1
|
Alotaibi G, Alkhammash A. Pharmacological landscape of endoplasmic reticulum stress: Uncovering therapeutic avenues for metabolic diseases. Eur J Pharmacol 2025; 998:177509. [PMID: 40089262 DOI: 10.1016/j.ejphar.2025.177509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The endoplasmic reticulum (ER) plays a fundamental role in maintaining cellular homeostasis by ensuring proper protein folding, lipid metabolism, and calcium regulation. However, disruptions to ER function, known as ER stress, activate the unfolded protein response (UPR) to restore balance. Chronic or unresolved ER stress contributes to metabolic dysfunctions, including insulin resistance, non-alcoholic fatty liver disease (NAFLD), and neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Recent studies have also highlighted the importance of mitochondria-ER contact sites (MERCs) and ER-associated inflammation in disease progression. This review explores the current pharmacological landscape targeting ER stress, focusing on therapeutic strategies for rare metabolic and neurodegenerative diseases. It examines small molecules such as tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA), repurposed drugs like 17-AAG (17-N-allylamino-17demethoxygeldanamycin (tanespimycin)) and berberine, and phytochemicals such as resveratrol and hesperidin. Additionally, it discusses emerging therapeutic areas, including soluble epoxide hydrolase (sEH) inhibitors for metabolic disorders and MERCs modulation for neurological diseases. The review emphasizes challenges in translating these therapies to clinical applications, such as toxicity, off-target effects, limited bioavailability, and the lack of large-scale randomized controlled trials (RCTs). It also highlights the potential of personalized medicine approaches and pharmacogenomics in optimizing ER stress-targeting therapies.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| |
Collapse
|
2
|
Chen F, Yang A, Lu Y, Zhang Y, Zhang J, Bu J, Guo R, Han Y, Wu D, Wu Y. Differential transport pathways of saturated and unsaturated fatty acid esters in male mouse hepatocytes. Nat Commun 2025; 16:1344. [PMID: 39905035 PMCID: PMC11794647 DOI: 10.1038/s41467-025-56620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Saturated fatty acid (SFA) and unsaturated fatty acid (UFA) have distinct impacts on health. Whether SFA and UFA are differentially transported in liver remains elusive. Here, we find the secretion of UFA but not SFA esters is retarded in a male mouse hepatic endoplasmic reticulum (ER) stress model. Among 13 members of protein disulfide isomerase (PDI) family, only PDIA1 (PDI) deficiency leads to hepatosteatosis and hypolipidemia. In PDI-deficient male mouse liver, there is a severe accumulation but secretory blockade of UFA esters, whereas the accumulation and secretion of SFA esters remain normal. PDI catalyzes the oxidative folding of microsomal triglyceride transfer protein (MTP). In addition, PDI deficiency in hepatocytes abolishes Apolipoprotein B-100 (ApoB-100) very low-density lipoprotein (VLDL) secretion while maintaining partial ApoB-48 VLDL secretion. In summary, we find that the secretion of UFA esters is PDI-MTP indispensable, while SFA esters could be transferred out of liver via ApoB-48 VLDL through a PDI-MTP-independent pathway.
Collapse
Grants
- 81970128, 82170129, 82470132, 31970890, 8217011021, 82020108003, 82270136 National Natural Science Foundation of China (National Science Foundation of China)
- Translational Research Grant of NCRCH (2020ZKPA02, 2020WSA04), the collaboration fund from State Key Laboratory of Radiation Medicine and Protection (GZN1201802), the Suzhou Science and Technology Development Project (SKJY2021043), the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Collapse
Affiliation(s)
- Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China.
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yue Lu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yuxin Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
- Department of Hematology, Key Laboratory of Hematology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingyu Zhang
- Department of Hematology, Key Laboratory of Hematology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jianan Bu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Runlin Guo
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
3
|
Liu Y, Fan Y, Liu J, Liu X, Li X, Hu J. Application and mechanism of Chinese herb medicine in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1499602. [PMID: 39605910 PMCID: PMC11598537 DOI: 10.3389/fphar.2024.1499602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver condition closely associated with metabolic syndrome, with its incidence rate continuously rising globally. Recent studies have shown that the development of NAFLD is associated with insulin resistance, lipid metabolism disorder, oxidative stress and endoplasmic reticulum stress. Therapeutic strategies for NAFLD include lifestyle modifications, pharmacological treatments, and emerging biological therapies; however, there is currently no specific drug to treat NAFLD. However Chinese herb medicine (CHM) has shown potential in the treatment of NAFLD due to its unique therapeutic concepts and methods for centuries in China. This review aims to summarize the pathogenesis of NAFLD and some CHMs that have been shown to have therapeutic effects on NAFLD, thus enriching the scientific connotation of TCM theories and facilitating the exploration of TCM in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuqiao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Fan
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingqing Hu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Jin M, Shen Y, Monroig Ó, Zhao W, Bao Y, Zhu T, Tocher DR, Zhou Q. Sirt1 Mitigates Hepatic Lipotoxic Injury Induced by High-Fat-Diet in Fish Through Ire1α Deacetylation. J Nutr 2024; 154:3210-3224. [PMID: 39303797 DOI: 10.1016/j.tjnut.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Silent information regulator protein 1 (Sirt1) is crucial in regulating lipid metabolism, but its specific role and mechanism in fish hepatic lipotoxic injury remain undefined. OBJECTIVES This study aimed to elucidate the regulatory role of Sirt1 and the underlying mechanisms in dietary lipid-induced hepatic lipotoxic injury in a marine teleost black seabream. METHODS Black seabream were fed a control diet (12% lipid level), high-fat diet (HFD) [18% lipid level, oleic acid (OA)-rich], or HFD supplemented with 0.25%, 0.50%, or 1.00% resveratrol (RSV) for 8 wk. The cultured hepatocytes were stimulated by OA (200 μM), OA supplemented with RSV (20 μM), or transfection with sirt1-small interfering RNA (sisirt1). Biochemical indices, gene expression (qPCR), histology, transmission electron microscope, immunofluorescence, Western blot, flow cytometry, and immunoprecipitation assays were conducted to evaluate hepatic lipid deposition, lipid metabolism, endoplasmic reticulum stress, inflammation and apoptosis, and determine protein interactions between Sirt1 and Ire1α. RESULTS In vivo, RSV supplementation increased mRNA and protein expression levels of sirt1 (236.2% ± 16.1% and 53.1% ± 14.3%) and downregulated the mRNA and phosphorylated protein expression levels of ire1α/Ire1α (46.0% ± 7.6% and 38.6% ± 7.0%), jnk/Jnk (57.6% ± 7.3% and 122.1%), and nuclear factor κ B (nf-κb/Nf-κb) p65 (41.7% ± 7.1% and 24.6% ± 0.8%) compared with the HFD group. Similar patterns were found in the in vitro experiments; however, after knockdown of sirt1, although the cells were incubated with RSV, the expression levels of ire1α/ Ire1α, jnk/Jnk, and nf-κb/Nf-κb p65 showed no significant differences compared with the OA treatment. Moreover, we found that mutation of K61 to arginine to mimic Ire1α deacetylation confers protection against Ire1α-mediated OA-rich HFD-induced inflammation and apoptosis. CONCLUSIONS The findings revealed that Sirt1 protects against OA-rich HFD-induced hepatic lipotoxic injury via the deacetylation of Ire1α on K61, hence reducing Ire1α autophosphorylation level, and suppressing Jnk and Nf-κb p65 activation. This mechanism is elucidated for the first time in fish.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellon, Spain
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China.
| |
Collapse
|
5
|
Sahu P, Chhabra P, Mehendale AM. A Comprehensive Review on Non-Alcoholic Fatty Liver Disease. Cureus 2023; 15:e50159. [PMID: 38186528 PMCID: PMC10771633 DOI: 10.7759/cureus.50159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated liver disease (MASLD), is a spectrum of liver disease. It can be identified by the fact that considerable amount of hepatocytes with minimal or no alcohol use have steatosis. Because of its rising incidence along with increasing rates of obesity, metabolic syndromes, and diabetes mellitus type 2, NAFLD is expected to overtake all other causes of cirrhosis over the next decade, necessitating liver transplantation. Nevertheless, heart disease persists as the most prevalent manifestation of mortality, with only a small percentage experiencing fibrosis and complications associated with the liver. Pathologically, NAFLD is linked to lipid toxicity, oxidative stress, lipid deposits, and endoplasmic reticulum stress. A healthy diet, physical exercise, and a decrease in weight are advised by current international guidelines for the treatment of NAFLD, along with a limited number of medicinal therapies, including vitamin E and pioglitazone. Various natural substances have also been identified as NAFLD in vivo and in vitro regulators. The frequency, complexity of the pathophysiology, lack of authorised medications, and difficulty in interpretation of NAFLD have made it a major problem. This article assesses MASLD's pathophysiology, diagnosis, treatment, and epidemiology. This study also reviews a few natural substances that have been shown to have therapeutic advantages for NAFLD.
Collapse
Affiliation(s)
- Prerna Sahu
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Science, Wardha, IND
| | - Pratyaksh Chhabra
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Ashok M Mehendale
- Preventive Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
6
|
Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. Int J Mol Sci 2022; 23:ijms232415489. [PMID: 36555127 PMCID: PMC9779435 DOI: 10.3390/ijms232415489] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, affecting approximately one-quarter of the global population, and has become a world public health issue. NAFLD is a clinicopathological syndrome characterized by hepatic steatosis, excluding ethanol and other definite liver damage factors. Recent studies have shown that the development of NAFLD is associated with lipid accumulation, oxidative stress, endoplasmic reticulum stress, and lipotoxicity. A range of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the pathogenesis of NAFLD and some natural products that have been shown to have therapeutic effects on NAFLD. Our work shows that natural products can be a potential therapeutic option for NAFLD.
