1
|
Zhao H, Catarino J, Stack G, Albizu AK, Lara-Tejero M, Horvath TL, Galán JE. Typhoid toxin causes neuropathology by disrupting the blood-brain barrier. Nat Microbiol 2025:10.1038/s41564-025-02000-z. [PMID: 40341334 DOI: 10.1038/s41564-025-02000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
Typhoid fever, primarily caused by Salmonella Typhi, can result in severe life-threatening complications such as encephalopathy. Here we elucidate the mechanisms by which typhoid toxin, a unique virulence factor of S. Typhi, mediates the neuropathology associated with typhoid fever. Utilizing mice engineered to have specific tissues protected from toxin action and an in vitro model of the blood-brain barrier (BBB), we demonstrate that, rather than direct action on neuronal or glial cells, typhoid toxin causes neuropathology by disrupting the BBB. Intravenous tracer studies confirmed significant BBB permeability changes following toxin exposure, an effect we found to be mediated by typhoid toxin's CdtB catalytic subunit. We demonstrate that corticosteroids are effective at mitigating BBB disruption in vivo, supporting their use for managing typhoid fever neurological complications. Our data reveal mechanistic insight into how typhoid toxin causes encephalopathy and suggest targeted therapeutic interventions to alleviate the severe neurological manifestations of typhoid fever.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jonatas Catarino
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Max Plank Institute for Metabolic Research, Cologne, Germany
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Elly Lilly and Company, Cork, Ireland
| | - Ashley Kristant Albizu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Samper-Cativiela C, Torre-Fuentes L, Diéguez-Roda B, Maex M, Ugarte-Ruiz M, Carrizo P, Hernández M, Höfle Ú, Sáez JL, de Frutos C, Agüero M, Moreno MÁ, Domínguez L, Herrera-León S, Alvarez J. Molecular epidemiology of Salmonella Enteritidis in humans and animals in Spain. Antimicrob Agents Chemother 2025; 69:e0073824. [PMID: 40029002 PMCID: PMC11963599 DOI: 10.1128/aac.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/11/2025] [Indexed: 03/05/2025] Open
Abstract
Salmonella Enteritidis, the most prevalent serovar-causing human gastroenteritis, has been traditionally linked to poultry sources. Although antimicrobial resistance (AMR) is not common in this serovar, increasing levels of resistance to fluoroquinolones and ampicillin have been reported in the last few years. Here, 298 isolates retrieved from different sources (human, livestock, wildlife, food, and environment) and years (2002-2021) in Spain were analyzed to evaluate their diversity, the distribution of AMR-conferring genes (ARGs), and mutations and reconstruct the epidemiology of infection due to this serovar. Isolates were clustered in two major clades (I and II), with strains in clade I (including 61.5% of all human isolates) displaying a pan-susceptible phenotype and not carrying AMR determinants. In contrast, clade II included 80.7% of isolates from animal/food/environmental sources, with the majority (69.8%) harboring mutations in the quinolone resistance determinant regions (QRDR). ARGs, although rare, were mostly found in clade II strains that also carried plasmid replicons, among which IncX1 was the most common. Although higher levels of phenotypic resistance were found in animal isolates, extended-spectrum beta-lactamase, plasmid-mediated AmpC, and carbapenemase-encoding genes were only found among human isolates. In summary, the majority of human and animal isolates from Spanish sources in our collection were classified in different phylogenetic branches, suggesting that additional sources are contributing to the occurrence of foodborne infections in Spain. Furthermore, the different distributions of virulence factors and ARGs in isolates from different sources and their association with specific plasmids suggest the presence of different dynamics contributing to the selection of resistant strains.
Collapse
Affiliation(s)
- Clara Samper-Cativiela
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | | | - Margo Maex
- Division of Human Bacterial Diseases, Sciensano, Uccle, Belgium
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Paula Carrizo
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marta Hernández
- Departamento de Anatomía Patológica, Microbiología, Medicina Preventiva y Salud Pública, Medicina Legal y Forense. Facultad de Medicina, Universidad de Valladolid Facultad de Medicina, Valladolid, Spain
| | - Úrsula Höfle
- IREC, Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | - José Luis Sáez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, Algete, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, Algete, Spain
| | - Miguel Ángel Moreno
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Silvia Herrera-León
- Laboratorio de Referencia e Investigación en Enfermedades Bacterianas Transmitidas por Alimentos, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Ran L, Lei J, Liu H, Wang D, Liu J, Yang F, Chen D. Bacillus pumilus SMU5927 protect mice from damage caused by Salmonella Enteritidis colonization. Life Sci 2025; 361:123291. [PMID: 39631534 DOI: 10.1016/j.lfs.2024.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Salmonella Enteritidis is one of the main pathogens of foodborne diseases and an important pathogen causing diarrhea in yaks. Antibiotics are the mainstay of treatment for salmonellosis, but the widespread use of antibiotics has increased Salmonella resistance. Probiotics have been shown to antagonize Salmonella and reduce Salmonella infection. Bacillus pumilus is one of the microbial feed additives approved by the Chinese Ministry of Agriculture for use in animal breeding, which has the effect of improving animal growth performance and immunity, among others. Therefore, this paper explored the anti-infective effect of Bacillus pumilus against Salmonella. RESULTS Bacillus pumilus SMU5927 significantly enhances the intestinal mechanical barrier and reduces the number of Salmonella transferred to the organs. Bacillus pumilus SMU5927 ameliorated intestinal tissue damage and attenuated intestinal inflammatory responses in mice. In addition, Bacillus pumilus increased the ratio of the Firmicutes/Bacteroidetes in the intestinal flora, increased the abundance of beneficial bacteria such as Lactobacillus, and decreased the abundance of harmful bacteria. CONCLUSION This study confirmed the role of Bacillus pumilus SMU5927 in preventing and attenuating Salmonella damage and provided ideas for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Longjun Ran
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jiangying Lei
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Danni Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
4
|
Khalife S, El Safadi D. Salmonella Prevalence and antibiotic resistance profile in raw poultry meat sold in North Lebanon: Insights from the COVID-19 pandemic and economic crisis. Prev Vet Med 2024; 230:106299. [PMID: 39106610 DOI: 10.1016/j.prevetmed.2024.106299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Salmonella-related foodborne illness is a significant public health concern, with the primary source of human infection being animal-based food products, particularly chicken meat. Lebanon is currently experiencing a dual crisis: the COVID-19 pandemic and an unprecedented economic crisis, which has resulted in substantial challenges to the public health system and food safety. This study aims to assess the prevalence and antibiotic resistance profile of Salmonella in raw poultry meat sold in North Lebanon during this dual crisis. A cross-sectional study was carried out between May 2021 and April 2022 across six different districts in North Lebanon. A total of 288 whole, unprocessed chickens were examined. The isolation and identification of Salmonella isolates were done based on cultural and biochemical properties. All isolates were subjected to antimicrobial susceptibility testing and phenotypic assays for Extended-Spectrum Beta-lactamase (ESBL) detection. The prevalence of Salmonella in raw poultry meat purchased in North Lebanon reached 18.05 % (52/288). The dry season and chilled chicken were significantly associated with an increased risk of Salmonella contamination (P < 0.05). Additionally, 34.61 % of the isolates were potential ESBL producers, and 57.69 % exhibited multidrug resistance (MDR). This study highlights the existence of MDR in chicken meat in North Lebanon, posing a potential health risk if undercooked chicken meat is consumed. This emphasizes the importance of the implementation of preventive strategies and hygienic procedures throughout the food chain to reduce the risk of Salmonella spp. contamination in chicken meats and its potential transmission to humans.
Collapse
Affiliation(s)
- Sara Khalife
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Tripoli, Lebanon.
| | - Dima El Safadi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
5
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. Nat Commun 2024; 15:5258. [PMID: 38898034 PMCID: PMC11187135 DOI: 10.1038/s41467-024-49590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
Affiliation(s)
- Gi Young Lee
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Traore KA, Aboubacar-Paraiso AR, Bouda SC, Ouoba JB, Kagambèga A, Roques P, Barro N. Characteristics of Nontyphoid Salmonella Isolated from Human, Environmental, Animal, and Food Samples in Burkina Faso: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2024; 13:556. [PMID: 38927222 PMCID: PMC11200751 DOI: 10.3390/antibiotics13060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Salmonella is one of the world's leading causes of zoonotic and foodborne illnesses. Recently, antimicrobial resistance (AMR) has become one of the most critical challenges to public health and food safety. Herein, we employed a meta-analysis to determine the pooled prevalence and spatiotemporal distribution of serovars and antimicrobial resistance in NTS in Burkina Faso. To find eligible articles, a comprehensive literature search of PubMed, African Journals Online, ScienceDirect, Google Scholar, and the gray literature (university libraries) in Burkina was conducted for the period from 2008 to 2020. Studies meeting the inclusion criteria were selected and assessed for risk of bias. To assess the temporal and spatial relationships between serotypes and resistant strains from humans, animals, food, and the environment, a random-effects statistical model meta-analysis was carried out using the Comprehensive Meta-Analysis Version 3.0 program. The NTS prevalence rates were 4.6% (95% CI: 3-7) and 20.1% (95% CI: 6.6-47.4) in humans and animals, respectively, and 16.8% (95% CI: 10.5-25.8) and 15.6% (95% CI: 8.2-27.5) in food and the environment, respectively. Most NTS serovars were S. Derby, reported both in food and animals, and S. Typhimurium, reported in humans, while S. Croft II, S. Jodpur II, and S. Kentucky were the most prevalent in the environment. NTS isolates were highly resistant to erythromycin, amoxicillin, cefixime, and cephalothin, with a pooled prevalence of multidrug resistance of 29% (95% CI: 14.5-49.5). The results of this review show a high diversity of Salmonella serotypes, as well as high antibiotic resistance in Salmonella isolates from animal, human, food, and environmental samples in Burkina, calling for a consolidated "One Health" approach to better understand the drivers of pathogen emergence, spread, and antimicrobial resistance, as well as the formulation of intervention measures needed to limit the risk associated with the disease.
Collapse
Affiliation(s)
- Kuan Abdoulaye Traore
- Laboratoire de Biologie Moléculaire, d’Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO (UJKZ), Ouagadougou 03 BP 7021, Burkina Faso; (A.R.A.-P.)
- Laboratoire Sciences de la Vie et de la Terre (LaSVT), Université Norbert ZONGO (UNZ), Koudougou BP 376, Burkina Faso
| | - Abdoul Rachid Aboubacar-Paraiso
- Laboratoire de Biologie Moléculaire, d’Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO (UJKZ), Ouagadougou 03 BP 7021, Burkina Faso; (A.R.A.-P.)
| | - Soutongnooma Caroline Bouda
- Laboratoire de Biologie Moléculaire, d’Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO (UJKZ), Ouagadougou 03 BP 7021, Burkina Faso; (A.R.A.-P.)
| | - Jean Bienvenue Ouoba
- Laboratoire de Biologie Moléculaire, d’Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO (UJKZ), Ouagadougou 03 BP 7021, Burkina Faso; (A.R.A.-P.)
- Centre Universitaire de Manga (CUM), Université Norbert ZONGO (UNZ), Koudougou BP 376, Burkina Faso
| | - Assèta Kagambèga
- Laboratoire de Biologie Moléculaire, d’Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO (UJKZ), Ouagadougou 03 BP 7021, Burkina Faso; (A.R.A.-P.)
