1
|
Baumann IM, Carlson B, Hadeed J, Queen SE, Witwer KW, Mankowski J, Veenhuis R, Hopper LM. Pigtail Macaque (Macaca nemestrina) Performance Differs Across Multiple Cognitive Domains in Comparison to Rhesus Macaques (Macaca mulatta). Am J Primatol 2025; 87:e70033. [PMID: 40249171 DOI: 10.1002/ajp.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Rhesus and pigtail macaques are closely related and have similar social structures, yet differences in their behavior, socio-ecology, and personality have been observed, although not systematically documented. Given these differences, it is important to assess pigtail macaque cognition independently, rather than relying on rhesus macaque findings as a proxy. To gain a better understanding of pigtail macaque cognition, we used a battery of three cognitive tasks. Rhesus macaques were tested on the same tasks to validate our methods and to allow for comparison. Across just three tasks, we found significant differences between the two closely related species. In the three cups task, which tests short-term memory, both pigtail and rhesus macaques performed significantly better when they had to recall the location of a hidden food reward after a 0 s delay compared to a 15 s delay. However, in the 15 s delay condition, only rhesus macaques performed above chance levels, whereas pigtail macaques did not. In the reversal learning task, which tested rule learning and cognitive flexibility, we found species differences in learning performance. For the quantity discrimination task, which tests numerosity, we found that both rhesus and pigtail macaques were more accurate at discriminating "easy" ratios of foods (e.g., 1 vs. 5 or 2 vs. 6) than the "hard" ratios (e.g., 2 vs. 3 or 4 vs. 5). However, pigtail macaques were more accurate than rhesus macaques in the hard ratio trials. These contribute to a novel understanding of cognition in pigtail macaques while also increasing research rigor in translational research.
Collapse
Affiliation(s)
- Isabella M Baumann
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bess Carlson
- Research Animal Resources, Johns Hopkins University, Baltimore, MD, USA
| | - Jasmine Hadeed
- Research Animal Resources, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lydia M Hopper
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Research Animal Resources, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Bose D, Deb Adhikary N, Xiao P, Rogers KA, Ferrell DE, Cheng-Mayer C, Chang TL, Villinger F. SHIV-C109p5 NHP induces rapid disease progression in elderly macaques with extensive GI viral replication. J Virol 2024; 98:e0165223. [PMID: 38299866 PMCID: PMC10878093 DOI: 10.1128/jvi.01652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1β+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.
Collapse
Affiliation(s)
- Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Nihar Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Douglas E. Ferrell
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | | | - Theresa L. Chang
- The Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| |
Collapse
|
3
|
Wilk AJ, Marceau JO, Kazer SW, Fleming I, Miao VN, Galvez-Reyes J, Kimata JT, Shalek AK, Holmes S, Overbaugh J, Blish CA. Pro-inflammatory feedback loops define immune responses to pathogenic Lentivirus infection. Genome Med 2024; 16:24. [PMID: 38317183 PMCID: PMC10840164 DOI: 10.1186/s13073-024-01290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The Lentivirus human immunodeficiency virus (HIV) causes chronic inflammation and AIDS in humans, with variable rates of disease progression between individuals driven by both host and viral factors. Similarly, simian lentiviruses vary in their pathogenicity based on characteristics of both the host species and the virus strain, yet the immune underpinnings that drive differential Lentivirus pathogenicity remain incompletely understood. METHODS We profile immune responses in a unique model of differential lentiviral pathogenicity where pig-tailed macaques are infected with highly genetically similar variants of SIV that differ in virulence. We apply longitudinal single-cell transcriptomics to this cohort, along with single-cell resolution cell-cell communication techniques, to understand the immune mechanisms underlying lentiviral pathogenicity. RESULTS Compared to a minimally pathogenic lentiviral variant, infection with a highly pathogenic variant results in a more delayed, broad, and sustained activation of inflammatory pathways, including an extensive global interferon signature. Conversely, individual cells infected with highly pathogenic Lentivirus upregulated fewer interferon-stimulated genes at a lower magnitude, indicating that highly pathogenic Lentivirus has evolved to partially escape from interferon responses. Further, we identify CXCL10 and CXCL16 as important molecular drivers of inflammatory pathways specifically in response to highly pathogenic Lentivirus infection. Immune responses to highly pathogenic Lentivirus infection are characterized by amplifying regulatory circuits of pro-inflammatory cytokines with dense longitudinal connectivity. CONCLUSIONS Our work presents a model of lentiviral pathogenicity where failures in early viral control mechanisms lead to delayed, sustained, and amplifying pro-inflammatory circuits, which in turn drives disease progression.
Collapse
Affiliation(s)
- Aaron J Wilk
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua O Marceau
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Samuel W Kazer
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ira Fleming
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vincent N Miao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, 02115, USA
| | - Jennyfer Galvez-Reyes
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
4
|
Smedley J. Editorial: Preclinical macaque models of viral diseases. Front Immunol 2023; 14:1331774. [PMID: 38022655 PMCID: PMC10666555 DOI: 10.3389/fimmu.2023.1331774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Jeremy Smedley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
5
|
Deshetty UM, Ray S, Singh S, Buch S, Periyasamy P. Opioid abuse and SIV infection in non-human primates. J Neurovirol 2023; 29:377-388. [PMID: 37418108 PMCID: PMC10729652 DOI: 10.1007/s13365-023-01153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Human immunodeficiency virus (HIV) and drug abuse are intertwined epidemics, leading to compromised adherence to combined antiretroviral therapy (cART) and exacerbation of NeuroHIV. As opioid abuse causes increased viral replication and load, leading to a further compromised immune system in people living with HIV (PLWH), it is paramount to address this comorbidity to reduce the NeuroHIV pathogenesis. Non-human primates are well-suited models to study mechanisms involved in HIV neuropathogenesis and provide a better understanding of the underlying mechanisms involved in the comorbidity of HIV and drug abuse, leading to the development of more effective treatments for PLWH. Additionally, using broader behavioral tests in these models can mimic mild NeuroHIV and aid in studying other neurocognitive diseases without encephalitis. The simian immunodeficiency virus (SIV)-infected rhesus macaque model is instrumental in studying the effects of opioid abuse on PLWH due to its similarity to HIV infection. The review highlights the importance of using non-human primate models to study the comorbidity of opioid abuse and HIV infection. It also emphasizes the need to consider modifiable risk factors such as gut homeostasis and pulmonary pathogenesis associated with SIV infection and opioid abuse in this model. Moreover, the review suggests that these non-human primate models can also be used in developing effective treatment strategies for NeuroHIV and opioid addiction. Therefore, non-human primate models can significantly contribute to understanding the complex interplay between HIV infection, opioid abuse, and associated comorbidities.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
6
|
Monitoring and immunogenicity of SARS-CoV-2 vaccination of laboratory rhesus monkeys (Macaca mulatta). Sci Rep 2023; 13:3274. [PMID: 36841887 PMCID: PMC9958316 DOI: 10.1038/s41598-023-30473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
The availability of effective vaccines and a high vaccination rate allowed the recent mitigation, or even withdrawal, of many protective measures for containing the SARS CoV-2 pandemic. At the same time, new and highly mutated variants of the virus are found to have significantly higher transmissibility and reduced vaccine efficacy, thus causing high infection rates during the third year of the pandemic. The combination of reduced measures and increased infectivity poses a particular risk for unvaccinated individuals, including animals susceptible to the virus. Among the latter, non-human primates (NHPs) are particularly vulnerable. They serve as important models in various fields of biomedical research and because of their cognitive capabilities, they receive particular attention in animal welfare regulations around the world. Yet, although they played an extraordinarily important role for developing and testing vaccines against SARS-CoV-2, the protection of captive rhesus monkeys against Covid-19 has rarely been discussed. We here report upon twofold mRNA vaccination of a cohort of 19 elderly rhesus monkeys (Macaca mulatta) against infection by SARS-CoV-2. All animals were closely monitored on possible side effects of vaccination, and were tested for neutralising antibodies against the virus. The data show that vaccination of rhesus monkeys is a safe and reliable measure to protect these animals against SARS-CoV-2.
Collapse
|
7
|
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front Immunol 2023; 13:1060985. [PMID: 36713371 PMCID: PMC9878298 DOI: 10.3389/fimmu.2022.1060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Ode H, Saito A, Washizaki A, Seki Y, Yoshida T, Harada S, Ishii H, Shioda T, Yasutomi Y, Matano T, Miura T, Akari H, Iwatani Y. Development of a novel Macaque-Tropic HIV-1 adapted to cynomolgus macaques. J Gen Virol 2022; 103. [PMID: 36205476 DOI: 10.1099/jgv.0.001790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macaque-tropic HIV-1 (HIV-1mt) variants have been developed to establish preferable primate models that are advantageous in understanding HIV-1 infection pathogenesis and in assessing the preclinical efficacy of novel prevention/treatment strategies. We previously reported that a CXCR4-tropic HIV-1mt, MN4Rh-3, efficiently replicates in peripheral blood mononuclear cells (PBMCs) of cynomolgus macaques homozygous for TRIMCyp (CMsTC). However, the CMsTC challenged with MN4Rh-3 displayed low viral loads during the acute infection phase and subsequently exhibited short-term viremia. These virological phenotypes in vivo differed from those observed in most HIV-1-infected people. Therefore, further development of the HIV-1mt variant was needed. In this study, we first reconstructed the MN4Rh-3 clone to produce a CCR5-tropic HIV-1mt, AS38. In addition, serial in vivo passages allowed us to produce a highly adapted AS38-derived virus that exhibits high viral loads (up to approximately 106 copies ml-1) during the acute infection phase and prolonged periods of persistent viremia (lasting approximately 16 weeks postinfection) upon infection of CMsTC. Whole-genome sequencing of the viral genomes demonstrated that the emergence of a unique 15-nt deletion within the vif gene was associated with in vivo adaptation. The deletion resulted in a significant increase in Vpr protein expression but did not affect Vif-mediated antagonism of antiretroviral APOBEC3s, suggesting that Vpr is important for HIV-1mt adaptation to CMsTC. In summary, we developed a novel CCR5-tropic HIV-1mt that can induce high peak viral loads and long-term viremia and exhibits increased Vpr expression in CMsTC.