Collapse
|
7
|
Mubarak SA, Otaibi AA, Qarni AA, Bakillah A, Iqbal J. Reduction in Insulin Mediated ERK Phosphorylation by Palmitate in Liver Cells Is Independent of Fatty Acid Induced ER Stress. Nutrients 2022; 14:nu14173641. [PMID: 36079898 PMCID: PMC9460427 DOI: 10.3390/nu14173641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Saturated free fatty acids (FFAs) such as palmitate in the circulation are known to cause endoplasmic reticulum (ER) stress and insulin resistance in peripheral tissues. In addition to protein kinase B (AKT) signaling, extracellular signal-regulated kinase (ERK) has been implicated in the development of insulin resistance. However, there are conflicting data regarding role of ERK signaling in ER stress-induced insulin resistance. In this study, we investigated the effects of ER stress on insulin resistance and ERK phosphorylation in Huh-7 cells and evaluated how oleate prevents palmitate-mediated ER stress. Treatment with insulin resulted in an increase of 38–45% in the uptake of glucose in control cells compared to non-insulin-treated control cells, along with an increase in the phosphorylation of AKT and ERK. We found that treatment with palmitate increased the expression of ER stress genes, including the splicing of X box binding protein 1 (XBP1) mRNA. At the same time, we observed a decrease in insulin-mediated uptake of glucose and ERK phosphorylation in Huh-7 cells, without any change in AKT phosphorylation. Supplementation of oleate along with palmitate mitigated the palmitate-induced ER stress but did not affect insulin-mediated glucose uptake or ERK phosphorylation. The findings of this study suggest that palmitate reduces insulin-mediated ERK phosphorylation in liver cells and this effect is independent of fatty-acid-induced ER stress.
Collapse
|
8
|
Jin M, Wei Y, Yu H, Ma X, Yan S, Zhao L, Ding L, Cheng J, Feng H. Erythritol Improves Nonalcoholic Fatty Liver Disease by Activating Nrf2 Antioxidant Capacity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13080-13092. [PMID: 34719928 DOI: 10.1021/acs.jafc.1c05213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a kind of serious fat disorder that has become a critical problem to human society. Therefore, finding drugs that are safe and effective has become more and more important. Erythritol (Ery) is a polyol sweetener with a variety of biological functions. However, whether Ery has a relieving effect on NAFLD has not been reported yet. Therefore, we induced HepG2 cells with oleic acid and palmitic acid as our in vitro model. Moreover, we choose wild-type mice with tyloxapol and high-fat diet and nuclear factor E2-related factor 2 (Nrf2) knockout mice with high-fat diet as our in vivo model. We found that Ery could reverse the lipid accumulation, oxidative stress, and endoplasmic reticulum stress caused by the NAFLD model. The mechanism studies showed that Ery promoted the translocation of Nrf2 from cytoplasm to nucleus, and the molecular simulation docking results of Ery and Nrf2 showed that there was a hydrogen bond between them. Moreover, Ery could promote the production of HO-1 and NQO1 antioxidant proteins and inhibit the expression of endoplasmic reticulum stress proteins GPR78, p-PERK, and CHOP. On the contrast, when Nrf2 was knocked out in mice, Ery lost its protective effect on NAFLD. In conclusion, we found that the potential mechanism of Ery's protective effect is that it plays an antioxidant role by activating the Nrf2 signaling pathway, thereby inhibiting endoplasmic reticulum stress and lipid accumulation in NAFLD.
Collapse
Affiliation(s)
- Meiyu Jin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Yunfei Wei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Hao Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Xin Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Siru Yan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lilei Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lu Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Jiaqi Cheng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| |
Collapse
|
9
|
Hajduch E, Lachkar F, Ferré P, Foufelle F. Roles of Ceramides in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10040792. [PMID: 33669443 PMCID: PMC7920467 DOI: 10.3390/jcm10040792] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is one of the most common chronic liver diseases, ranging from simple steatosis to steatohepatitis, fibrosis, and cirrhosis. Its prevalence is rapidly increasing and presently affects around 25% of the general population of Western countries, due to the obesity epidemic. Liver fat accumulation induces the synthesis of specific lipid species and particularly ceramides, a sphingolipid. In turn, ceramides have deleterious effects on hepatic metabolism, a phenomenon called lipotoxicity. We review here the evidence showing the role of ceramides in non-alcoholic fatty liver disease and the mechanisms underlying their effects.
Collapse
Affiliation(s)
- Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
- Correspondence: ; Tel.: +33-1-44-27-24-25
| |
Collapse
|
10
|
Tamitani M, Yamamoto T, Yamamoto N, Fujisawa K, Tanaka S, Nakamura Y, Uchinoumi H, Oda T, Okuda S, Takami T, Kobayashi S, Sakaida I, Yano M. Dantrolene prevents hepatic steatosis by reducing cytoplasmic Ca2+ level and ER stress. Biochem Biophys Rep 2020; 23:100787. [PMID: 32715106 PMCID: PMC7374254 DOI: 10.1016/j.bbrep.2020.100787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Our previous studies demonstrated that dantrolene, a ryanodine receptor stabilizer, prevents endoplasmic reticulum (ER) stress in the heart. ER stress is a strong mediator of impaired lipid metabolism in the liver, thereby contributing to fatty liver disease. In this study, we investigated the effects of dantrolene on fatty liver disease in mice and ER stress in hepatocytes. Methods and results Eight weeks old C57BL/6 mice were fed high-fat diet (HFD) for 8 weeks with or without the oral administration of dantrolene (100 mg/kg/day). The livers of mice without dantrolene (HFD group) showed severe fatty liver, whereas the livers of the mice treated with dantrolene (HFD + DAN group) only showed slightly fatty liver. To address the preventive effects of dantrolene, primary hepatocytes were cultured with palmitate in the presence or absence of dantrolene. Dantrolene reduced lipid load and prevents palmitate-induced increase in cytoplasmic Ca2+ and ER stress. Based on these findings, we propose that dantrolene is a potential new therapeutic agent against fatty liver disease. Oral dantrolene prevents fatty liver disease in mice. Dantrolene reduced the cytoplasmic Ca2+ level in hepatocytes. Dantrolene reduced the GRP78 protein level in hepatocytes.
Collapse
|
11
|
Wang F, Yao S, Xia H. SIRT1 is a key regulatory target for the treatment of the endoplasmic reticulum stress-related organ damage. Biomed Pharmacother 2020; 130:110601. [PMID: 32784049 DOI: 10.1016/j.biopha.2020.110601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is an evolutionarily conserved adaptive response that contributes to deal with the misfolded or unfolded protein in the lumen of the ER and restore the ER homeostasis. However, excessive and prolonged ER stress can trigger the cell-death signaling pathway which causes cell death, usually in the form of apoptosis. It is generally accepted that inappropriate cellular apoptosis and a series of the subsequent inflammatory response and oxidative stress can cause disturbance of normal physiological functions and organ damage. A lot of evidence shows that the excessive activation of the ER stress contributes to the pathogenesis of many kinds of diseases and inhibiting the inappropriate stress is of great significance for maintaining the normal physiological function. In recent years, Sirtuin1 (SIRT1) has become a research hotspot on ER stress. As a master regulator of ER stress, increasing evidence suggests that SIRT1 plays a positive role in a variety of ER stress-induced organ damage via multiple mechanisms, including inhibiting cellular apoptosis and promoting autophagy. Furthermore, a lot of factors have shown effective regulation of SIRT1, which indicates the feasibility of treating SIRT1 as a target for the treatment of ER stress-related diseases. We summarize and reveal the molecular mechanisms underlying the protective effect of SIRT1 in multiple ER stress-mediated organ damage in this review. We also summed up the possible adjustment mechanism of SIRT1, which provides a theoretical basis for the treatment of ER stress-related diseases.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China.
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Wang J, Hu R, Yin C, Xiao Y. Tanshinone IIA reduces palmitate‐induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 liver cells. Fundam Clin Pharmacol 2019; 34:249-262. [PMID: 31520549 DOI: 10.1111/fcp.12510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Junjian Wang
- Department of Pediatrics The Second Affiliated Hospital of Xi'an Jiaotong University No. 157 Xiwu Road Xi'an 710004 China
- Outpatient Internal Medicine Department Xi'an Children's Hospital No. 69 Xijuyuan Xiang Xi'an 710003 China
| | - Rui Hu
- Department of Pediatrics The Traffic Hospital of Shaanxi Province No. 276 Daxue South Road Xi'an 710068 China
| | - Chunyan Yin
- Department of Pediatrics The Second Affiliated Hospital of Xi'an Jiaotong University No. 157 Xiwu Road Xi'an 710004 China
| | - Yanfeng Xiao
- Department of Pediatrics The Second Affiliated Hospital of Xi'an Jiaotong University No. 157 Xiwu Road Xi'an 710004 China
| |
Collapse
|
13
|
Yu X, Ren LP, Wang C, Zhu YJ, Xing HY, Zhao J, Song GY. Role of X-Box Binding Protein-1 in Fructose-Induced De Novo Lipogenesis in HepG2 Cells. Chin Med J (Engl) 2018; 131:2310-2319. [PMID: 30246717 PMCID: PMC6166463 DOI: 10.4103/0366-6999.241799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A high consumption of fructose leads to hepatic steatosis. About 20-30% of triglycerides are synthesized via de novo lipogenesis. Some studies showed that endoplasmic reticulum stress (ERS) is involved in this process, while others showed that a lipotoxic environment directly influences ER homeostasis. Here, our aim was to investigate the causal relationship between ERS and fatty acid synthesis and the effect of X-box binding protein-1 (XBP-1), one marker of ERS, on hepatic lipid accumulation stimulated by high fructose. METHODS HepG2 cells were incubated with different concentrations of fructose. Upstream regulators of de novo lipogenesis (i.e., carbohydrate response element-binding protein [ChREBP] and sterol regulatory element-binding protein 1c [SREBP-1c]) were measured by polymerase chain reaction and key lipogenic enzymes (acetyl-CoA carboxylase [ACC], fatty acid synthase [FAS], and stearoyl-CoA desaturase-1 [SCD-1]) by Western blotting. The same lipogenesis-associated factors were then evaluated after exposure of HepG2 cells to high fructose followed by the ERS inhibitor tauroursodeoxycholic acid (TUDCA) or the ERS inducer thapsigargin. Finally, the same lipogenesis-associated factors were evaluated in HepG2 cells after XBP-1 upregulation or downregulation through cell transfection. RESULTS Exposure to high fructose increased triglyceride levels in a dose- and time-dependent manner and significantly increased mRNA levels of SREBP-1c and ChREBP and protein levels of FAS, ACC, and SCD-1, concomitant with XBP-1 conversion to an active spliced form. Lipogenesis-associated factors induced by high fructose were inhibited by TUDCA and induced by thapsigargin. Triglyceride level in XBP-1-deficient group decreased significantly compared with high-fructose group (4.41 ± 0.54 μmol/g vs. 6.52 ± 0.38 μmol/g, P < 0.001), as mRNA expressions of SREBP-1c (2.92 ± 0.46 vs. 5.08 ± 0.41, P < 0.01) and protein levels of FAS (0.53 ± 0.06 vs. 0.85 ± 0.05, P = 0.01), SCD-1 (0.65 ± 0.06 vs. 0.90 ± 0.04, P = 0.04), and ACC (0.38 ± 0.03 vs. 0.95 ± 0.06, P < 0.01) decreased. Conversely, levels of triglyceride (4.22 ± 0.54 μmol/g vs. 2.41 ± 0.35 μmol/g, P < 0.001), mRNA expression of SREBP-1c (2.70 ± 0.33 vs. 1.00 ± 0.00, P < 0.01), and protein expression of SCD-1 (0.93 ± 0.06 vs. 0.26 ± 0.05, P < 0.01), ACC (0.98 ± 0.09 vs. 0.43 ± 0.03, P < 0.01), and FAS (0.90 ± 0.33 vs. 0.71 ± 0.02, P = 0.04) in XBP-1s-upregulated group increased compared with the untransfected group. CONCLUSIONS ERS is associated with de novo lipogenesis, and XBP-1 partially mediates high-fructose-induced lipid accumulation in HepG2 cells through augmentation of de novo lipogenesis.