- Department of Biology, Institute of Sciences (IDS), Ouagadougou 1757, Burkina Faso
| | - Pierre Roques
- Virology Unit, Institut Pasteur de Guinée (IPGui), Conakry 4416, Guinea;
| | - Nicolas Barro
- Laboratoire de Biologie Moléculaire, d’Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO (UJKZ), Ouagadougou 03 BP 7021, Burkina Faso; (A.R.A.-P.)
| |
Collapse
|
7
|
Ramatla T, Khasapane NG, Mlangeni LN, Mokgokong P, Ramaili T, Ndou R, Nkhebenyane JS, Lekota K, Thekisoe O. Detection of Salmonella Pathogenicity Islands and Antimicrobial-Resistant Genes in Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Broiler Chickens. Antibiotics (Basel) 2024; 13:458. [PMID: 38786186 PMCID: PMC11117945 DOI: 10.3390/antibiotics13050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Rapid growth in commercial poultry production is one of the major sources of Salmonella infections that leads to human salmonellosis. The two main Salmonella enterica serovars associated with human salmonellosis are enteritidis and typhimurium. The aim of this study was to determine the prevalence of S. enterica serovars Enteritidis and S. Typhimurium as well as their Salmonella pathogenicity islands (SPI) and antibiotic resistance profiles in broiler chicken feces from slaughterhouses. A total of 480 fecal samples from broiler chickens that were grouped into 96 pooled samples were identified to have Salmonella spp. using the invA gene, whilst the Spy and sdfI genes were used to screen for the presence of S. Enteritidis and S. Typhimurium serovars, respectively, by polymerase chain reaction (PCR) assays. The isolates were also screened for the presence of Salmonella pathogenicity islands (SPIs) using PCR. The disc diffusion assay was performed to determine the antibiotic resistance profiles of the isolates. A total of 36 isolates were confirmed as Salmonella spp. through amplification of the invA gene. Out of 36 confirmed Salmonella spp. a total of 22 isolates were classified as S. Enteritidis (n = 8) and were S. Typhimurium (n = 14) serovars. All (n = 22) S. Enteritidis and S. Typhimurium isolates possessed the hilA (SPI-1), ssrB (SPI-2) and pagC (SPI-11) pathogenicity islands genes. Amongst these serovars, 50% of the isolates (n = 11/22) were resistant to tetracycline and nalidixic acid. Only 22% of the isolates, S. Typhimurium (13.6%) and S. Enteritidis (9.1%) demonstrated resistance against three or more antibiotic classes. The most detected antibiotic resistance genes were tet(K), mcr-1, sulI and strA with 13 (59.1%), 9 (40.9%), 9 (40.9%) and 7 (31.8%), respectively. The findings of this study revealed that S. Typhimurium is the most prevalent serotype detected in chicken feces. To reduce the risk to human health posed by salmonellosis, a stringent public health and food safety policy is required.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Ntelekwane G. Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
| | - Lungile N. Mlangeni
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa;
| | - Rendani Ndou
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Jane S. Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| |
Collapse
|
8
|
Stepien TA, Singletary LA, Guerra FE, Karlinsey JE, Libby SJ, Jaslow SL, Gaggioli MR, Gibbs KD, Ko DC, Brehm MA, Greiner DL, Shultz LD, Fang FC. Nuclear factor kappa B-dependent persistence of Salmonella Typhi and Paratyphi in human macrophages. mBio 2024; 15:e0045424. [PMID: 38497655 PMCID: PMC11005419 DOI: 10.1128/mbio.00454-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Salmonella serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever Salmonella infections have remained elusive. Here, we show that S. Typhi and S. Paratyphi A can persist within human macrophages, whereas S. Typhimurium rapidly induces apoptotic macrophage cell death that is dependent on Salmonella pathogenicity island 2 (SPI2). S. Typhi and S. Paratyphi A lack 12 specific SPI2 effectors with pro-apoptotic functions, including nine that target nuclear factor κB (NF-κB). Pharmacologic inhibition of NF-κB or heterologous expression of the SPI2 effectors GogA or GtgA restores apoptosis of S. Typhi-infected macrophages. In addition, the absence of the SPI2 effector SarA results in deficient signal transducer and activator of transcription 1 (STAT1) activation and interleukin 12 production, leading to impaired TH1 responses in macrophages and humanized mice. The absence of specific nontyphoidal SPI2 effectors may allow S. Typhi and S. Paratyphi A to cause chronic infections. IMPORTANCE Salmonella enterica is a common cause of gastrointestinal infections worldwide. The serovars Salmonella Typhi and Salmonella Paratyphi A cause a distinctive systemic illness called enteric fever, whose pathogenesis is incompletely understood. Here, we show that enteric fever Salmonella serovars lack 12 specific virulence factors possessed by nontyphoidal Salmonella serovars, which allow the enteric fever serovars to persist within human macrophages. We propose that this fundamental difference in the interaction of Salmonella with human macrophages is responsible for the chronicity of typhoid and paratyphoid fever, suggesting that targeting the nuclear factor κB (NF-κB) complex responsible for macrophage survival could facilitate the clearance of persistent bacterial infections.
Collapse
Affiliation(s)
- Taylor A. Stepien
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Fermin E. Guerra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Joyce E. Karlinsey
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Stephen J. Libby
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Sarah L. Jaslow
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Margaret R. Gaggioli
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Kyle D. Gibbs
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Michael A. Brehm
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dale L. Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Ferric C. Fang
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Unverdi A, Erol HB, Kaskatepe B, Babacan O. Characterization of Salmonella phages isolated from poultry coops and its effect with nisin on food bio-control. Food Sci Nutr 2024; 12:2760-2771. [PMID: 38628171 PMCID: PMC11016409 DOI: 10.1002/fsn3.3956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 04/19/2024] Open
Abstract
Salmonella is a bacterium associated with food contaminated by various animals, primarily poultry. Interest and research on bacteriophages are increasing because they can be used as an alternative against increasing antibiotic resistance. In our study, eight Salmonella-specific lytic bacteriophages were isolated from chicken feces. Two of the isolated phages (AUFM_Sc1 and AUFM_Sc3) were chosen for their characterization due to their broader host range. Based on morphological and genomic analysis, AUFM_Sc1 was identified to be close to similar Enterobacteria spp. CC31 (Myoviridae) and AUFM_Sc3 was identified to be close to Salmonella phage vB_Sen_I1 (Demerecviridae (formerly Siphoviridae)). Although these phages have shown promise for use in phage therapy applications for chickens, further studies are needed on their suitability. When a cocktail of these phages (AUFM_Sc1 + AUFM_Sc3) and nisin combination was applied on chicken breast meat, it was determined that it was effective against Salmonella contamination and while a good inhibitory effect was observed on the food, especially during the first 48 h, the effect decreased later, but the bacterial concentration was still low compared to the control group. Therefore, it is considered that the combination of AUFM_Sc1 + AUFM_Sc3 + nisin can be used as a food preservative against Salmonella.
Collapse
Affiliation(s)
- Aysegul Unverdi
- Department of Pharmaceutical MicrobiologyAnkara University Faculty of PharmacyAnkaraTurkey
- Graduate School of Health ScienceAnkara UniversityAnkaraTurkey
| | - Hilal Basak Erol
- Department of Pharmaceutical MicrobiologyAnkara University Faculty of PharmacyAnkaraTurkey
| | - Banu Kaskatepe
- Department of Pharmaceutical MicrobiologyAnkara University Faculty of PharmacyAnkaraTurkey
| | - Orkun Babacan
- Department of Veterinary Science, Kepsut Vocational SchoolBalıkesir UniversityKepsut, BalıkesirTurkey
| |
Collapse
|
10
|
Guo E, Chou SZ, Lara-Tejero M, Galan JE. Cryo-EM structure of the bacterial effector protein SipA bound to F-actin reveals a unique mechanism for filament stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572903. [PMID: 38187563 PMCID: PMC10769390 DOI: 10.1101/2023.12.21.572903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The bacterial pathogen Salmonella spp. modulates cellular processes by delivering effector proteins through its type III secretion systems. Among these effectors, SipA facilitates bacterial invasion and promotes intestinal inflammation. The mechanisms by which this effector carries out these functions are incompletely understood although SipA's ability to modulate actin dynamics is central to some of these activities. Here we report the cryo-EM structure of SipA bound to filamentous actin. We show that this effector stabilizes actin filaments through unique interactions of its carboxy terminal domain with four actin subunits. Furthermore, our structure-function studies revealed that SipA's actin-binding activity is independent from its ability to stimulate intestinal inflammation. Overall, these studies illuminate critical aspects of Salmonella pathogenesis, and provide unique insight into the mechanisms by which a bacterial effector modulates actin dynamics.
Collapse
|
11
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573590. [PMID: 38260632 PMCID: PMC10802248 DOI: 10.1101/2023.12.28.573590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S . Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control the length or acetylation of Vi is enough to create different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper-capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo-capsule variants have primarily been identified in Africa, whereas the hyper-capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
|
12
|
Raut R, Maharjan P, Fouladkhah AC. Practical Preventive Considerations for Reducing the Public Health Burden of Poultry-Related Salmonellosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6654. [PMID: 37681794 PMCID: PMC10487474 DOI: 10.3390/ijerph20176654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
With poultry products as one of the leading reservoirs for the pathogen, in a typical year in the United States, it is estimated that over one million individuals contract non-typhoidal Salmonella infections. Foodborne outbreaks associated with Salmonella infections in poultry, thus, continue to remain a significant risk to public health. Moreover, the further emergence of antimicrobial resistance among various serovars of Salmonella is an additional public health concern. Feeding-based strategies (such as use of prebiotics, probiotics, and/or phytobiotics as well as essential oils), non-feeding-based strategies (such as use of bacteriophages, vaccinations, and in ovo strategies), omics tools and surveillance for identifying antibiotic-resistance genes, post-harvest application of antimicrobials, and biosecurity measures at poultry facilities are practical interventions that could reduce the public health burden of salmonellosis and antibiotic resistance associated with poultry products. With the escalating consumption of poultry products around the globe, the fate, prevalence, and transmission of Salmonella in agricultural settings and various poultry-processing facilities are major public health challenges demanding integrated control measures throughout the food chain. Implementation of practical preventive measures discussed in the current study could appreciably reduce the public health burden of foodborne salmonellosis associated with poultry products.
Collapse
Affiliation(s)
- Rabin Raut
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA;
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
| | - Pramir Maharjan
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA;
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
- Public Health Microbiology FoundationSM, Nashville, TN 37209, USA
| |
Collapse
|
13
|
Indrajith S, Natarajan S, Thangasamy S, Natesan S. Drug Resistance, Characterization and Phylogenetic Discrepancy of Salmonella enterica Isolates from Distinct Sources. Curr Microbiol 2023; 80:314. [PMID: 37544954 DOI: 10.1007/s00284-023-03343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
Salmonella enterica is one of the foodborne pathogens that can infect humans, spreading from one person to another by contaminated food and water. To identify the pathogenic S. enterica from the contaminated food product, culture-based and molecular identifications, drug resistance profiling, virulence and genetic traits of the strains have been used. Herein, different animal products was subjected to screen for S. enterica prevalence, pathogenic characterization and compared with clinical Salmonella isolates (human). A total of 173 isolates from animal products and 51 isolates from clinical samples were collected. S. Typhi, S. Agona and S. Ohio were predominant serovars in blood, stool and different animal products. Both, clinical [37% (n = 19/51)] and animal product-associated isolates [21% (n = 37/173)] expressed their highest resistance to nalidixic acid. Thirty-one percentage of (n = 16/51) clinical isolates and 12% (n = 21/173) animal food-associated isolates were resistant to multiple classes of antibiotics. Class 1 integrons encoded by S. Typhi, S. Infantis and S. Emek were screened for sequence analysis, the result revealed that the cassettes encoded-aminoglycoside acetyltransferase and dihydrofolate reductase enzymes. Salmonella pathogenicity island-1 encoded-hilA gene was detected most frequently in all the isolates. PFGE profile revealed the genetic traits of the isolates which were closely linked with antibiotic-resistant properties and virulent characteristics. Only S. Enteritidis, collected from different samples had clonal similarities. In summary, drug-resistant pathogenic Salmonella prevalence was observed in the animal product that could be an important alarm to consumers with the risk of enteric fever and it causes the potential risk to public health.
