
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Matthew Hensley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tomeka L Suber
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Meghan Fitzpatrick
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Raj Ramanan
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Holt Murray
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Caitlin Schaefer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Heather Gentry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Cathy Murray
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Asha Patel
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | | | - Jana Jacobs
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Janet S Lee
- Division of Pulmonary and Critical Care, Washington University School of Medicine, Saint Louis, MO
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
25
|
Sinha P, Kerchberger VE, Willmore A, Chambers J, Zhuo H, Abbott J, Jones C, Wickersham N, Wu N, Neyton L, Langelier CR, Mick E, He J, Jauregui A, Churpek MM, Gomez AD, Hendrickson CM, Kangelaris KN, Sarma A, Leligdowicz A, Delucchi KL, Liu KD, Russell JA, Matthay MA, Walley KR, Ware LB, Calfee CS. Identifying molecular phenotypes in sepsis: an analysis of two prospective observational cohorts and secondary analysis of two randomised controlled trials. THE LANCET. RESPIRATORY MEDICINE 2023; 11:965-974. [PMID: 37633303 PMCID: PMC10841178 DOI: 10.1016/s2213-2600(23)00237-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND In sepsis and acute respiratory distress syndrome (ARDS), heterogeneity has contributed to difficulty identifying effective pharmacotherapies. In ARDS, two molecular phenotypes (hypoinflammatory and hyperinflammatory) have consistently been identified, with divergent outcomes and treatment responses. In this study, we sought to derive molecular phenotypes in critically ill adults with sepsis, determine their overlap with previous ARDS phenotypes, and evaluate whether they respond differently to treatment in completed sepsis trials. METHODS We used clinical data and plasma biomarkers from two prospective sepsis cohorts, the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study (N=1140) and the Early Assessment of Renal and Lung Injury (EARLI) study (N=818), in latent class analysis (LCA) to identify the optimal number of classes in each cohort independently. We used validated models trained to classify ARDS phenotypes to evaluate concordance of sepsis and ARDS phenotypes. We applied these models retrospectively to the previously published Prospective Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis and Septic Shock (PROWESS-SHOCK) trial and Vasopressin and Septic Shock Trial (VASST) to assign phenotypes and evaluate heterogeneity of treatment effect. FINDINGS A two-class model best fit both VALID and EARLI (p<0·0001). In VALID, 804 (70·5%) of the 1140 patients were classified as hypoinflammatory and 336 (29·5%) as hyperinflammatory; in EARLI, 530 (64·8%) of 818 were hypoinflammatory and 288 (35·2%) hyperinflammatory. We observed higher plasma pro-inflammatory cytokines, more vasopressor use, more bacteraemia, lower protein C, and higher mortality in the hyperinflammatory than in the hypoinflammatory phenotype (p<0·0001 for all). Classifier models indicated strong concordance between sepsis phenotypes and previously identified ARDS phenotypes (area under the curve 0·87-0·96, depending on the model). Findings were similar excluding participants with both sepsis and ARDS. In PROWESS-SHOCK, 1142 (68·0%) of 1680 patients had the hypoinflammatory phenotype and 538 (32·0%) had the hyperinflammatory phenotype, and response to activated protein C differed by phenotype (p=0·0043). In VASST, phenotype proportions were similar to other cohorts; however, no treatment interaction with the type of vasopressor was observed (p=0·72). INTERPRETATION Molecular phenotypes previously identified in ARDS are also identifiable in multiple sepsis cohorts and respond differently to activated protein C. Molecular phenotypes could represent a treatable trait in critical illness beyond the patient's syndromic diagnosis. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Pratik Sinha
- Division of Clinical and Translational Research, Division of Critical Care, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - V Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Willmore
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Julia Chambers
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hanjing Zhuo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Jason Abbott
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Chayse Jones
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Nancy Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nelson Wu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lucile Neyton
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Eran Mick
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - June He
- Division of Clinical and Translational Research, Division of Critical Care, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alejandra Jauregui
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew M Churpek
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Antonio D Gomez
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, USA
| | | | - Kirsten N Kangelaris
- Division of Hospital Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aartik Sarma
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aleksandra Leligdowicz
- Department of Medicine, Division of Critical Care Medicine, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kevin L Delucchi
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen D Liu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - James A Russell
- Division of Critical Care Medicine, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Michael A Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Department of Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Keith R Walley
- Division of Critical Care Medicine, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Department of Anesthesia, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Velez T, Wang T, Garibaldi B, Singman E, Koutroulis I. Identification and Prediction of Clinical Phenotypes in Hospitalized Patients With COVID-19: Machine Learning From Medical Records. JMIR Form Res 2023; 7:e46807. [PMID: 37642512 PMCID: PMC10589836 DOI: 10.2196/46807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND There is significant heterogeneity in disease progression among hospitalized patients with COVID-19. The pathogenesis of SARS-CoV-2 infection is attributed to a complex interplay between virus and host immune response that in some patients unpredictably and rapidly leads to "hyperinflammation" associated with increased risk of mortality. The early identification of patients at risk of progression to hyperinflammation may help inform timely therapeutic decisions and lead to improved outcomes. OBJECTIVE The primary objective of this study was to use machine learning to reproducibly identify specific risk-stratifying clinical phenotypes across hospitalized patients with COVID-19 and compare treatment response characteristics and outcomes. A secondary objective was to derive a predictive phenotype classification model using routinely available early encounter data that may be useful in informing optimal COVID-19 bedside clinical management. METHODS This was a retrospective analysis of electronic health record data of adult patients (N=4379) who were admitted to a Johns Hopkins Health System hospital for COVID-19 treatment from 2020 to 2021. Phenotypes were identified by clustering 38 routine clinical observations recorded during inpatient care. To examine the reproducibility and validity of the derived phenotypes, patient data were randomly divided into 2 cohorts, and clustering analysis was performed independently for each cohort. A predictive phenotype classifier using the gradient-boosting machine method was derived using routine clinical observations recorded during the first 6 hours following admission. RESULTS A total of 2 phenotypes (designated as phenotype 1 and phenotype 2) were identified in patients admitted for COVID-19 in both the training and validation cohorts with similar distributions of features, correlations with biomarkers, treatments, comorbidities, and outcomes. In both the training and validation cohorts, phenotype-2 patients were older; had elevated markers of inflammation; and were at an increased risk of requiring intensive care unit-level care, developing sepsis, and mortality compared with phenotype-1 patients. The gradient-boosting machine phenotype prediction model yielded an area under the curve of 0.89 and a positive predictive value of 0.83. CONCLUSIONS Using machine learning clustering, we identified and internally validated 2 clinical COVID-19 phenotypes with distinct treatment or response characteristics consistent with similar 2-phenotype models derived from other hospitalized populations with COVID-19, supporting the reliability and generalizability of these findings. COVID-19 phenotypes can be accurately identified using machine learning models based on readily available early encounter clinical data. A phenotype prediction model based on early encounter data may be clinically useful for timely bedside risk stratification and treatment personalization.