Collapse
Affiliation(s)
- Xian Yu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Lu-Ping Ren
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Ya-Jun Zhu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Han-Ying Xing
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Jing Zhao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Guang-Yao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
14
|
Jung TW, Kyung EJ, Kim HC, Shin YK, Lee SH, Park ES, Hacımüftüoğlu A, Abd El-Aty AM, Jeong JH. Protectin DX Ameliorates Hepatic Steatosis by Suppression of Endoplasmic Reticulum Stress via AMPK-Induced ORP150 Expression. J Pharmacol Exp Ther 2018; 365:485-493. [PMID: 29572342 DOI: 10.1124/jpet.117.246686] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/20/2018] [Indexed: 09/02/2023] Open
Abstract
Docosahexaenoic acid (DHA) and its bioactive compounds may have suppressive effects on inflammation, endoplasmic reticulum (ER) stress, and insulin resistance. Protectin DX (PDX), a double lipoxygenase product from DHA has shown a suppressive effect on inflammation and insulin resistance. However, the effects of PDX on ER stress and hepatic steatosis have not been elucidated yet. Herein we report that PDX could stimulate the AMP-activated protein kinase (AMPK) phosphorylation, thereby upregulating oxygen-regulated protein 150 (ORP150) expression in a dose-dependent manner. Treatment of HepG2 cells with PDX attenuated the palmitate-induced triglyceride accumulation through regulation of the sterol regulatory element-binding protein 1 (SREBP1)-mediated pathway. To deal with the pharmacological significance in the protective effects of PDX on hepatic steatosis, we performed in vivo experiments. In a mouse model, the PDX administration would alleviate the high-fat diet-induced hepatic steatosis and trigger the hepatic AMPK phosphorylation and ORP150 expression. PDX improved palmitate-induced and HFD-induced impairment of hepatic lipid metabolism and steatosis through suppression of ER stress via an AMPK-ORP150-dependent pathway.
Collapse
Affiliation(s)
- Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Eun Jung Kyung
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Hyoung-Chun Kim
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Yong Kyu Shin
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Sung Hoon Lee
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Eon Sub Park
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Ahmet Hacımüftüoğlu
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - A M Abd El-Aty
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| | - Ji Hoon Jeong
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea (T.W.J.); Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea (H.-C.K.); Departments of Pharmacology (E.J.K., Y.K.S., J.H.J.) and Pathology (E.S.P.), College of Medicine and College of Pharmacy (S.H.L.), Chung-Ang University, Seoul, Republic of Korea; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey (A.H., A.M.A.E.-A.); and Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt (A.M.A.E.-A.)
| |
Collapse
|
15
|
Role of exercise in the mechanisms ameliorating hepatic steatosis in non-alcoholic fatty liver disease. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0459-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Jung TW, Kim HC, Abd El-Aty AM, Jeong JH. Maresin 1 attenuates NAFLD by suppression of endoplasmic reticulum stress via AMPK-SERCA2b pathway. J Biol Chem 2018; 293:3981-3988. [PMID: 29414781 DOI: 10.1074/jbc.ra117.000885] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/18/2018] [Indexed: 12/13/2022] Open
Abstract
Maresin 1 (MAR1), which is derived from docosahexaenoic acid biosynthesized by macrophages, has been reported to improve insulin resistance. Recently, it has been documented that MAR1 could ameliorate inflammation and insulin resistance in obese mice. These findings led us to investigate the effects of MAR1 on hepatic lipid metabolism. We found that MAR1 could stimulate AMP-activated protein kinase (AMPK), thereby augmenting sarcoendoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) expression. This stimulation suppressed lipid accumulation by attenuating the endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. Attenuation was mitigated by knockdown of AMPK or thapsigargin, a SERCA2b inhibitor. We also demonstrated that MAR1 administration resulted in increased hepatic AMPK phosphorylation and Serca2b mRNA expression, whereas hepatic ER stress was reduced in high-fat diet (HFD)-fed mice. Moreover, MAR1 treatment suppressed hepatic lipid synthesis, thereby attenuating hepatic steatosis in HFD-fed mice. In conclusion, our results suggest that MAR1 ameliorates hepatic steatosis via AMPK/SERCA2b-mediated suppression of ER stress. Therefore, MAR1 may be an effective therapeutic strategy for treating non-alcoholic fatty liver disease (NAFLD) via regulation of ER stress-induced hepatic lipogenesis.
Collapse
Affiliation(s)
- Tae Woo Jung
- From the Research Administration Team, Seoul National University Bundang Hospital, 13620 Gyeonggi, Republic of Korea
| | - Hyoung-Chun Kim
- the Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341 Chunchon, Republic of Korea
| | - A M Abd El-Aty
- the Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt, and
| | - Ji Hoon Jeong
- the Department of Pharmacology, College of Medicine, Chung-Ang University, 06974 Seoul, Republic of Korea
| |
Collapse
|
17
|
Khalyfa A, Qiao Z, Gileles-Hillel A, Khalyfa AA, Akbarpour M, Popko B, Gozal D. Activation of the Integrated Stress Response and Metabolic Dysfunction in a Murine Model of Sleep Apnea. Am J Respir Cell Mol Biol 2017; 57:477-486. [PMID: 28594573 DOI: 10.1165/rcmb.2017-0057oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intermittent hypoxia (IH) induces activation of the integrated stress response (ISR), but its role in IH-induced visceral white adipose tissue (vWAT) insulin resistance is unknown. CHOP is activated by chronic ISR, whereas GADD34 dephosphorylates the subunit of translation initiation factor 2 (eIF2α), leading to termination of the ISR. We hypothesized that CHOP/Gadd34 null mice would not manifest evidence of insulin resistance after IH exposures. Eight-week-old CHOP/GADD34-/- (double mutant [DM]) and wild-type (WT) littermates were randomly assigned to IH or room air (RA) exposures for 6 weeks. Glucose and insulin tolerance tests were performed, and regulatory T cells (Tregs) and macrophages in vWAT were assessed. Phosphorylated eIF2α:total eIF2α, ATF4, XBP1 expression, and insulin-induced pAKT/AKT expression changes were examined in vWATs. Single GADD34-/- and PERK+/- mice were also evaluated. Body weight and vWAT mass were reduced in DM and WT mice after IH. M1/M2 macrophages and inflammatory macrophages (Ly-6chigh) were significantly increased in WT vWAT but remained unchanged in DM mice. Tregs were significantly decreased in WT vWAT but not in DM mice. Systemic insulin and glucose tolerance tests revealed insulin resistance in IH-WT but not in IH-DM mice. Similarly, decreased pAKT/AKT responses to exogenous insulin emerged in IH-WT compared with RA-WT mice, whereas no significant differences emerged in IH-DM compared with DM-RA. Chronic ISR activation appears to contribute to the insulin resistance and vWAT inflammation that characteristically emerge after long-term IH exposures in a murine model of obstructive sleep apnea.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, and
| | - Zhuanhong Qiao
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, and
| | | | - Ahamed A Khalyfa
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, and
| | - Mahzad Akbarpour
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, and
| | - Brian Popko
- 2 Department of Neurology, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - David Gozal
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, and
| |
Collapse
|
18
|
Lepreux S, Villeneuve J, Dewitte A, Bérard AM, Desmoulière A, Ripoche J. CD40 signaling and hepatic steatosis: Unanticipated links. Clin Res Hepatol Gastroenterol 2017; 41:357-369. [PMID: 27989689 DOI: 10.1016/j.clinre.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Obesity predisposes to an increased risk of nonalcoholic fatty liver disease (NAFLD). Hepatic steatosis is the key pathological feature of NAFLD and has emerged as a metabolic disorder in which innate and adaptive arms of the immune response play a central role in disease pathogenesis. Recent studies have revealed unexpected relationships between CD40 signaling and hepatic steatosis in high fat diet rodent models. CD154, the ligand of CD40, is a mediator of inflammation and controls several critical events of innate and adaptive immune responses. In the light of these reports, we discuss potential links between CD40 signaling and hepatic steatosis in NAFLD.
