1
|
Ortigas-Vasquez A, Szpara M. Embracing Complexity: What Novel Sequencing Methods Are Teaching Us About Herpesvirus Genomic Diversity. Annu Rev Virol 2024; 11:67-87. [PMID: 38848592 DOI: 10.1146/annurev-virology-100422-010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The arrival of novel sequencing technologies throughout the past two decades has led to a paradigm shift in our understanding of herpesvirus genomic diversity. Previously, herpesviruses were seen as a family of DNA viruses with low genomic diversity. However, a growing body of evidence now suggests that herpesviruses exist as dynamic populations that possess standing variation and evolve at much faster rates than previously assumed. In this review, we explore how strategies such as deep sequencing, long-read sequencing, and haplotype reconstruction are allowing scientists to dissect the genomic composition of herpesvirus populations. We also discuss the challenges that need to be addressed before a detailed picture of herpesvirus diversity can emerge.
Collapse
Affiliation(s)
- Alejandro Ortigas-Vasquez
- Departments of Biology and of Biochemistry and Molecular Biology; Center for Infectious Disease Dynamics; and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Moriah Szpara
- Departments of Biology and of Biochemistry and Molecular Biology; Center for Infectious Disease Dynamics; and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
2
|
Li H, He F, Lv Z, Yi L, Zhang Z, Li H, Fu S. Tailored wastewater surveillance framework uncovered the epidemics of key pathogens in a Northwestern city of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171833. [PMID: 38522539 DOI: 10.1016/j.scitotenv.2024.171833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Wastewater surveillance enables rapid pathogen monitoring and community prevalence estimation. However, how to design an integrated and tailored wastewater surveillance framework to monitor major health threats in metropolises remains a major challenge. In this study, we first analyzed the historical clinical data of Xi'an city and designed a wastewater surveillance framework covering five key endemic viruses, namely, SARS-CoV-2, norovirus, influenza A virus (IAV), influenza B virus (IBV), respiratory syncytial virus (RSV), and hantavirus. Amplicon sequencing of SARS-CoV-2, norovirus and hantavirus was conducted biweekly to determine the prevalent community genotypes circulating in this region. The results showed that from April 2023 to August 2023, Xi'an experienced two waves of SARS-CoV-2 infection, which peaked in the middle of May-2023 and late August-2023. The sewage concentrations of IAV and RSV peaked in early March and early May 2023, respectively, while the sewage concentrations of norovirus fluctuated throughout the study period and peaked in late August. The dynamics of the sewage concentrations of SARS-CoV-2, norovirus, IAV, RSV, and hantavirus were in line with the trends in the sentinel hospital percent positivity data, indicating the role of wastewater surveillance in enhancing the understanding of epidemic trends. Amplicon sequencing of SARS-CoV-2 revealed a transition in the predominant genotype, which changed from DY.1 and FR.1.4 to the XBB and EG.5 subvariants. Amplicon sequencing also revealed that there was only one predominant hantavirus genotype in the local population, while highly diverse genotypes of norovirus GI and GII were found in the wastewater. In conclusion, this study provided valuable insights into the dynamics of infection trends and predominant genotypes of key pathogens in a city without sufficient clinical surveillance, highlighting the role of a tailored wastewater surveillance framework in addressing public health priorities. More importantly, our study provides the first evidence demonstrating the applicability of wastewater surveillance for hantavirus, which is a major health threat locally.
Collapse
Affiliation(s)
- Haifeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Fenglan He
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liu Yi
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Ziqiang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Hui Li
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China.
| | - Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China; The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China.
| |
Collapse
|
3
|
Dziadek K, Świętoń E, Kozak E, Wyrostek K, Tarasiuk K, Styś-Fijoł N, Śmietanka K. Phylogenetic and Molecular Characteristics of Wild Bird-Origin Avian Influenza Viruses Circulating in Poland in 2018-2022: Reassortment, Multiple Introductions, and Wild Bird-Poultry Epidemiological Links. Transbound Emerg Dis 2024; 2024:6661672. [PMID: 40303090 PMCID: PMC12017110 DOI: 10.1155/2024/6661672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2025]
Abstract
Since 2020, a significant increase in the severity of H5Nx highly pathogenic avian influenza (HPAI) epidemics in poultry and wild birds has been observed in Poland. To further investigate the genetic diversity of HPAI H5Nx viruses of clade 2.3.4.4b, HPAIV-positive samples collected from dead wild birds in 2020-2022 were phylogenetically characterized. In addition, zoonotic potential and possible reassortment between HPAIVs and LPAIVs circulating in the wild avifauna in Poland have been examined. The genome-wide phylogenetic analysis revealed the presence of three different avian influenza virus (AIV) subtypes (H5N8, H5N5, and H5N1) during the HPAI 2020/2021 season, while in the next HPAI 2021/2022 epidemic only one H5N1 subtype encompassing seven various genotypes (G1-G7) was confirmed. No reassortment events between LPAIVs (detected in the framework of active surveillance) and HPAIVs circulating in Poland have been captured, but instead, epidemiological links between wild birds and poultry due to bidirectional, i.e., wild bird-to-poultry and poultry-to-wild bird HPAIV transmission were evident. Furthermore, at least five independent H5N8 HPAIV introductions into the Baltic Sea region related to unprecedented mass mortality among swans in February-March 2021 in Poland, as well as a general tendency of current H5Nx viruses to accumulate specific mutations associated with the ability to break the interspecies barrier were identified. These results highlight the importance of continuous active and passive surveillance for AI to allow a rapid response to emerging viruses.
Collapse
Affiliation(s)
- Kamila Dziadek
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Edyta Świętoń
- Department of Omic Analyses, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Edyta Kozak
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Krzysztof Wyrostek
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Natalia Styś-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| |
Collapse
|
4
|
Fitzpatrick Z, Ghabdan Zanluqui N, Rosenblum JS, Tuong ZK, Lee CYC, Chandrashekhar V, Negro-Demontel ML, Stewart AP, Posner DA, Buckley M, Allinson KSJ, Mastorakos P, Chittiboina P, Maric D, Donahue D, Helmy A, Tajsic T, Ferdinand JR, Portet A, Peñalver A, Gillman E, Zhuang Z, Clatworthy MR, McGavern DB. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature 2024; 628:612-619. [PMID: 38509366 PMCID: PMC11482273 DOI: 10.1038/s41586-024-07202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.