Collapse
Affiliation(s)
- Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Akatsuki Saito
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Present address: Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan (A. S.), National Institute of Biomedical Innovation, Osaka, Japan (A. W.); National Institute of Infectious Diseases (Y.S. and T.Y.), Tokyo, Japan
| | - Ayaka Washizaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Present address: Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan (A. S.), National Institute of Biomedical Innovation, Osaka, Japan (A. W.); National Institute of Infectious Diseases (Y.S. and T.Y.), Tokyo, Japan
| | - Yohei Seki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Present address: Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan (A. S.), National Institute of Biomedical Innovation, Osaka, Japan (A. W.); National Institute of Infectious Diseases (Y.S. and T.Y.), Tokyo, Japan
| | - Takeshi Yoshida
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Present address: Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan (A. S.), National Institute of Biomedical Innovation, Osaka, Japan (A. W.); National Institute of Infectious Diseases (Y.S. and T.Y.), Tokyo, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tomoyuki Miura
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hirofumi Akari
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Schmidt JK, Reynolds MR, Golos TG, Slukvin II. CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology 2022; 19:17. [PMID: 35948929 PMCID: PMC9363854 DOI: 10.1186/s12977-022-00604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nonhuman primates (NHPs) are well-established basic and translational research models for human immunodeficiency virus (HIV) infections and pathophysiology, hematopoietic stem cell (HSC) transplantation, and assisted reproductive technologies. Recent advances in CRISPR/Cas9 gene editing technologies present opportunities to refine NHP HIV models for investigating genetic factors that affect HIV replication and designing cellular therapies that exploit genetic barriers to HIV infections, including engineering mutations into CCR5 and conferring resistance to HIV/simian immunodeficiency virus (SIV) infections. In this report, we provide an overview of recent advances and challenges in gene editing NHP embryos and discuss the value of genetically engineered animal models for developing novel stem cell-based therapies for curing HIV.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew R Reynolds
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA. Identification, Quantification, and Characterization of HIV-1 Reservoirs in the Human Brain. Cells 2022; 11:2379. [PMID: 35954221 PMCID: PMC9367788 DOI: 10.3390/cells11152379] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX 77555, USA; (M.D.); (D.D.); (S.V.); (C.A.H.); (B.P.)
| |
Collapse
|
11
|
Sun D, Zhan Z, Zeng R, Liu X, Wang B, Yang F, Huang S, Li Y, Yang Z, Su Y, Lan Y. Long-term and potent IOP-lowering effect of IκBα-siRNA in a nonhuman primate model of chronic ocular hypertension. iScience 2022; 25:104149. [PMID: 35445186 PMCID: PMC9014385 DOI: 10.1016/j.isci.2022.104149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glaucoma is one of the most common causes of irreversible blindness. It is acknowledged that lowering intraocular pressure (IOP) is the effective treatment to slow glaucoma disease progression. The main obstacle of existing drugs is that the effect of reducing IOP does not last long. Degradation of IκB stimulates the transcription of NF-κB, which could upregulate the expression of matrix metalloproteinases (MMPs). Whether a IκB-targeted gene therapy works in glaucoma is unclear. Here, we established a chronic ocular hypertension (COHT) model in rhesus monkey by laser photocoagulation and verified that intracameral delivery of IκBα-siRNA showed long-lasting and potent effects of reducing IOP without obvious inflammation in monkeys with COHT. We also verified that IκBα-siRNA could increase the expressions of MMP2 and MMP9 by knocking down IκBα in vitro and in vivo. Our results in nonhuman primates indicated that IκBα-siRNA may become a promising therapeutic approach for the treatment of glaucoma. Knocking down IκBα could upregulate the expression of MMP2 and MMP9 in MCM and MTM LP could induce COHT model in rhesus monkeys successfully IκBα-siRNA has a long-term and potent IOP-lowering effect in LP-induced monkeys with COHT
Collapse
Affiliation(s)
- Difang Sun
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zongyi Zhan
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Zeng
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Bin Wang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fan Yang
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sa Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yunfeng Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zhenlan Yang
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuanyuan Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing Lan
- Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Yu Y, Wan Z, Wang JH, Yang X, Zhang C. Review of human pegivirus: Prevalence, transmission, pathogenesis, and clinical implication. Virulence 2022; 13:324-341. [PMID: 35132924 PMCID: PMC8837232 DOI: 10.1080/21505594.2022.2029328] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pegivirus (HPgV-1), previously known as GB virus C (GBV-C) or hepatitis G virus (HGV), is a single-stranded positive RNA virus belonging to the genus Pegivirus of the Flaviviridae family. It is transmitted by percutaneous injuries (PIs), contaminated blood and/or blood products, sexual contact, and vertical mother-to-child transmission. It is widely prevalent in general population, especially in high-risk groups. HPgV-1 viremia is typically cleared within the first 1–2 years of infection in most healthy individuals, but may persist for longer periods of time in immunocompromised individuals and/or those co-infected by other viruses. A large body of evidences indicate that HPgV-1 persistent infection has a beneficial clinical effect on many infectious diseases, such as acquired immunodeficiency syndrome (AIDS) and hepatitis C. The beneficial effects seem to be related to a significant reduction of immune activation, and/or the inhabitation of co-infected viruses (e.g. HIV-1). HPgV-1 has a broad cellular tropism for lymphoid and myeloid cells, and preferentially replicates in bone marrow and spleen without cytopathic effect, implying a therapeutic potential. The paper aims to summarize the natural history, prevalence and distribution characteristics, and pathogenesis of HPgV-1, and discuss its association with other human viral diseases, and potential use in therapy as a biovaccine or viral vector.
Collapse
Affiliation(s)
- Yaqi Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xianguang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Reno TA, Tarnus L, Tracy R, Landay AL, Sereti I, Apetrei C, Pandrea I. The Youngbloods. Get Together. Hypercoagulation, Complement, and NET Formation in HIV/SIV Pathogenesis. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.795373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic, systemic T-cell immune activation and inflammation (IA/INFL) have been reported to be associated with disease progression in persons with HIV (PWH) since the inception of the AIDS pandemic. IA/INFL persist in PWH on antiretroviral therapy (ART), despite complete viral suppression and increases their susceptibility to serious non-AIDS events (SNAEs). Increased IA/INFL also occur during pathogenic SIV infections of macaques, while natural hosts of SIVs that control chronic IA/INFL do not progress to AIDS, despite having persistent high viral replication and severe acute CD4+ T-cell loss. Moreover, natural hosts of SIVs do not present with SNAEs. Multiple mechanisms drive HIV-associated IA/INFL, including the virus itself, persistent gut dysfunction, coinfections (CMV, HCV, HBV), proinflammatory lipids, ART toxicity, comorbidities, and behavioral factors (diet, smoking, and alcohol). Other mechanisms could also significantly contribute to IA/INFL during HIV/SIV infection, notably, a hypercoagulable state, characterized by elevated coagulation biomarkers, including D-dimer and tissue factor, which can accurately identify patients at risk for thromboembolic events and death. Coagulation biomarkers strongly correlate with INFL and predict the risk of SNAE-induced end-organ damage. Meanwhile, the complement system is also involved in the pathogenesis of HIV comorbidities. Despite prolonged viral suppression, PWH on ART have high plasma levels of C3a. HIV/SIV infections also trigger neutrophil extracellular traps (NETs) formation that contribute to the elimination of viral particles and infected CD4+ T-cells. However, as SIV infection progresses, generation of NETs can become excessive, fueling IA/INFL, destruction of multiple immune cells subsets, and microthrombotic events, contributing to further tissue damages and SNAEs. Tackling residual IA/INFL has the potential to improve the clinical course of HIV infection. Therefore, therapeutics targeting new pathways that can fuel IA/INFL such as hypercoagulation, complement activation and excessive formation of NETs might be beneficial for PWH and should be considered and evaluated.
Collapse
|
14
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
15
|
SIV Evolutionary Dynamics in Cynomolgus Macaques during SIV- Mycobacterium tuberculosis Co-Infection. Viruses 2021; 14:v14010048. [PMID: 35062252 PMCID: PMC8778162 DOI: 10.3390/v14010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Co-infection with Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) is a worldwide public health concern, leading to worse clinical outcomes caused by both pathogens. We used a non-human primate model of simian immunodeficiency virus (SIV)-Mtb co-infection, in which latent Mtb infection was established prior to SIVmac251 infection. The evolutionary dynamics of SIV env was evaluated from samples in plasma, lymph nodes, and lungs (including granulomas) of SIV-Mtb co-infected and SIV only control animals. While the diversity of the challenge virus was low and overall viral diversity remained relatively low over 6–9 weeks, changes in viral diversity and divergence were observed, including evidence for tissue compartmentalization. Overall, viral diversity was highest in SIV-Mtb animals that did not develop clinical Mtb reactivation compared to animals with Mtb reactivation. Among lung granulomas, viral diversity was positively correlated with the frequency of CD4+ T cells and negatively correlated with the frequency of CD8+ T cells. SIV diversity was highest in the thoracic lymph nodes compared to other sites, suggesting that lymphatic drainage from the lungs in co-infected animals provides an advantageous environment for SIV replication. This is the first assessment of SIV diversity across tissue compartments during SIV-Mtb co-infection after established Mtb latency.
Collapse
|
16
|
Genome editing in large animal models. Mol Ther 2021; 29:3140-3152. [PMID: 34601132 DOI: 10.1016/j.ymthe.2021.09.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.