Collapse
Affiliation(s)
- Tom Velez
- Computer Technology Associates, Cardiff, CA, United States
| | - Tony Wang
- Imedacs, Ann Arbor, MI, United States
| | - Brian Garibaldi
- Biocontainment Unit, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric Singman
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ioannis Koutroulis
- Division of Emergency Medicine, Childrens National Hospital, Washington, DC, United States
| |
Collapse
|
27
|
Sanchez-Pinto LN, Bhavani SV, Atreya MR, Sinha P. Leveraging Data Science and Novel Technologies to Develop and Implement Precision Medicine Strategies in Critical Care. Crit Care Clin 2023; 39:627-646. [PMID: 37704331 DOI: 10.1016/j.ccc.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Precision medicine aims to identify treatments that are most likely to result in favorable outcomes for subgroups of patients with similar clinical and biological characteristics. The gaps for the development and implementation of precision medicine strategies in the critical care setting are many, but the advent of data science and multi-omics approaches, combined with the rich data ecosystem in the intensive care unit, offer unprecedented opportunities to realize the promise of precision critical care. In this article, the authors review the data-driven and technology-based approaches being leveraged to discover and implement precision medicine strategies in the critical care setting.
Collapse
Affiliation(s)
- Lazaro N Sanchez-Pinto
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| | | | - Mihir R Atreya
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 1 Barnes Jewish Hospital Plaza, St. Louis, MO 63110, USA; Division of Critical Care, Department of Anesthesia, Washington University School of Medicine, 1 Barnes Jewish Hospital Plaza, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Kitsios GD, Sayed K, Fitch A, Yang H, Britton N, Shah F, Bain W, Evankovich JW, Qin S, Wang X, Li K, Patel A, Zhang Y, Radder J, Dela Cruz C, Okin DA, Huang CY, van Tyne D, Benos PV, Methé B, Lai P, Morris A, McVerry BJ. Prognostic Insights from Longitudinal Multicompartment Study of Host-Microbiota Interactions in Critically Ill Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.25.23296086. [PMID: 37808745 PMCID: PMC10557814 DOI: 10.1101/2023.09.25.23296086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.
Collapse
Affiliation(s)
- Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - John W. Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daria van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Kitsios GD, Sayed K, Fitch A, Yang H, Britton N, Shah F, Bain W, Evankovich JW, Qin S, Wang X, Li K, Patel A, Zhang Y, Radder J, Cruz CD, Okin DA, Huang CY, van Tyne D, Benos PV, Methé B, Lai P, Morris A, McVerry BJ. Prognostic Insights from Longitudinal Multicompartment Study of Host-Microbiota Interactions in Critically Ill Patients. RESEARCH SQUARE 2023:rs.3.rs-3338762. [PMID: 37841841 PMCID: PMC10571606 DOI: 10.21203/rs.3.rs-3338762/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.
Collapse
Affiliation(s)
- Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - John W. Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daria van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Kitsios GD, Nguyen VD, Sayed K, Al-Yousif N, Schaefer C, Shah FA, Bain W, Yang H, Fitch A, Li K, Wang X, Qin S, Gentry H, Zhang Y, Varon J, Arciniegas Rubio A, Englert JA, Baron RM, Lee JS, Methé B, Benos PV, Morris A, McVerry BJ. The upper and lower respiratory tract microbiome in severe aspiration pneumonia. iScience 2023; 26:106832. [PMID: 37250794 PMCID: PMC10212968 DOI: 10.1016/j.isci.2023.106832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Uncertainty persists whether anaerobic bacteria represent important pathogens in aspiration pneumonia. In a nested case-control study of mechanically ventilated patients classified as macro-aspiration pneumonia (MAsP, n = 56), non-macro-aspiration pneumonia (NonMAsP, n = 91), and uninfected controls (n = 11), we profiled upper (URT) and lower respiratory tract (LRT) microbiota with bacterial 16S rRNA gene sequencing, measured plasma host-response biomarkers, analyzed bacterial communities by diversity and oxygen requirements, and performed unsupervised clustering with Dirichlet Multinomial Models (DMM). MAsP and NonMAsP patients had indistinguishable microbiota profiles by alpha diversity and oxygen requirements with similar host-response profiles and 60-day survival. Unsupervised DMM clusters revealed distinct bacterial clusters in the URT and LRT, with low-diversity clusters enriched for facultative anaerobes and typical pathogens, associated with higher plasma levels of SPD and sCD14 and worse 60-day survival. The predictive inter-patient variability in these bacterial profiles highlights the importance of microbiome study in patient sub-phenotyping and precision medicine approaches for severe pneumonia.
Collapse
Affiliation(s)
- Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA15213, USA
- Acute Lung Injury Center for Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA15213, USA
| | - Vi D. Nguyen
- University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- University of California Los Angeles, Department of Medicine, Internal Medicine Residency Program, Los Angeles, CA90095, USA
| | - Khaled Sayed
- University of PittsburghDepartment of Computational & Systems Biology, Pittsburgh, PA15213, USA
- Department of Epidemiology, University of Florida, Gainesville, FL32611, USA
| | - Nameer Al-Yousif
- University of Pittsburgh Medical Center Mercy, Department of Medicine, Pittsburgh, PA15219, USA
| | - Caitlin Schaefer
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- Acute Lung Injury Center for Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA15213, USA
| | - Faraaz A. Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- Acute Lung Injury Center for Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA15213, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA15240, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- Acute Lung Injury Center for Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA15213, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA15240, USA
| | - Haopu Yang
- University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA15213, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA15213, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA15213, USA
| | - Heather Gentry
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- Acute Lung Injury Center for Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA15213, USA
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115, USA
| | - Antonio Arciniegas Rubio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115, USA
| | - Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH43210, USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115, USA
| | - Janet S. Lee
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO63110, USA
| | - Barbara Methé
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA15213, USA
| | - Panayiotis V. Benos
- Department of Epidemiology, University of Florida, Gainesville, FL32611, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA15213, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA15213, USA
- Acute Lung Injury Center for Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA15213, USA
| |
Collapse
|
31
|
Suber TL, Wendell SG, Mullett SJ, Zuchelkowski B, Bain W, Kitsios GD, McVerry BJ, Ray P, Ray A, Mallampalli RK, Zhang Y, Shah F, Nouraie SM, Lee JS. Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome. Respir Res 2023; 24:136. [PMID: 37210531 PMCID: PMC10199668 DOI: 10.1186/s12931-023-02447-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure. METHODS In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data. RESULTS Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively). CONCLUSIONS This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.
Collapse
Affiliation(s)
- Tomeka L Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin Zuchelkowski
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University at St. Louis, St. Louis, MO, USA
| |
Collapse
|
32
|
Kitsios GD, Nouraie SM, Qin S, Zhang Y, Ray P, Ray A, Lee JS, Morris A, McVerry BJ, Bain W. Distinct profiles of host responses between plasma and lower respiratory tract during acute respiratory failure. ERJ Open Res 2023; 9:00743-2022. [PMID: 37284423 PMCID: PMC10240306 DOI: 10.1183/23120541.00743-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 06/08/2023] Open
Abstract
Current plasma-based subphenotyping approaches in acute respiratory failure represent host responses at a systemic level but do not capture important differences in lower respiratory tract biology https://bit.ly/40kTdDG.