Collapse
Affiliation(s)
- Zachary Fitzpatrick
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nagela Ghabdan Zanluqui
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | | | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | | | - Maria Luciana Negro-Demontel
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Andrew P Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - David A Posner
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Monica Buckley
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Kieren S J Allinson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Panagiotis Mastorakos
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
- Department of Surgical Neurology, NINDS, NIH, Bethesda, MD, USA
| | | | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, NINDS, NIH, Bethesda, MD, USA
| | | | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tamara Tajsic
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anais Portet
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Peñalver
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Eleanor Gillman
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
5
|
Krischuns T, Arragain B, Isel C, Paisant S, Budt M, Wolff T, Cusack S, Naffakh N. The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome. Nat Commun 2024; 15:1064. [PMID: 38316757 PMCID: PMC10844641 DOI: 10.1038/s41467-024-45205-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
The current model is that the influenza virus polymerase (FluPol) binds either to host RNA polymerase II (RNAP II) or to the acidic nuclear phosphoprotein 32 (ANP32), which drives its conformation and activity towards transcription or replication of the viral genome, respectively. Here, we provide evidence that the FluPol-RNAP II binding interface, beyond its well-acknowledged function in cap-snatching during transcription initiation, has also a pivotal role in replication of the viral genome. Using a combination of cell-based and in vitro approaches, we show that the RNAP II C-terminal-domain, jointly with ANP32, enhances FluPol replication activity. We observe successive conformational changes to switch from a transcriptase to a replicase conformation in the presence of the bound RNPAII C-terminal domain and propose a model in which the host RNAP II is the anchor for transcription and replication of the viral genome. Our data open new perspectives on the spatial coupling of viral transcription and replication and the coordinated balance between these two activities.
Collapse
Affiliation(s)
- Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| | | | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Matthias Budt
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Thorsten Wolff
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble, France.
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| |
Collapse
|
6
|
Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder AK, Almeida LN, Clare S, Harcourt K, Ward CJ, Bashford-Rogers R, Lawley T, Manz RA, Okkenhaug K, Masopust D, Clatworthy MR. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat Commun 2023; 14:7081. [PMID: 37925420 PMCID: PMC10625551 DOI: 10.1038/s41467-023-42625-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Anita Chandra
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Christopher J Ward
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Masopust
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
7
|
Vereecke N, Woźniak A, Pauwels M, Coppens S, Nauwynck H, Cybulski P, Theuns S, Stadejek T. Successful Whole Genome Nanopore Sequencing of Swine Influenza A Virus (swIAV) Directly from Oral Fluids Collected in Polish Pig Herds. Viruses 2023; 15:435. [PMID: 36851649 PMCID: PMC9962634 DOI: 10.3390/v15020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Influenza A virus (IAV) is a single-stranded, negative-sense RNA virus and a common cause of seasonal flu in humans. Its genome comprises eight RNA segments that facilitate reassortment, resulting in a great variety of IAV strains. To study these processes, the genetic code of each segment should be unraveled. Fortunately, new third-generation sequencing approaches allow for cost-efficient sequencing of IAV segments. Sequencing success depends on various factors, including proper sample storage and processing. Hence, this work focused on the effect of storage of oral fluids and swIAV sequencing. Oral fluids (n = 13) from 2017 were stored at -22 °C and later transferred to -80 °C. Other samples (n = 21) were immediately stored at -80 °C. A reverse transcription quantitative PCR (RT-qPCR) pre- and post-storage was conducted to assess IAV viral loads. Next, samples were subjected to two IAV long-read nanopore sequencing methods to evaluate success in this complex matrix. A significant storage-associated loss of swIAV loads was observed. Still, a total of 17 complete and 6 near-complete Polish swIAV genomes were obtained. Genotype T, (H1avN2, seven herds), P (H1N1pdm09, two herds), U (H1avN1, three herds), and A (H1avN1, 1 herd) were circulated on Polish farms. In conclusion, oral fluids can be used for long-read swIAV sequencing when considering appropriate storage and segment amplification protocols, which allows us to monitor swIAV in an animal-friendly and cost-efficient manner.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | | | | | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland
| | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
8
|
Yates PJ, Mehta N, Watson HA, Peppercorn AF. Lessons from resistance analysis in clinical trials of IV zanamivir. Virus Res 2023; 325:199039. [PMID: 36610656 DOI: 10.1016/j.virusres.2023.199039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Influenza infection causes substantial morbidity and mortality during seasonal epidemics and pandemics. Antivirals, including neuraminidase inhibitors, play an important role in the treatment of severely ill patients infected with influenza. Resistance is a key factor that can affect the efficacy of neuraminidase inhibitors (NAIs). It is a recommendation by regulatory authorities to monitor for resistance during the development of anti-influenza medications. An additional requirement by regulators is to examine amino acid sequences for minority species harbouring resistance substitutions. In a Phase III study of intravenous (IV) zanamivir respiratory samples were analysed for the presence of resistant quasi species using Next Generation Sequencing (NGS). In this study ten resistance substitutions, two of which were treatment emergent, were detected by NGS that otherwise would not have been detectable by Sanger sequencing. None of the substitutions were present at any other timepoints analysed. The effect these mutations have on clinical response is difficult to characterize; in fact, all patients from which these variants were isolated had a successful clinical outcome and the effect on clinical response was therefore likely minimal. Although NGS is becoming a routine method for nucleic acid sequencing and will detect substitutions previously undetected by Sanger sequencing, the value of this technique in identifying minority species with resistance substitutions that are clinically meaningful remains to be demonstrated, particularly with acute infections such as influenza.
Collapse
|
9
|
Zuckerman NS, Shulman LM. Next-Generation Sequencing in the Study of Infectious Diseases. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
10
|
Holicki CM, Bergmann F, Stoek F, Schulz A, Groschup MH, Ziegler U, Sadeghi B. Expedited retrieval of high-quality Usutu virus genomes via Nanopore sequencing with and without target enrichment. Front Microbiol 2022; 13:1044316. [PMID: 36439823 PMCID: PMC9681921 DOI: 10.3389/fmicb.2022.1044316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 10/04/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne zoonotic virus and one of the causes of flavivirus encephalitis in birds and occasionally in humans. USUV rapidly disperses in a susceptible host and vector environment, as is the case in South and Central Europe. However, compared to other flaviviruses, USUV has received less research attention and there is therefore limited access to whole-genome sequences and also to in-depth phylogenetic and phylodynamic analyses. To ease future molecular studies, this study compares first- (partial sequencing via Sanger), second- (Illumina), and third-generation (MinION Nanopore) sequencing platforms for USUV. With emphasis on MinION Nanopore sequencing, cDNA-direct and target-enrichment (amplicon-based) sequencing approaches were validated in parallel. The study was based on four samples from succumbed birds commonly collected throughout Germany. The samples were isolated from various sample matrices, organs as well as blood cruor, and included three different USUV lineages. We concluded that depending on the focus of a research project, amplicon-based MinION Nanopore sequencing can be an ideal cost- and time-effective alternative to Illumina in producing optimal genome coverage. It can be implemented for an array of lab- or field-based objectives, including among others: phylodynamic studies and the analysis of viral quasispecies.