Collapse
Affiliation(s)
- Sureka Indrajith
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sisubalan Natarajan
- Department of Botany, Bishop Heber College (Autonomous), Affi. To Bharathidasan University, Trichy, Tamil Nadu, 620017, India
| | - Selvankumar Thangasamy
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637501, India
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
14
|
Mostafa SH, Saleh SE, Khaleel EF, Badi RM, Aboshanab KM, Hamed SM. Phenotypic and Genotypic Analysis of Bacterial Pathogens Recovered from Patients Diagnosed with Fever of Unknown Origin in Egypt. Antibiotics (Basel) 2023; 12:1294. [PMID: 37627714 PMCID: PMC10451874 DOI: 10.3390/antibiotics12081294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Fever of unknown origin (FUO) is a medical term describing fever that lasts for at least three weeks without a diagnosis being reached after extensive diagnostic evaluation. Therefore, this study aimed to identify the common pathogens causing FUO in patients admitted to Abbasia Fever Hospital in Egypt from January 2020 to December 2022, their antimicrobial susceptibility profiles, and associated resistance genes. The study also aimed to investigate the burden of multidrug-resistant (MDR) pathogens and the priority pathogens nominated by the World Health Organization (WHO) for posing the greatest threat to human health due to antibiotic resistance. During the study period, about 726 patients were diagnosed with FUO. After extensive investigations, the cause of the FUO was found to be infectious diseases in 479/726 patients (66.0%). Of them, 257 patients had positive bacterial cultures, including 202 Gram-negative isolates that comprised Klebsiella pneumoniae (85/202; 42.1%), Escherichia coli (71/202; 35.1%), Acinetobacter baumannii (26/202; 12.9%), and Pseudomonas aeruginosa (14/202; 6.9%) and 55 Gram-positive isolates, including Staphylococcus aureus (23/55; 41.8%), Streptococcus pneumoniae (7/55; 12.7%), and Enterococcus spp. (25/55; 45.5%). The MDR phenotype was shown by 68.3% and 65.5% of the Gram-negative and Gram-positive isolates, respectively. Carbapenem resistance (CR) was shown by 43.1% of the Gram-negative isolates. Of the 23 S. aureus isolates obtained from research participants, 15 (65.2%) were methicillin-resistant S. aureus (MRSA). A high-level aminoglycoside resistance (HLAR) phenotype was found in 52.0% of the Enterococcus sp. isolates. The PCR screening of resistance genes in the MDR isolates showed that blaOXA-48 was the most prevalent (84%) among the carbapenemase-coding genes, followed by blaVIM (9%) and then blaIMP (12%). The ESBL-coding genes blaTEM, blaCTX-M,aac(6')-Ib, and blaSHV, were prevalent in 100%, 93.2%, 85,% and 53.4% of the MDR isolates, respectively. This study updates the range of bacteria that cause FUO and emphasizes the burden of multidrug resistance and priority infections in the region. The obtained data is of relevant medical importance for the implementation of evidence-based antimicrobial stewardship programs and tailoring existing empirical treatment guidelines.
Collapse
Affiliation(s)
- Shimaa H. Mostafa
- Microbiology Lab Department, Abbasia Fever Hospital, Cairo 11566, Egypt;
| | - Sarra E. Saleh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (E.F.K.); (R.M.B.)
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (E.F.K.); (R.M.B.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza 12451, Egypt;
| |
Collapse
|
15
|
Penha Filho RAC, Ferreira JC, Galetti R, Kanashiro AMI, Berchieri A, da Costa Darini AL. The rise of multidrug resistant Salmonella isolates in healthy chickens in Brazil by successful establishment of plasmid IncHI2A carrying several antibiotic resistance genes. Braz J Microbiol 2023; 54:469-474. [PMID: 36607526 PMCID: PMC9944584 DOI: 10.1007/s42770-022-00893-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Salmonella spp. is an important global issue in food-producing animals. The present study evaluated antimicrobial resistance and virulence profiles in Salmonella spp. isolates from chickens in Brazil. Identification of serotypes, virulence and antimicrobial resistance genes, and plasmid profiles were performed. Three different serovars were found, S. Schwarzengrund, S. Newport and S. Kentucky. All isolates were considered Multidrug- resistance (MDR). Among the 32 Salmonella spp. isolates analysed, 29 isolates carried blaCTX-M-2 gene and showed the insertion sequence ISCR1 and a class 1 integron structure upstream from blaCTX-M-2. This gene was harboured in large IncHI2A plasmids with approximately 280kb. Furthermore, 30 isolates harboured tetA and tetB genes and 25 also harboured qnrB. The virulence genes invA, misL, orfL, spiC and pipD were detected in all isolates. The study shows a high prevalence of MDR Salmonella isolates disseminated in poultry farms. The association of the replicon IncHI2A with the resistance genes found, elevate the risk of foodborne disease outbreaks.
Collapse
Affiliation(s)
- Rafael Antonio Casarin Penha Filho
- Department of Veterinary Pathology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| | - Joseane Cristina Ferreira
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, SP, 14040-903, Brazil
| | - Renata Galetti
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Angelo Berchieri
- Department of Veterinary Pathology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Ana Lúcia da Costa Darini
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
16
|
When and How to Use MIC in Clinical Practice? Antibiotics (Basel) 2022; 11:antibiotics11121748. [PMID: 36551405 PMCID: PMC9774413 DOI: 10.3390/antibiotics11121748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial resistance to antibiotics continues to be a global public health problem. The choice of the most effective antibiotic and the use of an adapted dose in the initial phase of the infection are essential to limit the emergence of resistance. This will depend on (i) the isolated bacteria and its resistance profile, (ii) the pharmacodynamic (PD) profile of the antibiotic used and its level of toxicity, (iii) the site of infection, and (iv) the pharmacokinetic (PK) profile of the patient. In order to take account of both parameters to optimize the administered treatment, a minimal inhibitory concentration (MIC) determination associated with therapeutic drug monitoring (TDM) and their combined interpretation are required. The objective of this narrative review is thus to suggest microbiological, pharmacological, and/or clinical situations for which this approach could be useful. Regarding the microbiological aspect, such as the detection of antibiotic resistance and its level, the preservation of broad-spectrum β-lactams is particularly discussed. PK-PD profiles are relevant for difficult-to-reach infections and specific populations such as intensive care patients, cystic fibrosis patients, obese, or elderly patients. Finally, MIC and TDM are tools available to clinicians, who should not hesitate to use them to manage their patients.
Collapse
|
17
|
Vij S, Thakur R, Rishi P. Reverse engineering approach: a step towards a new era of vaccinology with special reference to Salmonella. Expert Rev Vaccines 2022; 21:1763-1785. [PMID: 36408592 DOI: 10.1080/14760584.2022.2148661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Salmonella is responsible for causing enteric fever, septicemia, and gastroenteritis in humans. Due to high disease burden and emergence of multi- and extensively drug-resistant Salmonella strains, it is becoming difficult to treat the infection with existing battery of antibiotics as we are not able to discover newer antibiotics at the same pace at which the pathogens are acquiring resistance. Though vaccines against Salmonella are available commercially, they have limited efficacy. Advancements in genome sequencing technologies and immunoinformatics approaches have solved the problem significantly by giving rise to a new era of vaccine designing, i.e. 'Reverse engineering.' Reverse engineering/vaccinology has expedited the vaccine identification process. Using this approach, multiple potential proteins/epitopes can be identified and constructed as a single entity to tackle enteric fever. AREAS COVERED This review provides details of reverse engineering approach and discusses various protein and epitope-based vaccine candidates identified using this approach against typhoidal Salmonella. EXPERT OPINION Reverse engineering approach holds great promise for developing strategies to tackle the pathogen(s) by overcoming the limitations posed by existing vaccines. Progressive advancements in the arena of reverse vaccinology, structural biology, and systems biology combined with an improved understanding of host-pathogen interactions are essential components to design new-generation vaccines.
Collapse
Affiliation(s)
- Shania Vij
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
18
|
Multiple antibiotic-resistant Salmonella enterica serovars Enteritidis and Typhimurium in ready-to-eat battered street foods, and their survival under simulated gastric fluid and microwave heating. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Qian J, Wu Z, Zhu Y, Liu C. One Health: a holistic approach for food safety in livestock. SCIENCE IN ONE HEALTH 2022; 1:100015. [PMID: 39076604 PMCID: PMC11262287 DOI: 10.1016/j.soh.2023.100015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/07/2023] [Indexed: 07/31/2024]
Abstract
The food safety of livestock is a critical issue between animals and humans due to their complex interactions. Pathogens have the potential to spread at every stage of the animal food handling process, including breeding, processing, packaging, storage, transportation, marketing and consumption. In addition, application of the antibiotic usage in domestic animals is a controversial issue because, while they can combat food-borne zoonotic pathogens and promote animal growth and productivity, they can also lead to the transmission of antibiotic-resistant microorganisms and antibiotic-resistant genes across species and habitats. Coevolution of microbiomes may occur in humans and animals as well which may alter the structure of the human microbiome through animal food consumption. One Health is a holistic approach to systematically understand the complex relationships among humans, animals and environments which may provide effective countermeasures to solve food safety problems aforementioned. This paper depicts the main pathogen spectrum of livestock and animal products, summarizes the flow of antibiotic-resistant bacteria and genes between humans and livestock along the food-chain production, and the correlation of their microbiome is reviewed as well to advocate for deeper interdisciplinary communication and collaboration among researchers in medicine, epidemiology, veterinary medicine and ecology to promote One Health approaches to address the global food safety challenges.
Collapse
Affiliation(s)
- Jing Qian
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheyuan Wu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
20
|
Clinical Features, Antimicrobial Resistance, and Serogroups of Nontyphoidal Salmonella Isolated From Infants Less Than 3 Months Old in the Recent Decade. Pediatr Infect Dis J 2022; 41:813-818. [PMID: 35939611 DOI: 10.1097/inf.0000000000003656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Antibiotic treatment is indicated for infants with nontyphoidal Salmonella (NTS) enterocolitis. However, whether antimicrobial resistance (AMR) is a problem among young infants is unknown. This study investigated the characteristics of NTS infections in young infants. METHODS Infants less than 3 months old with NTS infections were enrolled and grouped into 2 cohorts (diagnosed 2010-2015 or 2016-2021). Salmonella isolated from blood or cerebrospinal fluid was defined as invasive NTS (iNTS). The clinical features, AMR and serogroups were compared between cohorts. RESULTS In total, 102 young infants had NTS infections, 6.9% of which were iNTS. Infants with iNTS infections were younger, hospitalized longer, and received longer antibiotic courses. More than half of cases of iNTS were resistant to ciprofloxacin, ceftriaxone and greater than or equal to 3 antibiotics. iNTS was mainly observed in Salmonella groups C2 and E. Over the past decade, group B (44%), group E (26%) and group C2 (16%) have been the most common serogroups. NTS significantly increased AMR to ciprofloxacin, ceftriaxone and trimethoprim-sulfamethoxazole, and greater than or equal to 3 antibiotics. Both multidrug resistance and extensive drug resistance in NTS also significantly increased. CONCLUSIONS The serogroups varied with time, and the main causes of iNTS, groups C2 and E, increased over the past decade. The prevalence of AMR also increased, especially for iNTS. Given the low iNTS rate and high AMR, routine antibiotic use among infants with NTS infections between 1 and 3 months old should be reconsidered. Further large-scale research is required to formulate therapeutic strategies.
Collapse
|
21
|
Lagrada ML, Argimón S, Borlasa JB, Abad JP, Gayeta JM, Masim ML, Olorosa AM, Cohen V, Jeffrey B, Abudahab K, Sia SB, Hufano CM, Stelling J, Holden MTG, Aanensen DM, Carlos CC. Genomic surveillance of Salmonella spp. in the Philippines during 2013-2014. Trans R Soc Trop Med Hyg 2022; 116:1202-1213. [PMID: 35999186 PMCID: PMC9717386 DOI: 10.1093/trstmh/trac080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Increasing antimicrobial resistance (AMR) in Salmonella has been observed in the Philippines. We aimed to characterise the population and AMR mechanisms of Salmonella with whole genome sequencing (WGS) and compare it with laboratory surveillance methods. METHODS The serotype, multilocus sequence type, AMR genes and relatedness between isolates were determined from the genomes of 148 Salmonella Typhi (S. Typhi) and 65 non-typhoidal Salmonella (NTS) collected by the Antimicrobial Resistance Surveillance Program during 2013-2014. Genotypic serotypes and AMR prediction were compared with phenotypic data. RESULTS AMR rates in S. Typhi were low, with sparse acquisition of mutations associated with reduced susceptibility to fluoroquinolones or extended-spectrum beta-lactamases (ESBL) genes. By contrast, 75% of NTS isolates were insusceptible to at least one antimicrobial, with more than half carrying mutations and/or genes linked to fluoroquinolone resistance. ESBL genes were detected in five genomes, which also carried other AMR determinants. The population of S. Typhi was dominated by likely endemic genotype 3.0, which caused a putative local outbreak. The main NTS clades were global epidemic S. Enteritidis ST11 and S. Typhimurium monophasic variant (I,4,[5],12: i: -) ST34. CONCLUSION We provide the first genomic characterisation of Salmonella from the Philippines and evidence of WGS utility for ongoing surveillance.