Collapse
|
17
|
Blood Analysis of Laboratory Macaca mulatta Used for Neuroscience Research: Investigation of Long-Term and Cumulative Effects of Implants, Fluid Control, and Laboratory Procedures. eNeuro 2021; 8:ENEURO.0284-21.2021. [PMID: 34556556 PMCID: PMC8528508 DOI: 10.1523/eneuro.0284-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
The nonhuman primate (NHP) constitutes an extraordinarily important model in neuroscience research for understanding the neuronal underpinnings of perceptual, motor, cognitive, and executive functions of the primate brain, and to study the physiological causes, effects, and potential treatments of brain disorders. Because of their cognitive capabilities, NHPs receive special attention in animal welfare regulations around the world, and their well-being is a benchmark for the evaluation, monitoring, and refinement of experimental procedures. As a consequence, many typical neuroscientific procedures are considered only mildly severe by animal welfare boards. There is, however, an ongoing debate about possible long-term and cumulative effects. Because of a lack of longitudinal data, it is unclear whether mildly severe procedures may cause more significant harm on the long-term, and to what extent they may impact animal well-being and healthiness over time. We here make use of a database of blood samples drawn over a period of 15 years from 39 rhesus monkeys (Macaca mulatta) to address the issue of long-term, cumulative effects of neuroscientific procedures. A careful analysis of indicative primate blood markers for chronic inflammation, hydration status, and stress levels, their comparison to baseline values from both the same animals and the literature, and evaluation of additional hematologic, physiological, and behavioral parameters did not provide support for the notion of long-term, cumulative effects on the monkeys’ healthiness and well-being. The results may serve the community as a reference for the severity assessment of neuroscientific experiments involving NHPs.
Collapse
|
18
|
A Gut Reaction to SIV and SHIV Infection: Lower Dysregulation of Mucosal T Cells during Acute Infection Is Associated with Greater Viral Suppression during cART. Viruses 2021; 13:v13081609. [PMID: 34452474 PMCID: PMC8402906 DOI: 10.3390/v13081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022] Open
Abstract
Selection of a pre-clinical non-human primate (NHP) model is essential when evaluating therapeutic vaccine and treatment strategies for HIV. SIV and SHIV-infected NHPs exhibit a range of viral burdens, pathologies, and responses to combinatorial antiretroviral therapy (cART) regimens and the choice of the NHP model for AIDS could influence outcomes in studies investigating interventions. Previously, in rhesus macaques (RMs) we showed that maintenance of mucosal Th17/Treg homeostasis during SIV infection correlated with a better virological response to cART. Here, in RMs we compared viral kinetics and dysregulation of gut homeostasis, defined by T cell subset disruption, during highly pathogenic SIVΔB670 compared to SHIV-1157ipd3N4 infection. SHIV infection resulted in lower acute viremia and less disruption to gut CD4 T-cell homeostasis. Additionally, 24/24 SHIV-infected versus 10/19 SIV-infected animals had sustained viral suppression <100 copies/mL of plasma after 5 months of cART. Significantly, the more profound viral suppression during cART in a subset of SIV and all SHIV-infected RMs corresponded with less gut immune dysregulation during acute SIV/SHIV infection, defined by maintenance of the Th17/Treg ratio. These results highlight significant differences in viral control during cART and gut dysregulation in NHP AIDS models and suggest that selection of a model may impact the evaluation of candidate therapeutic interventions for HIV treatment and cure strategies.
Collapse
|
19
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Berard AR, Miller C, Araínga M, Broedlow CA, Noël-Romas L, Schifanella L, Hensley-McBain T, Roederer A, Driscoll C, Coronado E, Manuzak J, McKinnon LR, Villinger FJ, Hope TJ, Burgener AD, Klatt NR. Simian Immunodeficiency Virus Susceptibility, Immunology, and Microbiome in the Female Genital Tract of Adolescent Versus Adult Pigtail Macaques. AIDS Res Hum Retroviruses 2021; 37:510-522. [PMID: 33446027 DOI: 10.1089/aid.2020.0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In Sub-Saharan Africa, young women 15-24 years of age account for nearly 30% of all new HIV infections, however, biological and epidemiological factors underlying this disproportionate infection rate are unclear. In this study, we assessed biological contributors of SIV/HIV susceptibility in the female genital tract (FGT) using adolescent (n = 9) and adult (n = 10) pigtail macaques (PTMs) with weekly low-dose intravaginal challenges of SIV. Immunological variables were captured in vaginal tissue of PTMs by flow cytometry and cytokine assays. Vaginal biopsies were profiled by proteomic analysis. The vaginal microbiome was assessed by 16S rRNA sequencing. We were powered to detect a 2.2-fold increase in infection rates between age groups, however, we identified no significant differences in susceptibility. This model cannot capture epidemiological factors or may not best represent biological differences of HIV susceptibility. No immune cell subsets measured were significantly different between groups. Inflammatory marker MCP-1 was significantly higher (adj p = .02), and sCD40L trended higher (adj p = .06) in vaginal cytobrushes of adults. Proteomic analysis of vaginal biopsies showed no significant (adj p < .05) protein or pathway differences between groups. Vaginal microbiomes were not significantly different between groups. No differences were observed between age groups in this PTM model, however, these animals may not reflect biological factors contributing to HIV risk such as those found in their human counterparts. This model is therefore not appropriate to explore human adolescent differences in HIV risk. Young women remain a key population at risk for HIV infection, and there is still a need for comprehensive assessment and intervention strategies for epidemic control of this uniquely vulnerable population.
Collapse
Affiliation(s)
- Alicia R Berard
- University of Manitoba, 8664, Obstetrics, Gynecology & Reproductive Health, Winnipeg, Manitoba, Canada
| | - Charlene Miller
- University of Miami Miller School of Medicine, 12235, Pediatrics, Miami, Florida, United States
- University of Washington, 7284, Pharmaceutics, Seattle, Washington, United States
| | - Mariluz Araínga
- University of Louisiana at Lafayette, 4365, New Iberia Research Centre, Lafayette, Louisiana, United States
| | - Courtney Ann Broedlow
- University of Miami Miller School of Medicine, 12235, Pediatrics, Miami, Florida, United States
- University of Washington, 7284, Pharmaceutics, Seattle, Washington, United States
| | - Laura Noël-Romas
- University of Manitoba, 8664, Obstetrics, Gynecology & Reproductive Health, Winnipeg, Manitoba, Canada
| | - Luca Schifanella
- University of Minnesota System, 311816, Department of Medicine, Minneapolis, Minnesota, United States
| | - Tiffany Hensley-McBain
- University of Miami Miller School of Medicine, 12235, Pediatrics, Miami, Florida, United States
- University of Washington, 7284, Pharmaceutics, Seattle, Washington, United States
| | - Alex Roederer
- University of Washington, 7284, Pharmaceutics, Seattle, Washington, United States
| | - Connor Driscoll
- University of Miami Miller School of Medicine, 12235, Pediatrics, Miami, Florida, United States
- University of Washington, 7284, Pharmaceutics, Seattle, Washington, United States
| | - Ernesto Coronado
- University of Washington, 7284, Pharmaceutics, Seattle, Washington, United States
| | - Jennifer Manuzak
- University of Miami Miller School of Medicine, 12235, Pediatrics, Miami, Florida, United States
| | - Lyle R McKinnon
- University of Manitoba, 8664, Department of Medical Microbiology and Infectious Diseases, 745 Bannatyne Ave, Winnipeg, Manitoba, Canada, R3E 0J9
- Centre for the Aids Programme of Research in South Africa, 470329, Durban, KwaZulu-Natal, South Africa
| | - Francois J Villinger
- University of Louisiana at Lafayette, 4365, New Iberia Research Centre, Lafayette, Louisiana, United States
| | - Thomas J Hope
- Northwestern University Feinberg School of Medicine, 12244, Cell and Molecular Biology, Chicago, Illinois, United States,
| | - Adam D Burgener
- Case Western Reserve University, 2546, Center for Global Health and Disease, Cleveland, Ohio, United States
- University of Manitoba, 8664, Obstetrics, Gynecology & Reproductive Health, Winnipeg, Manitoba, Canada
- Karolinska Institute, 27106, Department of Medicine Solna, Stockholm, Stockholm, Sweden
| | - Nichole R Klatt
- University of Minnesota System, 311816, Department of Medicine, Minneapolis, Minnesota, United States
| |
Collapse
|
21
|
Abeynaike S, Paust S. Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Front Immunol 2021; 12:636775. [PMID: 33868262 PMCID: PMC8047330 DOI: 10.3389/fimmu.2021.636775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
With the discovery of antiretroviral therapy, HIV-1 infection has transitioned into a manageable but chronic illness, which requires lifelong treatment. Nevertheless, complete eradication of the virus has still eluded us. This is partly due to the virus’s ability to remain in a dormant state in tissue reservoirs, ‘hidden’ from the host’s immune system. Also, the high mutation rate of HIV-1 results in escape mutations in response to many therapeutics. Regardless, the development of novel cures for HIV-1 continues to move forward with a range of approaches from immunotherapy to gene editing. However, to evaluate in vivo pathogenesis and the efficacy and safety of therapeutic approaches, a suitable animal model is necessary. To this end, the humanized mouse was developed by McCune in 1988 and has continued to be improved on over the past 30 years. Here, we review the variety of humanized mouse models that have been utilized through the years and describe their specific contribution in translating HIV-1 cure strategies to the clinic.