Collapse
Affiliation(s)
- Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Felicitas Bergmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Franziska Stoek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ansgar Schulz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
11
|
Phyu WW, Saito R, Kyaw Y, Lin N, Win SMK, Win NC, Ja LD, Htwe KTZ, Aung TZ, Tin HH, Pe EH, Chon I, Wagatsuma K, Watanabe H. Evolutionary Dynamics of Whole-Genome Influenza A/H3N2 Viruses Isolated in Myanmar from 2015 to 2019. Viruses 2022; 14:v14112414. [PMID: 36366512 PMCID: PMC9699102 DOI: 10.3390/v14112414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to analyze the genetic and evolutionary characteristics of the influenza A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment along with those of the World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains for the respective years. Based on the WHO clades classification, the A/H3N2 strains in Myanmar from 2015 to 2019 collectively belonged to clade 3c.2. These strains were further defined based on hemagglutinin substitutions as follows: clade 3C.2a (n = 39), 3C.2a1 (n = 2), and 3C.2a1b (n = 38). Genetic analysis revealed that the Myanmar strains differed from the Southern Hemisphere vaccine strains each year, indicating that the vaccine strains did not match the circulating strains. The highest rates of nucleotide substitution were estimated for hemagglutinin (3.37 × 10-3 substitutions/site/year) and neuraminidase (2.89 × 10-3 substitutions/site/year). The lowest rate was for non-structural protein segments (4.19 × 10-5 substitutions/site/year). The substantial genetic diversity that was revealed improved phylogenetic classification. This information will be particularly relevant for improving vaccine strain selection.
Collapse
Affiliation(s)
- Wint Wint Phyu
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Correspondence: ; Tel.: +81-25-227-2129
| | - Reiko Saito
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yadanar Kyaw
- Respiratory Medicine Department, ThingangyunSanpya General Hospital, Yangon 110-71, Myanmar
| | - Nay Lin
- Microbiology Section, (200) Bedded Pyinmana General Hospital, Naypyitaw 150-31, Myanmar
| | - Su Mon Kyaw Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Nay Chi Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Lasham Di Ja
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Khin Thu Zar Htwe
- Department of Microbiology, University of Medicine, Mandalay 050-21, Myanmar
| | - Thin Zar Aung
- Microbiology Section, Mandalay General Hospital, Mandalay 050-31, Myanmar
| | - Htay Htay Tin
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Eh Htoo Pe
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Irina Chon
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Keita Wagatsuma
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Hisami Watanabe
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
12
|
Kwok KTT, de Rooij MMT, Messink AB, Wouters IM, Smit LAM, Cotten M, Heederik DJJ, Koopmans MPG, Phan MVT. Establishing farm dust as a useful viral metagenomic surveillance matrix. Sci Rep 2022; 12:16308. [PMID: 36175536 PMCID: PMC9521564 DOI: 10.1038/s41598-022-20701-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Farm animals may harbor viral pathogens, some with zoonotic potential which can possibly cause severe clinical outcomes in animals and humans. Documenting the viral content of dust may provide information on the potential sources and movement of viruses. Here, we describe a dust sequencing strategy that provides detailed viral sequence characterization from farm dust samples and use this method to document the virus communities from chicken farm dust samples and paired feces collected from the same broiler farms in the Netherlands. From the sequencing data, Parvoviridae and Picornaviridae were the most frequently found virus families, detected in 85-100% of all fecal and dust samples with a large genomic diversity identified from the Picornaviridae. Sequences from the Caliciviridae and Astroviridae familes were also obtained. This study provides a unique characterization of virus communities in farmed chickens and paired farm dust samples and our sequencing methodology enabled the recovery of viral genome sequences from farm dust, providing important tracking details for virus movement between livestock animals and their farm environment. This study serves as a proof of concept supporting dust sampling to be used in viral metagenomic surveillance.
Collapse
Affiliation(s)
- Kirsty T T Kwok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Aniek B Messink
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Matthew Cotten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - My V T Phan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
13
|
Jo Y, Choi H, Chu H, Cho WK. Unveiling Mycoviromes Using Fungal Transcriptomes. Int J Mol Sci 2022; 23:ijms231810926. [PMID: 36142838 PMCID: PMC9501391 DOI: 10.3390/ijms231810926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Viruses infecting fungi are referred to as mycoviruses. Here, we carried out in silico mycovirome studies using public fungal transcriptomes mostly derived from mRNA libraries. We identified 468 virus-associated contigs assigned to 5 orders, 21 families, 26 genera, and 88 species. We assembled 120 viral genomes with diverse RNA and DNA genomes. The phylogenetic tree and genome organization unveiled the possible host origin of mycovirus species and diversity of their genome structures. Most identified mycoviruses originated from fungi; however, some mycoviruses had strong phylogenetic relationships with those from insects and plants. The viral abundance and mutation frequency of mycoviruses were very low; however, the compositions and populations of mycoviruses were very complex. Although coinfection of diverse mycoviruses in the fungi was common in our study, most mycoviromes had a dominant virus species. The compositions and populations of mycoviruses were more complex than we expected. Viromes of Monilinia species revealed that there were strong deviations in the composition of viruses and viral abundance among samples. Viromes of Gigaspora species showed that the chemical strigolactone might promote virus replication and mutations, while symbiosis with endobacteria might suppress virus replication and mutations. This study revealed the diversity and host distribution of mycoviruses.
Collapse
Affiliation(s)
- Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Hoseong Choi
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hyosub Chu
- Bertis R&D Division, Bertis Inc., Seongnam 13605, Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