Collapse
Affiliation(s)
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Janice B Borlasa
- Department of Health, Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Philippines
| | - Jaywardeen P Abad
- Department of Health, Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Philippines
| | - June M Gayeta
- Department of Health, Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Philippines
| | - Melissa L Masim
- Department of Health, Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Philippines
| | - Agnettah M Olorosa
- Department of Health, Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Philippines
| | - Victoria Cohen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Benjamin Jeffrey
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Sonia B Sia
- Department of Health, Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Philippines
| | - Charmian M Hufano
- Department of Health, Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Philippines
| | - John Stelling
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Celia C Carlos
- Department of Health, Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Philippines
| |
Collapse
|
22
|
Al-Hadidi SH, Al mana H, Almoghrabi SZ, El-Obeid T, AlAli WQ, Eltai NO. Retail Chicken Carcasses as a Reservoir of Multidrug-Resistant Salmonella. Microb Drug Resist 2022; 28:824-831. [PMID: 35675669 PMCID: PMC9347385 DOI: 10.1089/mdr.2021.0414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmonella is a major cause of foodborne disease outbreaks worldwide, mainly through poultry. Recently, there has been an increase in multidrug-resistant (MDR) Salmonella infections globally. The increased drug resistance results in increased costs and poorer health outcomes due to unavailability or delayed treatment. This study aims to determine the prevalence of Salmonella in retail raw chicken meat and identify their antimicrobial resistance profiles. A total of 270 retail raw chicken carcasses (local and imported) were collected from three hypermarket chains in Qatar between November 2017 and April 2018. Thirty carcasses were contaminated with Salmonella (11.11%). The prevalence of Salmonella in locally produced chicken was higher than in imported chicken (OR = 2.56, 95% CI: 1.18-5.53, p = 0.016). No significant differences were found between the prevalence and storage temperature or hypermarket chain. The highest resistance rates in the isolates were reported to tetracycline (73.7%) followed by nitrofurantoin (53.3%), ampicillin (50%), amoxicillin-clavulanic acid, ceftriaxone (26.7%), and ciprofloxacin (23.3%). Eight isolates were potential extended-spectrum β-lactamase-producers, all in imported frozen chicken (p < 0.0001). Additionally, 43.3% of the isolates were MDR and associated with frozen chicken (OR = 16.88, 95% CI: 2.55-111.47, p = 0.002). The findings indicate that while the prevalence of Salmonella in retail chicken in Qatar is moderate, a large proportion of them are MDR.
Collapse
Affiliation(s)
| | - Hassan Al mana
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Tahra El-Obeid
- Department of Health Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| | - Walid Q. AlAli
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, Safat, Kuwait
| | - Nahla O. Eltai
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Peng F, Yi J, Xiao J, Chen J, Zhang H, He X, Song Z. Protective effect and possible mechanism of arctiin on broilers challenged by Salmonella pullorum. J Anim Sci 2022; 100:skac126. [PMID: 35417554 PMCID: PMC9115908 DOI: 10.1093/jas/skac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
This study was aimed to investigate the effects of dietary arctiin (ARC) supplementation (100, 200, and 400 mg/kg) on the growth performance and immune response of broilers after a Salmonella pullorum (S. pullorum) challenge, and we conducted in vitro antibacterial test to explore the bacteriostatic mechanism of ARC. The in vivo trial was randomly assigned to six groups: noninfected control (NC) group and positive control (PC) group received a basal diet; TET group, received a basal diet supplemented with 100 mg/kg chlortetracycline; ARC100, ARC200, and ARC400 groups received a basal diet containing 100, 200, and 400 mg/kg ARC, respectively. From days 14 to 16, all birds (except the NC group) were infected with 1 mL (1 × 108 CFU per mL) fresh S. pullorum culture by oral gavage per day. In vivo results showed that dietary supplementation of 200 mg/kg ARC significantly increased average daily gain (P < 0.05) and decreased feed-to-gain ratio of broilers vs. the PC group during days 15 to 28 after being challenged with S. pullorum (P < 0.05). The jejunal crypt depth (CD) was decreased by supplementing 100 or 200 mg/kg ARC in diets compared with PC birds at day 19 (P < 0.05). The jejunal villi height (VH) was increased by supplementing 100, 200, or 400 mg/kg ARC in diets compared with PC birds at day 28 (P < 0.05). Besides, dietary supplementation of 200 mg/kg ARC increased the jejunal VH to CD ratio than the PC group both at days 19 and 28 (P < 0.05). Notably, the broilers had lower serum lipopolysaccharide and diamine oxidase levels in the ARC100 and ARC200 groups at day 28 than those in the PC group (P < 0.05). Furthermore, in comparison to PC birds, the birds in ARC groups (100, 200, and 400 mg/kg) had higher serum contents of IgM and IL-10, and the birds in the ARC200 group had higher serum contents of IgA at day 19 (P < 0.05). At day 28, the birds in ARC groups (100, 200, and 400 mg/kg) had lower serum contents of IL-8, and the birds in the ARC200 group had lower serum contents of IFN-γ compared with PC birds (P < 0.05). The in vitro experiment showed that ARC significantly inhibited the biofilm formation and adhesion of S. pullorum (P < 0.05). Metabonomics analysis revealed that ARC can restrain the formation of the biofilm by affecting a variety of metabolic pathways of S. pullorum. Therefore, dietary supplementation of 200 mg/kg ARC might be a potential way to substitute antibiotics to control S. pullorum infection in broilers.
Collapse
Affiliation(s)
- Fang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| | - Jinhui Yi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| | - Jian Xiao
- Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde 41500, Hunan, China
| | - Junlie Chen
- Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde 41500, Hunan, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| |
Collapse
|
24
|
Sabeq I, Awad D, Hamad A, Nabil M, Aboubakr M, Abaza M, Fouad M, Hussein A, Shama S, Ramadan H, Edris S. Prevalence and molecular characterization of foodborne and human-derived Salmonella strains for resistance to critically important antibiotics. Transbound Emerg Dis 2022; 69:e2153-e2163. [PMID: 35396929 DOI: 10.1111/tbed.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
The primary goals of this cross-sectional study were to screen various food/water, and human samples for the presence of Salmonella species, and to assess the phenotypic and genetic relationship between resistances found in food and human Salmonella isolates to critically important antibiotics. Between November 2019 and May 2021, 501 samples were randomly collected for Salmonella isolation and identification using standard culturing methods, biochemical, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and PCR techniques. Antimicrobial susceptibility testing was performed on confirmed Salmonella species, and PCR was used to investigate the genetic components that confer these resistance traits. Salmonella enterica subspecies enterica was confirmed in 35 (6.99%) of the samples (raw food = 23, ready-to-eat food/drink (REF/D) = 5, human = 7). Seventeen of them were antibiotic-resistant to at least one class, and eight were multidrug-resistant (MDR) isolates (raw food = 7, human = 1). All Salmonella isolates were susceptible to carbapenems, third and fourth-generation cephalosporins, and monobactam antibiotics. Resistance phenotypes to aminoglycosides (48.57%), β-lactams (20%), and tetracycline (17.14%), as well as associated genes such as aadA, blaTEM , blaZ , and tetA, as well as dfrA and sul1, were prevalent in Salmonella isolates. Colistin resistance genotype (mcr1) was detected in three (8.57 %) isolates recovered from egg, cattle mince, and rabbit meat, and the total incidence was 14.29 % when two isolates exhibited resistance phenotypes were considered. Furthermore, four (11.43%) MDR isolates shared the blaTEM and blaZ genes, and one (2.86%) isolate contained three extended spectrum β-lactams producing genes (ESBL), namely blaCTX , blaTEM , and blaZ . The gyrA gene was expressed by one of three foodborne Salmonella isolates (8.57%) with ciprofloxacin resistance phenotypes. To the best of our knowledge, this is the first report from Egypt identifying colistin resistance in Salmonella enterica recovered from cattle minced meat and rabbit meat. Overall, the highest incidence rate of Salmonella enterica was found in cattle-derived products, and it was slightly more prevalent in RTE/D foods than in raw foods. Resistance to critical and clinically important antibiotics, particularly in Salmonella from RTE/D food, suggests that these antibiotics are being abused in the investigated area's veterinary field, and raises the potential of these isolates being transmitted to high-risk humans, which would be a serious problem. Future research using whole-genome sequencing is needed to clarify Salmonella resistance mechanisms to critically important antimicrobial agents or those exhibiting multidrug resistance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Islam Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Dina Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Ahmed Hamad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohamed Nabil
- Food Hygiene Department, Animal Health Research Institute (Benha Branch), ARC, Qalyubia, Benha, 13511, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohamed Abaza
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| | - Mohammed Fouad
- Microbiology and immunology department, Faculty of Medicine, Benha University, Qalyubia, Benha, 13511, Egypt
| | - Amira Hussein
- Department of clinical pathology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Sanaa Shama
- Laboratory unit, Benha Fever Hospital, Qalyubia, Benha, 13511, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qalyubia, Tukh, 13736, Egypt
| |
Collapse
|
25
|
Gandhi A, Joe G, Soman R. Enteric Fever Still haunts us with New Challenges. THE NATIONAL MEDICAL JOURNAL OF INDIA 2022; 35:65-67. [PMID: 36461847 DOI: 10.25259/nmji_725_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Aashna Gandhi
- Department of Infectious Diseases, Jupiter Hospital, Baner, Pune, Maharashtra, India
| | - Geethu Joe
- Department of Microbiology, Jupiter Hospital, Baner, Pune, Maharashtra, India
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Baner, Pune, Maharashtra, India
| |
Collapse
|
26
|
Adhikari P, Maharjan R, Paudel S, Malla B, Shah PK, Bastola A, Shrestha UT. gyrA ser83 mutation among fluoroquinolone-resistant Salmonella enterica serovars from enteric fever patients in tertiary care hospital, Kathmandu. BMC Microbiol 2022; 22:51. [PMID: 35144539 PMCID: PMC8830085 DOI: 10.1186/s12866-022-02456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The management of enteric fever through antibiotics is difficult these days due to the emerging resistance of Salmonella to various antimicrobial agents. The development of antimicrobial resistance is associated with multiple factors including mutations in the specific genes. To know the current status of mutation-mediated fluoroquinolone-resistance among Salmonella enterica serovars; Typhi, Paratyphi A, B and C, this study was focused on detecting gyrA ser83 mutation by restriction digestion analysis of gyrA gene using HinfI endonuclease. RESULTS A total of 948 blood samples were processed for isolation of Salmonella spp. and 3.4% of them were found to be positive for Salmonella growth. Out of the 32 Salmonella isolates, 2.2% were S. Typhi and 1.2% were S. Paratyphi A. More interestingly, we observed less than 5% of isolates were resistant to first-line drugs including chloramphenicol, cotrimoxazole and ampicillin. More than 80% of isolates were resistant to fluoroquinolones accounting for 84.4% to levofloxacin followed by 87.5% to ofloxacin and 100% to ciprofloxacin by disc diffusion methods. However, the minimum inhibitory concentration method using agar dilution showed only 50% of isolates were resistant to ciprofloxacin. A total of 3.1% of isolates were multidrug-resistant. Similarly, 90.6% of the Salmonella isolates showed gyrA ser83 mutation with resistance to nalidixic acid. CONCLUSIONS The increased resistance to fluoroquinolones and nalidixic acid in Salmonella isolates in our study suggests the use of alternative drugs as empirical treatment. Rather, the treatment should focus on prescribing first-line antibiotics since we observed less than 5% of Salmonella isolates were resistant to these drugs.