Collapse
Affiliation(s)
- Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S. Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Bain W, Tabary M, Moore SR, An X, Kitsios GD, McVerry BJ, Ray P, Ray A, Mallampalli RK, Ferreira VP, Lee JS, Nouraie SM. Factor H preserves alternative complement function during ARDS, linked to improved survival. ERJ Open Res 2023; 9:00702-2022. [PMID: 37377659 PMCID: PMC10291301 DOI: 10.1183/23120541.00702-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/05/2023] [Indexed: 06/29/2023] Open
Abstract
Background Effective regulation of complement activation may be crucial to preserving complement function during acute respiratory distress syndrome (ARDS). Factor H is the primary negative regulator of the alternative pathway of complement. We hypothesised that preserved factor H levels are associated with decreased complement activation and reduced mortality during ARDS. Methods Total alternative pathway function was measured by serum haemolytic assay (AH50) using available samples from the ARDSnet Lisofylline and Respiratory Management of Acute Lung Injury (LARMA) trial (n=218). Factor B and factor H levels were quantified using ELISA using samples from the ARDSnet LARMA and Statins for Acutely Injured Lungs from Sepsis (SAILS) (n=224) trials. Meta-analyses included previously quantified AH50, factor B and factor H values from an observational registry (Acute Lung Injury Registry and Biospecimen Repository (ALIR)). Complement C3, and complement activation products C3a and Ba plasma levels were measured in SAILS. Results AH50 greater than the median was associated with reduced mortality in meta-analysis of LARMA and ALIR (hazard ratio (HR) 0.66, 95% CI 0.45-0.96). In contrast, patients in the lowest AH50 quartile demonstrated relative deficiency of both factor B and factor H. Relative deficiency of factor B (HR 1.99, 95% CI 1.44-2.75) or factor H (HR 1.52, 95% CI 1.09-2.11) was associated with increased mortality in meta-analysis of LARMA, SAILS and ALIR. Relative factor H deficiency was associated with increased factor consumption, as evidenced by lower factor B and C3 levels and Ba:B and C3a:C3 ratios. Higher factor H levels associated with lower inflammatory markers. Conclusions Relative factor H deficiency, higher Ba:B and C3a:C3 ratios and lower factor B and C3 levels suggest a subset of ARDS with complement factor exhaustion, impaired alternative pathway function, and increased mortality, that may be amenable to therapeutic targeting.
Collapse
Affiliation(s)
- William Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Mohammadreza Tabary
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara R. Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xiaojing An
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georgios D. Kitsios
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabir Ray
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Ray
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Ohio State University, Columbus, OH, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - S. Mehdi Nouraie
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- These authors contributed equally to this work
| |
Collapse
|
34
|
Lu M, Drohan C, Bain W, Shah FA, Bittner M, Evankovich J, Prendergast N, Hensley M, Suber T, Fitzpatrick M, Ramanan R, Murray H, Schaefer C, Qin S, Wang X, Zhang Y, Nouraie SM, Gentry H, Kessinger C, Patel A, Macatangay BJ, Jacobs J, Mellors J, Lee JS, Ray P, Ray A, Methé B, Morris A, McVerry BJ, Kitsios GD. Trajectories of host-response biomarkers and inflammatory subphenotypes in COVID-19 patients across the spectrum of respiratory support. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.28.22282858. [PMID: 36482978 PMCID: PMC9727768 DOI: 10.1101/2022.11.28.22282858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Purpose Enhanced understanding of the dynamic changes in the dysregulated inflammatory response in COVID-19 may help improve patient selection and timing for immunomodulatory therapies. Methods We enrolled 323 COVID-19 inpatients on different levels of baseline respiratory support: i) Low Flow Oxygen (37%), ii) Non-Invasive Ventilation or High Flow Oxygen (NIV_HFO, 29%), iii) Invasive Mechanical Ventilation (IMV, 27%), and iv) Extracorporeal Membrane Oxygenation (ECMO, 7%). We collected plasma samples upon enrollment and days 5 and 10 to measure host-response biomarkers. We classified subjects into inflammatory subphenotypes using two validated predictive models. We examined clinical, biomarker and subphenotype trajectories and outcomes during hospitalization. Results IL-6, procalcitonin, and Angiopoietin-2 were persistently elevated in patients at higher levels of respiratory support, whereas sRAGE displayed the inverse pattern. Patients on NIV_HFO at baseline had the most dynamic clinical trajectory, with 26% eventually requiring intubation and exhibiting worse 60-day mortality than IMV patients at baseline (67% vs. 35%, p<0.0001). sRAGE levels predicted NIV failure and worse 60-day mortality for NIV_HFO patients, whereas IL-6 levels were predictive in IMV or ECMO patients. Hyper-inflammatory subjects at baseline (<10% by both models) had worse 60-day survival (p<0.0001) and 50% of them remained classified as hyper-inflammatory on follow-up sampling at 5 days post-enrollment. Receipt of combined immunomodulatory therapies (steroids and anti-IL6 agents) was associated with markedly increased IL-6 and lower Angiopoietin-2 levels (p<0.05). Conclusions Longitudinal study of systemic host responses in COVID-19 revealed substantial and predictive inter-individual variability, influenced by baseline levels of respiratory support and concurrent immunomodulatory therapies.
Collapse
Affiliation(s)
- Michael Lu
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Callie Drohan
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faraaz A Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Bittner
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Evankovich
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Niall Prendergast
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Hensley
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tomeka Suber
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meghan Fitzpatrick
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raj Ramanan
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Holt Murray
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin Schaefer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather Gentry
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cathy Kessinger
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jana Jacobs
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Barbara Methé
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Jackson EK, Kitsios GD, Lu MY, Schaefer CM, Kessinger CJ, McVerry BJ, Morris A, Macatangay BJC. Suppressed renoprotective purines in COVID-19 patients with acute kidney injury. Sci Rep 2022; 12:17353. [PMID: 36253495 PMCID: PMC9574168 DOI: 10.1038/s41598-022-22349-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
Acute kidney injury (AKI) is common in patients hospitalized for COVID-19, complicating their clinical course and contributing to worse outcomes. Animal studies show that adenosine, inosine and guanosine protect the kidney against some types of AKI. However, until now there was no evidence in patients supporting the possibility that abnormally low kidney levels of adenosine, inosine and guanosine contribute to AKI. Here, we addressed the question as to whether these renoprotective purines are altered in the urine of COVID-19 patients with AKI. Purines were measured by employing ultra-high-performance liquid chromatography-tandem mass spectrometry with stable-isotope-labeled internal standards for each purine of interest. Compared with COVID-19 patients without AKI (n = 23), COVID-19 patients with AKI (n = 20) had significantly lower urine levels of adenosine (P < 0.0001), inosine (P = 0.0008), and guanosine (P = 0.0008) (medians reduced by 85%, 48% and 61%, respectively) and lower levels (P = 0.0003; median reduced by 67%) of the 2nd messenger for A2A and A2B adenosine receptors, i.e., 3',5'-cAMP. Moreover, in COVID-19 patients with AKI, urine levels of 8-aminoguanine (endogenous inhibitor of inosine and guanosine metabolism) were nearly abolished (P < 0.0001). In contrast, the "upstream" precursors of renoprotective purines, namely 5'-AMP and 5'-GMP, were not significantly altered in COVID-19 patients with AKI, suggesting defective conversion of these precursors by CD73 (converts 5'-AMP to adenosine and 5'-GMP to guanosine). These findings imply that an imbalance in renoprotective purines may contribute to AKI in COVID-19 patients and that pharmacotherapy targeted to restore levels of renoprotective purines may attenuate the risk of AKI in susceptible patients with COVID-19.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA, 15219, USA.