- Correspondence: ; Tel.: +82-31-290-7860
| |
Collapse
|
14
|
Ahern DJ, Ai Z, Ainsworth M, Allan C, Allcock A, Angus B, Ansari MA, Arancibia-Cárcamo CV, Aschenbrenner D, Attar M, Baillie JK, Barnes E, Bashford-Rogers R, Bashyal A, Beer S, Berridge G, Beveridge A, Bibi S, Bicanic T, Blackwell L, Bowness P, Brent A, Brown A, Broxholme J, Buck D, Burnham KL, Byrne H, Camara S, Candido Ferreira I, Charles P, Chen W, Chen YL, Chong A, Clutterbuck EA, Coles M, Conlon CP, Cornall R, Cribbs AP, Curion F, Davenport EE, Davidson N, Davis S, Dendrou CA, Dequaire J, Dib L, Docker J, Dold C, Dong T, Downes D, Drakesmith H, Dunachie SJ, Duncan DA, Eijsbouts C, Esnouf R, Espinosa A, Etherington R, Fairfax B, Fairhead R, Fang H, Fassih S, Felle S, Fernandez Mendoza M, Ferreira R, Fischer R, Foord T, Forrow A, Frater J, Fries A, Gallardo Sanchez V, Garner LC, Geeves C, Georgiou D, Godfrey L, Golubchik T, Gomez Vazquez M, Green A, Harper H, Harrington HA, Heilig R, Hester S, Hill J, Hinds C, Hird C, Ho LP, Hoekzema R, Hollis B, Hughes J, Hutton P, Jackson-Wood MA, Jainarayanan A, James-Bott A, Jansen K, Jeffery K, Jones E, Jostins L, Kerr G, Kim D, Klenerman P, Knight JC, Kumar V, et alAhern DJ, Ai Z, Ainsworth M, Allan C, Allcock A, Angus B, Ansari MA, Arancibia-Cárcamo CV, Aschenbrenner D, Attar M, Baillie JK, Barnes E, Bashford-Rogers R, Bashyal A, Beer S, Berridge G, Beveridge A, Bibi S, Bicanic T, Blackwell L, Bowness P, Brent A, Brown A, Broxholme J, Buck D, Burnham KL, Byrne H, Camara S, Candido Ferreira I, Charles P, Chen W, Chen YL, Chong A, Clutterbuck EA, Coles M, Conlon CP, Cornall R, Cribbs AP, Curion F, Davenport EE, Davidson N, Davis S, Dendrou CA, Dequaire J, Dib L, Docker J, Dold C, Dong T, Downes D, Drakesmith H, Dunachie SJ, Duncan DA, Eijsbouts C, Esnouf R, Espinosa A, Etherington R, Fairfax B, Fairhead R, Fang H, Fassih S, Felle S, Fernandez Mendoza M, Ferreira R, Fischer R, Foord T, Forrow A, Frater J, Fries A, Gallardo Sanchez V, Garner LC, Geeves C, Georgiou D, Godfrey L, Golubchik T, Gomez Vazquez M, Green A, Harper H, Harrington HA, Heilig R, Hester S, Hill J, Hinds C, Hird C, Ho LP, Hoekzema R, Hollis B, Hughes J, Hutton P, Jackson-Wood MA, Jainarayanan A, James-Bott A, Jansen K, Jeffery K, Jones E, Jostins L, Kerr G, Kim D, Klenerman P, Knight JC, Kumar V, Kumar Sharma P, Kurupati P, Kwok A, Lee A, Linder A, Lockett T, Lonie L, Lopopolo M, Lukoseviciute M, Luo J, Marinou S, Marsden B, Martinez J, Matthews PC, Mazurczyk M, McGowan S, McKechnie S, Mead A, Mentzer AJ, Mi Y, Monaco C, Montadon R, Napolitani G, Nassiri I, Novak A, O'Brien DP, O'Connor D, O'Donnell D, Ogg G, Overend L, Park I, Pavord I, Peng Y, Penkava F, Pereira Pinho M, Perez E, Pollard AJ, Powrie F, Psaila B, Quan TP, Repapi E, Revale S, Silva-Reyes L, Richard JB, Rich-Griffin C, Ritter T, Rollier CS, Rowland M, Ruehle F, Salio M, Sansom SN, Sanches Peres R, Santos Delgado A, Sauka-Spengler T, Schwessinger R, Scozzafava G, Screaton G, Seigal A, Semple MG, Sergeant M, Simoglou Karali C, Sims D, Skelly D, Slawinski H, Sobrinodiaz A, Sousos N, Stafford L, Stockdale L, Strickland M, Sumray O, Sun B, Taylor C, Taylor S, Taylor A, Thongjuea S, Thraves H, Todd JA, Tomic A, Tong O, Trebes A, Trzupek D, Tucci FA, Turtle L, Udalova I, Uhlig H, van Grinsven E, Vendrell I, Verheul M, Voda A, Wang G, Wang L, Wang D, Watkinson P, Watson R, Weinberger M, Whalley J, Witty L, Wray K, Xue L, Yeung HY, Yin Z, Young RK, Youngs J, Zhang P, Zurke YX. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 2022; 185:916-938.e58. [PMID: 35216673 PMCID: PMC8776501 DOI: 10.1016/j.cell.2022.01.012] [Show More Authors] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19.
Collapse
|
15
|
Identification of missed viruses by metagenomic sequencing of clinical respiratory samples from Kenya. Sci Rep 2022; 12:202. [PMID: 34997042 PMCID: PMC8742071 DOI: 10.1038/s41598-021-03987-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/02/2021] [Indexed: 01/30/2023] Open
Abstract
Pneumonia remains a major cause of mortality and morbidity. Most molecular diagnoses of viruses rely on polymerase chain reaction (PCR) assays that however can fail due to primer mismatch. We investigated the performance of routine virus diagnostics in Kilifi, Kenya, using random-primed viral next generation sequencing (viral NGS) on respiratory samples which tested negative for the common viral respiratory pathogens by a local standard diagnostic panel. Among 95 hospitalised pneumonia patients and 95 household-cohort individuals, analysis of viral NGS identified at least one respiratory-associated virus in 35 (37%) and 23 (24%) samples, respectively. The majority (66%; 42/64) belonged to the Picornaviridae family. The NGS data analysis identified a number of viruses that were missed by the diagnostic panel (rhinovirus, human metapneumovirus, respiratory syncytial virus and parainfluenza virus), and these failures could be attributed to PCR primer/probe binding site mismatches. Unexpected viruses identified included parvovirus B19, enterovirus D68, coxsackievirus A16 and A24 and rubella virus. The regular application of such viral NGS could help evaluate assay performance, identify molecular causes of missed diagnoses and reveal gaps in the respiratory virus set used for local screening assays. The results can provide actionable information to improve the local pneumonia diagnostics and reveal locally important viral pathogens.
Collapse
|
16
|
Music of metagenomics-a review of its applications, analysis pipeline, and associated tools. Funct Integr Genomics 2021; 22:3-26. [PMID: 34657989 DOI: 10.1007/s10142-021-00810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
This humble effort highlights the intricate details of metagenomics in a simple, poetic, and rhythmic way. The paper enforces the significance of the research area, provides details about major analytical methods, examines the taxonomy and assembly of genomes, emphasizes some tools, and concludes by celebrating the richness of the ecosystem populated by the "metagenome."
Collapse
|
17
|
Abdelnabi R, Foo CS, Kaptein SJF, Zhang X, Do TND, Langendries L, Vangeel L, Breuer J, Pang J, Williams R, Vergote V, Heylen E, Leyssen P, Dallmeier K, Coelmont L, Chatterjee AK, Mols R, Augustijns P, De Jonghe S, Jochmans D, Weynand B, Neyts J. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine 2021; 72:103595. [PMID: 34571361 PMCID: PMC8461366 DOI: 10.1016/j.ebiom.2021.103595] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. Methods We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. Findings When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. Interpretation: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. Funding: stated in the acknowledgment.