Collapse
Affiliation(s)
- Prashanna Adhikari
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Roshani Maharjan
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Subash Paudel
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Bikram Malla
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Pradeep Kumar Shah
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Anup Bastola
- Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu, Nepal
| | | |
Collapse
|
27
|
Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, Joo SW, Vasseghian Y, Tajbakhsh M, Moradi O, Sillanpää M, Varma RS. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2629-2664. [PMID: 35431714 PMCID: PMC8999999 DOI: 10.1007/s10311-022-01439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 05/03/2023]
Abstract
The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation methods. Conventional removal methods are often non-selective and cause secondary contamination. These issues may be partly solved by the use of recently-developped adsorbents such as molecularly imprinted polymers. Here we review the synthesis and application of molecularly imprinted polymers for removing pharmaceuticals in water. Molecularly imprinted polymers are synthesized via several multiple-step polymerization methods. Molecularly imprinted polymers are potent adsorbents at the laboratory scale, yet their efficiency is limited by template leakage and polymer quality. Adsorption performance of multi-templated molecularly imprinted polymers depends on the design of wastewater treatment plants, pharmaceutical consumption patterns and the population serviced by these wastewater treatment plants.
Collapse
Affiliation(s)
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
- The Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 70000 Vietnam
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028 South Africa
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
28
|
Egorova A, Mikhaylova Y, Saenko S, Tyumentseva M, Tyumentsev A, Karbyshev K, Chernyshkov A, Manzeniuk I, Akimkin V, Shelenkov A. Comparative Whole-Genome Analysis of Russian Foodborne Multidrug-Resistant Salmonella Infantis Isolates. Microorganisms 2021; 10:89. [PMID: 35056538 PMCID: PMC8781764 DOI: 10.3390/microorganisms10010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Non-typhoidal Salmonella infections remain a significant public health problem worldwide. In this study, we present the first detailed genomic analysis report based on short-read (Illumina) whole-genome sequencing (WGS) of 45 multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Infantis isolates from poultry and meat product samples obtained in Russia during 2018-2020, and long-read (MinION) WGS of five more representative isolates. We sought to determine whether foodborne S. Infantis have acquired new characteristics, traits, and dynamics in MDR growth in recent years. All sequenced isolates belonged to the sequence type ST32 and more than the half of isolates was characterized by six similar antimicrobial susceptibility profiles, most of which corresponded well with the antimicrobial resistance determinants to aminoglycosides, sulphonamides, tetracycline, and chloramphenicol revealed in silico. Some of the isolates were characterized by the presence of several types of plasmids simultaneously. Plasmid typing using WGS revealed Col440I, ColpVC, ColRNAI, IncFIB, IncFII, IncX1, IncHI2, IncHI2A, and IncN replicons. The identified virulence genes for 45 whole genomes of S. Infantis were similar and included 129 genes encoding structural components of the cell, factors responsible for successful invasion of the host, and secreted products. These data will be a valuable contribution to further comparative genomics of S. Infantis circulating in Russia, as well as to epidemiological surveillance of foodborne Salmonella isolates and investigations of Salmonella outbreaks.
Collapse
Affiliation(s)
- Anna Egorova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123 Moscow, Russia; (Y.M.); (S.S.); (M.T.); (A.T.); (K.K.); (A.C.); (I.M.); (V.A.); (A.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rakitin AL, Yushina YK, Zaiko EV, Bataeva DS, Kuznetsova OA, Semenova AA, Ermolaeva SA, Beletskiy AV, Kolganova TV, Mardanov AV, Shapovalov SO, Tkachik TE. Evaluation of Antibiotic Resistance of Salmonella Serotypes and Whole-Genome Sequencing of Multiresistant Strains Isolated from Food Products in Russia. Antibiotics (Basel) 2021; 11:1. [PMID: 35052878 PMCID: PMC8773070 DOI: 10.3390/antibiotics11010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Food products may be a source of Salmonella, one of the main causal agents of food poisoning, especially after the emergence of strains resistant to antimicrobial preparations. The present work dealt with investigation of the occurrence of resistance to antimicrobial preparations among S. enterica strains isolated from food. The isolates belonged to 11 serovars, among which Infantis (28%), Enteritidis (19%), and Typhimurium (13.4%) predominated. The isolates were most commonly resistant to trimethoprim/sulfamethoxazole (n = 19, 59.38%), cefazolin (n = 15, 46.86%), tetracycline (n = 13, 40.63%), and amikacin (n = 9, 28.13%). Most of the strains (68.75%) exhibited multiple resistance to commonly used antibiotics. High-throughput sequencing was used to analyse three multidrug-resistant strains (resistant to six or more antibiotics). Two of them (SZL 30 and SZL 31) belonged to S. Infantis, while one strain belonged to S. Typhimurium (SZL 38). Analysis of the genomes of the sequenced strains revealed the genes responsible for antibiotic resistance. In the genomes of strains SZL 30 and SZL 31 the genes of antibiotic resistance were shown to be localized mostly in integrons within plasmids, while most of the antibiotic resistance genes of strain SZL 38 were localized in a chromosomal island (17,949 nt). Genomes of the Salmonella strains SZL 30, SZL 31, and SZL 38 were shown to contain full-size pathogenicity islands: SPI-1, SPI-2, SPI-4, SPI-5, SPI-9, SPI-11, SPI-13, SPI-14, and CS54. Moreover, the genome of strain SZL 38 was also found to contain the full-size pathogenicity islands SPI-3, SPI-6, SPI-12, and SPI-16. The emergence of multidrug-resistant strains of various Salmonella serovars indicates that further research on the transmission pathways for these genetic determinants and monitoring of the distribution of these microorganisms are necessary.
Collapse
Affiliation(s)
- Andrey L. Rakitin
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Yulia K. Yushina
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Elena V. Zaiko
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Dagmara S. Bataeva
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Oksana A. Kuznetsova
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Svetlana A. Ermolaeva
- Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute Branch, 603950 Nizhny Novgorod, Russia;
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Aleksey V. Beletskiy
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Tat’yana V. Kolganova
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Andrey V. Mardanov
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Sergei O. Shapovalov
- Research and Scientific Testing Center “Cherkizovo”, 108805 Moscow, Russia; (S.O.S.); (T.E.T.)
| | - Timofey E. Tkachik
- Research and Scientific Testing Center “Cherkizovo”, 108805 Moscow, Russia; (S.O.S.); (T.E.T.)
| |
Collapse
|
30
|
Abda S, Haile T, Abera M. Isolation, identification antimicrobial susceptibility and associated risk factors of Salmonella in semi-intensive poultry farms of Kafa zone, Southwest Ethiopia. Vet Anim Sci 2021; 14:100206. [PMID: 34604602 PMCID: PMC8473537 DOI: 10.1016/j.vas.2021.100206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Salmonellosis is one of the major causes of poultry disease. The study aimed to isolate, identify, determine susceptibility and associated risk factors of salmonella specious in semi-intensive poultry farms of Kafa zone, southwest Ethiopia. A cross-sectional study was conducted on four purposively selected districts. Three farms were randomly selected per district and fecal samples were taken from a total of 302 chickens. Questionnaire was administered to farm owners and data was analyzed using STATA statistical software package. The overall prevalence of Salmonella enterica species in Kafa zone was 9.27% with Gimbo district 10.39%, Bita district 10.66%, Shishoende district 12% and Chena district 4%. Source of chickens, farm types and breed risk factors showed significant association (P < 0.05) with the disease prevalence. Having diarrhea and continuous farm systems significantly associated (P < 0.05). All isolates were 100% resistant to Oxtytetracycline and Ampicillin. Among 28 isolated Salmonella enterica species, 92.85% (n = 26) of them were showed multidrug resistance while 2 (7.14%) of them showed extensively drug resistance. Half of multidrug-resistant isolates were resistant to 5-6 antimicrobials, while 7.14% of isolates showed resistance to 7 antimicrobials. This study shows prevalence of Salmonella and its association with the breed, farm type, source of chicken and presence of diarrhea. A high antimicrobial resistance observed shows presence of concerns due to the emergence of Antimicrobial Resistance (AMR) in the poultry farms. Therefore, awareness should be created to the farmers on measures to avoid the risk factors of poultry disease and the occurrence of antimicrobials resistance in poultry farms.
Collapse
Affiliation(s)
- Sultan Abda
- Hawassa University Faculty of Veterinary Medicine, P.O. Box 05, Hawassa, Ethiopia
| | - Tamirat Haile
- Mizan Regional Veterinary Laboratory Center, Mizan-aman, P.O.Box 254, Ethiopia
| | - Mesele Abera
- Hawassa University Faculty of Veterinary Medicine, P.O. Box 05, Hawassa, Ethiopia
| |
Collapse
|
31
|
Possebon FS, Alvarez MVN, Ullmann LS, Araújo Jr JP. Antimicrobial resistance genes and class 1 integrons in MDR Salmonella strains isolated from swine lymph nodes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Mir R, Salari S, Najimi M, Rashki A. Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Vet Med Sci 2021; 8:229-236. [PMID: 34597476 PMCID: PMC8788964 DOI: 10.1002/vms3.647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Zoonotic food-borne pathogens such as Salmonella spp., which can be hosted by some raw foods, play a crucial role in ranking the public health of a country OBJECTIVES: The present study was conducted to assess the frequency, antibiotic resistance pattern and index of multiple antibiotic resistance (MAR) of Salmonella spp. in chicken meat METHODS: A cross-sectional survey was conducted from October 2017 to March 2018. One-hundred and fifty chicken meat samples were collected from meat stores in Zahedan, southeast of Iran and screened for contamination with Salmonella spp. using the polymerase chain reaction assay targeting the inv-A gene. Antimicrobial susceptibility testing was performed against 11 commonly prescribed antimicrobial agents in the veterinary treatment to calculate the MAR index RESULTS: The contamination rate was 2.7% (4/150). The antimicrobial resistance rate was 100% (n = 4) against penicillin, tylosin, tetracycline, erythromycin and tiamulin, 50% (n = 2) against trimethoprim/sulfamethoxazole, difloxacin and lincomycin/spectinomycin and 25% (n = 1) against flumequine and florfenicol. All isolates were sensitive to fosfomycin. Interestingly, all isolates (n = 4) exhibited different MAR patterns. Furthermore, the MAR index ranged from 0.45 to 0.81 CONCLUSIONS: In addition to the MAR index, which indicated that the isolate originated from a source where antibiotics were used to a great degree and/or in large amounts, the results showed that the chicken meat hosted resistant strains of Salmonella spp. in the study area. Overall, the findings indicated an important public health problem. To reduce this alarming signal, the poultry industry should implement control measures in the study area.
Collapse
Affiliation(s)
- Reza Mir
- Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| | - Saeed Salari
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| | - Mohsen Najimi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| | - Ahmad Rashki
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| |
Collapse
|
33
|
Rana K, Nayak SR, Bihary A, Sahoo AK, Mohanty KC, Palo SK, Sahoo D, Pati S, Dash P. Association of quorum sensing and biofilm formation with Salmonella virulence: story beyond gathering and cross-talk. Arch Microbiol 2021; 203:5887-5897. [PMID: 34586468 DOI: 10.1007/s00203-021-02594-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Enteric fever (typhoid and paratyphoid fever) is a public health concern which contributes to mortality and morbidity all around the globe. It is caused mainly due to ingestion of contaminated food and water with a gram negative, rod-shaped, flagellated bacterium known as Salmonella enterica serotype typhi (typhoid fever) or paratyphi (paratyphoid fever). Clinical problems associated with Salmonellosis are mainly bacteraemia, gastroenteritis and enteric fever. The bacteria undergo various mechanisms to escape itself from immune reaction of the host, modulating immune response at the site of infection leading to virulence factor production and anti-microbial resistance. Biofilm is one of the adaptation mechanisms through which Salmonella survives in unfavourable conditions and thus is considered as a major threat to public health. Another property of the bacteria is "Quorum Sensing", which is a cell-cell communication and most of the pathogenic bacteria use it to coordinate the production of several virulence factors and other behaviours such as swarming and biofilm formation. Earlier, quorum sensing was believed to be just a medium for communication but, later on, its role in virulence has been studied. However, there are negligible information relating to interaction between quorum sensing and biofilm formation and how these events play crucial role in Salmonella pathogenesis. The review is a summary of updated information regarding how Salmonella uses these properties to spread more and survive better, making a challenge for clinicians and public health experts. Therefore, this review would help bring an insight regarding how biofilm formation and quorum sensing are inter-related and their role in pathogenesis and virulence of Salmonella.