Collapse
Affiliation(s)
- Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
22
|
Wu G, Cheney C, Huang Q, Hazuda DJ, Howell BJ, Zuck P. Improved Detection of HIV Gag p24 Protein Using a Combined Immunoprecipitation and Digital ELISA Method. Front Microbiol 2021; 12:636703. [PMID: 33796087 PMCID: PMC8007784 DOI: 10.3389/fmicb.2021.636703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Greater than 90% of HIV-1 proviruses are thought to be defective and incapable of viral replication. While replication competent proviruses are of primary concern with respect to disease progression or transmission, studies have shown that even defective proviruses are not silent and can produce viral proteins, which may contribute to inflammation and immune responses. Viral protein expression also has implications for immune-based HIV-1 clearance strategies, which rely on antigen recognition. Thus, sensitive assays aimed at quantifying both replication-competent proviruses and defective, yet translationally competent proviruses are needed to understand the contribution of viral protein to HIV-1 pathogenesis and determine the effectiveness of HIV-1 cure interventions. Previously, we reported a modified HIV-1 gag p24 digital enzyme-linked immunosorbent assay with single molecule array (Simoa) detection of cell-associated viral protein. Here we report a novel p24 protein enrichment method coupled with the digital immunoassay to further extend the sensitivity and specificity of viral protein detection. Immunocapture of HIV gag p24 followed by elution in a Simoa-compatible format resulted in higher protein recovery and lower background from various biological matrices and sample volumes. Quantification of as little as 1 fg of p24 protein from cell lysates from cells isolated from peripheral blood or tissues from ART-suppressed HIV participants, as well as simian-human immunodeficiency virus-infected non-human primates (NHPs), with high recovery and reproducibility is demonstrated here. The application of these enhanced methods to patient-derived samples has potential to further the study of the persistent HIV state and examine in vitro response to therapies, as well as ex vivo study of translationally competent cells from a variety of donors.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Zuck
- Department of Infectious Disease and Vaccines, Merck & Co. Inc., Kenilworth, NJ, United States
| |
Collapse
|
23
|
Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2021; 11:617516. [PMID: 33746940 PMCID: PMC7973037 DOI: 10.3389/fimmu.2020.617516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jack X. Yang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Giraudy I, Ovejero CA, Affranchino JL, González SA. In vitro inhibitory effect of maraviroc on the association of the simian immunodeficiency virus envelope glycoprotein with CCR5. Virus Genes 2021; 57:106-110. [PMID: 33400102 DOI: 10.1007/s11262-020-01816-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022]
Abstract
Asian macaques infected with simian immunodeficiency viruses (SIVs) isolated from African non-human primates develop a disease similar to human AIDS. SIV enters its target cells by binding to CD4 and a coreceptor, typically CCR5. Maraviroc is an entry inhibitor of human immunodeficiency virus type 1 (HIV-1) that prevents the interaction between CCR5 and the surface subunit gp120 of the viral envelope glycoprotein (Env). Thus far, the activity of maraviroc on SIV entry has been poorly studied. Here, we determined in vitro pharmacological parameters of the effect of maraviroc on the SIV Env association with CCR5. Cell-to-cell fusion inhibition assays were used to compare the susceptibility to maraviroc of the SIVsmmPBj Env-CCR5 interaction with that of HIV-1BaL Env. Analysis of dose-response curves and determination of IC50 values demonstrate that increasing concentrations of maraviroc inhibit the membrane fusion activity of SIVsmmPBj Env in a manner and to an extent similar to that of HIV-1BaL Env.
Collapse
Affiliation(s)
- Ignacio Giraudy
- Laboratorio de Virología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires, Argentina
| | - César A Ovejero
- Laboratorio de Virología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires, Argentina
| | - José L Affranchino
- Laboratorio de Virología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires, Argentina
| | - Silvia A González
- Laboratorio de Virología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Byanova KL, Kunisaki KM, Vasquez J, Huang L. Chronic obstructive pulmonary disease in HIV. Expert Rev Respir Med 2021; 15:71-87. [PMID: 33167728 PMCID: PMC7856058 DOI: 10.1080/17476348.2021.1848556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Chronic obstructive pulmonary disease (COPD) is more prevalent in people with HIV (PWH) than in the general population and leads to an increased burden of morbidity and mortality in this population. The mechanisms behind COPD development and progression in PWH are not fully elucidated, and there are no PWH-specific guidelines for COPD management. Areas covered: The goal of this broad narrative review is to review the epidemiology of COPD in PWH globally, highlight proposed pathways contributing to increased COPD prevalence and progression in PWH, discuss structural and functional changes in the lungs in this population, assesses the excess mortality and comorbidities in PWH with COPD, and address management practices for this unique population. Expert opinion: Understanding how a chronic viral infection leads to COPD, independent of cigarette smoking, is of critical scientific importance. Further research should focus on the pathophysiology of the interaction between HIV and COPD, and determine the role of disease-modifying risk factors such as opportunistic pneumonia and air pollution, as well as generate data from randomized clinical trials on the safety and efficacy of specific therapies for this vulnerable patient population.
Collapse
Affiliation(s)
- Katerina L Byanova
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ken M. Kunisaki
- Section of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Joshua Vasquez
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laurence Huang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- HIV, Infectious Diseases, and Global Medicine Division, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Devanathan AS, Fallon JK, White NR, Schauer AP, Van Horne B, Blake K, Sykes C, Kovarova M, Adamson L, Remling-Mulder L, Luciw P, Garcia JV, Akkina R, Pirone JR, Smith PC, Kashuba ADM. Antiretroviral Penetration and Drug Transporter Concentrations in the Spleens of Three Preclinical Animal Models and Humans. Antimicrob Agents Chemother 2020; 64:e01384-20. [PMID: 32661005 PMCID: PMC7508597 DOI: 10.1128/aac.01384-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Adequate antiretroviral (ARV) concentrations in lymphoid tissues are critical for optimal antiretroviral therapy (ART). While the spleen contains 25% of the body's lymphocytes, there are minimal data on ARV penetration in this organ. This study quantified total and protein-unbound splenic ARV concentrations and determined whether drug transporters, sex, or infection status were modifiers of these concentrations in animal models and humans. Two humanized mice models (hu-HSC-Rag [n = 36; 18 HIV-positive (HIV+) and 18 HIV-negative (HIV-)] and bone marrow-liver-thymus [n = 13; 7 HIV+ and 6 HIV-]) and one nonhuman primate (NHP) model (rhesus macaque [n = 18; 10 SHIV+ and 8 SHIV-]) were dosed to steady state with ARV combinations. HIV+ human spleens (n = 14) from the National NeuroAIDS Tissue Consortium were analyzed postmortem (up to 24 h postdose). ARV concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), drug transporter concentrations were measured with LC-MS proteomics, and protein binding in NHP spleens was determined by rapid equilibrium dialysis. Mice generally had the lowest splenic concentrations of the three species. Protein binding in splenic tissue was 6 to 96%, compared to 76 to 99% in blood plasma. NHPs had quantifiable Mrp4, Bcrp, and Ent1 concentrations, and humans had quantifiable ENT1 concentrations. None significantly correlated with tissue ARV concentrations. There was also no observable influence of infection status or sex. With these dosing strategies, NHP splenic penetration most closely resembled that of humans. These data can inform tissue pharmacokinetic scaling to humans to target HIV reservoirs by identifying important species-related differences.
Collapse
Affiliation(s)
- Aaron S Devanathan
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - John K Fallon
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Nicole R White
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Amanda P Schauer
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Brian Van Horne
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Kimberly Blake
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Craig Sykes
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Martina Kovarova
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | - Paul Luciw
- University of California, Davis, Davis, California, USA
| | - J Victor Garcia
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ramesh Akkina
- Colorado State University, Fort Collins, Colorado, USA
| | - Jason R Pirone
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Philip C Smith
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Angela D M Kashuba
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Wettengel JM, Burwitz BJ. Innovative HBV Animal Models Based on the Entry Receptor NTCP. Viruses 2020; 12:E828. [PMID: 32751581 PMCID: PMC7472226 DOI: 10.3390/v12080828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B is a major global health problem, with an estimated 257 million chronically infected patients and almost 1 million deaths per year. The causative agent is hepatitis B virus (HBV), a small, enveloped, partially double-stranded DNA virus. HBV has a strict species specificity, naturally infecting only humans and chimpanzees. Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter expressed on hepatocytes, has been shown to be one of the key factors in HBV infection, playing a crucial role in the HBV entry process in vitro and in vivo. Variations in the amino acid sequence of NTCP can inhibit HBV infection and, therefore, contributes, in part, to the species barrier. This discovery has revolutionized the search for novel animal models of HBV. Indeed, it was recently shown that variations in the amino acid sequence of NTCP represent the sole species barrier for HBV infection in macaques. Here, we review what is known about HBV entry through the NTCP receptor and highlight how this knowledge has been harnessed to build new animal models for the study of HBV pathogenesis and curative therapies.
Collapse
Affiliation(s)
- Jochen M. Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany;
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| |
Collapse
|
28
|
Shytaj IL, Lucic B, Forcato M, Penzo C, Billingsley J, Laketa V, Bosinger S, Stanic M, Gregoretti F, Antonelli L, Oliva G, Frese CK, Trifunovic A, Galy B, Eibl C, Silvestri G, Bicciato S, Savarino A, Lusic M. Alterations of redox and iron metabolism accompany the development of HIV latency. EMBO J 2020; 39:e102209. [PMID: 32157726 PMCID: PMC7196916 DOI: 10.15252/embj.2019102209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
HIV-1 persists in a latent form during antiretroviral therapy, mainly in CD4+ T cells, thus hampering efforts for a cure. HIV-1 infection is accompanied by metabolic alterations, such as oxidative stress, but the effect of cellular antioxidant responses on viral replication and latency is unknown. Here, we show that cells survive retroviral replication, both in vitro and in vivo in SIVmac-infected macaques, by upregulating antioxidant pathways and the intertwined iron import pathway. These changes are associated with remodeling of promyelocytic leukemia protein nuclear bodies (PML NBs), an important constituent of nuclear architecture and a marker of HIV-1 latency. We found that PML NBs are hyper-SUMOylated and that PML protein is degraded via the ubiquitin-proteasome pathway in productively infected cells, before latency establishment and after reactivation. Conversely, normal numbers of PML NBs were restored upon transition to latency or by decreasing oxidative stress or iron content. Our results highlight antioxidant and iron import pathways as determinants of HIV-1 latency and support their pharmacologic inhibition as tools to regulate PML stability and impair latency establishment.