Collapse
Affiliation(s)
- Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Caroline S Foo
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Thuc Nguyen Dan Do
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Lana Langendries
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Laura Vangeel
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Judith Breuer
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Juanita Pang
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Rachel Williams
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Valentijn Vergote
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | | | - Raf Mols
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery & Disposition, Box 921, 3000 Leuven, Belgium
| | - Patrick Augustijns
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery & Disposition, Box 921, 3000 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, Division of Translational Cell and Tissue Research, B-3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium; Global Virus Network, GVN, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Van den Hoecke S, Ballegeer M, Vrancken B, Deng L, Job ER, Roose K, Schepens B, Van Hoecke L, Lemey P, Saelens X. In Vivo Therapy with M2e-Specific IgG Selects for an Influenza A Virus Mutant with Delayed Matrix Protein 2 Expression. mBio 2021; 12:e0074521. [PMID: 34253060 PMCID: PMC8406285 DOI: 10.1128/mbio.00745-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
The ectodomain of matrix protein 2 (M2e) of influenza A viruses is a universal influenza A vaccine candidate. Here, we report potential evasion strategies of influenza A viruses under in vivo passive anti-M2e IgG immune selection pressure in severe combined immune-deficient (SCID) mice. A/Puerto Rico/8/34-infected SCID mice were treated with the M2e-specific mouse IgG monoclonal antibodies (MAbs) MAb 65 (IgG2a) or MAb 37 (IgG1), which recognize amino acids 5 to 15 in M2e, or with MAb 148 (IgG1), which binds to the invariant N terminus of M2e. Treatment of challenged SCID mice with any of these MAbs significantly prolonged survival compared to isotype control IgG treatment. Furthermore, M2e-specific IgG2a protected significantly better than IgG1, and even resulted in virus clearance in some of the SCID mice. Deep sequencing analysis of viral RNA isolated at different time points after treatment revealed that the sequence variation in M2e was limited to P10H/L and/or I11T in anti-M2e MAb-treated mice. Remarkably, in half of the samples isolated from moribund MAb 37-treated mice and in all MAb 148-treated mice, virus was isolated with a wild-type M2 sequence but with nonsynonymous mutations in the polymerases and/or the hemagglutinin genes. Some of these mutations were associated with delayed M2 and other viral gene expression and with increased resistance to anti-M2e MAb treatment of SCID mice. Treatment with M2e-specific MAbs thus selects for viruses with limited variation in M2e. Importantly, influenza A viruses may also undergo an alternative escape route by acquiring mutations that result in delayed wild-type M2 expression. IMPORTANCE Broadly protective influenza vaccine candidates may have a higher barrier to immune evasion compared to conventional influenza vaccines. We used Illumina MiSeq deep sequence analysis to study the mutational patterns in A/Puerto Rico/8/34 viruses that evolve in chronically infected SCID mice that were treated with different M2e-specific MAbs. We show that under these circumstances, viruses emerged in vivo with mutations in M2e that were limited to positions 10 and 11. Moreover, we discovered an alternative route for anti-M2e antibody immune escape, in which a virus is selected with wild-type M2e but with mutations in other gene segments that result in delayed M2 and other viral protein expression. Delayed expression of the viral antigen that is targeted by a protective antibody thus represents an influenza virus immune escape mechanism that does not involve epitope alterations.
Collapse
Affiliation(s)
- Silvie Van den Hoecke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bram Vrancken
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Lei Deng
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emma R. Job
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Philippe Lemey
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Han AX, Felix Garza ZC, Welkers MRA, Vigeveno RM, Tran ND, Le TQM, Pham Quang T, Dang DT, Tran TNA, Ha MT, Nguyen TH, Le QT, Le TH, Hoang TBN, Chokephaibulkit K, Puthavathana P, Nguyen VVC, Nghiem MN, Nguyen VK, Dao TT, Tran TH, Wertheim HFL, Horby PW, Fox A, van Doorn HR, Eggink D, de Jong MD, Russell CA. Within-host evolutionary dynamics of seasonal and pandemic human influenza A viruses in young children. eLife 2021; 10:e68917. [PMID: 34342576 PMCID: PMC8382297 DOI: 10.7554/elife.68917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The evolution of influenza viruses is fundamentally shaped by within-host processes. However, the within-host evolutionary dynamics of influenza viruses remain incompletely understood, in part because most studies have focused on infections in healthy adults based on single timepoint data. Here, we analyzed the within-host evolution of 82 longitudinally sampled individuals, mostly young children, infected with A/H1N1pdm09 or A/H3N2 viruses between 2007 and 2009. For A/H1N1pdm09 infections during the 2009 pandemic, nonsynonymous minority variants were more prevalent than synonymous ones. For A/H3N2 viruses in young children, early infection was dominated by purifying selection. As these infections progressed, nonsynonymous variants typically increased in frequency even when within-host virus titers decreased. Unlike the short-lived infections of adults where de novo within-host variants are rare, longer infections in young children allow for the maintenance of virus diversity via mutation-selection balance creating potentially important opportunities for within-host virus evolution.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Zandra C Felix Garza
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Matthijs RA Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - René M Vigeveno
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Nhu Duong Tran
- National Institute of Hygiene and EpidemiologyHanoiViet Nam
| | | | | | | | | | | | | | | | - Thanh Hai Le
- Vietnam National Children's HospitalHanoiViet Nam
| | | | | | | | | | | | | | | | - Tinh Hien Tran
- Siriraj Hospital, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research UnitHo Chi Minh cityViet Nam
| | - Heiman FL Wertheim
- Oxford University Clinical Research UnitHo Chi Minh cityViet Nam
- Radboud Medical Centre, Radboud UniversityNijmegenNetherlands
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Peter W Horby
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Oxford University Clinical Research UnitHanoiViet Nam
| | - Annette Fox
- Oxford University Clinical Research UnitHanoiViet Nam
- Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- WHO Collaborating Centre for Reference and Research on InfluenzaMelbourneAustralia
| | - H Rogier van Doorn
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Oxford University Clinical Research UnitHanoiViet Nam
| | - Dirk Eggink
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Menno D de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| |
Collapse
|
20
|
Lambisia AW, Phan MVT, de Laurent ZR, Cotten M, Nokes DJ, Agoti CN. Near-Complete Genome Sequences of Eight Human Astroviruses Recovered from Diarrheal Stool Samples of Hospitalized Children in Coastal Kenya in 2019. Microbiol Resour Announc 2021; 10:e00162-21. [PMID: 33858926 PMCID: PMC8050968 DOI: 10.1128/mra.00162-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Here, using a sequence-independent sequencing approach (M. V. Phan, P. Hong Anh, N. Van Cuong, B. Oude Munnink, et al., Virus Evol 2:vew027, 2016, https://doi.org/10.1093/ve/vew027), we determined human astrovirus (HAstV) genome sequences from eight diarrheal stool samples collected in coastal Kenya in 2019. Phylogenetic analysis identified the following 4 genotypes: HAstV-1 (n = 4), HAstV-2 (n = 1), HAstV-3 (n = 1), and HAstV-5 (n = 2).
Collapse
Affiliation(s)
- Arnold W Lambisia
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - My V T Phan
- UK Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Zaydah R de Laurent
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Matthew Cotten
- UK Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - D James Nokes
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- School of Life Sciences and Zeeman Institute (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Charles N Agoti
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| |
Collapse
|
21
|
Bletsa M, Vrancken B, Gryseels S, Boonen I, Fikatas A, Li Y, Laudisoit A, Lequime S, Bryja J, Makundi R, Meheretu Y, Akaibe BD, Mbalitini SG, Van de Perre F, Van Houtte N, Těšíková J, Wollants E, Van Ranst M, Pybus OG, Drexler JF, Verheyen E, Leirs H, Gouy de Bellocq J, Lemey P. Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evol 2021; 7:veab036. [PMID: 34221451 PMCID: PMC8242229 DOI: 10.1093/ve/veab036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.