Collapse
Affiliation(s)
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Antoine Dewitte
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, 33600 Pessac, France
| | - Annie M Bérard
- Service de Biochimie, CHU de Bordeaux, 33000 Bordeaux, France
| | | | - Jean Ripoche
- INSERM U1026, Université de Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
19
|
Astragaloside IV attenuates free fatty acid-induced ER stress and lipid accumulation in hepatocytes via AMPK activation. Acta Pharmacol Sin 2017; 38:998-1008. [PMID: 28344322 DOI: 10.1038/aps.2016.175] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
Although the pathogenesis of non-alcoholic fatty liver disease (NAFLD) is not completely understood, the increased influx of free fatty acids (FFAs) into the liver and the FFA-induced hepatic endoplasmic reticulum (ER) stress are two crucial pathogenic processes in the initiation and development of NAFLD. In this study we investigated the effects of astragaloside IV (AS-IV), a bioactive compound purified from Astragali Radix, on FFA-induced lipid accumulation in hepatocytes and elucidated the underlying mechanisms. Human HepG2 cells and primary murine hepatocytes were exposed to FFAs (1 mmol/L, oleate/palmitate, 2:1 ratio) with or without AS-IV for 24 h. Exposure to FFAs induced marked lipid accumulation in hepatocytes, whereas co-treatment with AS-IV (100 μg/mL) significantly attenuated this phenomenon. Notably, AS-IV (50-200 μg/mL) concentration-dependently enhanced the phosphorylation of AMPK, acetyl-CoA carboxylase (ACC) and SREBP-1c, inhibited the accumulation and nuclear translocation of mature SREBP-1 and subsequently decreased the mRNA levels of lipogenic genes including acc1, fas and scd1. AS-IV treatment also concentration-dependently attenuated FFA-induced hepatic ER stress evidenced by the reduction of the key markers, GRP78, CHOP and p-PERK. Pretreated the cells with the AMPK inhibitor compound C (20 μmol/L) greatly diminished these beneficial effects of AS-IV. Our results demonstrate that AS-IV attenuates FFA-induced ER stress and lipid accumulation in an AMPK-dependent manner in hepatocytes, which supports its use as promising therapeutics for hepatic steatosis.
Collapse
|
20
|
Semiane N, Foufelle F, Ferré P, Hainault I, Ameddah S, Mallek A, Khalkhal A, Dahmani Y. High carbohydrate diet induces nonalcoholic steato-hepatitis (NASH) in a desert gerbil. C R Biol 2017; 340:25-36. [DOI: 10.1016/j.crvi.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
|
21
|
Lipid accumulation stimulates the cap-independent translation of SREBP-1a mRNA by promoting hnRNP A1 binding to its 5'-UTR in a cellular model of hepatic steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:471-81. [PMID: 26869449 DOI: 10.1016/j.bbalip.2016.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic disease characterized by accumulation of lipid droplets in hepatocytes. Enhanced release of non-esterified fatty acids from adipose tissue accounts for a remarkable fraction of accumulated lipids. However, the de novo lipogenesis (DNL) is also implicated in the etiology of the NAFLD. Sterol Regulatory Element-Binding Protein-1 (SREBP-1) is a transcription factor modulating the expression of several lipogenic enzymes. In the present study, in order to investigate the effect of lipid droplet accumulation on DNL, we used a cellular model of steatosis represented by HepG2 cells cultured in a medium supplemented with free oleic and palmitic fatty acids (FFAs). We report that FFA supplementation induces the expression of genes coding for enzymes involved in the DNL as well as for the transcription factor SREBP-1a. The SREBP-1a mRNA translation, dependent on an internal ribosome entry site (IRES), and the SREBP-1a proteolytic cleavage are activated by FFAs. Furthermore, FFA treatment enhances the expression and the nucleus-cytosolic shuttling of hnRNP A1, a trans-activating factor of SREBP-1a IRES. The binding of hnRNP A1 to the SREBP-1a IRES is also increased upon FFA supplementation. The relocation of hnRNP A1 and the consequent increase of SREBP-1a translation are dependent on the p38 MAPK signal pathway, which is activated by FFAs. By RNA interference approach, we demonstrate that hnRNP A1 is implicated in the FFA-induced expression of SREBP-1a and of its target genes as well as in the lipid accumulation in cells.
Collapse
|
22
|
Guo XY, Liu J, Gao Y. Nonalcoholic fatty liver disease: Pathogenesis and incretin based therapies. Shijie Huaren Xiaohua Zazhi 2015; 23:4990-4996. [DOI: 10.11569/wcjd.v23.i31.4990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease is considered a hepatic manifestation of metabolic syndrome (MS). The current treatment of non-alcoholic fatty liver disease (NAFLD) principally involves amelioration of MS components by lifestyle modification. Effective pharmacological agents for fatty liver treatment are lacking. Incretins are gut derived hormones secreted into the circulation in response to nutrient ingestion that can enhance glucose-stimulated insulin secretion, and represent a new class of drugs for treatment of type 2 diabetes, including glucagon-like peptide 1 analogues and dipeptidyl aminopeptidase 4 inhibitors. There are several experimental and clinical trials exploring the efficacy of incretin based therapies in NAFLD treatment, however, further studies are needed to assess the long-term effect of incretin based therapies on NAFLD.
Collapse
|
23
|
Kandel-Kfir M, Almog T, Shaish A, Shlomai G, Anafi L, Avivi C, Barshack I, Grosskopf I, Harats D, Kamari Y. Interleukin-1α deficiency attenuates endoplasmic reticulum stress-induced liver damage and CHOP expression in mice. J Hepatol 2015; 63:926-33. [PMID: 26022690 DOI: 10.1016/j.jhep.2015.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/01/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS ER stress promotes liver fat accumulation and induction of inflammatory cytokines, which contribute to the development of steatohepatitis. Unresolved ER stress upregulates the pro-apoptotic CHOP. IL-1α is localized to the nucleus in apoptotic cells, but is released when these cells become necrotic and induce sterile inflammation. We investigated whether IL-1α is involved in ER stress-induced apoptosis and steatohepatitis. METHODS We employed WT and IL-1α-deficient mice to study the role of IL-1α in ER stress-induced steatohepatitis. RESULTS Liver CHOP mRNA was induced in a time dependent fashion in the atherogenic diet-induced steatohepatitis model, and was twofold lower in IL-1α deficient compared to WT mice. In the ER stress-driven steatohepatitis model, IL-1α deficiency decreased the elevation in serum ALT levels, the number of apoptotic cells (measured as caspase-3-positive hepatocytes), and the expression of IL-1β, IL-6, TNFα, and CHOP, with no effect on the degree of fatty liver formation. IL-1α was upregulated in ER-stressed-macrophages and the protein was localized to the nucleus. IL-1β mRNA and CHOP mRNA and protein levels were lower in ER-stressed-macrophages from IL-1α deficient compared to WT mice. ER stress induced the expression of IL-1α and IL-1β also in mouse primary hepatocytes. Recombinant IL-1α treatment in hepatocytes did not affect CHOP expression but upregulated both IL-1α and IL-1β mRNA levels. CONCLUSION We show that IL-1α is upregulated in response to ER stress and IL-1α deficiency reduces ER stress-induced CHOP expression, apoptosis and steatohepatitis. As a dual function cytokine, IL-1α may contribute to the induction of CHOP intracellularly, while IL-1α released from necrotic cells accelerates steatohepatitis via induction of inflammatory cytokines by neighboring cells.
Collapse
Affiliation(s)
- Michal Kandel-Kfir
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Tal Almog
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Gadi Shlomai
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Liat Anafi
- The Pathology Department, Sheba Medical Center, Tel Hashomer, Israel
| | - Camila Avivi
- The Pathology Department, Sheba Medical Center, Tel Hashomer, Israel
| | - Iris Barshack
- The Pathology Department, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Itamar Grosskopf
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Dror Harats
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
24
|
Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes. Biochem Biophys Res Commun 2015; 460:684-90. [DOI: 10.1016/j.bbrc.2015.03.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/06/2023]
|
25
|
Wang Y, Jiang ZZ, Chen M, Wu MJ, Guo HL, Sun LX, Wang H, Zhang S, Wang T, Zhang LY. Protective effect of total flavonoid C-glycosides from Abrus mollis extract on lipopolysaccharide-induced lipotoxicity in mice. Chin J Nat Med 2015; 12:461-8. [PMID: 24969528 DOI: 10.1016/s1875-5364(14)60072-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 01/16/2023]
Abstract
Abrus mollis is a widely used traditional Chinese medicine for treating acute and chronic hepatitis, steatosis, and fibrosis. It was found that the total flavonoid C-glycosides from Abrus mollis extract (AME) showed potent antioxidant, anti-inflammatory, and hepatoprotective activities. To further investigate the hepatoprotective effect of AME and its possible mechanisms, lipopolysaccharide (LPS)-induced liver injury models were applied in the current study. The results indicated that AME significantly attenuated LPS-induced lipid accumulation in mouse primary hepatocytes as measured by triglyceride (TG) and total cholesterol (TC) assays and Oil Red O staining. Meanwhile, AME exerted a protective effect on LPS-induced liver injury as shown by decreased liver index, serum aminotransferase levels, and hepatic lipid accumulation. Real-time PCR and immunoblot data suggested that AME reversed the LPS-mediated lipid metabolism gene expression, such as sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase 1 (ACC1). In addition, LPS-induced overexpression of activating transcription factor 4 (ATF4), X-box-binding protein-1 (XBP-1), and C/EBP homologous protein (CHOP) were dramatically reversed by AME. Furthermore, AME also decreased the expression of LPS-enhanced interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2). Here, it is demonstrated for the first time that AME ameliorated LPS-induced hepatic lipid accumulation and that this effect of AME can be attributed to its modulation of hepatic de novo fatty acid synthesis. This study also suggested that the hepatoprotective effect of AME may be related to its down-regulation of unfolded protein response (UPR) activation.
Collapse
Affiliation(s)
- Yun Wang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Mi Chen
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Juan Wu
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hong-Li Guo
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Xin Sun
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 21009, China
| | - Lu-Yong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Côté I, Chapados NA, Lavoie JM. Impaired VLDL assembly: a novel mechanism contributing to hepatic lipid accumulation following ovariectomy and high-fat/high-cholesterol diets? Br J Nutr 2014; 112:1592-600. [PMID: 25263431 DOI: 10.1017/s0007114514002517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to identify molecular mechanisms involved in liver fat and cholesterol accumulation in ovariectomised (Ovx) rats fed with high-cholesterol diets. VLDL assembly and bile acid metabolism were specifically targeted. After being either Ovx or sham-operated, the rats were fed a standard diet or a high-fat diet containing 0, 0·25 or 0·5 % cholesterol for 6 weeks. Although Ovx rats exposed to dietary cholesterol intake accumulated the greatest amount of hepatic fat and cholesterol, plasma cholesterol levels were lower (P< 0·05) in these animals than in the corresponding control rats. Accompanying this observation, ovariectomy and dietary cholesterol intake resulted in a down-regulation (P< 0·05) of the expression of genes associated with VLDL assembly, including microsomal TAG transfer protein, diacylglycerol acyltransferase 2, acyl-CoA:cholesterol acyltransferase 2 and apoB-100 as well as genes associated with bile acid metabolism including farnesoid X receptor and bile salt export pump (P< 0·01). These results indicate that high-fat/high-cholesterol diets and ovariectomy concomitantly disrupt hepatic lipid output through defects in VLDL assembly and, most probably, secretion. The results also point to a defect in hepatic bile acid secretion. The present study offers novel insights into intrahepatic lipid metabolism, which may be relevant to metabolic complications found in postmenopausal women.