| | - Georgios D Kitsios
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Y Lu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Caitlin M Schaefer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cathy J Kessinger
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bernard J C Macatangay
- Department of Medicine, Division of Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Stability of SARS-CoV-2-Encoded Proteins and Their Antibody Levels Correlate with Interleukin 6 in COVID-19 Patients. mSystems 2022; 7:e0005822. [PMID: 35582921 PMCID: PMC9238396 DOI: 10.1128/msystems.00058-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has become a severe global public health crisis. Therefore, understanding the molecular details of SARS-CoV-2 will be critical for fighting the virus's spread and preventing future pandemics. In this study, we globally profiled the stability of SARS-CoV-2-encoded proteins, studied their degradation pathways, and determined their correlation with the antibody responses in patient plasma. We identified 18 proteins with unstable half-lives and 6 relatively stable proteins with longer half-lives. The labile SARS-CoV-2 proteins were degraded mainly by the ubiquitin-proteasome pathway. We also observed a significant correlation between antibody levels and protein half-lives, which indicated that a stable antigen of SARS-CoV-2 could be more effective for eliciting antibody responses. In addition, levels of antiviral antibodies targeting NSP10 were found to be negatively correlated with systemic levels of interleukin 6 (IL-6) in patients. These findings may facilitate the development of novel therapeutic or diagnostic approaches. IMPORTANCE SARS-CoV-2, the etiological cause of COVID-19, carries 29 genes in its genome. However, our knowledge of the viral proteins in biological and biochemical aspects is limited. In this study, we globally profiled the stability of the viral proteins in living lung epithelial cells. Importantly, the labile SARS-CoV-2-encoded proteins were mainly degraded through the ubiquitin-proteasome pathway. Stable proteins, including spike and nucleocapsid, of SARS-CoV-2 were more effective in eliciting antibody production. The levels of antiviral antibodies targeting NSP10 were negatively correlated with systemic levels of IL-6 in COVID-19 patients.
Collapse
|
37
|
Abstract
Research and practice in critical care medicine have long been defined by syndromes, which, despite being clinically recognizable entities, are, in fact, loose amalgams of heterogeneous states that may respond differently to therapy. Mounting translational evidence-supported by research on respiratory failure due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-suggests that the current syndrome-based framework of critical illness should be reconsidered. Here we discuss recent findings from basic science and clinical research in critical care and explore how these might inform a new conceptual model of critical illness. De-emphasizing syndromes, we focus on the underlying biological changes that underpin critical illness states and that may be amenable to treatment. We hypothesize that such an approach will accelerate critical care research, leading to a richer understanding of the pathobiology of critical illness and of the key determinants of patient outcomes. This, in turn, will support the design of more effective clinical trials and inform a more precise and more effective practice at the bedside.
Collapse
|
38
|
Bass GA, Dzierba AL, Taylor B, Lane-Fall M, Kaplan LJ. Tertiary peritonitis: considerations for complex team-based care. Eur J Trauma Emerg Surg 2022; 48:811-825. [PMID: 34302503 PMCID: PMC8308068 DOI: 10.1007/s00068-021-01750-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022]
Abstract
Peritonitis, as a major consequence of hollow visceral perforation, anastomotic disruption, ischemic necrosis, or other injuries of the gastrointestinal tract, often drives acute care in the emergency department, operating room, and the ICU. Chronic critical illness (CCI) represents a devastating challenge in modern surgical critical care where successful interventions have fostered a growing cohort of patients with prolonged dependence on mechanical ventilation and other organ supportive therapies who would previously have succumbed much earlier in the acute phase of critical illness. An important subset of CCI patients are those who have survived an emergency abdominal operation, but who subsequently require prolonged open abdomen management complicated by persistent peritoneal space infection or colonization, fistula formation, and gastrointestinal (GI) tract dysfunction; these patients are described as having tertiary peritonitis (TP).The organ dysfunction cascade in TP terminates in death in between 30 and 64% of patients. This narrative review describes key-but not all-elements in a framework for the coordinate multiprofessional team-based management of a patient with tertiary peritonitis to mitigate this risk of death and promote recovery. Given the prolonged critical illness course of this unique patient population, early and recurrent Palliative Care Medicine consultation helps establish goals of care, support adjustment to changes in life circumstance, and enable patient and family centered care.
Collapse
Affiliation(s)
- Gary Alan Bass
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, 51 N. 39th Street, MOB 1, Suite 120, Philadelphia, PA 19104 USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, USA
- European Society of Trauma and Emergency Surgery, Visceral Trauma Section, Philadelphia, USA
| | - Amy L. Dzierba
- Department of Pharmacy, New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY USA
| | - Beth Taylor
- Department of Research for Patient Care Services, Barnes-Jewish Hospital, St. Louis, MO USA
| | - Meghan Lane-Fall
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5 Dulles, Philadelphia, PA 19104 USA
| | - Lewis J. Kaplan
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, 51 N. 39th Street, MOB 1, Suite 120, Philadelphia, PA 19104 USA
- Surgical Services, Section of Surgical Critical Care, Corporal Michael J Crescenz VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104 USA
| |
Collapse
|
39
|
Bos LDJ, Laffey JG, Ware LB, Heijnen NFL, Sinha P, Patel B, Jabaudon M, Bastarache JA, McAuley DF, Summers C, Calfee CS, Shankar-Hari M. Towards a biological definition of ARDS: are treatable traits the solution? Intensive Care Med Exp 2022; 10:8. [PMID: 35274164 PMCID: PMC8913033 DOI: 10.1186/s40635-022-00435-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of acute respiratory distress syndrome (ARDS) includes the accumulation of protein-rich pulmonary edema in the air spaces and interstitial areas of the lung, variable degrees of epithelial injury, variable degrees of endothelial barrier disruption, transmigration of leukocytes, alongside impaired fluid and ion clearance. These pathophysiological features are different between patients contributing to substantial biological heterogeneity. In this context, it is perhaps unsurprising that a wide range of pharmacological interventions targeting these pathophysiological processes have failed to improve patient outcomes. In this manuscript, our goal is to provide a narrative summary of the potential methods to capture the underlying biological heterogeneity of ARDS and discuss how this information could inform future ARDS redefinitions. We discuss what biological tests are available to identify patients with any of the following predominant biological patterns: (1) epithelial and/or endothelial injury, (2) protein rich pulmonary edema and (3) systemic or within lung inflammatory responses.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Intensive Care, Amsterdam UMC, Location AMC, 1105AZ, Amsterdam, The Netherlands.