Collapse
Affiliation(s)
- Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Antonios Fikatas
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Rhodes Makundi
- Pest Management Center -Sokoine University of Agriculture, Morogoro, Tanzania
| | - Yonas Meheretu
- Department of Biology and Institute of Mountain Research & Development, Mekelle University, Mekelle, Ethiopia
| | - Benjamin Dudu Akaibe
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Sylvestre Gambalemoke Mbalitini
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Frederik Van de Perre
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Natalie Van Houtte
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Jan Felix Drexler
- Charite-Universitatsmedizin Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Erik Verheyen
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- OD Taxonomy and Phylogeny-Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Herwig Leirs
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Abstract
Influenza vaccine effectiveness (VE) wanes over the course of a temperate climate winter season but little data are available from tropical countries with year-round influenza virus activity. In Singapore, a retrospective cohort study of adults vaccinated from 2013 to 2017 was conducted. Influenza vaccine failure was defined as hospital admission with polymerase chain reaction-confirmed influenza infection 2–49 weeks after vaccination. Relative VE was calculated by splitting the follow-up period into 8-week episodes (Lexis expansion) and the odds of influenza infection in the first 8-week period after vaccination (weeks 2–9) compared with subsequent 8-week periods using multivariable logistic regression adjusting for patient factors and influenza virus activity. Records of 19 298 influenza vaccinations were analysed with 617 (3.2%) influenza infections. Relative VE was stable for the first 26 weeks post-vaccination, but then declined for all three influenza types/subtypes to 69% at weeks 42–49 (95% confidence interval (CI) 52–92%, P = 0.011). VE declined fastest in older adults, in individuals with chronic pulmonary disease and in those who had been previously vaccinated within the last 2 years. Vaccine failure was significantly associated with a change in recommended vaccine strains between vaccination and observation period (adjusted odds ratio 1.26, 95% CI 1.06–1.50, P = 0.010).
Collapse
|
23
|
Boussier J, Munier S, Achouri E, Meyer B, Crescenzo-Chaigne B, Behillil S, Enouf V, Vignuzzi M, van der Werf S, Naffakh N. RNA-seq accuracy and reproducibility for the mapping and quantification of influenza defective viral genomes. RNA (NEW YORK, N.Y.) 2020; 26:1905-1918. [PMID: 32929001 PMCID: PMC7668258 DOI: 10.1261/rna.077529.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/02/2020] [Indexed: 05/12/2023]
Abstract
Like most RNA viruses, influenza viruses generate defective viral genomes (DVGs) with large internal deletions during replication. There is accumulating evidence supporting a biological relevance of such DVGs. However, further understanding of the molecular mechanisms that underlie the production and biological activity of DVGs is conditioned upon the sensitivity and accuracy of detection methods, that is, next-generation sequencing (NGS) technologies and related bioinformatics algorithms. Although many algorithms were developed, their sensitivity and reproducibility were mostly assessed on simulated data. Here, we introduce DG-seq, a time-efficient pipeline for DVG detection and quantification, and a set of biological controls to assess the performance of not only our bioinformatics algorithm but also the upstream NGS steps. Using these tools, we provide the first rigorous comparison of the two commonly used sample processing methods for RNA-seq, with or without a PCR preamplification step. Our data show that preamplification confers a limited advantage in terms of sensitivity and introduces size- but also sequence-dependent biases in DVG quantification, thereby providing a strong rationale to favor preamplification-free methods. We further examine the features of DVGs produced by wild-type and transcription-defective (PA-K635A or PA-R638A) influenza viruses, and show an increased diversity and frequency of DVGs produced by the PA mutants compared to the wild-type virus. Finally, we demonstrate a significant enrichment in DVGs showing direct, A/T-rich sequence repeats at the deletion breakpoint sites. Our findings provide novel insights into the mechanisms of influenza virus DVG production.
Collapse
Affiliation(s)
- Jeremy Boussier
- Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, INSERM U1223, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 75013 Paris, France
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France
| | - Sandie Munier
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Emna Achouri
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France
- Hub de Bioinformatique et Biostatistique, Institut Pasteur, CNRS USR 3756, 75015 Paris, France
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France
| | - Bernadette Crescenzo-Chaigne
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Sylvie Behillil
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, 75015 Paris, France
| | - Vincent Enouf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, 75015 Paris, France
- Pasteur International Bioresources network (PIBnet), Plateforme de Microbiologie Mutualisée (P2M), Institut Pasteur, 75015 Paris, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, 75015 Paris, France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| |
Collapse
|
24
|
Śmietanka K, Świętoń E, Kozak E, Wyrostek K, Tarasiuk K, Tomczyk G, Konopka B, Welz M, Domańska-Blicharz K, Niemczuk K. Highly Pathogenic Avian Influenza H5N8 in Poland in 2019-2020. J Vet Res 2020; 64:469-476. [PMID: 33367134 PMCID: PMC7734677 DOI: 10.2478/jvetres-2020-0078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Repeated incursions of highly pathogenic avian influenza virus (HPAIV) H5 subtype of Gs/GD lineage pose a serious threat to poultry worldwide. We provide a detailed analysis of the spatio-temporal spread and genetic characteristics of HPAIV Gs/GD H5N8 from the 2019/20 epidemic in Poland. MATERIAL AND METHODS Samples from poultry and free-living birds were tested by real-time RT-PCR. Whole genome sequences from 24 (out of 35) outbreaks were generated and genetic relatedness was established. The clinical status of birds and possible pathways of spread were analysed based on the information provided by veterinary inspections combined with the results of phylogenetic studies. RESULTS Between 31 December 2019 and 31 March 2020, 35 outbreaks in commercial and backyard poultry holdings and 1 case in a wild bird were confirmed in nine provinces of Poland. Most of the outbreaks were detected in meat turkeys and ducks. All characterised viruses were closely related and belonged to a previously unrecognised genotype of HPAIV H5N8 clade 2.3.4.4b. Wild birds and human activity were identified as the major modes of HPAIV spread. CONCLUSION The unprecedentedly late introduction of the HPAI virus urges for re-evaluation of current risk assessments. Continuous vigilance, strengthening biosecurity and intensifying surveillance in wild birds are needed to better manage the risk of HPAI occurrence in the future.
Collapse
Affiliation(s)
- Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Edyta Kozak
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Krzysztof Wyrostek
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | | | - Mirosław Welz
- General Veterinary Inspectorate, 00-930Warsaw, Poland
| | | | - Krzysztof Niemczuk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
25
|
Cevallos C, Culasso ACA, Urquiza J, Ojeda D, Sued O, Figueroa MI, Avila MM, Delpino MV, Quarleri JF. In vivo drug resistance mutation dynamics from the early to chronic stage of infection in antiretroviral-therapy-naïve HIV-infected men who have sex with men. Arch Virol 2020; 165:2915-2919. [PMID: 32978684 DOI: 10.1007/s00705-020-04823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
Human immunodeficiency virus type 1 (HIV) primary drug resistance mutations (DRMs) influence the long-term therapeutic effects of antiretroviral treatment (ART). Drug-resistance genotyping based on polymerase gene sequences obtained by next-generation sequencing (NGS) was performed using samples from 10 ART-naïve HIV-infected men who have sex with men (MSM; P1-P10) from the acute/early to chronic stage of infection. Three of the 10 subjects exhibited the presence of major (abundance, ≥ 20%) viral populations carrying DRM at early/acute stage that later, at the chronic stage, dropped drastically (V106M) or remained highly abundant (E138A). Four individuals exhibited additional DRMs (M46I/L; I47A; I54M, L100V) as HIV minority populations (abundance, 2-20%) that emerged during the chronic stage but ephemerally.