Collapse
Affiliation(s)
- Isabelle Côté
- Department of Kinesiology,Université de Montréal, 2100, Boulevard Édouard-Montpetit,Montréal,QC,CanadaH3C 3J7
| | | | - Jean-Marc Lavoie
- Department of Kinesiology,Université de Montréal, 2100, Boulevard Édouard-Montpetit,Montréal,QC,CanadaH3C 3J7
| |
Collapse
|
27
|
Boden G, Cheung P, Kresge K, Homko C, Powers B, Ferrer L. Insulin resistance is associated with diminished endoplasmic reticulum stress responses in adipose tissue of healthy and diabetic subjects. Diabetes 2014; 63:2977-83. [PMID: 24740571 PMCID: PMC4141374 DOI: 10.2337/db14-0055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We recently showed that insulin increased ER stress in human adipose tissue. The effect of insulin resistance on ER stress is not known. It could be decreased, unchanged, or increased, depending on whether insulin regulates ER stress via the metabolic/phosphoinositide 3-kinase (PI3K) or alternate signaling pathways. To address this question, we examined effects of lipid-induced insulin resistance on insulin stimulation of ER stress. mRNAs of several ER stress markers were determined in fat biopsies obtained before and after 8-h hyperglycemic-hyperinsulinemic clamping in 13 normal subjects and in 6 chronically insulin-resistant patients with type 2 diabetes mellitus (T2DM). In normal subjects, hyperglycemia-hyperinsulinemia increased after/before mRNA ratios of several ER stress markers (determined by ER stress pathway array and by individual RT-PCR). Lipid infusion was associated with inhibition of the PI3K insulin-signaling pathway and with a decrease of hyperinsulinemia-induced ER stress responses. In chronically insulin-resistant patients with T2DM, hyperglycemic-hyperinsulinemia did not increase ER stress response marker mRNAs. In summary, insulin resistance, either produced by lipid infusions in normal subjects or chronically present in T2DM patients, was associated with decreased hyperinsulinemia-induced ER stress responses. This suggests, but does not prove, that these two phenomena were causally related.
Collapse
Affiliation(s)
- Guenther Boden
- Section of Endocrinology, Diabetes and Metabolism, Temple University School of Medicine, Philadelphia, PA Clinical Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Peter Cheung
- Section of Endocrinology, Diabetes and Metabolism, Temple University School of Medicine, Philadelphia, PA Clinical Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Karen Kresge
- Clinical Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Carol Homko
- Section of Endocrinology, Diabetes and Metabolism, Temple University School of Medicine, Philadelphia, PA Clinical Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Ben Powers
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA
| | - Lucas Ferrer
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
28
|
Lee J, Hong SW, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Exendin-4 attenuates endoplasmic reticulum stress through a SIRT1-dependent mechanism. Cell Stress Chaperones 2014; 19:649-56. [PMID: 24446069 PMCID: PMC4147070 DOI: 10.1007/s12192-013-0490-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 02/08/2023] Open
Abstract
Accumulation of excess hepatic lipids contributes to insulin resistance and liver disease associated with endoplasmic reticulum (ER) stress. Exendin-4 is an agonist of the glucagon-like peptide 1 receptor and plays a role in improving insulin resistance and liver disease by increasing silent mating type information regulation 2 homolog (SIRT) 1. However, the effects and mechanism of action of exendin-4 on responses to palmitic acid (PA)-induced ER stress in hepatocytes have not been clearly defined. We investigated whether exendin-4 attenuates PA-induced ER stress via SIRT1 in HepG2 cells. PA treatment induced increased expression of PRKR-like endoplasmic reticulum kinase, inositol-requiring kinase 1α (IRE1α), activating transcription factor 6 (ATF6), and C/EBP homologous protein (CHOP) mRNA. Exendin-4 decreased the expression of P-IRE1α, ATF6, X-box binding protein-1 and CHOP, and increased the expression of SERCA2b. A significant decrease in the hepatic expression of PUMA, BAX, cytochrome c, and cleaved caspase-3 were observed in hepatocytes treated with exendin-4. The TUNEL assay consistently showed that exendin-4 reversed hepatocyte apoptosis induced by treatment with PA. Inhibition of SIRT1 by nicotinamide and siRNA significantly increased the expression of ER stress marker genes in cells treated with both PA and exendin-4. In conclusion, increased SIRT1 by exendin-4 attenuates PA-induced ER stress and mitochondrial dysfunction in hepatocytes.
Collapse
Affiliation(s)
- Jinmi Lee
- />Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 110-746 South Korea
| | - Seok-Woo Hong
- />Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 110-746 South Korea
| | - Se Eun Park
- />Division of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 110-746 South Korea
| | - Eun-Jung Rhee
- />Division of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 110-746 South Korea
| | - Cheol-Young Park
- />Division of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 110-746 South Korea
| | - Ki-Won Oh
- />Division of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 110-746 South Korea
| | - Sung-Woo Park
- />Division of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 110-746 South Korea
| | - Won-Young Lee
- />Division of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 110-746 South Korea
- />Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, # 108 Pyung-Dong, Seoul, Jongro-Ku 110-746 South Korea
| |
Collapse
|
29
|
Boden G, Cheung P, Salehi S, Homko C, Loveland-Jones C, Jayarajan S, Stein TP, Williams KJ, Liu ML, Barrero CA, Merali S. Insulin regulates the unfolded protein response in human adipose tissue. Diabetes 2014; 63:912-22. [PMID: 24130338 PMCID: PMC3931405 DOI: 10.2337/db13-0906] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress is increased in obesity and is postulated to be a major contributor to many obesity-related pathologies. Little is known about what causes ER stress in obese people. Here, we show that insulin upregulated the unfolded protein response (UPR), an adaptive reaction to ER stress, in vitro in 3T3-L1 adipocytes and in vivo, in subcutaneous (sc) adipose tissue of nondiabetic subjects, where it increased the UPR dose dependently over the entire physiologic insulin range (from ∼ 35 to ∼ 1,450 pmol/L). The insulin-induced UPR was not due to increased glucose uptake/metabolism and oxidative stress. It was associated, however, with increased protein synthesis, with accumulation of ubiquitination associated proteins, and with multiple posttranslational protein modifications (acetylations, methylations, nitrosylations, succinylation, and ubiquitinations), some of which are potential causes for ER stress. These results reveal a new physiologic role of insulin and provide a putative mechanism for the development of ER stress in obesity. They may also have clinical and therapeutic implications, e.g., in diabetic patients treated with high doses of insulin.
Collapse
Affiliation(s)
- Guenther Boden
- Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, PA
- Clinical Research Center, Temple University School of Medicine, Philadelphia, PA
- Corresponding author: Guenther Boden,
| | - Peter Cheung
- Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, PA
- Clinical Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Sajad Salehi
- Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, PA
- Clinical Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Carol Homko
- Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, PA
- Clinical Research Center, Temple University School of Medicine, Philadelphia, PA
| | | | - Senthil Jayarajan
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA
| | - T. Peter Stein
- Department of Surgery, University of Medicine and Dentistry New Jersey, Stratford, NJ
| | - Kevin Jon Williams
- Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, PA
| | - Ming-Lin Liu
- Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, PA
| | - Carlos A. Barrero
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA
| | - Salim Merali
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
30
|
Discovery of a novel target for the dysglycemic chromogranin A fragment pancreastatin: interaction with the chaperone GRP78 to influence metabolism. PLoS One 2014; 9:e84132. [PMID: 24465394 PMCID: PMC3896336 DOI: 10.1371/journal.pone.0084132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022] Open
Abstract
RATIONALE The chromogranin A-derived peptide pancreastatin (PST) is a dysglycemic, counter-regulatory peptide for insulin action, especially in liver. Although previous evidence for a PST binding protein has been reported, such a receptor has not been identified or sequenced. METHODS AND RESULTS We used ligand affinity to purify the PST target, with biotinylated human PST (hCHGA273-301-amide) as "bait" and mouse liver homogenate as "prey", and identified GRP78 (a.k.a. "78 kDa Glucose Regulated Protein", HSPA5, BIP) as a major interacting partner of PST. GRP78 belongs to the family of heat shock proteins (chaperones), involved in several cellular processes including protein folding and glucose metabolism. We analyzed expression of GRP78 in the absence of PST in a mouse knockout model lacking its precursor CHGA: hepatic transcriptome data revealed global over-expression of not only GRP78 but also other heat shock transcripts (of the "adaptive UPR") in CHGA(-/-) mice compared to wild-type (+/+). By contrast, we found a global decline in expression of hepatic pro-apoptotic transcripts in CHGA(-/-) mice. GRP78's ATPase enzymatic activity was dose-dependently inhibited by PST (IC50∼5.2 µM). PST also inhibited the up-regulation of GRP78 expression during UPR activation (by tunicamycin) in hepatocytes. PST inhibited insulin-stimulated glucose uptake in adipocytes, and increased hepatic expression of G6Pase (the final step in gluconeogenesis/glycogenolysis). In hepatocytes not only PST but also other GRP78-ATPase inhibitors (VER-155008 or ADP) increased G6Pase expression. GRP78 over-expression inhibited G6Pase expression in hepatocytes, with partial restoration by GRP78-ATPase inhibitors PST, VER-155008, or ADP. CONCLUSIONS Our results indicate that an unexpected major hepatic target of PST is the adaptive UPR chaperone GRP78. PST not only binds to GRP78 (in pH-dependent fashion), but also inhibits GRP78's ATPase enzymatic activity, and impairs its biosynthetic response to UPR activation. PST decreases insulin-stimulated cellular glucose uptake, and PST as well as other chaperone ATPase activity inhibitors augment expression of G6Pase; GRP78 over-expression antagonizes this PST action. Analysis of the novel PST/GRP78 interaction may provide a new avenue of investigation into cellular glycemic control as well as dysglycemia.