Collapse
Affiliation(s)
- Khokan Rana
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | | | - Alice Bihary
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | - Ajay Ku Sahoo
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | | | - Subrata Ku Palo
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | - Debadutta Sahoo
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India.
| | - Pujarini Dash
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India.
| |
Collapse
|
34
|
Zamil S, Ferdous J, Zannat MM, Biswas PK, Gibson JS, Henning J, Hoque MA, Barua H. Isolation and antimicrobial resistance of motile Salmonella enterica from the poultry hatchery environment. Vet Res Commun 2021; 45:277-284. [PMID: 34189702 DOI: 10.1007/s11259-021-09807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
Salmonella is a globally distributed major food-borne pathogen and poultry is one of the predominant sources of salmonellosis in humans. To investigate the presence of motile Salmonella in the poultry hatchery environment, we collected 97 fluff samples from four selected broiler breeder chicken hatcheries from Chattogram, Bangladesh during July-December 2015. To isolate motile Salmonella enterica, we used conventional bacteriological techniques followed by serological verification using anti-Salmonella Poly A-E serum and species confirmation by conventional PCR assay. Antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method for 10 commonly used antibiotics was performed on all isolates. Isolates displaying phenotypic resistance to ampicillin were tested by PCR for blaTEM gene, whereas those resistant to tetracycline were tested for the presence of tetA, tetB and tetC genes. A total of 24 samples (24.7%; 95% CI: 16.5-34.5, N = 97) from 3 hatcheries were positive for motile Salmonella. Of them, 21 (87.5%) and 12 (50.0%) were resistant to ampicillin and tetracycline, respectively, 9 (37.5%) to nalidixic acid and sulphamethoxazole/trimethoprim. No resistance was detected to ceftriaxone, cefoxitin, gentamicin, neomycin, ciprofloxacin and colistin. Ten (42%) of 24 isolates from 2 hatcheries were multi-drug resistant (i.e. resistant to ≥ 3 antimicrobial classes). Six of 21 ampicillin resistant isolates contained blaTEM gene and 10 of 12 tetracycline resistant isolates contained tetA gene. This study highlights the circulation of multi-drug resistant motile Salmonella in the hatchery environment for the first time in Bangladesh. Further epidemiological and molecular studies are therefore needed to identify the serotypes and source of the bacteria in hatcheries.
Collapse
Affiliation(s)
- Shafayat Zamil
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh.
| | - Jinnat Ferdous
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh.,EcoHealth Alliance, New York, NY, 10001-2320, USA.,Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, 1212, Bangladesh
| | - Mosammat Moonkiratul Zannat
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Paritosh Kumar Biswas
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - Md Ahasanul Hoque
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Himel Barua
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| |
Collapse
|
35
|
A Study on the Antimicrobial and Antibiofilm Peptide 1018-K6 as Potential Alternative to Antibiotics against Food-Pathogen Salmonella enterica. Foods 2021; 10:foods10061372. [PMID: 34198540 PMCID: PMC8232012 DOI: 10.3390/foods10061372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance has become one of the major global public health concerns, and it is indispensable to search for alternatives to conventional antibiotics. Recently, antimicrobial peptides have received great attention because of their broad-spectrum antimicrobial activity at relatively low concentrations, even against pathogens such as Salmonella enterica, which is responsible for most food-borne illnesses. This work aimed at evaluating the antimicrobial and antibiofilm activity of the innate defense peptide, named 1018-K6, against S. enterica. A total of 42 strains, belonging to three different subspecies and 32 serotypes, were included in this study. The antibiotic resistance profile of all the strains and the cytotoxic effects of 1018-K6 on mammalian fibroblast cells were also investigated. Results revealed that MIC (minimum inhibitory concentrations) and MBC (minimum bactericidal concentrations) values were in the ranges of 8-64 μg/mL and 16-128 μg/mL, respectively, although most strains (97%) showed MICs between 16 and 32 μg/mL. Moreover, sub-inhibitory concentrations of 1018-K6 strongly reduced the biofilm formation in several S. enterica strains, whatever the initial inoculum size. Our results demonstrated that 1018-K6 is able to control and manage S. enterica growth with a large potential for applications in the fields of active packaging and water disinfectants.
Collapse
|
36
|
Zahid I, Sarwar A, Hussain A, Sohail M, Amin A. Antibiotyping and genotyping of extensively drug-resistant (XDR) Salmonella sp. isolated from clinical samples of Lahore, Pakistan. J Appl Microbiol 2021; 132:633-641. [PMID: 33969606 DOI: 10.1111/jam.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022]
Abstract
AIMS Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi. The objective of this study was to evaluate the prevalence of XDR Salmonella among local population of Lahore and genotyping of isolates for antibiotic-resistant genes. METHODS AND RESULTS A total of 200 blood samples from suspected typhoid fever patients were collected. One hundred and fifty-seven bacterial samples were confirmed as Salmonella Typhi and 23 samples were confirmed as Salmonella Paratyphi after biochemical, serological and PCR based molecular characterization. Antibiogram analysis classified 121 (67·2%) Salmonella isolates as MDR and 62 isolates (34·4%) as XDR. The predominant resistance gene was ampC with 47·7% prevalence, followed by gyrA, catA1, tet(A), aac (3)-la, qnrS, blaNDM-1 and blaCTX-M-15 genes in 45·5, 40, 21·6, 18·3, 11·6, 2·2 and 0·5% isolates respectively. Sequence analysis showed the presence of sul1 and dfrA7 gene cassette arrays in 12 class 1 integron integrase positive isolates. CONCLUSION Large number of clinical XDR S. Typhi-resistant against third generation cephalosporins have been reported. SIGNIFICANCE AND IMPACT OF THE STUDY The current study highlights the possible emergence of clinical XDR S. Typhi cases in Lahore, Pakistan. Potential attribution of phenotypic and genotypic XDR cases may help to contribute targeted therapy.
Collapse
Affiliation(s)
- Iqra Zahid
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Arslan Sarwar
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abid Hussain
- Department of Medical Lab Technology, Faculty of Rehabilitation & Allied Health Sciences, Riphah International University Islamabad, QIE Campus, Lahore, Pakistan
| | - Muhammad Sohail
- Department of Medical Lab Technology, Faculty of Rehabilitation & Allied Health Sciences, Riphah International University Islamabad, QIE Campus, Lahore, Pakistan
| | - Aatif Amin
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
37
|
Antibiotic Resistance Profile and association with Integron Type I among Salmonella Enterica Isolates in Thailand. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella infection is the second most common cause of diarrhea in Thailand; however, the data on antimicrobial resistance is limited. There were137 Salmonella strains, isolated from patients and 126 strains isolated from chicken meat, collected from Nonthaburi, Thailand during 2002. The top five serotypes of patients isolates were Enteritidis (22%), Typhimurium (11%), Weltevreden (8.8%), Rissen (8%), and Choleraesuis (6.6%) while the top five serotypes of chicken meat isolates were found as follows: Schwarzengrund (11.91%), Hadar (11.11%), Rissen (8.73%), Amsterdam (7.94%), and Anatum (7.94%). Salmonella strains were most resistance to the class of antibiotics that act as inhibitor to nucleic acid synthesis such as antifolates group (Trimethoprim;SXT) and fluoroquinolones (Nalidixic acid; NA, Ciprofloxacin; CIP),while the β lactam antibiotic was more effective, i.e. the 3rd gen cephalosporin (Ceftazidime; CAZ, Cefotaxime ; CTX), Monobactam (Aztreonam; ATM) and carbapenams group (Imipenem; IMP, Meropenem; MEM). The role of class I integron element in transmission of the resistance gene was revealed by detection the gene cassette associated with a class 1 integron in plasmid preparation among 80% of the isolated strains. The gene cassettes containing resistant genes of dhfrA12 (resistant to trimethoprim) and aadA2 (resistant to streptomycin and spectinomycin), were detected more frequently in the resistant strains. These gene cassettes were likely to be transmitted via plasmid, as it could not be detected in genomic DNA.
Collapse
|
38
|
Casanova NA, Redondo LM, Redondo EA, Joaquim PE, Dominguez JE, Fernández-Miyakawa ME, Chacana PA. Efficacy of chestnut and quebracho wood extracts to control Salmonella in poultry. J Appl Microbiol 2020; 131:135-145. [PMID: 33251637 DOI: 10.1111/jam.14948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
AIMS The study was aimed to evaluate the antibacterial activity and efficacy of chestnut and quebracho wood extracts against Salmonella by in vitro assays and in vivo trials. METHODS AND RESULTS The extracts showed inhibitory activity against Salmonella determined by the minimum inhibitory concentration method as well as on the adhesion and invasion of S. Gallinarum (SG) and S. Enteritidis (SE) in Caco-2 cells. Also, transmission electron microscopy revealed that extract-treated Salmonella showed disruption of cell walls and membranes, damage of the cytoplasm and tannin-protein aggregations. In addition, efficacy of the extracts to control SG and SE was evaluated in experimental infection trials in laying hens and broilers respectively. SE excretion was significantly reduced on days 5 (P < 0·01) and 12 (P < 0·025) only in the quebracho group. In the fowl typhoid infection model, hens that received the chestnut extract showed a significantly reduced mortality (P < 0·05). CONCLUSIONS Our results evidence that these alternative natural products may be a useful tool to control Salmonella in poultry. SIGNIFICANCE AND IMPACT OF THE STUDY Salmonella is a zoonotic pathogen usually associated with poultry production. This study provides information about the mechanism of antibacterial effects of chestnut and quebracho wood extracts to control Salmonella in poultry.
Collapse
Affiliation(s)
- N A Casanova
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina
| | - L M Redondo
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - E A Redondo
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - P E Joaquim
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina
| | - J E Dominguez
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - M E Fernández-Miyakawa
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - P A Chacana
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina
| |
Collapse
|
39
|
Aljahdali NH, Sanad YM, Han J, Foley SL. Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota. BMC Microbiol 2020; 20:353. [PMID: 33203384 PMCID: PMC7673091 DOI: 10.1186/s12866-020-02008-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
In the past decade, the initial studies of the gut microbiota started focusing on the correlation of the composition of the gut microbiota and the health or diseases of the host, and there are extensive literature reviews pertaining to this theme. However, little is known about the association between the microbiota, the host, and pathogenic bacteria, such as Salmonella enterica, which is among the most important foodborne pathogens and identified as the source of multiple outbreaks linked to contaminated foods causing salmonellosis. Secretion systems, flagella, fimbriae, endotoxins, and exotoxins are factors that play the most important roles in the successful infection of the host cell by Salmonella. Infections with S. enterica, which is a threat to human health, can alter the genomic, taxonomic, and functional traits of the gut microbiota. The purpose of this review is to outline the state of knowledge on the impacts of S. enterica on the intestinal microbiota and highlight the need to identify the gut bacteria that could contribute to salmonellosis.