Collapse
Affiliation(s)
- Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina
| | - Andrés C A Culasso
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET) Instituto de Bacteriología Y Virología Molecular (IBaViM) Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier Urquiza
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Ojeda
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - María I Figueroa
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - María M Avila
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Victoria Delpino
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Inmunología, Genética Y Metabolismo (INIGEM), Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Jorge F Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
26
|
Abstract
Alphaherpesviruses, as large double-stranded DNA viruses, were long considered to be genetically stable and to exist in a homogeneous state. Recently, the proliferation of high-throughput sequencing (HTS) and bioinformatics analysis has expanded our understanding of herpesvirus genomes and the variations found therein. Recent data indicate that herpesviruses exist as diverse populations, both in culture and in vivo, in a manner reminiscent of RNA viruses. In this review, we discuss the past, present, and potential future of alphaherpesvirus genomics, including the technical challenges that face the field. We also review how recent data has enabled genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures, including those introduced by cell culture. While we focus on the human alphaherpesviruses, we draw key insights from related veterinary species and from the beta- and gamma-subfamilies of herpesviruses. Promising technologies and potential future directions for herpesvirus genomics are highlighted as well, including the potential to link viral genetic differences to phenotypic and disease outcomes.
Collapse
Affiliation(s)
- Chad V. Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Moriah L. Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
27
|
Burrows N, Bashford-Rogers RJM, Bhute VJ, Peñalver A, Ferdinand JR, Stewart BJ, Smith JEG, Deobagkar-Lele M, Giudice G, Connor TM, Inaba A, Bergamaschi L, Smith S, Tran MGB, Petsalaki E, Lyons PA, Espeli M, Huntly BJP, Smith KGC, Cornall RJ, Clatworthy MR, Maxwell PH. Dynamic regulation of hypoxia-inducible factor-1α activity is essential for normal B cell development. Nat Immunol 2020; 21:1408-1420. [PMID: 32868930 PMCID: PMC7613233 DOI: 10.1038/s41590-020-0772-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/29/2020] [Indexed: 02/02/2023]
Abstract
B lymphocyte development and selection are central to adaptive immunity and self-tolerance. These processes require B cell receptor (BCR) signaling and occur in bone marrow, an environment with variable hypoxia, but whether hypoxia-inducible factor (HIF) is involved is unknown. We show that HIF activity is high in human and murine bone marrow pro-B and pre-B cells and decreases at the immature B cell stage. This stage-specific HIF suppression is required for normal B cell development because genetic activation of HIF-1α in murine B cells led to reduced repertoire diversity, decreased BCR editing and developmental arrest of immature B cells, resulting in reduced peripheral B cell numbers. HIF-1α activation lowered surface BCR, CD19 and B cell-activating factor receptor and increased expression of proapoptotic BIM. BIM deletion rescued the developmental block. Administration of a HIF activator in clinical use markedly reduced bone marrow and transitional B cells, which has therapeutic implications. Together, our work demonstrates that dynamic regulation of HIF-1α is essential for normal B cell development.
Collapse
Affiliation(s)
- Natalie Burrows
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Rachael J M Bashford-Rogers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, Oxford, UK
| | - Vijesh J Bhute
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ana Peñalver
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Joscelin E G Smith
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Girolamo Giudice
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Thomas M Connor
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Akimichi Inaba
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Bergamaschi
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sam Smith
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Maxine G B Tran
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Paul A Lyons
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Marion Espeli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Richard J Cornall
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, Oxford, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
28
|
Fitzpatrick Z, Frazer G, Ferro A, Clare S, Bouladoux N, Ferdinand J, Tuong ZK, Negro-Demontel ML, Kumar N, Suchanek O, Tajsic T, Harcourt K, Scott K, Bashford-Rogers R, Helmy A, Reich DS, Belkaid Y, Lawley TD, McGavern DB, Clatworthy MR. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 2020; 587:472-476. [PMID: 33149302 PMCID: PMC7748383 DOI: 10.1038/s41586-020-2886-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 08/03/2020] [Indexed: 02/02/2023]
Abstract
The central nervous system has historically been viewed as an immune-privileged site, but recent data have shown that the meninges-the membranes that surround the brain and spinal cord-contain a diverse population of immune cells1. So far, studies have focused on macrophages and T cells, but have not included a detailed analysis of meningeal humoral immunity. Here we show that, during homeostasis, the mouse and human meninges contain IgA-secreting plasma cells. These cells are positioned adjacent to dural venous sinuses: regions of slow blood flow with fenestrations that can potentially permit blood-borne pathogens to access the brain2. Peri-sinus IgA plasma cells increased with age and following a breach of the intestinal barrier. Conversely, they were scarce in germ-free mice, but their presence was restored by gut re-colonization. B cell receptor sequencing confirmed that meningeal IgA+ cells originated in the intestine. Specific depletion of meningeal plasma cells or IgA deficiency resulted in reduced fungal entrapment in the peri-sinus region and increased spread into the brain following intravenous challenge, showing that meningeal IgA is essential for defending the central nervous system at this vulnerable venous barrier surface.
Collapse
Affiliation(s)
- Zachary Fitzpatrick
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA
| | - Gordon Frazer
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ashley Ferro
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Nicolas Bouladoux
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - John Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Maria Luciana Negro-Demontel
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA
| | - Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tamara Tajsic
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Katherine Harcourt
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Kirsten Scott
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA
| | - Yasmine Belkaid
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA.
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Kaptein SJF, Jacobs S, Langendries L, Seldeslachts L, Ter Horst S, Liesenborghs L, Hens B, Vergote V, Heylen E, Barthelemy K, Maas E, De Keyzer C, Bervoets L, Rymenants J, Van Buyten T, Zhang X, Abdelnabi R, Pang J, Williams R, Thibaut HJ, Dallmeier K, Boudewijns R, Wouters J, Augustijns P, Verougstraete N, Cawthorne C, Breuer J, Solas C, Weynand B, Annaert P, Spriet I, Vande Velde G, Neyts J, Rocha-Pereira J, Delang L. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. Proc Natl Acad Sci U S A 2020; 117:26955-26965. [PMID: 33037151 PMCID: PMC7604414 DOI: 10.1073/pnas.2014441117] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the globe after its emergence in Wuhan in December 2019. With no specific therapeutic and prophylactic options available, the virus has infected millions of people of which more than half a million succumbed to the viral disease, COVID-19. The urgent need for an effective treatment together with a lack of small animal infection models has led to clinical trials using repurposed drugs without preclinical evidence of their in vivo efficacy. We established an infection model in Syrian hamsters to evaluate the efficacy of small molecules on both infection and transmission. Treatment of SARS-CoV-2-infected hamsters with a low dose of favipiravir or hydroxychloroquine with(out) azithromycin resulted in, respectively, a mild or no reduction in virus levels. However, high doses of favipiravir significantly reduced infectious virus titers in the lungs and markedly improved lung histopathology. Moreover, a high dose of favipiravir decreased virus transmission by direct contact, whereas hydroxychloroquine failed as prophylaxis. Pharmacokinetic modeling of hydroxychloroquine suggested that the total lung exposure to the drug did not cause the failure. Our data on hydroxychloroquine (together with previous reports in macaques and ferrets) thus provide no scientific basis for the use of this drug in COVID-19 patients. In contrast, the results with favipiravir demonstrate that an antiviral drug at nontoxic doses exhibits a marked protective effect against SARS-CoV-2 in a small animal model. Clinical studies are required to assess whether a similar antiviral effect is achievable in humans without toxic effects.