Collapse
|
31
|
Jung DY, Chalasani U, Pan N, Friedline RH, Prosdocimo DA, Nam M, Azuma Y, Maganti R, Yu K, Velagapudi A, O’Sullivan-Murphy B, Sartoretto JL, Jain MK, Cooper MP, Urano F, Kim JK, Gray S. KLF15 is a molecular link between endoplasmic reticulum stress and insulin resistance. PLoS One 2013; 8:e77851. [PMID: 24167585 PMCID: PMC3805598 DOI: 10.1371/journal.pone.0077851] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/04/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity places major demands on the protein folding capacity of the endoplasmic reticulum (ER), resulting in ER stress, a condition that promotes hepatic insulin resistance and steatosis. Here we identify the transcription factor, Kruppel-like factor 15 (KLF15), as an essential mediator of ER stress-induced insulin resistance in the liver. Mice with a targeted deletion of KLF15 exhibit increased hepatic ER stress, inflammation, and JNK activation compared to WT mice; however, KLF15-/- mice are protected against hepatic insulin resistance and fatty liver under high-fat feeding conditions and in response to pharmacological induction of ER stress. The mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular energy homeostasis, has been shown to cooperate with ER stress signaling pathways to promote hepatic insulin resistance and lipid accumulation. We find that the uncoupling of ER stress and insulin resistance in KLF15-/- liver is associated with the maintenance of a low energy state characterized by decreased mTORC1 activity, increased AMPK phosphorylation and PGC-1α expression and activation of autophagy, an intracellular degradation process that enhances hepatic insulin sensitivity. Furthermore, in primary hepatocytes, KLF15 deficiency markedly inhibits activation of mTORC1 by amino acids and insulin, suggesting a mechanism by which KLF15 controls mTORC1-mediated insulin resistance. This study establishes KLF15 as an important molecular link between ER stress and insulin action.
Collapse
Affiliation(s)
- Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - UmaDevi Chalasani
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ning Pan
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Randall H. Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Domenick A. Prosdocimo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Minwoo Nam
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yoshihiro Azuma
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rajanikanth Maganti
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kristine Yu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ashish Velagapudi
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bryan O’Sullivan-Murphy
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Juliano L. Sartoretto
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mukesh K. Jain
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Marcus P. Cooper
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Susan Gray
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Endoplasmic reticulum stress leads to lipid accumulation through upregulation of SREBP-1c in normal hepatic and hepatoma cells. Mol Cell Biochem 2013; 381:127-37. [DOI: 10.1007/s11010-013-1694-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022]
|
33
|
Trans-10, cis 12-Conjugated Linoleic Acid-Induced Milk Fat Depression Is Associated with Inhibition of PPARγ Signaling and Inflammation in Murine Mammary Tissue. J Lipids 2013; 2013:890343. [PMID: 23762566 PMCID: PMC3666273 DOI: 10.1155/2013/890343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/18/2013] [Indexed: 12/19/2022] Open
Abstract
Exogenous trans-10, cis-12-CLA (CLA) reduces lipid synthesis in murine adipose and mammary (MG) tissues. However, genomewide alterations in MG and liver (LIV) associated with dietary CLA during lactation remain unknown. We fed mice (n = 5/diet) control or control + trans-10, cis-12-CLA (37 mg/day) between d 6 and d 10 postpartum. The 35,302 annotated murine exonic evidence-based oligo (MEEBO) microarray and quantitative RT-PCR were used for transcript profiling. Milk fat concentration was 44% lower on d 10 versus d 6 due to CLA. The CLA diet resulted in differential expression of 1,496 genes. Bioinformatics analyses underscored that a major effect of CLA on MG encompassed alterations in cellular signaling pathways and phospholipid species biosynthesis. Dietary CLA induced genes related to ER stress (Xbp1), apoptosis (Bcl2), and inflammation (Orm1, Saa2, and Cp). It also induced marked inhibition of PPAR γ signaling, including downregulation of Pparg and Srebf1 and several lipogenic target genes (Scd, Fasn, and Gpam). In LIV, CLA induced hepatic steatosis probably through perturbations in the mitochondrial functions and induction of ER stress. Overall, results from this study underscored the role of PPAR γ signaling on mammary lipogenic target regulation. The proinflammatory effect due to CLA could be related to inhibition of PPAR γ signaling.
Collapse
|
34
|
Panzhinskiy E, Hua Y, Culver B, Ren J, Nair S. Endoplasmic reticulum stress upregulates protein tyrosine phosphatase 1B and impairs glucose uptake in cultured myotubes. Diabetologia 2013; 56:598-607. [PMID: 23178931 PMCID: PMC3568946 DOI: 10.1007/s00125-012-2782-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/31/2012] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress has been recognised as a common pathway in the development of obesity-associated insulin resistance. Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signalling and is localised on the ER membrane. The aim of the study was to investigate the cross-talk between ER stress and PTP1B. METHODS Leptin-deficient obese (ob/ob), Ptp1b (also known as Ptpn1) knockout and C57BL/6J mice were subjected to a high-fat or normal-chow diet for 20 weeks. ER stress was induced in cultured myotubes by treatment with tunicamycin. Immunohistochemistry and western blotting were used to assess proteins involved in the ER stress response. Myotube glucose uptake was determined by measuring 2-deoxy[(3)H]glucose incorporation. RESULTS A high-fat diet induced ER stress and PTP1B expression in the muscle tissue of mice and these responses were attenuated by treatment with the ER chaperone tauroursodeoxycholic acid (TUDCA). Cultured myotubes exhibited increased levels of PTP1B in response to tunicamycin treatment. Silencing of Ptp1b with small interfering RNA (siRNA) or overexpression of Ptp1b with adenovirus construct failed to alter the levels of ER stress. Ptp1b knockout mice did not differ from the wild-type mice in the extent of tunicamycin-induced upregulation of glucose-regulated protein-78. However, tunicamycin-induced phosphorylation of eukaryotic initiation factor 2α and c-Jun NH(2)-terminal kinase-2 were significantly attenuated in the Ptp1b knockout mice. Treatment with TUDCA or silencing of PTP1B reversed tunicamycin-induced blunted myotube glucose uptake. CONCLUSIONS/INTERPRETATION Our data suggest that PTP1B is activated by ER stress and is required for full-range activation of ER stress pathways in mediating insulin resistance in the skeletal muscle.
Collapse
Affiliation(s)
- E. Panzhinskiy
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA. Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - Y. Hua
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA. Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - B. Culver
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA. Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - J. Ren
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA. Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| | - S. Nair
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY 82071, USA. Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
35
|
Wang Y, Zhang L, Wu X, Gurley EC, Kennedy E, Hylemon PB, Pandak WM, Sanyal AJ, Zhou H. The role of CCAAT enhancer-binding protein homologous protein in human immunodeficiency virus protease-inhibitor-induced hepatic lipotoxicity in mice. Hepatology 2013; 57:1005-16. [PMID: 23080229 PMCID: PMC3566321 DOI: 10.1002/hep.26107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Human immunodeficiency virus (HIV) protease inhibitors (HIV PIs) are the core components of highly active antiretroviral therapy, which has been successfully used in the treatment of HIV-1 infection in the past two decades. However, benefits of HIV PIs are compromised by clinically important adverse effects, such as dyslipidemia, insulin resistance, and cardiovascular complications. We have previously shown that activation of endoplasmic reticulum (ER) stress plays a critical role in HIV PI-induced dys-regulation of hepatic lipid metabolism. HIV PI-induced hepatic lipotoxicity is closely linked to the up-regulation of CCAAT enhancer binding protein homologous protein (CHOP) in hepatocytes. To further investigate whether CHOP is responsible for HIV PI-induced hepatic lipotoxicity, C57BL/6J wild-type (WT) or CHOP knockout (CHOP(-/-) ) mice or the corresponding primary mouse hepatocytes were used in this study. Both in vitro and in vivo studies indicated that HIV PIs (ritonavir and lopinavir) significantly increased hepatic lipid accumulation in WT mice. In contrast, CHOP(-/-) mice showed a significant reduction in hepatic triglyceride accumulation and liver injury, as evidenced by hematoxylin and eosin and Oil Red O staining. Real-time reverse-transcriptase polymerase chain reaction and immunoblotting data showed that in the absence of CHOP, HIV PI-induced expression of stress-related proteins and lipogenic genes were dramatically reduced. Furthermore, tumor necrosis factor alpha and interleukin-6 levels in serum and liver were significantly lower in HIV PI-treated CHOP(-/-) mice, compared to HIV PI-treated WT mice. CONCLUSION Taken together, these data suggest that CHOP is an important molecular link of ER stress, inflammation, and hepatic lipotoxicity, and that increased expression of CHOP represents a critical factor underlying events leading to hepatic injury. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Yun Wang
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Jiangsu Centre for Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Luyong Zhang
- Jiangsu Centre for Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Xudong Wu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Emily C. Gurley
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Elaine Kennedy
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| | - Arun J Sanyal
- Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs Medical Center, Richmond, VA, USA,To whom correspondence should be addressed: Huiping Zhou, Ph.D, Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 908678, Richmond, VA 23298-0678, Tel: (804)-828-6817, Fax: (804) 828-0676,
| |
Collapse
|
36
|
Luoma PV. Elimination of endoplasmic reticulum stress and cardiovascular, type 2 diabetic, and other metabolic diseases. Ann Med 2013; 45:194-202. [PMID: 22928964 PMCID: PMC3581057 DOI: 10.3109/07853890.2012.700116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/11/2012] [Indexed: 12/21/2022] Open
Abstract
Multiple factors including unhealthy living habits influence the life-maintaining functions of the endoplasmic reticulum (ER) and induce ER stress and metabolic abnormalities. The ER responds to the disturbances by activating mechanisms that increase the capacity to eliminate ER stress. This article elucidates the effects of ER activation that eliminates both ER stress and associated cardiovascular, type 2 diabetic (DM2), and other metabolic diseases. ER-activating compounds eliminate ER stress by lowering elevated cholesterol, regress atherosclerosis, decrease cardiovascular mortality, reduce blood glucose and insulin, and, together with the normalization of glucose-insulin homeostasis, remove insulin resistance, pancreatic β-cell failure, and DM2. A deficient cytochrome P450 activity in hepatic ER leads to cholesterol accumulation that induces stress and xanthoma formation, whereas P450-activating therapy up-regulates apolipoprotein AI and LDLR genes, down-regulates apolipoprotein B gene, and produces an antiatherogenic plasma lipoprotein profile. The ER activation reduces the stress also by eliminating hepatic fat and converting saturated fatty acids (FAs) to unsaturated FAs. Cognitive processes require gene expression modification, and preclinical studies indicate that ER-activating therapy improves cognition. Promotion of healthy lifestyle choices and indicated therapies are key factors in the prevention and elimination of ER stress and associated global health problems.