Collapse
Affiliation(s)
- Nesreen H Aljahdali
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.,Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Yasser M Sanad
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.,Department of Agriculture, University of Arkansas, Pine Bluff, AR, USA.,Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
40
|
Burjaq SZ, Abu-Romman SM. Prevalence and Antimicrobial Resistance of Salmonella spp. From Irrigation Water in Two Major Sources in Jordan. Curr Microbiol 2020; 77:3760-3766. [PMID: 32918569 DOI: 10.1007/s00284-020-02178-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Irrigation water could be a direct source of pathogenic microorganisms that contaminates fresh produce and causes human diseases. In this study, we evaluated the prevalence of Salmonella spp. and its serotypes Typhimurium and Enteritidis, antimicrobial susceptibility and multidrug resistance (MDR) status, and seasonal variation, of Salmonella spp. in irrigation water of King Abdullah Canal (KAC) and Wadi Shueib (WS) in Jordan. The study results demonstrated that 32.2% (29/90) of irrigation water was contaminated with Salmonella spp. and the irrigation water of WS was found highly contaminated (62.1%) with Salmonella spp. compared to KAC (37.9%). In addition, higher prevalence of Salmonella were recorded in spring (33.3%) and summer (36.3%) seasons, compared to winter seasons. Among the contaminated irrigation water samples, prevalence of Salmonella Typhimurium serotype was found in (37.9%) (11/29) samples, while S. Enteritidis was absent. The most common antimicrobial resistance of Salmonella isolates was observed as tetracycline (11/29, 37.9%) and 6 (20.7%) Salmonella Typhimurium isolates were found multidrug resistance (MDR). Thus, this study results confirmed that the irrigation water was contaminated with pathogenic MDR Salmonella spp.
Collapse
Affiliation(s)
- Shereen Z Burjaq
- Department of Medical Analysis, Faculty of Science, Al-Balqa Applied University, P.O. Box 206, Salt, 19117, Jordan.
| | - Saeid M Abu-Romman
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Salt, Jordan
| |
Collapse
|
41
|
Maguiña-Molina C, Pons MJ, Beltrán MJ, Morales-Cauti S. Multidrug-Resistant Salmonella enterica Isolated in Paca ( Cuniculus paca) Carcasses from the Belen Market, Iquitos, Perú. Foodborne Pathog Dis 2020; 18:131-138. [PMID: 33085530 DOI: 10.1089/fpd.2020.2836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The consumption of wildlife meat is traditionally accepted in the Peruvian Amazon; however, little is known about the pathogens present in this type of food. One of the most frequently consumed species is a rodent, the paca (Cuniculus paca) or "majaz" in the Peruvian language. The objective of this study was to determine the presence of Salmonella enterica and its antimicrobial resistance profile in paca carcasses sold in the Belen Market of Iquitos-Peru. An observational, descriptive, cross-sectional study was carried out. Fresh and smoked paca carcasses (72 samples) were evaluated during the low-rain period (July 2019) in the traditional market of Iquitos, in the Amazonian Region. Meat samples were swabbed, and International Standards Organization (ISO) 6579-1: 2017 protocol was followed to Salmonella isolation. Antimicrobial susceptibility analysis was performed by the disk diffusion method. In addition, serotyping was performed by using the Kauffmann-White scheme. A total of 25 strains of S. enterica were isolated in the paca carcasses, mainly in fresh carcasses (48.6%). The serovars isolated were Agona (45.8%), Infantis (41.7%), Wangata (8.3%), and Javiana (4.2%). A considerable number of the isolated strains were multidrug resistant (40%). The highest prevalence of resistance corresponded to trimethoprim-sulfamethoxazole (64%) followed by nitrofurantoin (44%), chloramphenicol (40%), cefotaxime (40%), and nalidixic acid (40%). Ten strains isolated (40%) were identified as producers of extended spectrum beta lactamases, all in S. enterica serovar Infantis. This study describes the presence of Salmonella Infantis with multidrug resistance profiles in wildlife meat carcasses, making the consumption of this type of products a risk factor for the development of foodborne diseases in the Amazon region. Institutional Review Board: Approval Resolution of Thesis Project: N° 024-DACMVZ-DAFCVB-U.CIENTÍFICA-2019.
Collapse
Affiliation(s)
| | - Maria J Pons
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Lima, Perú
| | - Manuel J Beltrán
- Carrera de Medicina Veterinaria y Zootecnia, Universidad Científica del Sur, Lima, Perú
| | - Siever Morales-Cauti
- Carrera de Medicina Veterinaria y Zootecnia, Universidad Científica del Sur, Lima, Perú
| |
Collapse
|
42
|
Karim SJI, Islam M, Sikder T, Rubaya R, Halder J, Alam J. Multidrug-resistant Escherichia coli and Salmonella spp. isolated from pigeons. Vet World 2020; 13:2156-2165. [PMID: 33281350 PMCID: PMC7704316 DOI: 10.14202/vetworld.2020.2156-2165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Pigeon rearing has been gaining popularity for recent years. They are reared remarkably very close to the house of the owner. This activity, therefore, may pose potential threats for humans as well as other animals as pigeons may carry and spread different pathogens including drug-resistant bacteria. This study was conducted to explore the prevalence of Escherichia coli and Salmonella spp. as well as their antibiogram profile along with an association analysis. Materials and Methods: Forty swab samples were collected from 20 pigeons during the study. E. coli and Salmonella spp. were isolated and identified on various types of agars, including MacConkey, Eosin methylene blue, Brilliant green, and Salmonella-Shigella agar. Biochemical tests such as the carbohydrate fermentation test, the triple sugar iron agar slant reaction, the indole test, the methyl red test, the catalase test, as well as the Voges–Proskauer test were also performed. Besides, the presence of E. coli was further confirmed by polymerase chain reaction (PCR). Moreover, antimicrobial susceptibility testing of the isolates was performed against nine antibiotics from seven classes on the Mueller-Hinton agar based on the Kirby–Bauer disk diffusion method. Results: The overall prevalence of E. coli and Salmonella spp. was 52.5 and 27.5%, respectively. The prevalence of the pathogenic E. coli was 61.90%. The antibiogram profile of 21 E. coli as well as 11 Salmonella spp. revealed that all isolates, except one, were resistant to one to six antibiotics. Around 61.90%, 71.43%, 23.81%, 61.90%, 23.81%, 19.05%, and 52.38% of E. coli showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, gentamicin, and tetracycline, respectively. Furthermore, E. coli resistance was not observed in case of ciprofloxacin and levofloxacin. Similarly, around 36.36%, 27.27%, 27.27%, 45.45%, 81.82%, 100%, and 18.18% of the Salmonella spp. showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, tetracycline, and levofloxacin, respectively. However, all Salmonella spp. (100%) were found to show sensitivity against ciprofloxacin and gentamicin. Multidrug-resistant (MDR) E. coli (23.80%) and Salmonella spp. (54.54%) were also isolated. Furthermore, both positive (odds ratio [OR] >1) and negative (OR <1) drug resistance associations, with a higher frequency of positive associations, were found in E. coli. A significant positive association was observed between ampicillin and amoxicillin (OR: 81.67, 95% confidence interval: 2.73-2447.57, p=0.01). Conclusion: Pigeon carrying MDR E. coli and Salmonella spp. may contribute to the transmission and spread of these microorganisms. Therefore, strict hygienic measures should be taken during the farming of pigeons to decrease the potential transmission of E. coli and Salmonella spp. from pigeon to humans as well as other animals. So far, this is the first report of the PCR-based identification of pathogenic E. coli from pigeons in Bangladesh.
Collapse
Affiliation(s)
- Shah Jungy Ibna Karim
- Department of Medicine and Public Health, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.,Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mahfuzul Islam
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.,Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, South Korea
| | - Tahmina Sikder
- Department of Pathology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Rubaya Rubaya
- Animal Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Joyanta Halder
- Animal Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh.,Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Jahangir Alam
- Animal Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| |
Collapse
|
43
|
Mejia L, Vela G, Zapata S. High Occurrence of Multiresistant Salmonella Infantis in Retail Meat in Ecuador. Foodborne Pathog Dis 2020; 18:41-48. [PMID: 32808817 DOI: 10.1089/fpd.2020.2808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is among the most important foodborne pathogens. In Ecuador, there is limited information about non-typhoidal S. enterica occurrence in raw meats, its serotype distribution, and antimicrobial resistance. In this study, we addressed this issue in 1095 retail fresh meats (chicken, pork, veal, lamb, beef, and turkey) in Quito by performing a traditional culture methodology and molecular detection. We found that S. enterica was present in 38.1% of the samples, and Salmonella Infantis was the most common serotype showing a high antibiotic resistance and a wide host range. Some host-adapted serotypes were found in uncommon sources of meat, suggesting cross-contamination and the need to implement good manufacturing practices in meat processing. High levels of multidrug resistance were found in all serotypes. There is an urgent need to identify Salmonella serotypes in food to compare with clinical data and to carry out epidemiological studies to control and prevent outbreaks and infections.
Collapse
Affiliation(s)
- Lorena Mejia
- Instituto de Microbiología. Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Gabriela Vela
- Instituto de Microbiología. Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sonia Zapata
- Instituto de Microbiología. Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
44
|
Hedman HD, Vasco KA, Zhang L. A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals (Basel) 2020; 10:E1264. [PMID: 32722312 PMCID: PMC7460429 DOI: 10.3390/ani10081264] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
The emergence, spread, and persistence of antimicrobial resistance (AMR) remain a pressing global health issue. Animal husbandry, in particular poultry, makes up a substantial portion of the global antimicrobial use. Despite the growing body of research evaluating the AMR within industrial farming systems, there is a gap in understanding the emergence of bacterial resistance originating from poultry within resource-limited environments. As countries continue to transition from low- to middle income countries (LMICs), there will be an increased demand for quality sources of animal protein. Further promotion of intensive poultry farming could address issues of food security, but it may also increase risks of AMR exposure to poultry, other domestic animals, wildlife, and human populations. Given that intensively raised poultry can function as animal reservoirs for AMR, surveillance is needed to evaluate the impacts on humans, other animals, and the environment. Here, we provide a comprehensive review of poultry production within low-resource settings in order to inform future small-scale poultry farming development. Future research is needed in order to understand the full extent of the epidemiology and ecology of AMR in poultry within low-resource settings.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Karla A. Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.A.V.); (L.Z.)
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.A.V.); (L.Z.)
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
45
|
Tack B, Vanaenrode J, Verbakel JY, Toelen J, Jacobs J. Invasive non-typhoidal Salmonella infections in sub-Saharan Africa: a systematic review on antimicrobial resistance and treatment. BMC Med 2020; 18:212. [PMID: 32677939 PMCID: PMC7367361 DOI: 10.1186/s12916-020-01652-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) are a frequent cause of invasive infections in sub-Saharan Africa. They are frequently multidrug resistant (co-resistant to ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol), and resistance to third-generation cephalosporin and fluoroquinolone non-susceptibility have been reported. Third-generation cephalosporins and fluoroquinolones are often used to treat invasive NTS infections, but azithromycin might be an alternative. However, data on antibiotic treatment efficacy in invasive NTS infections are lacking. In this study, we aimed to assess the spatiotemporal distribution of antimicrobial resistance in invasive NTS infections in sub-Saharan Africa and to describe the available evidence and recommendations on antimicrobial treatment. METHODS We conducted a systematic review of all available literature on antimicrobial resistance and treatment in invasive NTS infections. We performed a random effects meta-analysis to assess the temporal distribution of multidrug resistance, third-generation cephalosporin resistance, and fluoroquinolone non-susceptibility. We mapped these data to assess the spatial distribution. We provided a narrative synthesis of the available evidence and recommendations on antimicrobial treatment. RESULTS Since 2001, multidrug resistance was observed in 75% of NTS isolates from all sub-Saharan African regions (95% confidence interval, 70-80% and 65-84%). Third-generation cephalosporin resistance emerged in all sub-Saharan African regions and was present in 5% (95% confidence interval, 1-10%) after 2010. Fluoroquinolone non-susceptibility emerged in all sub-Saharan African regions but did not increase over time. Azithromycin resistance was reported in DR Congo. There were no reports on carbapenem resistance. We did not find high-quality evidence on the efficacy of antimicrobial treatment. There were no supranational guidelines. The "Access group" antibiotics ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol and "Watch group" antibiotics ceftriaxone, cefotaxime, and ciprofloxacin were recommended as the first-choice antibiotics in national guidelines or reviews. These also recommended (a switch to) oral fluoroquinolones or azithromycin. CONCLUSIONS In addition to the widespread multidrug resistance in invasive NTS infections in sub-Saharan Africa, resistance to third-generation cephalosporins and fluoroquinolone non-susceptibility was present in all regions. There was a lack of data on the efficacy of antimicrobial treatment in these infections, and supranational evidence-based guidelines were absent.