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, Galway University Hospitals, National University of Ireland Galway, Galway, Ireland
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanon F L Heijnen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Pratik Sinha
- Department of Anesthesiology, School of Medicine, Washington University, St. Louis, USA
| | - Brijesh Patel
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College, London, UK
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.,GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Charlotte Summers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manu Shankar-Hari
- School of Immunology and Microbial Sciences, King's College London, London, UK.,Centre for Inflammation Research, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
40
|
Leisman DE, Mehta A, Thompson BT, Charland NC, Gonye ALK, Gushterova I, Kays KR, Khanna HK, LaSalle TJ, Lavin-Parsons KM, Lilley BM, Lodenstein CL, Manakongtreecheep K, Margolin JD, McKaig BN, Rojas-Lopez M, Russo BC, Sharma N, Tantivit J, Thomas MF, Parry BA, Villani AC, Sade-Feldman M, Hacohen N, Filbin MR, Goldberg MB. Alveolar, Endothelial, and Organ Injury Marker Dynamics in Severe COVID-19. Am J Respir Crit Care Med 2022; 205:507-519. [PMID: 34878969 PMCID: PMC8906476 DOI: 10.1164/rccm.202106-1514oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Rationale: Alveolar and endothelial injury may be differentially associated with coronavirus disease (COVID-19) severity over time. Objectives: To describe alveolar and endothelial injury dynamics and associations with COVID-19 severity, cardiorenovascular injury, and outcomes. Methods: This single-center observational study enrolled patients with COVID-19 requiring respiratory support at emergency department presentation. More than 40 markers of alveolar (including receptor for advanced glycation endproducts [RAGE]), endothelial (including angiopoietin-2), and cardiorenovascular injury (including renin, kidney injury molecule-1, and troponin-I) were serially compared between invasively and spontaneously ventilated patients using mixed-effects repeated-measures models. Ventilatory ratios were calculated for intubated patients. Associations of biomarkers with modified World Health Organization scale at Day 28 were determined with multivariable proportional-odds regression. Measurements and Main Results: Of 225 patients, 74 (33%) received invasive ventilation at Day 0. RAGE was 1.80-fold higher in invasive ventilation patients at Day 0 (95% confidence interval [CI], 1.50-2.17) versus spontaneous ventilation, but decreased over time in all patients. Changes in alveolar markers did not correlate with changes in endothelial, cardiac, or renal injury markers. In contrast, endothelial markers were similar to lower at Day 0 for invasive ventilation versus spontaneous ventilation, but then increased over time only among intubated patients. In intubated patients, angiopoietin-2 was similar (fold difference, 1.02; 95% CI, 0.89-1.17) to nonintubated patients at Day 0 but 1.80-fold higher (95% CI, 1.56-2.06) at Day 3; cardiorenovascular injury markers showed similar patterns. Endothelial markers were not consistently associated with ventilatory ratios. Endothelial markers were more often significantly associated with 28-day outcomes than alveolar markers. Conclusions: Alveolar injury markers increase early. Endothelial injury markers increase later and are associated with cardiorenovascular injury and 28-day outcome. Alveolar and endothelial injury likely contribute at different times to disease progression in severe COVID-19.
Collapse
Affiliation(s)
- Daniel E. Leisman
- Department of Anesthesiology, Critical Care, and Pain Medicine
- Department of Medicine
| | - Arnav Mehta
- Massachusetts General Hospital Cancer Center
- Department of Medicine
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Anna L. K. Gonye
- Center for Cancer Research
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | - Irena Gushterova
- Center for Cancer Research
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | | | | | - Thomas J. LaSalle
- Center for Cancer Research
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | | | | | | | - Kasidet Manakongtreecheep
- Center for Cancer Research
- Center for Immunology and Inflammatory Diseases, and
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | | | | | - Maricarmen Rojas-Lopez
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine
- Department of Microbiology, and
| | - Brian C. Russo
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine
- Department of Microbiology, and
| | - Nihaarika Sharma
- Center for Cancer Research
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | - Jessica Tantivit
- Center for Cancer Research
- Center for Immunology and Inflammatory Diseases, and
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | - Molly F. Thomas
- Center for Cancer Research
- Center for Immunology and Inflammatory Diseases, and
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | | | - Alexandra-Chloé Villani
- Massachusetts General Hospital Cancer Center
- Department of Medicine
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | - Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center
- Department of Medicine
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center
- Department of Medicine
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | - Michael R. Filbin
- Department of Emergency Medicine, and
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| | - Marcia B. Goldberg
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine
- Department of Microbiology, and
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts; and
| |
Collapse
|
41
|
Alipanah N, Calfee CS. Phenotyping in acute respiratory distress syndrome: state of the art and clinical implications. Curr Opin Crit Care 2022; 28:1-8. [PMID: 34670998 PMCID: PMC8782441 DOI: 10.1097/mcc.0000000000000903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Decades of research in acute respiratory distress syndrome (ARDS) have led to few interventions that impact clinical outcomes. The pandemic of patients with ARDS due to the novel SARS-CoV-2 infection has stressed the need for more effective therapies in ARDS. Phenotyping may enable successful trials and precision therapeutics in this patient population. RECENT FINDINGS Clinical phenotypes that group patients by shared cause, time-course or radiographic presentation are of prognostic value, but their use is limited by misclassification. Physiological phenotypes, including the P/F ratio, ventilatory ratio and dead space fraction, predict poor outcomes but can rapidly change, making them unstable over time. Biologic phenotypes have prognostic value with composite clinical and biomarker sub-phenotypes additionally impacting treatment response but are yet to be prospectively validated. SUMMARY Although much progress has been made in ARDS phenotyping, implementation of precision medicine practices will depend on conducting phenotype-aware trials using rapid point of care assays or machine learning algorithms. Omics studies will enhance our understanding of biologic determinants of clinical outcomes in ARDS sub-phenotypes. Whether biologic ARDS sub-phenotypes are specific to this syndrome or rather more broadly identify endotypes of critical illness remains to be determined.