Collapse
Affiliation(s)
- Iart Luca Shytaj
- Heidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Bojana Lucic
- Heidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Mattia Forcato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - James Billingsley
- Division of Microbiology and ImmunologyYerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
| | - Vibor Laketa
- Heidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Steven Bosinger
- Division of Microbiology and ImmunologyYerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGAUSA
| | - Mia Stanic
- Heidelberg University HospitalHeidelbergGermany
| | | | - Laura Antonelli
- Institute for High Performance Computing and NetworkingICAR‐CNRNaplesItaly
| | - Gennaro Oliva
- Institute for High Performance Computing and NetworkingICAR‐CNRNaplesItaly
| | | | | | - Bruno Galy
- Division of Virus‐Associated CarcinogenesisGerman Cancer Research CentreHeidelbergGermany
| | - Clarissa Eibl
- Leibniz‐Forschungsinstitut für Molekulare PharmakologieBerlinGermany
- Institute of BiologyCellular BiophysicsHumboldt Universität zu BerlinBerlinGermany
| | - Guido Silvestri
- Division of Microbiology and ImmunologyYerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGAUSA
| | - Silvio Bicciato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Marina Lusic
- Heidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| |
Collapse
|
29
|
Experimental Treatment of SIV-Infected Macaques via Autograft of CCR5-Disrupted Hematopoietic Stem and Progenitor Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:520-531. [PMID: 32258215 PMCID: PMC7114624 DOI: 10.1016/j.omtm.2020.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 11/20/2022]
Abstract
Hematopoietic stem cell (HSC)-based gene therapy targeting CCR5 represents a promising way to cure human immunodeficiency virus type 1 (HIV-1) infection. Yet the preclinical animal model with transplantation of autologous CCR5-ablated HSCs remains to be optimized. In this study, four Chinese rhesus macaques of simian immunodeficiency virus (SIV) chronic infection were given long-term antiretroviral therapy (ART), during which peripheral CD34+ hematopoietic stem and progenitor cells (HSPCs) were purified and infected with CCR5-specific CRISPR/Cas9 lentivirus (three monkeys) or GFP lentivirus (one monkey). After non-myeloablative conditioning, the CCR5-modified or GFP-labeled HSPCs were autotransplanted to four recipients, and ART was withdrawn following engraftment. All of the recipients survived the process of transplantation. The purified CD34+ HSPCs harbored an undetectable level of integrated SIV DNA. The efficiency of CCR5 disruption in HSPCs ranges from 6.5% to 15.6%. Animals experienced a comparable level of hematopoietic reconstuction and displayed a similar physiological homeostasis Despite the low-level editing of CCR5 in vivo (0.3%-1%), the CCR5-disrupted cells in peripheral CD4+ Effector Memory T cell (TEM) subsets were enriched 2- to 3-fold after cessation of ART. Moreover, two of the three treated monkeys displayed a delayed viral rebound and a moderately recovered immune function 6 months after ART withdrawal. This study highlights the importance of improving the CCR5-editing efficacy and augmenting the virus-specific immunity for effective treatment of HIV-1 infection.
Collapse
|
30
|
Kmiec D, Nchioua R, Sherrill-Mix S, Stürzel CM, Heusinger E, Braun E, Gondim MVP, Hotter D, Sparrer KMJ, Hahn BH, Sauter D, Kirchhoff F. CpG Frequency in the 5' Third of the env Gene Determines Sensitivity of Primary HIV-1 Strains to the Zinc-Finger Antiviral Protein. mBio 2020; 11:e02903-19. [PMID: 31937644 PMCID: PMC6960287 DOI: 10.1128/mbio.02903-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
CpG dinucleotide suppression has been reported to allow HIV-1 to evade inhibition by the zinc-finger antiviral protein (ZAP). Here, we show that primate lentiviruses display marked differences in CpG frequencies across their genome, ranging from 0.44% in simian immunodeficiency virus SIVwrc from Western red colobus to 2.3% in SIVmon infecting mona monkeys. Moreover, functional analyses of a large panel of human and simian immunodeficiency viruses revealed that the magnitude of CpG suppression does not correlate with their susceptibility to ZAP. However, we found that the number of CpG dinucleotides within a region of ∼700 bases at the 5' end of the env gene determines ZAP sensitivity of primary HIV-1 strains but not of HIV-2. Increased numbers of CpGs in this region were associated with reduced env mRNA expression and viral protein production. ZAP sensitivity profiles of chimeric simian-human immunodeficiency viruses (SHIVs) expressing different HIV-1 env genes were highly similar to those of the corresponding HIV-1 strains. The frequency of CpGs in the identified env region correlated with differences in clinical progression rates. Thus, the CpG frequency in a specific part of env, rather than the overall genomic CpG content, governs the susceptibility of HIV-1 to ZAP and might affect viral pathogenicity in vivoIMPORTANCE Evasion of the zinc-finger antiviral protein (ZAP) may drive CpG dinucleotide suppression in HIV-1 and many other viral pathogens but the viral determinants of ZAP sensitivity are poorly defined. Here, we examined CpG suppression and ZAP sensitivity in a large number of primate lentiviruses and demonstrate that their genomic frequency of CpGs varies substantially and does not correlate with ZAP sensitivity. We further show that the number of CpG residues in a defined region at the 5' end of the env gene together with structural features plays a key role in HIV-1 susceptibility to ZAP and correlates with differences in clinical progression rates in HIV-1-infected individuals. Our identification of a specific part of env as a major determinant of HIV-1 susceptibility to ZAP restriction provides a basis for future studies of the underlying inhibitory mechanisms and their potential relevance in the pathogenesis of AIDS.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Elena Heusinger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Elisabeth Braun
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
31
|
Brain PET Imaging: Value for Understanding the Pathophysiology of HIV-associated Neurocognitive Disorder (HAND). Curr HIV/AIDS Rep 2020; 16:66-75. [PMID: 30778853 DOI: 10.1007/s11904-019-00419-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent developments in PET imaging of neuropathologies underlying HIV-associated neurocognitive dysfunction (HAND). We concentrate on the recent post antiretroviral era (ART), highlighting clinical and preclinical brain PET imaging studies. RECENT FINDINGS In the post ART era, PET imaging has been used to better understand perturbations of glucose metabolism, neuroinflammation, the function of neurotransmitter systems, and amyloid/tau protein deposition in the brains of HIV-infected patients and HIV animal models. Preclinical and translational findings from those studies shed a new light on the complex pathophysiology underlying HAND. The molecular imaging capabilities of PET in neuro-HIV are great complements for structural imaging modalities. Recent and future PET imaging studies can improve our understanding of neuro-HIV and provide biomarkers of disease progress that could be used as surrogate endpoints in the evaluation of the effectiveness of potential neuroprotective therapies.
Collapse
|
32
|
The Establishment of an In Vivo HIV-1 Infection Model in Humanized B-NSG Mice. Virol Sin 2019; 35:417-425. [PMID: 31863357 DOI: 10.1007/s12250-019-00181-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Suitable animal models for human immunodeficiency virus type 1 (HIV-1) infection are important for elucidating viral pathogenesis and evaluating antiviral strategies in vivo. The B-NSG (NOD-PrkdcscidIl2rgtm1/Bcge) mice that have severe immune defect phenotype are examined for the suitability of such a model in this study. Human peripheral blood mononuclear cells (PBMCs) were engrafted into B-NSG mice via mouse tail vein injection, and the repopulated human T-lymphocytes were observed at as early as 3-weeks post-transplantation in mouse peripheral blood and several tissues. The humanized mice could be infected by HIV-1, and the infection recapitulated features of T-lymphocyte dynamic observed in HIV-1 infected humans, meanwhile the administration of combination antiretroviral therapy (cART) suppressed viral replication and restored T lymphocyte abnormalities. The establishment of HIV-1 infected humanized B-NSG mice not only provides a model to study virus and T cell interplays, but also can be a useful tool to evaluate antiviral strategies.