Collapse
Affiliation(s)
- Pauli V. Luoma
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland
| |
Collapse
|
37
|
Sun L, Lu K, Liu H, Wang H, Li X, Yang C, Li L, Wang J. The effects of endoplasmic reticulum stress response on duck decorin stimulate myotube hypertrophy in myoblasts. Mol Cell Biochem 2013; 377:151-61. [DOI: 10.1007/s11010-013-1581-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/30/2013] [Indexed: 12/24/2022]
|
38
|
Relationship between energy dense diets and white adipose tissue inflammation in metabolic syndrome. Nutr Res 2013; 33:1-11. [DOI: 10.1016/j.nutres.2012.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/25/2022]
|
39
|
Lian J, Wei E, Wang SP, Quiroga AD, Li L, Di Pardo A, van der Veen J, Sipione S, Mitchell GA, Lehner R. Liver specific inactivation of carboxylesterase 3/triacylglycerol hydrolase decreases blood lipids without causing severe steatosis in mice. Hepatology 2012; 56:2154-62. [PMID: 22707181 DOI: 10.1002/hep.25881] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/02/2012] [Indexed: 12/22/2022]
Abstract
UNLABELLED Carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) participates in hepatic very low-density lipoprotein (VLDL) assembly and in adipose tissue basal lipolysis. Global ablation of Ces3/Tgh expression decreases serum triacylglycerol (TG) and nonesterified fatty acid levels and improves insulin sensitivity. To understand the tissue-specific role of Ces3/TGH in lipid and glucose homeostasis, we generated mice with a liver-specific deletion of Ces3/Tgh expression (L-TGH knockout [KO]). Elimination of hepatic Ces3/Tgh expression dramatically decreased plasma VLDL TG and VLDL cholesterol concentrations but only moderately increased liver TG levels in mice fed a standard chow diet. Significantly reduced plasma TG and cholesterol without hepatic steatosis were also observed in L-TGH KO mice challenged with a high-fat, high-cholesterol diet. L-TGH KO mice presented with increased plasma ketone bodies and hepatic fatty acid oxidation. Intrahepatic TG in L-TGH KO mice was stored in significantly smaller lipid droplets. Augmented hepatic TG levels in chow-fed L-TGH KO mice did not affect glucose tolerance or glucose production from hepatocytes, but impaired insulin tolerance was observed in female mice. CONCLUSION Our data suggest that ablation of hepatic Ces3/Tgh expression decreases plasma lipid levels without causing severe hepatic steatosis.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang S, Chen Z, Lam V, Han J, Hassler J, Finck BN, Davidson NO, Kaufman RJ. IRE1α-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab 2012; 16:473-86. [PMID: 23040069 PMCID: PMC3569089 DOI: 10.1016/j.cmet.2012.09.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/17/2012] [Accepted: 09/05/2012] [Indexed: 12/15/2022]
Abstract
The unfolded protein response (UPR) is a signaling pathway required to maintain endoplasmic reticulum (ER) homeostasis and hepatic lipid metabolism. Here, we identify an essential role for the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α)-X box binding protein 1 (XBP1) arm of the UPR in regulation of hepatic very low-density lipoprotein (VLDL) assembly and secretion. Hepatocyte-specific deletion of Ire1α reduces lipid partitioning into the ER lumen and impairs the assembly of triglyceride (TG)-rich VLDL but does not affect TG synthesis, de novo lipogenesis, or the synthesis or secretion of apolipoprotein B (apoB). The defect in VLDL assembly is, at least in part, due to decreased microsomal triglyceride-transfer protein (MTP) activity resulting from reduced protein disulfide isomerase (PDI) expression. Collectively, our findings reveal a key role for the IRE1α-XBP1s-PDI axis in linking ER homeostasis with regulation of VLDL production and hepatic lipid homeostasis that may provide a therapeutic target for disorders of lipid metabolism.
Collapse
Affiliation(s)
- Shiyu Wang
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Zhouji Chen
- Division of Geriatrics, and Nutrition Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Vivian Lam
- Department of Medical School, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Jaeseok Han
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Justin Hassler
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Brian N. Finck
- Division of Geriatrics, and Nutrition Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Randal J. Kaufman
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
- corresponding author: Degenerative Disease Research Program, Neuroscience, Aging, and Stem Cell Research Center, Sanford-Burnham Medical Research Institute 10901 North Torrey Pines Road La Jolla, CA 92037 T: 858-795-5149; F: 858-795-5273
| |
Collapse
|
41
|
Pooya S, Blaise S, Moreno Garcia M, Giudicelli J, Alberto JM, Guéant-Rodriguez RM, Jeannesson E, Gueguen N, Bressenot A, Nicolas B, Malthiery Y, Daval JL, Peyrin-Biroulet L, Bronowicki JP, Guéant JL. Methyl donor deficiency impairs fatty acid oxidation through PGC-1α hypomethylation and decreased ER-α, ERR-α, and HNF-4α in the rat liver. J Hepatol 2012; 57:344-51. [PMID: 22521344 DOI: 10.1016/j.jhep.2012.03.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/29/2012] [Accepted: 03/26/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Folate and cobalamin are methyl donors needed for the synthesis of methionine, which is the precursor of S-adenosylmethionine, the substrate of methylation in epigenetic, and epigenomic pathways. Methyl donor deficiency produces liver steatosis and predisposes to metabolic syndrome. Whether impaired fatty acid oxidation contributes to this steatosis remains unknown. METHODS We evaluated the consequences of methyl donor deficient diet in liver of pups from dams subjected to deficiency during gestation and lactation. RESULTS The deprived rats had microvesicular steatosis, with increased triglycerides, decreased methionine synthase activity, S-adenosylmethionine, and S-adenosylmethionine/S-adenosylhomocysteine ratio. We observed no change in apoptosis markers, oxidant and reticulum stresses, and carnityl-palmitoyl transferase 1 activity, and a decreased expression of SREBP-1c. Impaired beta-oxidation of fatty acids and carnitine deficit were the predominant changes, with decreased free and total carnitines, increased C14:1/C16 acylcarnitine ratio, decrease of oxidation rate of palmitoyl-CoA and palmitoyl-L-carnitine and decrease of expression of novel organic cation transporter 1, acylCoA-dehydrogenase and trifunctional enzyme subunit alpha and decreased activity of complexes I and II. These changes were related to lower protein expression of ER-α, ERR-α and HNF-4α, and hypomethylation of PGC-1α co-activator that reduced its binding with PPAR-α, ERR-α, and HNF-4α. CONCLUSIONS The liver steatosis resulted predominantly from hypomethylation of PGC1-α, decreased binding with its partners and subsequent impaired mitochondrial fatty acid oxidation. This link between methyl donor deficiency and epigenomic deregulations of energy metabolism opens new insights into the pathogenesis of fatty liver disease, in particular, in relation to the fetal programming hypothesis.
Collapse
Affiliation(s)
- Shabnam Pooya
- Inserm U954, Medical Faculty and CHU of Nancy, Nancy University, Nancy, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, Ratziu V, Serfaty L, Housset C, Capeau J, Girard J, Guillou H, Postic C. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012; 122:2176-94. [PMID: 22546860 DOI: 10.1172/jci41636] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/15/2012] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Although deposition of excess triglycerides within liver cells, a hallmark of NAFLD, is associated with a loss of insulin sensitivity, it is not clear which cellular abnormality arises first. We have explored this in mice overexpressing carbohydrate responsive element-binding protein (ChREBP). On a standard diet, mice overexpressing ChREBP remained insulin sensitive, despite increased expression of genes involved in lipogenesis/fatty acid esterification and resultant hepatic steatosis (simple fatty liver). Lipidomic analysis revealed that the steatosis was associated with increased accumulation of monounsaturated fatty acids (MUFAs). In primary cultures of mouse hepatocytes, ChREBP overexpression induced expression of stearoyl-CoA desaturase 1 (Scd1), the enzyme responsible for the conversion of saturated fatty acids (SFAs) into MUFAs. SFA impairment of insulin-responsive Akt phosphorylation was therefore rescued by the elevation of Scd1 levels upon ChREBP overexpression, whereas pharmacological or shRNA-mediated reduction of Scd1 activity decreased the beneficial effect of ChREBP on Akt phosphorylation. Importantly, ChREBP-overexpressing mice fed a high-fat diet showed normal insulin levels and improved insulin signaling and glucose tolerance compared with controls, despite having greater hepatic steatosis. Finally, ChREBP expression in liver biopsies from patients with nonalcoholic steatohepatitis was increased when steatosis was greater than 50% and decreased in the presence of severe insulin resistance. Together, these results demonstrate that increased ChREBP can dissociate hepatic steatosis from insulin resistance, with beneficial effects on both glucose and lipid metabolism.