Collapse
Affiliation(s)
- Narges Alipanah
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco
- Department of Anesthesia, University of California San Francisco
| |
Collapse
|
42
|
Duggal A, Kast R, Van Ark E, Bulgarelli L, Siuba MT, Osborn J, Rey DA, Zampieri FG, Cavalcanti AB, Maia I, Paisani DM, Laranjeira LN, Serpa Neto A, Deliberato RO. Identification of acute respiratory distress syndrome subphenotypes de novo using routine clinical data: a retrospective analysis of ARDS clinical trials. BMJ Open 2022; 12:e053297. [PMID: 34992112 PMCID: PMC8739395 DOI: 10.1136/bmjopen-2021-053297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The acute respiratory distress syndrome (ARDS) is a heterogeneous condition, and identification of subphenotypes may help in better risk stratification. Our study objective is to identify ARDS subphenotypes using new simpler methodology and readily available clinical variables. SETTING This is a retrospective Cohort Study of ARDS trials. Data from the US ARDSNet trials and from the international ART trial. PARTICIPANTS 3763 patients from ARDSNet data sets and 1010 patients from the ART data set. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was 60-day or 28-day mortality, depending on what was reported in the original trial. K-means cluster analysis was performed to identify subgroups. Sets of candidate variables were tested to assess their ability to produce different probabilities for mortality in each cluster. Clusters were compared with biomarker data, allowing identification of subphenotypes. RESULTS Data from 4773 patients were analysed. Two subphenotypes (A and B) resulted in optimal separation in the final model, which included nine routinely collected clinical variables, namely heart rate, mean arterial pressure, respiratory rate, bilirubin, bicarbonate, creatinine, PaO2, arterial pH and FiO2. Participants in subphenotype B showed increased levels of proinflammatory markers, had consistently higher mortality, lower number of ventilator-free days at day 28 and longer duration of ventilation compared with patients in the subphenotype A. CONCLUSIONS Routinely available clinical data can successfully identify two distinct subphenotypes in adult ARDS patients. This work may facilitate implementation of precision therapy in ARDS clinical trials.
Collapse
Affiliation(s)
- Abhijit Duggal
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rachel Kast
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | - Emily Van Ark
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | - Lucas Bulgarelli
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | - Matthew T Siuba
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeff Osborn
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | - Diego Ariel Rey
- Department of Clinical Data Science, Endpoint Health, Palo Alto, California, USA
| | | | | | - Israel Maia
- Hospital do Coracao, Sao Paulo, São Paulo, Brazil
| | | | | | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | |
Collapse
|
43
|
A Pilot Double-Blind Placebo-Controlled Randomized Clinical Trial to Investigate the Effects of Early Enteral Nutrients in Sepsis. Crit Care Explor 2021; 3:e550. [PMID: 34651137 PMCID: PMC8505333 DOI: 10.1097/cce.0000000000000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. Preclinical studies from our laboratory demonstrated therapeutic effects of enteral dextrose administration in the acute phase of sepsis, mediated by the intestine-derived incretin hormone glucose-dependent insulinotropic peptide. The current study investigated the effects of an early enteral dextrose infusion on systemic inflammation and glucose metabolism in critically ill septic patients.
Collapse
|
44
|
Shah FA, Meyer NJ, Angus DC, Awdish R, Azoulay É, Calfee CS, Clermont G, Gordon AC, Kwizera A, Leligdowicz A, Marshall JC, Mikacenic C, Sinha P, Venkatesh B, Wong HR, Zampieri FG, Yende S. A Research Agenda for Precision Medicine in Sepsis and Acute Respiratory Distress Syndrome: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2021; 204:891-901. [PMID: 34652268 PMCID: PMC8534611 DOI: 10.1164/rccm.202108-1908st] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Precision medicine focuses on the identification of therapeutic strategies that are effective for a group of patients based on similar unifying characteristics. The recent success of precision medicine in non-critical care settings has resulted from the confluence of large clinical and biospecimen repositories, innovative bioinformatics, and novel trial designs. Similar advances for precision medicine in sepsis and in the acute respiratory distress syndrome (ARDS) are possible but will require further investigation and significant investment in infrastructure. Methods: This project was funded by the American Thoracic Society Board of Directors. A multidisciplinary and diverse working group reviewed the available literature, established a conceptual framework, and iteratively developed recommendations for the Precision Medicine Research Agenda for Sepsis and ARDS. Results: The following six priority recommendations were developed by the working group: 1) the creation of large richly phenotyped and harmonized knowledge networks of clinical, imaging, and multianalyte molecular data for sepsis and ARDS; 2) the implementation of novel trial designs, including adaptive designs, and embedding trial procedures in the electronic health record; 3) continued innovation in the data science and engineering methods required to identify heterogeneity of treatment effect; 4) further development of the tools necessary for the real-time application of precision medicine approaches; 5) work to ensure that precision medicine strategies are applicable and available to a broad range of patients varying across differing racial, ethnic, socioeconomic, and demographic groups; and 6) the securement and maintenance of adequate and sustainable funding for precision medicine efforts. Conclusions: Precision medicine approaches that incorporate variability in genomic, biologic, and environmental factors may provide a path forward for better individualizing the delivery of therapies and improving care for patients with sepsis and ARDS.
Collapse
|
45
|
Villar J, González-Martín JM, Ambrós A, Mosteiro F, Martínez D, Fernández L, Soler JA, Parra L, Solano R, Soro M, Del Campo R, González-Luengo RI, Civantos B, Montiel R, Pita-García L, Vidal A, Añón JM, Ferrando C, Díaz-Domínguez FJ, Mora-Ordoñez JM, Fernández MM, Fernández C, Fernández RL, Rodríguez-Suárez P, Steyerberg EW, Kacmarek RM. Stratification for Identification of Prognostic Categories In the Acute RESpiratory Distress Syndrome (SPIRES) Score. Crit Care Med 2021; 49:e920-e930. [PMID: 34259448 DOI: 10.1097/ccm.0000000000005142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To develop a scoring model for stratifying patients with acute respiratory distress syndrome into risk categories (Stratification for identification of Prognostic categories In the acute RESpiratory distress syndrome score) for early prediction of death in the ICU, independent of the underlying disease and cause of death. DESIGN A development and validation study using clinical data from four prospective, multicenter, observational cohorts. SETTING A network of multidisciplinary ICUs. PATIENTS One-thousand three-hundred one patients with moderate-to-severe acute respiratory distress syndrome managed with lung-protective ventilation. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The study followed Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines for prediction models. We performed logistic regression analysis, bootstrapping, and internal-external validation of prediction models with variables collected within 24 hours of acute respiratory distress syndrome diagnosis in 1,000 patients for model development. Primary outcome was ICU death. The Stratification for identification of Prognostic categories In the acute RESpiratory distress syndrome score was based on patient's age, number of extrapulmonary organ failures, values of end-inspiratory plateau pressure, and ratio of Pao2 to Fio2 assessed at 24 hours of acute respiratory distress syndrome diagnosis. The pooled area under the receiver operating characteristic curve across internal-external validations was 0.860 (95% CI, 0.831-0.890). External validation in a new cohort of 301 acute respiratory distress syndrome patients confirmed the accuracy and robustness of the scoring model (area under the receiver operating characteristic curve = 0.870; 95% CI, 0.829-0.911). The Stratification for identification of Prognostic categories In the acute RESpiratory distress syndrome score stratified patients in three distinct prognostic classes and achieved better prediction of ICU death than ratio of Pao2 to Fio2 at acute respiratory distress syndrome onset or at 24 hours, Acute Physiology and Chronic Health Evaluation II score, or Sequential Organ Failure Assessment scale. CONCLUSIONS The Stratification for identification of Prognostic categories In the acute RESpiratory distress syndrome score represents a novel strategy for early stratification of acute respiratory distress syndrome patients into prognostic categories and for selecting patients for therapeutic trials.