Collapse
|
33
|
Perdiguero B, Gómez CE, García-Arriaza J, Sánchez-Corzo C, Sorzano CÓS, Wilmschen S, von Laer D, Asbach B, Schmalzl C, Peterhoff D, Ding S, Wagner R, Kimpel J, Levy Y, Pantaleo G, Esteban M. Heterologous Combination of VSV-GP and NYVAC Vectors Expressing HIV-1 Trimeric gp145 Env as Vaccination Strategy to Induce Balanced B and T Cell Immune Responses. Front Immunol 2019; 10:2941. [PMID: 31921191 PMCID: PMC6930178 DOI: 10.3389/fimmu.2019.02941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/29/2019] [Indexed: 01/03/2023] Open
Abstract
The generation of a vaccine against HIV-1 able to induce durable protective immunity continues a major challenge. The modest efficacy (31.2%) of the phase III RV144 clinical trial provided the first demonstration that a prophylactic HIV/AIDS vaccine is achievable but emphasized the need for further refinements of vaccine candidates, formulations, and immunization regimens. Here, we analyzed in mice the immunogenicity profile elicited by different homologous and heterologous prime/boost combinations using the modified rhabdovirus VSV-GP combined with DNA or poxviral NYVAC vectors, all expressing trimeric membrane-bound Env (gp145) of HIV-1 96ZM651 clade C, with or without purified gp140 protein component. In cultured cells infected with recombinant VSV-GP or NYVAC viruses, gp145 epitopes at the plasma membrane were recognized by human HIV-1 broadly neutralizing antibodies (bNAbs). In immunized mice, the heterologous combination of VSV-GP and NYVAC recombinant vectors improved the induction of HIV-1 Env-specific humoral and cellular immune responses compared to homologous prime/boost protocols. Specifically, the combination of VSV-GP in the prime and NYVAC in the boost induced higher HIV-1 Env-specific T cell (CD4/CD8 T cells and T follicular helper -Tfh- cells) immune responses compared to the use of DNA or NYVAC vectors in the prime and VSV-GP in the boost. Such enhanced T cell responses correlated with an enhancement of the Env-specific germinal center (GC) B cell population and with a heavily biased Env-specific response toward the Th1-associated IgG2a and IgG3 subclasses, while the other groups showed a Th2-associated IgG1 bias. In summary, our T and B cell population data demonstrated that VSV-GP-based vectors could be taken into consideration as an optimized immunogenic HIV-1 vaccine candidate component against HIV-1 when used for priming in heterologous combinations with the poxvirus vector NYVAC as a boost.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sarah Wilmschen
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Christina Schmalzl
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Song Ding
- EuroVacc Foundation, Amsterdam, Netherlands
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yves Levy
- Vaccine Research Institute, Créteil, France.,INSERM U955, Paris Est Créteil University, Créteil, France.,AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
34
|
Khanal S, Fennessey CM, O'Brien SP, Thorpe A, Reid C, Immonen TT, Smith R, Bess JW, Swanstrom AE, Del Prete GQ, Davenport MP, Okoye AA, Picker LJ, Lifson JD, Keele BF. In Vivo Validation of the Viral Barcoding of Simian Immunodeficiency Virus SIVmac239 and the Development of New Barcoded SIV and Subtype B and C Simian-Human Immunodeficiency Viruses. J Virol 2019; 94:e01420-19. [PMID: 31597757 PMCID: PMC6912102 DOI: 10.1128/jvi.01420-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Genetically barcoded viral populations are powerful tools for evaluating the overall viral population structure as well as assessing the dynamics and evolution of individual lineages in vivo over time. Barcoded viruses are generated by inserting a small, genetically unique tag into the viral genome, which is retained in progeny virus. We recently reported barcoding the well-characterized molecular clone simian immunodeficiency virus (SIV) SIVmac239, resulting in a synthetic swarm (SIVmac239M) containing approximately 10,000 distinct viral clonotypes for which all genetic differences were within a 34-base barcode that could be tracked using next-generation deep sequencing. Here, we assessed the population size, distribution, and authenticity of individual viral clonotypes within this synthetic swarm using samples from 120 rhesus macaques infected intravenously. The number of replicating barcodes in plasma correlated with the infectious inoculum dose, and the primary viral growth rate was similar in all infected animals regardless of the inoculum size. Overall, 97% of detectable clonotypes in the viral stock were identified in the plasma of at least one infected animal. Additionally, we prepared a second-generation barcoded SIVmac239 stock (SIVmac239M2) with over 16 times the number of barcoded variants of the original stock and an additional barcoded stock with suboptimal nucleotides corrected (SIVmac239Opt5M). We also generated four barcoded stocks from subtype B and C simian-human immunodeficiency virus (SHIV) clones. These new SHIV clones may be particularly valuable models to evaluate Env-targeting approaches to study viral transmission or viral reservoir clearance. Overall, this work further establishes the reliability of the barcoded virus approach and highlights the feasibility of adapting this technique to other viral clones.IMPORTANCE We recently developed and published a description of a barcoded simian immunodeficiency virus that has a short random sequence inserted directly into the viral genome. This allows for the tracking of individual viral lineages with high fidelity and ultradeep sensitivity. This virus was used to infect 120 rhesus macaques, and we report here the analysis of the barcodes of these animals during primary infection. We found that the vast majority of barcodes were functional in vivo We then expanded the barcoding approach in a second-generation SIVmac239 stock (SIVmac239M2) with over 16 times the number of barcoded variants of the original stock and a barcoded stock of SIVmac239Opt5M whose sequence had 5 changes from the wild-type SIVmac239 sequence. We also generated 4 barcoded stocks from subtype B and C SHIV clones each containing a human immunodeficiency virus (HIV) type 1 envelope. These virus models are functional and can be useful for studying viral transmission and HIV cure/reservoir research.
Collapse
Affiliation(s)
- Sirish Khanal
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Abigail Thorpe
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Rodman Smith
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Adrienne E Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Afam A Okoye
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Louis J Picker
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| |
Collapse
|
35
|
Giacometti LL, Barker JM. Comorbid HIV infection and alcohol use disorders: Converging glutamatergic and dopaminergic mechanisms underlying neurocognitive dysfunction. Brain Res 2019; 1723:146390. [PMID: 31421128 PMCID: PMC6766419 DOI: 10.1016/j.brainres.2019.146390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Alcohol use disorders (AUDs) are highly comorbid with human immunodeficiency virus (HIV) infection, occurring at nearly twice the rate in HIV positive individuals as in the general population. Individuals with HIV who consume alcohol show worse long-term prognoses and may be at elevated risk for the development of HIV-associated neurocognitive disorders. The direction of this relationship is unclear, and likely multifactorial. Chronic alcohol exposure and HIV infection independently promote cognitive dysfunction and further may interact to exacerbate neurocognitive deficits through effects on common targets, including corticostriatal glutamate and dopamine neurotransmission. Additionally, drug and alcohol use is likely to reduce treatment adherence, potentially resulting in accelerated disease progression and subsequent neurocognitive impairment. The development of neurocognitive impairments may further reduce cognitive control over behavior, resulting in escalating alcohol use. This review will examine the complex relationship between HIV infection and alcohol use, highlighting impacts on dopamine and glutamate systems by which alcohol use and HIV act independently and in tandem to alter corticostriatal circuit structure and function to dysregulate cognitive function.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
36
|
Burgunder E, Fallon JK, White N, Schauer AP, Sykes C, Remling-Mulder L, Kovarova M, Adamson L, Luciw P, Garcia JV, Akkina R, Smith PC, Kashuba ADM. Antiretroviral Drug Concentrations in Lymph Nodes: A Cross-Species Comparison of the Effect of Drug Transporter Expression, Viral Infection, and Sex in Humanized Mice, Nonhuman Primates, and Humans. J Pharmacol Exp Ther 2019; 370:360-368. [PMID: 31235531 PMCID: PMC6695867 DOI: 10.1124/jpet.119.259150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
In a "kick and kill" strategy for human immunodeficiency virus (HIV) eradication, protective concentrations of antiretrovirals (ARVs) in the lymph node are important to prevent vulnerable cells from further HIV infection. However, the factors responsible for drug distribution and concentration into these tissues are largely unknown. Although humanized mice and nonhuman primates (NHPs) are crucial to HIV research, ARV tissue pharmacology has not been well characterized across species. This study investigated the influence of drug transporter expression, viral infection, and sex on ARV penetration within lymph nodes of animal models and humans. Six ARVs were dosed for 10 days in humanized mice and NHPs. Plasma and lymph nodes were collected at necropsy, 24 hours after the last dose. Human lymph node tissue and plasma from deceased patients were collected from tissue banks. ARV, active metabolite, and endogenous nucleotide concentrations were measured by liquid chromatography-tandem mass spectrometry, and drug transporter expression was measured using quantitative polymerase chain reaction and quantitative targeted absolute proteomics. In NHPs and humans, lymph node ARV concentrations were greater than or equal to plasma, and tenofovir diphosphate/deoxyadenosine triphosphate concentration ratios achieved efficacy targets in lymph nodes from all three species. There was no effect of infection or sex on ARV concentrations. Low drug transporter expression existed in lymph nodes from all species, and no predictive relationships were found between transporter gene/protein expression and ARV penetration. Overall, common preclinical models of HIV infection were well suited to predict human ARV exposure in lymph nodes, and low transporter expression suggests primarily passive drug distribution in these tissues. SIGNIFICANCE STATEMENT: During human immunodeficiency virus (HIV) eradication strategies, protective concentrations of antiretrovirals (ARVs) in the lymph node prevent vulnerable cells from further HIV infection. However, ARV tissue pharmacology has not been well characterized across preclinical species used for HIV eradication research, and the influence of drug transporters, HIV infection, and sex on ARV distribution and concentration into the lymph node is largely unknown. Here we show that two animal models of HIV infection (humanized mice and nonhuman primates) were well suited to predict human ARV exposure in lymph nodes. Additionally, we found that drug transporter expression was minimal and-along with viral infection and sex-did not affect ARV penetration into lymph nodes from any species.
Collapse
Affiliation(s)
- Erin Burgunder
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - John K Fallon
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Nicole White
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Amanda P Schauer
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Craig Sykes
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Leila Remling-Mulder
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Martina Kovarova
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Lourdes Adamson
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Paul Luciw
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - J Victor Garcia
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Ramesh Akkina
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Philip C Smith
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Angela D M Kashuba
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| |
Collapse
|
37
|
Zenere G, Olwenyi OA, Byrareddy SN, Braun SE. Optimizing intracellular signaling domains for CAR NK cells in HIV immunotherapy: a comprehensive review. Drug Discov Today 2019; 24:983-991. [PMID: 30771481 PMCID: PMC7065919 DOI: 10.1016/j.drudis.2019.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells are innate immune lymphocytes with a key role in host defense against HIV infection. Recent advances in chimeric antigen receptors (CARs) have made NK cells a prime target for expressing recombinant receptors capable of redirecting NK cytotoxic functions towards HIV-infected cells. In this review, we discuss the role of NK cells in HIV and the mechanisms of actions of HIV-targeting CAR strategies. Furthermore, we also review NK cells signal transduction and its application to CAR NK cell strategies to develop new combinations of CAR intracellular domains and to improve CAR NK signaling and cytotoxic functions.
Collapse
Affiliation(s)
- Giorgio Zenere
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Omalla Allan Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Siddappa N Byrareddy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Cell Biology and Genetics, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Stephen E Braun
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
38
|
Early T Follicular Helper Cell Responses and Germinal Center Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques. J Virol 2019; 93:JVI.01687-18. [PMID: 30463978 DOI: 10.1128/jvi.01687-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.