Collapse
|
43
|
Li J, Huang J, Li JS, Chen H, Huang K, Zheng L. Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol 2012; 56:900-7. [PMID: 22173165 DOI: 10.1016/j.jhep.2011.10.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 10/12/2011] [Accepted: 10/16/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The dramatic rise of nonalcoholic fatty liver disease (NAFLD) among children in the past decade cannot be solely explained by the increased high fat diet (HFD) intake in kids. Recent studies suggest that the offspring of HFD-fed mothers develop a worse form of NAFLD when weaned on the HFD than when weaned on the normal chow (NC), indicating that a feed-forward circle may exacerbate the syndromes throughout multiple generations. In the present study, the aforementioned feed-forward circle was investigated in mice by employing continuous HFD feeding for three generations. METHODS C57BL/6 mice were fed with either a HFD or NC for three consecutive generations (F0, F1, and F2). Body weight, food intake, hepatic histology; levels of insulin, leptin, and triglycerides; expression of factors involved in lipogenesis and endoplasmic reticulum (ER) stress pathways; and histone methylation status were investigated in male offspring. RESULTS Obesity occurred earlier, became more severe through generations (F2>F1>F0), and was accompanied by a gradual increase of histological scoring of steatosis in male mice with transgenerational HFD feeding. The highest degree of steatosis occurred in HFD-treated F2 mice and was associated with the highest levels of insulin and leptin. The latter mice were characterized by enhanced lipogenesis and ER stress with a trend of transgenerational changes was detected for LXRα, ERO1-α, histone methylations, and H3K9 histone methyltransferase. Furthermore, chromatin immunoprecipitation (CHIP) assay demonstrated a significantly reduced accumulation of methylated histones in LXRα and ERO1-α gene promoters. CONCLUSIONS Under HFD feeding stress, the male offspring of the F2 generation (derived from both grand-maternal and maternal obesity) are extremely susceptible to developing obesity and hepatic steatosis. This is presumably a consequence of transgenerational accumulation of epigenetic modifications leading to up-regulation of lipogenesis and ER stress pathways in the liver.
Collapse
Affiliation(s)
- Jiong Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Flamment M, Foufelle F. [Importance of phospholipids in ER stress and fatty liver disease]. Med Sci (Paris) 2012; 28:13-5. [PMID: 22289818 DOI: 10.1051/medsci/2012281004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mélissa Flamment
- Inserm, UMR-S 872, Centre de Recherches des Cordeliers, Paris, France.
| | | |
Collapse
|
45
|
Hage Hassan R, Hainault I, Vilquin JT, Samama C, Lasnier F, Ferré P, Foufelle F, Hajduch E. Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia 2012; 55:204-14. [PMID: 22006247 DOI: 10.1007/s00125-011-2328-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Recent experiments in liver and adipocyte cell lines indicate that palmitate can induce endoplasmic reticulum (ER) stress. Since it has been shown that ER stress can interfere with insulin signalling, our hypothesis was that the deleterious action of palmitate on the insulin signalling pathway in muscle cells could also involve ER stress. METHODS We used C2C12 and human myotubes that were treated either with palmitate or tunicamycin. Total lysates and RNA were prepared for western blotting or quantitative RT-PCR respectively. Glycogen synthesis was assessed by [¹⁴C]glucose incorporation. RESULTS Incubation of myotubes with palmitate or tunicamycin inhibited insulin-stimulated protein kinase B (PKB)/ v-akt murine thymoma viral oncogene homologue 1 (Akt). In parallel, an increase in ER stress markers was observed. Pre-incubation with chemical chaperones that reduce ER stress only prevented tunicamycin but not palmitate-induced insulin resistance. We hypothesised that ER stress activation levels induced by palmitate may not be high enough to induce insulin resistance, in contrast with tunicamycin-induced ER stress. Indeed, tunicamycin induced a robust activation of the inositol-requiring enzyme 1 (IRE-1)/c-JUN NH₂-terminal kinase (JNK) pathway, leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and a decrease in IRS-1 tyrosine phosphorylation. In contrast, palmitate only induced a very weak activation of the IRE1/JNK pathway, with no IRS1 serine phosphorylation. CONCLUSIONS/INTERPRETATION These data show that insulin resistance induced by palmitate is not related to ER stress in muscle cells.
Collapse
Affiliation(s)
- R Hage Hassan
- Inserm, UMR-S 872, Centre de Recherche des Cordeliers, Paris 75006, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Alemany M. Utilization of dietary glucose in the metabolic syndrome. Nutr Metab (Lond) 2011; 8:74. [PMID: 22029632 PMCID: PMC3225301 DOI: 10.1186/1743-7075-8-74] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/26/2011] [Indexed: 12/16/2022] Open
Abstract
This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat) intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic syndrome.
Collapse
Affiliation(s)
- Marià Alemany
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
47
|
Tarantino G, Caputi A. JNKs, insulin resistance and inflammation: A possible link between NAFLD and coronary artery disease. World J Gastroenterol 2011; 17:3785-3794. [PMID: 21987620 PMCID: PMC3181439 DOI: 10.3748/wjg.v17.i33.3785] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/19/2011] [Accepted: 02/26/2011] [Indexed: 02/06/2023] Open
Abstract
The incidence of obesity has dramatically increased in recent years. Consequently, obesity and associated disorders such as nonalcoholic fatty liver disease constitute a serious problem. Therefore, the contribution of adipose tissue to metabolic homeostasis has become a focus of interest. In this review, we discuss the latest discoveries that support the role of lipids in nonalcoholic fatty liver disease. We describe the common mechanisms (c-Jun amino-terminal kinases, endoplasmic reticulum stress, unfolded protein response, ceramide, low-grade chronic inflammation) by which lipids and their derivatives impair insulin responsiveness and contribute to inflammatory liver and promote plaque instability in the arterial wall. Presenting the molecular mechanism of lipid activation of pro-inflammatory pathways, we attempt to find a link between nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular diseases. Describing the common mechanisms by which lipid derivatives, through modulation of macrophage function, promote plaque instability in the arterial wall, impair insulin responsiveness and contribute to inflammatory liver and discussing the molecular mechanism of lipid activation of pro-inflammatory pathways, the key roles played by the proliferator-activated receptor and liver X receptor α, nuclear receptors-lipid sensors that link lipid metabolism and inflammation, should be emphasized. Further studies are warranted of anti-inflammatory drugs such as aspirin, anti-interleukin-6 receptors, immune-modulators (calcineurin inhibitors), substances enhancing the expression of heat shock proteins (which protect cells from endoplasmic reticulum stress-induced apoptosis), and anti- c-Jun amino-terminal kinases in well-designed trials to try to minimize the high impact of these illnesses, and the different expressions of the diseases, on the whole population.
Collapse
|
48
|
Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab 2011; 22:353-63. [PMID: 21616678 PMCID: PMC3163828 DOI: 10.1016/j.tem.2011.04.007] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR) affects not only the regulation of carbohydrate metabolism but all aspects of lipid and lipoprotein metabolism. IR is associated with increased secretion of VLDL and increased plasma triglycerides, as well as with hepatic steatosis, despite the increased VLDL secretion. Here we link IR with increased VLDL secretion and hepatic steatosis at both the physiologic and molecular levels. Increased VLDL secretion, together with the downstream effects on high density lipoprotein (HDL) cholesterol and low density lipoprotein (LDL) size, is proatherogenic. Hepatic steatosis is a risk factor for steatohepatitis and cirrhosis. Understanding the complex inter-relationships between IR and these abnormalities of liver lipid homeostasis will provide insights relevant to new therapies for these increasing clinical problems.
Collapse
Affiliation(s)
- Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Henry N Ginsberg
- Columbia University College of Physicians and Surgeons, New York, NY, USA
- whom correspondence should be addressed.
| |
Collapse
|
49
|
Caviglia JM, Gayet C, Ota T, Hernandez-Ono A, Conlon DM, Jiang H, Fisher EA, Ginsberg HN. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. J Lipid Res 2011; 52:1636-51. [PMID: 21719579 DOI: 10.1194/jlr.m016931] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although short-term incubation of hepatocytes with oleic acid (OA) stimulates secretion of apolipoprotein B100 (apoB100), exposure to higher doses of OA for longer periods inhibits secretion in association with induction of endoplasmic reticulum (ER) stress. Palmitic acid (PA) induces ER stress, but its effects on apoB100 secretion are unclear. Docosahexaenoic acid (DHA) inhibits apoB100 secretion, but its effects on ER stress have not been studied. We compared the effects of each of these fatty acids on ER stress and apoB100 secretion in McArdle RH7777 (McA) cells: OA and PA induced ER stress and inhibited apoB100 secretion at higher doses; PA was more potent because it also increased the synthesis of ceramide. DHA did not induce ER stress but was the most potent inhibitor of apoB100 secretion, acting via stimulation of autophagy. These unique effects of each fatty acid were confirmed when they were infused into C57BL6J mice. Our results suggest that when both increased hepatic secretion of VLDL apoB100 and hepatic steatosis coexist, reducing ER stress might alleviate hepatic steatosis but at the expense of increased VLDL secretion. In contrast, increasing autophagy might reduce VLDL secretion without causing steatosis.
Collapse
Affiliation(s)
- Jorge Matias Caviglia
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Perman JC, Boström P, Lindbom M, Lidberg U, StÅhlman M, Hägg D, Lindskog H, Scharin Täng M, Omerovic E, Mattsson Hultén L, Jeppsson A, Petursson P, Herlitz J, Olivecrona G, Strickland DK, Ekroos K, Olofsson SO, Borén J. The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction. J Clin Invest 2011; 121:2625-40. [PMID: 21670500 DOI: 10.1172/jci43068] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/20/2011] [Indexed: 12/18/2022] Open
Abstract
Impaired cardiac function is associated with myocardial triglyceride accumulation, but it is not clear how the lipids accumulate or whether this accumulation is detrimental. Here we show that hypoxia/ischemia-induced accumulation of lipids in HL-1 cardiomyocytes and mouse hearts is dependent on expression of the VLDL receptor (VLDLR). Hypoxia-induced VLDLR expression in HL-1 cells was dependent on HIF-1α through its interaction with a hypoxia-responsive element in the Vldlr promoter, and VLDLR promoted the endocytosis of lipoproteins. Furthermore, VLDLR expression was higher in ischemic compared with nonischemic left ventricles from human hearts and was correlated with the total lipid droplet area in the cardiomyocytes. Importantly, Vldlr-/- mice showed improved survival and decreased infarct area following an induced myocardial infarction. ER stress, which leads to apoptosis, is known to be involved in ischemic heart disease. We found that ischemia-induced ER stress and apoptosis in mouse hearts were reduced in Vldlr-/- mice and in mice treated with antibodies specific for VLDLR. These findings suggest that VLDLR-induced lipid accumulation in the ischemic heart worsens survival by increasing ER stress and apoptosis.
Collapse
Affiliation(s)
- Jeanna C Perman
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|