Collapse
Affiliation(s)
- Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jesús M González-Martín
- Division of Biostatistics, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas, Spain
| | - Alfonso Ambrós
- Intensive Care Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Fernando Mosteiro
- Intensive Care Unit, Hospital Universitario A Coruña, La Coruña, Spain
| | - Domingo Martínez
- Intensive Care Unit, Hospital Universitario Virgen de Arrixaca, Murcia, Spain
| | - Lorena Fernández
- Intensive Care Unit, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Juan A Soler
- Intensive Care Unit, Hospital Universitario Virgen de Arrixaca, Murcia, Spain
| | - Laura Parra
- Intensive Care Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Rosario Solano
- Intensive Care Unit, Hospital Virgen de la Luz, Cuenca, Spain
| | - Marina Soro
- Department of Anesthesiology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Rafael Del Campo
- Intensive Care Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | | | - Belén Civantos
- Intensive Care Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Raquel Montiel
- Intensive Care Unit, Hospital Universitario NS de Candelaria, Santa Cruz de Tenerife, Spain
| | - Lidia Pita-García
- Intensive Care Unit, Hospital Universitario A Coruña, La Coruña, Spain
| | - Anxela Vidal
- Intensive Care Unit, Fundación Hospital Universitario Jiménez Díaz, Madrid, Spain
| | - José M Añón
- CIBER de Enfermedades Respiratorias, Instituto Salud Carlos III, Madrid, Spain
- Intensive Care Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Carlos Ferrando
- CIBER de Enfermedades Respiratorias, Instituto Salud Carlos III, Madrid, Spain
- Department of Anesthesiology and Critical Care, Hospital Clinic, Institut D'investigació August Pi i Sunyer, Barcelona, Spain
| | | | - Juan M Mora-Ordoñez
- Intensive Care Unit, Hospital Regional Universitario de Málaga Carlos Haya, Málaga, Spain
| | - M Mar Fernández
- Intensive Care Unit, Hospital Universitario Mutua Terrassa, Terrassa, Barcelona, Spain
| | - Cristina Fernández
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Rosa L Fernández
- CIBER de Enfermedades Respiratorias, Instituto Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Pedro Rodríguez-Suárez
- Department of Thoracic Surgery, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health, Erasmus MC, Rotterdam, The Netherlands
| | - Robert M Kacmarek
- Department of Respiratory Care, Massachusetts General Hospital, Boston, MA
- Department of Anesthesiology, Harvard University, Boston, MA
| |
Collapse
|
46
|
Raghu VK, Horvat CM, Kochanek PM, Fink EL, Clark RSB, Benos PV, Au AK. Neurological Complications Acquired During Pediatric Critical Illness: Exploratory "Mixed Graphical Modeling" Analysis Using Serum Biomarker Levels. Pediatr Crit Care Med 2021; 22:906-914. [PMID: 34054117 PMCID: PMC8490289 DOI: 10.1097/pcc.0000000000002776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Neurologic complications, consisting of the acute development of a neurologic disorder, that is, not present at admission but develops during the course of illness, can be difficult to detect in the PICU due to sedation, neuromuscular blockade, and young age. We evaluated the direct relationships of serum biomarkers and clinical variables to the development of neurologic complications. Analysis was performed using mixed graphical models, a machine learning approach that allows inference of cause-effect associations from continuous and discrete data. DESIGN Secondary analysis of a previous prospective observational study. SETTING PICU, single quaternary-care center. PATIENTS Individuals admitted to the PICU, younger than18 years old, with intravascular access via an indwelling catheter. INTERVENTIONS None. MEASUREMENTS About 101 patients were included in this analysis. Serum (days 1-7) was analyzed for glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and alpha-II spectrin breakdown product 150 utilizing enzyme-linked immunosorbent assays. Serum levels of neuron-specific enolase, myelin basic protein, and S100 calcium binding protein B used in these models were reported previously. Demographic data, use of selected clinical therapies, lengths of stay, and ancillary neurologic testing (head CT, brain MRI, and electroencephalogram) results were recorded. The Mixed Graphical Model-Fast-Causal Inference-Maximum algorithm was applied to the dataset. MAIN RESULTS About 13 of 101 patients developed a neurologic complication during their critical illness. The mixed graphical model identified peak levels of the neuronal biomarker neuron-specific enolase and ubiquitin C-terminal hydrolase-L1, and the astrocyte biomarker glial fibrillary acidic protein to be the direct causal determinants for the development of a neurologic complication; in contrast, clinical variables including age, sex, length of stay, and primary neurologic diagnosis were not direct causal determinants. CONCLUSIONS Graphical models that include biomarkers in addition to clinical data are promising methods to evaluate direct relationships in the development of neurologic complications in critically ill children. Future work is required to validate and refine these models further, to determine if they can be used to predict which patients are at risk for/or with early neurologic complications.
Collapse
Affiliation(s)
- Vineet K. Raghu
- Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA
| | - Christopher M. Horvat
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| | - Ericka L. Fink
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| | - Robert S. B. Clark
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| | - Panayiotis V. Benos
- Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh PA
| | - Alicia K. Au
- Department of Critical Care Medicine, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Department of Pediatrics, University
of Pittsburgh School of Medicine, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of
Pittsburgh School of Medicine, Pittsburgh, PA; Brain Care Institute, UPMC
Children’s Hospital of Pittsburgh, PA
| |
Collapse
|
47
|
Sathe NA, Zelnick LR, Mikacenic C, Morrell ED, Bhatraju PK, McNeil JB, Kosamo S, Hough CL, Liles WC, Ware LB, Wurfel MM. Identification of persistent and resolving subphenotypes of acute hypoxemic respiratory failure in two independent cohorts. Crit Care 2021; 25:336. [PMID: 34526076 PMCID: PMC8442814 DOI: 10.1186/s13054-021-03755-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Acute hypoxemic respiratory failure (HRF) is associated with high morbidity and mortality, but its heterogeneity challenges the identification of effective therapies. Defining subphenotypes with distinct prognoses or biologic features can improve therapeutic trials, but prior work has focused on ARDS, which excludes many acute HRF patients. We aimed to characterize persistent and resolving subphenotypes in the broader HRF population. METHODS In this secondary analysis of 2 independent prospective ICU cohorts, we included adults with acute HRF, defined by invasive mechanical ventilation and PaO2-to-FIO2 ratio ≤ 300 on cohort enrollment (n = 768 in the discovery cohort and n = 1715 in the validation cohort). We classified patients as persistent HRF if still requiring mechanical ventilation with PaO2-to-FIO2 ratio ≤ 300 on day 3 following ICU admission, or resolving HRF if otherwise. We estimated relative risk of 28-day hospital mortality associated with persistent HRF, compared to resolving HRF, using generalized linear models. We also estimated fold difference in circulating biomarkers of inflammation and endothelial activation on cohort enrollment among persistent HRF compared to resolving HRF. Finally, we stratified our analyses by ARDS to understand whether this was driving differences between persistent and resolving HRF. RESULTS Over 50% developed persistent HRF in both the discovery (n = 386) and validation (n = 1032) cohorts. Persistent HRF was associated with higher risk of death relative to resolving HRF in both the discovery (1.68-fold, 95% CI 1.11, 2.54) and validation cohorts (1.93-fold, 95% CI 1.50, 2.47), after adjustment for age, sex, chronic respiratory illness, and acute illness severity on enrollment (APACHE-III in discovery, APACHE-II in validation). Patients with persistent HRF displayed higher biomarkers of inflammation (interleukin-6, interleukin-8) and endothelial dysfunction (angiopoietin-2) than resolving HRF after adjustment. Only half of persistent HRF patients had ARDS, yet exhibited higher mortality and biomarkers than resolving HRF regardless of whether they qualified for ARDS. CONCLUSION Patients with persistent HRF are common and have higher mortality and elevated circulating markers of lung injury compared to resolving HRF, and yet only a subset are captured by ARDS definitions. Persistent HRF may represent a clinically important, inclusive target for future therapeutic trials in HRF.