Collapse
|
39
|
Liechti T, Roederer M. OMIP-051 - 28-color flow cytometry panel to characterize B cells and myeloid cells. Cytometry A 2018; 95:150-155. [PMID: 30549419 DOI: 10.1002/cyto.a.23689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/25/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| |
Collapse
|
40
|
Ramsey J, Martin EC, Purcell OM, Lee KM, MacLean AG. Self-injurious behaviours in rhesus macaques: Potential glial mechanisms. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:1008-1017. [PMID: 30450801 PMCID: PMC6385863 DOI: 10.1111/jir.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Self-injurious behaviour (SIB) can be classified as intentional, direct injuring of body tissue usually without suicidal intent. In its non-suicidal form it is commonly seen as a clinical sign of borderline personality disorder, autism, PTSD, depression, and anxiety affecting a wide range of ages and conditions. In rhesus macaques SIB is most commonly manifested through hair plucking, self-biting, self-hitting, and head banging. SIB in the form of self-biting is observed in approximately 5-15% of individually housed monkeys. Recently, glial cells are becoming recognised as key players in regulating behaviours. METHOD The goal of this study was to determine the role of glial activation, including astrocytes, in macaques that had displayed SIB. To this end, we performed immunohistochemistry and next generation sequence of brain tissues from rhesus macaques with SIB. RESULTS Our studies showed increased vimentin, but not nestin, expression on astrocytes of macaques displaying SIB. Initial RNA Seq analyses indicate activation of pathways involved in tissue remodelling, neuroinflammation and cAMP signalling. CONCLUSIONS Glia are most probably activated in primates with self-injury, and are therefore potential novel targets for therapeutics.
Collapse
Affiliation(s)
- Joseph Ramsey
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
| | - Elizabeth C. Martin
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA 70112
| | - Olivia M. Purcell
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
| | - Kim M. Lee
- Tulane National Primate Research Center, Covington, LA 70433
- Tulane Program in Biomedical Science, Tulane Medical School, New Orleans, LA 70112
| | - Andrew G. MacLean
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
- Tulane National Primate Research Center, Covington, LA 70433
- Tulane Program in Biomedical Science, Tulane Medical School, New Orleans, LA 70112
- Department of Microbiology & Immunology, Tulane Medical School, New Orleans, LA 70112
- Tulane Center for Aging, Tulane University New Orleans, LA 70112
| |
Collapse
|
41
|
Antibody-Mediated CD4 Depletion Induces Homeostatic CD4 + T Cell Proliferation without Detectable Virus Reactivation in Antiretroviral Therapy-Treated Simian Immunodeficiency Virus-Infected Macaques. J Virol 2018; 92:JVI.01235-18. [PMID: 30185596 DOI: 10.1128/jvi.01235-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
A major barrier to human immunodeficiency virus (HIV) eradication is the long-term persistence of latently infected CD4+ T cells harboring integrated replication-competent virus. It has been proposed that the homeostatic proliferation of these cells drives long-term reservoir persistence in the absence of virus reactivation, thus avoiding cell death due to either virus-mediated cytopathicity or immune effector mechanisms. Here, we conducted an experimental depletion of CD4+ T cells in eight antiretroviral therapy (ART)-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) to determine whether the homeostatically driven CD4+ T-cell proliferation that follows CD4+ T-cell depletion results in reactivation of latent virus and/or expansion of the virus reservoir. After administration of the CD4R1 antibody, we observed a CD4+ T cell depletion of 65 to 89% in peripheral blood and 20 to 50% in lymph nodes, followed by a significant increase in CD4+ T cell proliferation during CD4+ T cell reconstitution. However, this CD4+ T cell proliferation was not associated with detectable increases in viremia, indicating that the homeostatic activation of CD4+ T cells is not sufficient to induce virus reactivation from latently infected cells. Interestingly, the homeostatic reconstitution of the CD4+ T cell pool was not associated with significant changes in the number of circulating cells harboring SIV DNA compared to results for the first postdepletion time point. This study indicates that, in ART-treated SIV-infected RMs, the homeostasis-driven CD4+ T-cell proliferation that follows experimental CD4+ T-cell depletion occurs in the absence of detectable reactivation of latent virus and does not increase the size of the virus reservoir as measured in circulating cells.IMPORTANCE Despite successful suppression of HIV replication with antiretroviral therapy, current treatments are unable to eradicate the latent virus reservoir, and treatment interruption almost invariably results in the reactivation of HIV even after decades of virus suppression. Homeostatic proliferation of latently infected cells is one mechanism that could maintain the latent reservoir. To understand the impact of homeostatic mechanisms on virus reactivation and reservoir size, we experimentally depleted CD4+ T cells in ART-treated SIV-infected rhesus macaques and monitored their homeostatic rebound. We find that depletion-induced proliferation of CD4+ T cells is insufficient to reactivate the viral reservoir in vivo Furthermore, the proportion of SIV DNA+ CD4+ T cells remains unchanged during reconstitution, suggesting that the reservoir is resistant to this mechanism of expansion at least in this experimental system. Understanding how T cell homeostasis impacts latent reservoir longevity could lead to the development of new treatment paradigms aimed at curing HIV infection.
Collapse
|
42
|
Extended-Duration MK-8591-Eluting Implant as a Candidate for HIV Treatment and Prevention. Antimicrob Agents Chemother 2018; 62:AAC.01058-18. [PMID: 30012772 DOI: 10.1128/aac.01058-18] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Regimen adherence remains a major hurdle to the success of daily oral drug regimens for the treatment and prevention of human immunodeficiency virus (HIV) infection. Long-acting drug formulations requiring less-frequent dosing offer an opportunity to improve adherence and allow for more forgiving options with regard to missed doses. The administration of long-acting formulations in a clinical setting enables health care providers to directly track adherence. MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine [EFdA]) is an investigational nucleoside reverse transcriptase translocation inhibitor (NRTTI) drug candidate under investigation as part of a regimen for HIV treatment, with potential utility as a single agent for preexposure prophylaxis (PrEP). The active triphosphate of MK-8591 (MK-8591-TP) exhibits protracted intracellular persistence and, together with the potency of MK-8591, supports its consideration for extended-duration dosing. Toward this end, drug-eluting implant devices were designed to provide prolonged MK-8591 release in vitro and in vivo Implants, administered subcutaneously, were studied in rodents and nonhuman primates to establish MK-8591 pharmacokinetics and intracellular levels of MK-8591-TP. These data were evaluated against pharmacokinetic and pharmacodynamic models, as well as data generated in phase 1a (Ph1a) and Ph1b clinical studies with once-weekly oral administration of MK-8591. After a single administration in animals, MK-8591 implants achieved clinically relevant drug exposures and sustained drug release, with plasma levels maintained for greater than 6 months that correspond to efficacious MK-8591-TP levels, resulting in a 1.6-log reduction in viral load. Additional studies of MK-8591 implants for HIV treatment and prevention are warranted.
Collapse
|
43
|
Pang W, Song JH, Lu Y, Zhang XL, Zheng HY, Jiang J, Zheng YT. Host Restriction Factors APOBEC3G/3F and Other Interferon-Related Gene Expressions Affect Early HIV-1 Infection in Northern Pig-Tailed Macaque ( Macaca leonina). Front Immunol 2018; 9:1965. [PMID: 30210504 PMCID: PMC6120991 DOI: 10.3389/fimmu.2018.01965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
The northern pig-tailed macaques (NPMs) lack TRIM5α, an antiviral restriction factor, and instead have TRIM5-CypA. In our previous study, we demonstrated that HIV-1NL4-3 successfully infected NPMs and formed a long-term viral reservoir in vivo. However, the HIV-1-infected NPMs showed relatively high viremia in the first 6 weeks of infection, which declined thereafter suggesting that HIV-1 NL4-3 infection in these animals was only partly permissive. To optimize HIV-1 infection in NPMs therefore, we generated HIV-1NL4-R3A and stHIV-1sv, and infected NPMs with these viruses. HIV-1NL4-R3A and stHIV-1sv can replicate persistently in NPMs during 41 weeks of acute infection stage. Compared to the HIV-1NL4-R3A, stHIV-1sv showed a notably higher level of replication, and the NPMs infected with the latter induced a more robust neutralizing antibody but a weaker cellular immune response. In addition, IFN-I signaling was significantly up-regulated with the viral replication, and was higher in the stHIV-1sv infected macaques. Consequently, the sequences of pro-viral env showed fewer G-A hyper-mutations in stHIV-1sv, suggesting that vif gene of SIV could antagonize the antiviral effects of APOBEC3 proteins in NPMs. Taken together, NPMs infected with HIV-1NL4-R3A and stHIV-1sv show distinct virological and immunological features. Furthermore, interferon-related gene expression might play a role in controlling primary HIV-1NL4-R3A and stHIV-1sv replication in NPMs. This result suggests NPM is a potential HIV/AIDS animal model.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jia-Hao Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute of Health Sciences, Anhui University, Hefei, China
| | - Ying Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiao-Liang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
44
|
Short-Term Pegylated Interferon α2a Treatment Does Not Significantly Reduce the Viral Reservoir of Simian Immunodeficiency Virus-Infected, Antiretroviral Therapy-Treated Rhesus Macaques. J Virol 2018; 92:JVI.00279-18. [PMID: 29720521 DOI: 10.1128/jvi.00279-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
The major obstacle to human immunodeficiency type 1 (HIV-1) eradication is a reservoir of latently infected cells that persists despite long-term antiretroviral therapy (ART) and causes rapid viral rebound if treatment is interrupted. Type I interferons are immunomodulatory cytokines that induce antiviral factors and have been evaluated for the treatment of HIV-infected individuals, resulting in moderate reduction of viremia and inconclusive data about their effect on reservoir size. Here, we assessed the potential of pegylated IFN-α2a (pIFN-α2a) to reduce the viral reservoir in simian immunodeficiency virus (SIV)-infected, ART-treated rhesus macaques (RMs). We found that pIFN-α2a treatment of animals in which virus replication is effectively suppressed with ART is safe and well tolerated, as no major clinical side effects were observed. By monitoring the cellular immune response during this intervention, we established that pIFN-α2a administration is not associated with either CD4+ T cell depletion or increased immune activation. Importantly, we found that interferon-stimulated genes (ISGs) were significantly upregulated in IFN-treated RMs compared to control animals, confirming that pIFN-α2a is bioactive in vivo To evaluate the effect of pIFN-α2a administration on the viral reservoir in CD4+ T cells, we performed cell-associated proviral SIV DNA measurements in multiple tissues and assessed levels of replication-competent virus by a quantitative viral outgrowth assay (QVOA). These analyses failed to reveal any significant difference in reservoir size between IFN-treated and control animals. In summary, our data suggest that short-term type I interferon treatment in combination with suppressive ART is not sufficient to induce a significant reduction of the viral reservoir in SIV-infected RMs.IMPORTANCE The potential of type I interferons to reduce the viral reservoir has been recently studied in clinical trials in HIV-infected humans. However, given the lack of mechanistic data and the potential for safety concerns, a more comprehensive testing of IFN treatment in vivo in SIV-infected RMs is critical to provide rationale for further development of this intervention in humans. Utilizing the SIV/RM model in which virus replication is suppressed with ART, we addressed experimental limitations of previous human studies, in particular the lack of a control group and specimen sampling limited to blood. Here, we show by rigorous testing of blood and lymphoid tissues that virus replication and reservoir size were not significantly affected by pIFN-α2a treatment in SIV-infected, ART-treated RMs. This suggests that intensified and/or prolonged IFN treatment regimens, possibly in combination with other antilatency agents, are necessary to effectively purge the HIV/SIV reservoir under ART.