Collapse
Affiliation(s)
- Bieke Tack
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | | | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Woman and Child, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Sodagari HR, Wang P, Robertson I, Habib I, Sahibzada S. Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia. Animals (Basel) 2020; 10:E1192. [PMID: 32674371 PMCID: PMC7401514 DOI: 10.3390/ani10071192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Non-typhoidal Salmonella is a major zoonotic pathogen that plays a significant role in foodborne human salmonellosis worldwide through the consumption of contaminated foods, particularly those of animal origin. Despite a considerable reduction in human salmonellosis outbreaks in developed countries, Australia is experiencing a continuous rise of such outbreaks in humans. This review of the literature highlights the reported non-typhoidal Salmonella outbreaks in humans as well as the occurrence of the pathogen in foods from animal sources throughout Australia. Non-typhoidal Salmonella infections from food animals are more often associated with at-risk people, such as immunocompromised and aged people or children. Although several animal-sourced foods were recognised as the catalysts for salmonellosis outbreaks in Australia, egg and egg-based products remained the most implicated foods in the reported outbreaks. This review further highlights the antimicrobial resistance trends of non-typhoidal Salmonella isolates at the human-food interface, with a focus on clinically important antimicrobials in humans, by collating evidence from previous investigations in Australia. The rise in antimicrobial-resistant Salmonella, especially to antimicrobials commonly prescribed to treat human salmonellosis, has become a significant global public health concern. However, the overall prevalence of antimicrobial resistance in Australia is considerably lower than in other parts of the world, particularly in terms of critically important antimicrobials for the treatment of human salmonellosis. The present review adds to our understanding of the global epidemiology of non-typhoidal Salmonella with emphasis on the past few decades in Australia.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Penghao Wang
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Ian Robertson
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Ihab Habib
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
- Veterinary Medicine Department, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain P.O. Box 1555, UAE
| | - Shafi Sahibzada
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| |
Collapse
|
47
|
In Vitro and In Vivo Antibiotic Capacity of Two Host Defense Peptides. Antimicrob Agents Chemother 2020; 64:AAC.00145-20. [PMID: 32366718 DOI: 10.1128/aac.00145-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/25/2020] [Indexed: 12/23/2022] Open
Abstract
Two nonamidated host defense peptides named Pin2[G] and FA1 were evaluated against three types of pathogenic bacteria: two (Staphylococcus aureus UPD13 and Pseudomonas aeruginosa UPD3) isolated from diabetic foot ulcer patients, and another (Salmonella enterica serovar Typhimurium [ATCC 14028]) from a commercial collection. In vitro experiments showed that the antimicrobial performance of the synthetic peptides Pin2[G] and FA1 was modest, although FA1 was more effective than Pin2[G]. In contrast, Pin2[G] had superior in vivo anti-infective activity to FA1 in rabbit wound infections by the diabetic foot ulcer pathogens S. aureus UPD13 and P. aeruginosa UPD3. Indeed, Pin2[G] reduced bacterial colony counts of both S. aureus UPD13 and P. aeruginosa UPD3 by >100,000-fold after 48 to 72 h on skin wounds of infected rabbits, while in similar infected wounds, FA1 had no major effects at 72 to 96 h of treatment. Ceftriaxone was equally effective versus Pseudomonas but less effective versus S. aureus infections. Additionally, the two peptides were evaluated in mice against intragastrically inoculated S. enterica serovar Typhimurium (ATCC 14028). Only Pin2[G] at 0.56 mg/kg was effective in reducing systemic (liver) infection by >67-fold, equivalent to the effect of treatment with levofloxacin. Pin2[G] showed superior immunomodulatory activity in increasing chemokine production by a human bronchial cell line and suppressing polyinosinic-polycytidylic acid (poly[I:C])-induced proinflammatory IL-6 production. These data showed that the in vitro antimicrobial activity of these peptides was not correlated with their in vivo anti-infective activity and suggest that other factors such as immunomodulatory activity were more important.
Collapse
|
48
|
Wisittipanit N, Pulsrikarn C, Srisong S, Srimora R, Kittiwan N, Poonchareon K. CRISPR 2 PCR and high resolution melting profiling for identification and characterization of clinically-relevant Salmonella enterica subsp. enterica. PeerJ 2020; 8:e9113. [PMID: 32587791 PMCID: PMC7304428 DOI: 10.7717/peerj.9113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Nontyphoidal Salmonella spp. constitute a major bacterial cause of food poisoning. Each Salmonella serotype causes distinct virulence to humans. Method A small cohort study was conducted to characterize several aspects of Salmonella isolates obtained from stool of diarrheal patients (n = 26) admitted to Phayao Ram Hospital, Phayao province, Thailand. A simple CRISPR 2 molecular analysis was developed to rapidly type Salmonella isolates employing both uniplex and high resolution melting (HRM) curve analysis. Results CRISPR 2 monoplex PCR generated a single Salmonella serotype-specific amplicon, showing S. 4,[5],12:i:- with highest frequency (42%), S. Enteritidis (15%) and S. Stanley (11%); S. Typhimurium was not detected. CRISPR 2 HRM-PCR allowed further classification of S. 4,[5],12:i:- isolates based on their specific CRISPR 2 signature sequences. The highest prevalence of Salmonella infection was during the summer season (April to August). Additional studies were conducted using standard multiplex HRM-PCR typing, which confirmed CRISPR 2 PCR results and, using a machine-learning algorithm, clustered the majority of Salmonella serotypes into six clades; repetitive element-based (ERIC) PCR, which clustered the serotypes into three clades only; antibiogram profiling, which revealed the majority resistant to ampicillin (69%); and test for extended spectrum β-lactamase production (two isolates) and PCR-based detection of bla alleles. Conclusion CRISPR 2 PCR provided a simple assay for detection and identification of clinically-relevant Salmonella serotypes. In conjunction with antibiogram profiling and rapid assay for β-lactamase producers, this approach should facilitate detection and appropriate treatment of Salmonellosis in a local hospital setting. In addition, CRISPR 2 HRM-PCR profiling enabled clustering of S. 4,[5],12:i:-isolates according to CRISPR 2 locus signature sequences, indicative of their different evolutionary trajectories, thereby providing a powerful tool for future epidemiological studies of virulent Salmonella serotypes.
Collapse
Affiliation(s)
- Nuttachat Wisittipanit
- Department of Material Engineering, School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Chaiwat Pulsrikarn
- Department of Medical Sciences, WHO National Salmonella and Shigella Center, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
| | - Sudarat Srisong
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Rungthiwa Srimora
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Nattinee Kittiwan
- Veterinary Research and Development Center (Upper Northern Region), Lampang, Thailand
| | - Kritchai Poonchareon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
49
|
Tack B, Phoba MF, Van Puyvelde S, Kalonji LM, Hardy L, Barbé B, Van der Sande MAB, Monsieurs E, Deborggraeve S, Lunguya O, Jacobs J. Salmonella Typhi From Blood Cultures in the Democratic Republic of the Congo: A 10-Year Surveillance. Clin Infect Dis 2020; 68:S130-S137. [PMID: 30845337 PMCID: PMC6405282 DOI: 10.1093/cid/ciy1116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background This study gives an overview of a decade (2007–2017) of hospital-based Salmonella Typhi bloodstream infection (BSI) surveillance in the Democratic Republic of the Congo (DRC), at 4 main sampling sites. Methods Blood cultures were sampled in hospital-admitted patients with suspected BSI, according to standardized clinical indications. The results of the surveillance period 2015–2017 were compiled with those of previous surveillance periods (2007–2010 and 2011–2014). Whole genome sequencing of isolates with decreased ciprofloxacin susceptibility (DCS) was performed. Results Salmonella Typhi was isolated in 1.4% (531/37 388) and 10.3% (531/5177) of suspected and culture-confirmed BSI episodes, respectively. Salmonella Typhi ranked first among the BSI pathogens in adults (n = 220), but was mostly (n = 301 [56.7%]) isolated from children, of which 72.1% (217/301) and 31.6% (95/301) were <10 years and <5 years old, respectively. Multidrug resistance (MDR), DCS, and combined MDR/DCS were found in 38.3% (n = 180), 24.5% (n = 115), and 11.9% (n = 56) of 470 first isolates, respectively. MDR and DCS rates had increased since 2007, but remained stable during 2015–2017 with no geographical clustering at the province level. Most (91/93 [97.8%]) DCS isolates sequenced belonged to Genotyphi genotype 2.5.1, and gyr S83 was the most frequent DCS mutation (76/93 [81.7%]). Infections occurred perennially, but increased during the rainy season. Conclusions Salmonella Typhi was a frequent cause of BSI in adults and children in DRC, with high rates of antibiotic resistance. Sustainable surveillance and implementation of vaccination are compelling.
Collapse
Affiliation(s)
- Bieke Tack
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp.,Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Marie-France Phoba
- Department of Microbiology, National Institute for Biomedical Research.,Department of Microbiology, University Teaching Hospital, Kinshasa, Democratic Republic of the Congo, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Lisette M Kalonji
- Department of Microbiology, National Institute for Biomedical Research.,Department of Microbiology, University Teaching Hospital, Kinshasa, Democratic Republic of the Congo, Antwerp, Belgium
| | - Liselotte Hardy
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp
| | - Marianne A B Van der Sande
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.,Julius Center for Health Sciences and Primary Care, Global Health Centre, Utrecht University, The Netherlands
| | - Elise Monsieurs
- Royal Museum for Central Africa, Tervuren.,Department of Geography, University of Liège, Belgium
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Octavie Lunguya
- Department of Microbiology, National Institute for Biomedical Research.,Department of Microbiology, University Teaching Hospital, Kinshasa, Democratic Republic of the Congo, Antwerp, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp.,Department of Microbiology and Immunology, KU Leuven, Belgium
| |
Collapse
|
50
|
Senevirathne A, Hewawaduge C, Park JY, Park S, Lee JH. Parenteral immunization of Salmonella Typhimurium ghosts with surface-displayed Escherichia coli flagellin enhancesTLR-5 mediated activation of immune responses that protect the chicken against Salmonella infection. Microb Pathog 2020; 147:104252. [PMID: 32439565 DOI: 10.1016/j.micpath.2020.104252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022]
Abstract
The present study investigates the enhancement of immunogenicity and protection efficacy of Salmonella Typhimurium ghosts surface-displayed with FliC against chicken salmonellosis. The membrane-anchored FliC is a potential TLR-5 agonist, delivers an essential adjuvant effect for the ghost vaccine candidate. The present ghost plasmid pJHL184 construct carries a convergent dual promoter system that has the temperature-dependent induction of the phage lysis gene E and the target antigen FliC at the same time. Under permissible conditions of temperatures, less than 30 °C at the presence of 20 mM l-arabinose effectively suppresses expression of the lysis gene. Once the temperature is up-lifted to 42 °C without arabinose, cause the generation of ST ghosts expelling the cytoplasmic content. The addition of FliC adjuvant significantly enhanced the IgY response, cell-mediated immune responses, regulatory cytokine induction and subsequently enhanced protection against Salmonella challenge. Further, intramuscular immunization with ST ghosts displaying FliC induced particularly high CD8+ response demarcating its proficiency to elicit Type I immune responses. Further, ST ghosts displaying FliC caused an increase in both CD4+ and CD8+ response compared to the PBS control suggesting its capability to engage both cell-mediated and humoral immune responses essential for the elimination of Salmonella. Upon the virulent challenge, we could observe a significant reduction in challenged bacterial load on spleen, liver and cecum tissues in the ST ghosts surface-displaying FliC adjuvant. Our study suggests the biological incorporation of FliC on ST ghosts enhances vaccine immunogenic potency and acts as a safe and effective prevention strategy against chicken salmonellosis.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Ji-Young Park
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Sungwoo Park
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|