Collapse
Affiliation(s)
- Neha A Sathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Box # 359640, Seattle, WA, 98104, USA.
| | - Leila R Zelnick
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Box # 359640, Seattle, WA, 98104, USA
- Benaroya Research Institute, Seattle, WA, USA
| | - Eric D Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Box # 359640, Seattle, WA, 98104, USA
| | - Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Box # 359640, Seattle, WA, 98104, USA
- Sepsis Center of Research Excellence, University of Washington, Seattle, WA, USA
| | - J Brennan McNeil
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Susanna Kosamo
- Department of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Catherine L Hough
- Division of Pulmonary and Critical Care, Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - W Conrad Liles
- Sepsis Center of Research Excellence, University of Washington, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, 325 9th Avenue, Box # 359640, Seattle, WA, 98104, USA
- Sepsis Center of Research Excellence, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Understanding the Host in the Management of Pneumonia. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2021; 18:1087-1097. [PMID: 34242148 PMCID: PMC8328365 DOI: 10.1513/annalsats.202102-209st] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pneumonia causes a significant burden of disease worldwide. Although all populations are at risk of pneumonia, those at extremes of age and those with immunosuppressive disorders, underlying respiratory disease, and critical illness are particularly vulnerable. Although clinical practice guidelines addressing the management and treatment of pneumonia exist, few of the supporting studies focus on the crucial contributions of the host in pneumonia pathogenesis and recovery. Such essential considerations include the host risk factors that lead to susceptibility to lung infections; biomarkers reflecting the host response and the means to pursue host-directed pneumonia therapy; systemic effects of pneumonia on the host; and long-term health outcomes after pneumonia. To address these gaps, the Pneumonia Working Group of the Assembly on Pulmonary Infection and Tuberculosis led a workshop held at the American Thoracic Society meeting in May 2018 with overarching objectives to foster attention, stimulate research, and promote funding for short-term and long-term investigations into the host contributions to pneumonia. The workshop involved participants from various disciplines with expertise in lung infection, pneumonia, sepsis, immunocompromised patients, translational biology, data science, genomics, systems biology, and clinical trials. This workshop report summarizes the presentations and discussions and important recommendations for future clinical pneumonia studies. These recommendations include establishing consensus disease and outcome definitions, improved phenotyping, development of clinical study networks, standardized data and biospecimen collection and protocols, and development of innovative trial designs.
Collapse
|
49
|
Drohan CM, Nouraie SM, Bain W, Shah FA, Evankovich J, Zhang Y, Morris A, McVerry BJ, Kitsios GD. Biomarker-Based Classification of Patients With Acute Respiratory Failure Into Inflammatory Subphenotypes: A Single-Center Exploratory Study. Crit Care Explor 2021; 3:e0518. [PMID: 34476405 PMCID: PMC8378789 DOI: 10.1097/cce.0000000000000518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Hyper- and hypoinflammatory subphenotypes discovered in patients with acute respiratory distress syndrome predict clinical outcomes and therapeutic responses. These subphenotypes may be important in broader critically ill patient populations with acute respiratory failure regardless of clinical diagnosis. We investigated subphenotyping with latent class analysis in an inclusive population of acute respiratory failure, derived a parsimonious model for subphenotypic predictions based on a small set of variables, and examined associations with clinical outcomes. DESIGN Prospective, observational cohort study. SETTING Single-center, academic medical ICU. PATIENTS Mechanically ventilated patients with acute respiratory failure. MEASUREMENTS AND MAIN RESULTS We included 498 patients with acute respiratory failure (acute respiratory distress syndrome: 143, at-risk for acute respiratory distress syndrome: 198, congestive heart failure: 37, acute on chronic respiratory failure: 23, airway protection: 61, and multifactorial: 35) in our derivation cohort and measured 10 baseline plasma biomarkers. Latent class analysis considering clinical variables and biomarkers determined that a two-class model offered optimal fit (23% hyperinflammatory subphenotype). Distribution of hyperinflammatory subphenotype varied among acute respiratory failure etiologies (acute respiratory distress syndrome: 31%, at-risk for acute respiratory distress syndrome: 27%, congestive heart failure: 22%, acute on chronic respiratory failure 0%, airway protection: 5%, and multifactorial: 14%). Hyperinflammatory patients had higher Sequential Organ Failure Assessment scores, fewer ventilator-free days, and higher 30- and 90-day mortality (all p < 0.001). We derived a parsimonious model consisting of angiopoietin-2, soluble tumor necrosis factor receptor-1, procalcitonin, and bicarbonate and classified subphenotypes in a validation cohort (n = 139). Hyperinflammatory patients (19%) demonstrated higher levels of inflammatory biomarkers not included in the model (p < 0.01) and worse outcomes. CONCLUSIONS Host-response subphenotypes are observable in a heterogeneous population with acute respiratory failure and predict clinical outcomes. Simple, biomarker-based models can offer prognostic enrichment in patients with acute respiratory failure. The differential distribution of subphenotypes by specific etiologies of acute respiratory failure indicates that subphenotyping may be more relevant in patients with hypoxemic causes of acute respiratory failure and not in patients intubated for airway protection or acute on chronic decompensation.
Collapse
Affiliation(s)
- Callie M Drohan
- Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - S Mehdi Nouraie
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - William Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Staff Physician, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA
| | - Faraaz A Shah
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Staff Physician, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA
| | - John Evankovich
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Yingze Zhang
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Alison Morris
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bryan J McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Georgios D Kitsios
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
50
|
Reddy K, Calfee CS, McAuley DF. Acute Respiratory Distress Syndrome Subphenotypes beyond the Syndrome: A Step toward Treatable Traits? Am J Respir Crit Care Med 2021; 203:1449-1451. [PMID: 33565943 PMCID: PMC8483225 DOI: 10.1164/rccm.202101-0218ed] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kiran Reddy
- Department of Anaesthesiology, Intensive Care, and Pain Medicine Mater Misericordiae University Hospital Dublin, Ireland, and.,University College Dublin Dublin, Ireland
| | - Carolyn S Calfee
- Department of Medicine, and.,Department of Anesthesia University of California San Francisco, California
| | - Danny F McAuley
- Department of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast Belfast, United Kingdom, and.,Regional Intensive Care Unit Royal Victoria Hospital Belfast, United Kingdom
| |
Collapse
|