Collapse
|
45
|
Tackling HIV and AIDS: contributions by non-human primate models. Lab Anim (NY) 2018; 46:259-270. [PMID: 28530684 DOI: 10.1038/laban.1279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
During the past three decades, non-human primate (NHP) models have gained an increasing importance in HIV basic and translational research. In contrast to natural host models, infection of macaques with virulent simian or simian-human immunodeficiency viruses (SIV, SHIV) results in a disease that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its benefits and limitations, carefully designed NHP studies with selection of experimental variables have unraveled important questions of basic pathogenesis and have provided the tools to explore and screen intervention strategies. For example, NHP studies have advanced our understanding of the crucial events during early infection, and have provided proof-of-concept of antiretroviral drug treatment and prevention strategies such as pre-exposure prophylaxis (PrEP) regimes that are increasingly used worldwide, and upon overcoming further barriers of implementation, have the potential to make the next generation AIDS-free. Remaining goals include the pursuit of an effective HIV vaccine, and HIV cure strategies that would allow HIV-infected people to ultimately stop taking antiretroviral drugs. Through a reiterative process with feed-back from results of human studies, NHP models can be further validated and strengthened to advance our scientific knowledge and guide clinical trials.
Collapse
|
46
|
Abstract
Humans have a close phylogenetic relationship with nonhuman primates (NHPs) and share many physiological parallels, such as highly similar immune systems, with them. Importantly, NHPs can be infected with many human or related simian viruses. In many cases, viruses replicate in the same cell types as in humans, and infections are often associated with the same pathologies. In addition, many reagents that are used to study the human immune response cross-react with NHP molecules. As such, NHPs are often used as models to study viral vaccine efficacy and antiviral therapeutic safety and efficacy and to understand aspects of viral pathogenesis. With several emerging viral infections becoming epidemic, NHPs are proving to be a very beneficial benchmark for investigating human viral infections.
Collapse
Affiliation(s)
- Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
47
|
Applications of the FIV Model to Study HIV Pathogenesis. Viruses 2018; 10:v10040206. [PMID: 29677122 PMCID: PMC5923500 DOI: 10.3390/v10040206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally-occurring retrovirus that infects domestic and non-domestic feline species, producing progressive immune depletion that results in an acquired immunodeficiency syndrome (AIDS). Much has been learned about FIV since it was first described in 1987, particularly in regard to its application as a model to study the closely related lentivirus, human immunodeficiency virus (HIV). In particular, FIV and HIV share remarkable structure and sequence organization, utilize parallel modes of receptor-mediated entry, and result in a similar spectrum of immunodeficiency-related diseases due to analogous modes of immune dysfunction. This review summarizes current knowledge of FIV infection kinetics and the mechanisms of immune dysfunction in relation to opportunistic disease, specifically in regard to studying HIV pathogenesis. Furthermore, we present data that highlight changes in the oral microbiota and oral immune system during FIV infection, and outline the potential for the feline model of oral AIDS manifestations to elucidate pathogenic mechanisms of HIV-induced oral disease. Finally, we discuss advances in molecular biology, vaccine development, neurologic dysfunction, and the ability to apply pharmacologic interventions and sophisticated imaging technologies to study experimental and naturally occurring FIV, which provide an excellent, but often overlooked, resource for advancing therapies and the management of HIV/AIDS.
Collapse
|
48
|
Trovato M, D'Apice L, Prisco A, De Berardinis P. HIV Vaccination: A Roadmap among Advancements and Concerns. Int J Mol Sci 2018; 19:1241. [PMID: 29671786 PMCID: PMC5979448 DOI: 10.3390/ijms19041241] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Since the identification of the Human Immunodeficiency Virus type 1 (HIV-1) as the etiologic agent of AIDS (Acquired Immunodeficiency Syndrome), many efforts have been made to stop the AIDS pandemic. A major success of medical research has been the development of the highly active antiretroviral therapy and its availability to an increasing number of people worldwide, with a considerable effect on survival. However, a safe and effective vaccine able to prevent and eradicate the HIV pandemic is still lacking. Clinical trials and preclinical proof-of-concept studies in nonhuman primate (NHP) models have provided insights into potential correlates of protection against the HIV-1 infection, which include broadly neutralizing antibodies (bnAbs), non-neutralizing antibodies targeting the variable loops 1 and 2 (V1V2) regions of the HIV-1 envelope (Env), polyfunctional antibody, and Env-specific T-cell responses. In this review, we provide a brief overview of different HIV-1 vaccine approaches and discuss the current understanding of the cellular and humoral correlates of HIV-1 immunity.
Collapse
Affiliation(s)
- Maria Trovato
- INSERM u1016, Institut Cochin, 27 Rue du Faubourg Saint Jacques, 75014 Paris, France.
- Institute of Protein Biochemistry, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Luciana D'Apice
- Institute of Protein Biochemistry, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Antonella Prisco
- Institute of Genetics and Biophysics A. Buzzati-Traverso, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | | |
Collapse
|
49
|
Ferrando-Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, McDermott AB, Palesch D, Paiardini M, Pavlakis GN, Brenchley JM, Douek D, Mascola JR, Petrovas C, Koup RA. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest 2018; 128:2089-2103. [PMID: 29664020 DOI: 10.1172/jci96207] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
LN follicles constitute major reservoir sites for HIV/SIV persistence. Cure strategies could benefit from the characterization of CD8+ T cells able to access and eliminate HIV-infected cells from these areas. In this study, we provide a comprehensive analysis of the phenotype, frequency, localization, and functionality of follicular CD8+ T cells (fCD8+) in SIV-infected nonhuman primates. Although disorganization of follicles was a major factor, significant accumulation of fCD8+ cells during chronic SIV infection was also observed in intact follicles, but only in pathogenic SIV infection. In line with this, tissue inflammatory mediators were strongly associated with the accumulation of fCD8+ cells, pointing to tissue inflammation as a major factor in this process. These fCD8+ cells have cytolytic potential and can be redirected to target and kill HIV-infected cells using bispecific antibodies. Altogether, our data support the use of SIV infection to better understand the dynamics of fCD8+ cells and to develop bispecific antibodies as a strategy for virus eradication.
Collapse
Affiliation(s)
| | | | | | | | - Krystelle Nganou Makamdop
- Human Immunology Section, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | - David Palesch
- Department of Pathology, Emory University School of Medicine and Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Department of Pathology, Emory University School of Medicine and Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - George N Pavlakis
- Human Retrovirus Section, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
50
|
Reduced Chronic Lymphocyte Activation following Interferon Alpha Blockade during the Acute Phase of Simian Immunodeficiency Virus Infection in Rhesus Macaques. J Virol 2018; 92:JVI.01760-17. [PMID: 29467313 DOI: 10.1128/jvi.01760-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pathogenic human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection of humans and rhesus macaques (RMs) induces persistently high production of type I interferon (IFN-I), which is thought to contribute to disease progression. To elucidate the specific role of interferon alpha (IFN-α) in SIV pathogenesis, 12 RMs were treated prior to intravenous (i.v.) SIVmac239 infection with a high or a low dose of an antibody (AGS-009) that neutralizes most IFN-α subtypes and were compared with six mock-infused, SIV-infected controls. Plasma viremia was measured postinfection to assess the effect of IFN-α blockade on virus replication, and peripheral blood and lymphoid tissue samples were analyzed by immunophenotypic staining. Consistent with the known antiviral effect of IFN-I, high-dose AGS-009 treatment induced a modest increase in acute-phase viral loads versus controls. Four out of 6 RMs receiving a high dose of AGS-009 also experienced an early decline in CD4+ T cell counts that was associated with progression to AIDS. Interestingly, 50% of the animals treated with AGS-009 (6/12) developed AIDS within 1 year of infection compared with 17% (1/6) of untreated controls. Finally, blockade of IFN-α decreased the levels of activated CD4+ and CD8+ T cells, as well as B cells, as measured by PD-1 and/or Ki67 expression. The lower levels of activated lymphocytes in IFN-α-blockaded animals supports the hypothesis that IFN-α signaling contributes to lymphocyte activation during SIV infection and suggests that this signaling pathway is involved in controlling virus replication during acute infection. The potential anti-inflammatory effect of IFN-α blockade should be explored as a strategy to reduce immune activation in HIV-infected individuals.IMPORTANCE Interferon alpha (IFN-α) is a member of a family of molecules (type I interferons) that prevent or limit virus infections in mammals. However, IFN-α production may contribute to the chronic immune activation that is thought to be the primary cause of immune decline and AIDS in HIV-infected patients. The study presented here attempts to understand the contribution of IFN-α to the natural history and progression of SIV infection of rhesus macaques, the primary nonhuman primate model system for testing hypotheses about HIV infection in humans. Here, we show that blockade of IFN-α action promotes lower chronic immune activation but higher early viral loads, with a trend toward faster disease progression. This study has significant implications for new treatments designed to impact the type I interferon system.
Collapse
|