Collapse
Affiliation(s)
- Suzanne J F Kaptein
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium;
| | - Sofie Jacobs
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Lana Langendries
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Laura Seldeslachts
- Biomedical MRI and Molecular Small Animal Imaging Centre, Department of Imaging and Pathology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Sebastiaan Ter Horst
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Laurens Liesenborghs
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Bart Hens
- Drug Delivery & Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Valentijn Vergote
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Elisabeth Heylen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Karine Barthelemy
- Unité des Virus Emergents, Aix Marseille University, Institut de Recherche pour le Développement (IRD) 190, Institut National de la Santé et de la Recherche Médicale (INSERM) 1207, 13005 Marseille, France
| | - Elke Maas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Carolien De Keyzer
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Lindsey Bervoets
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Jasper Rymenants
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Tina Van Buyten
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Xin Zhang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Juanita Pang
- UCL Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, United Kingdom
| | - Rachel Williams
- UCL Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, United Kingdom
| | - Hendrik Jan Thibaut
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Kai Dallmeier
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Robbert Boudewijns
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Jens Wouters
- Molecular Small Animal Imaging Centre, Department of Imaging and Pathology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery & Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Judith Breuer
- UCL Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, United Kingdom
| | - Caroline Solas
- Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Unité des Virus Emergents, Institut de Recherche pour le Développement (IRD) 190, Institut National de la Santé et de la Recherche Médicale (INSERM) 1207, Laboratoire de Pharmacocinétique et Toxicologie, 13005 Marseille, France
| | - Birgit Weynand
- Translational Cell and Tissue Research, Department of Imaging and Pathology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery & Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI and Molecular Small Animal Imaging Centre, Department of Imaging and Pathology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium;
- Global Virus Network, Baltimore, MD 21201
| | - Joana Rocha-Pereira
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium;
| | - Leen Delang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium;
| |
Collapse
|
30
|
Correa-Fiz F, Franzo G, Llorens A, Huerta E, Sibila M, Kekarainen T, Segalés J. Porcine circovirus 2 (PCV2) population study in experimentally infected pigs developing PCV2-systemic disease or a subclinical infection. Sci Rep 2020; 10:17747. [PMID: 33082419 PMCID: PMC7576782 DOI: 10.1038/s41598-020-74627-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is a single stranded DNA virus with one of the highest mutation rates among DNA viruses. This ability allows it to generate a cloud of mutants constantly providing new opportunities to adapt and evade the immune system. This pig pathogen is associated to many diseases, globally called porcine circovirus diseases (PCVD) and has been a threat to pig industry since its discovery in the early 90's. Although 11 ORFs have been predicted from its genome, only two main proteins have been deeply characterized, i.e. Rep and Cap. The structural Cap protein possesses the majority of the epitopic determinants of this non-enveloped virus. The evolution of PCV2 is affected by both natural and vaccine-induced immune responses, which enhances the genetic variability, especially in the most immunogenic Cap region. Intra-host variability has been also demonstrated in infected animals where long-lasting infections can take place. However, the association between this intra-host variability and pathogenesis has never been studied for this virus. Here, the within-host PCV2 variability was monitored over time by next generation sequencing during an experimental infection, demonstrating the presence of large heterogeneity. Remarkably, the level of quasispecies diversity, affecting particularly the Cap coding region, was statistically different depending on viremia levels and clinical signs detected after infection. Moreover, we proved the existence of hyper mutant subjects harboring a remarkably higher number of genetic variants. Altogether, these results suggest an interaction between genetic diversity, host immune system and disease severity.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, PD, Italy
| | - Anna Llorens
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Eva Huerta
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,Kuopio Center for Gene and Cell Therapy, Microkatu 1, Kuopio, Finland
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| |
Collapse
|
31
|
Świętoń E, Tarasiuk K, Śmietanka K. Low pathogenic avian influenza virus isolates with different levels of defective genome segments vary in pathogenicity and transmission efficiency. Vet Res 2020; 51:108. [PMID: 32859269 PMCID: PMC7453376 DOI: 10.1186/s13567-020-00833-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/11/2020] [Indexed: 01/11/2023] Open
Abstract
Defective interfering particles (DIPs) of influenza virus are generated through incorporation of highly truncated forms of genome segments, mostly those coding polymerase complex proteins (PB2, PB1, PA). Such particles are able to replicate only in the presence of a virus with the complete genome, thus DIPs may alter the infection outcome by suppressing production of standard virus particles, but also by stimulating the immune response. In the present study we compared the clinical outcome, mortality and transmission in chickens and turkeys infected with the same infectious doses of H7N7 low pathogenic avian influenza virus containing different levels of defective gene segments (95/95(DVG-high) and 95/95(DVG-low)). No clinical signs, mortality or transmission were noted in SPF chickens inoculated with neither virus stock. Turkeys infected with 95/95(DVG-high) showed only slight clinical signs with no mortality, and the virus was transmitted only to birds in direct contact. In contrast, more severe disease, mortality and transmission to direct and indirect contact birds was observed in turkeys infected with 95/95(DVG-low). Apathy, lower water and food intake, respiratory system disorders and a total mortality of 60% were noted. Shedding patterns in contact turkeys indicated more efficient within- and between-host spread of the virus than in 95/95(DVG-high) group. Sequencing of virus genomes showed no mutations that could account for the observed differences in pathogenicity. The results suggest that the abundance of DIPs in the inoculum was the factor responsible for the mild course of infection and disrupted virus transmission.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| |
Collapse
|
32
|
Chastagner A, Enouf V, Peroz D, Hervé S, Lucas P, Quéguiner S, Gorin S, Beven V, Behillil S, Leneveu P, Garin E, Blanchard Y, van der Werf S, Simon G. Bidirectional Human-Swine Transmission of Seasonal Influenza A(H1N1)pdm09 Virus in Pig Herd, France, 2018. Emerg Infect Dis 2020; 25:1940-1943. [PMID: 31538914 PMCID: PMC6759248 DOI: 10.3201/eid2510.190068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In 2018, a veterinarian became sick shortly after swabbing sows exhibiting respiratory syndrome on a farm in France. Epidemiologic data and genetic analyses revealed consecutive human-to-swine and swine-to-human influenza A(H1N1)pdm09 virus transmission, which occurred despite some biosecurity measures. Providing pig industry workers the annual influenza vaccine might reduce transmission risk.
Collapse
|
33
|
Ultrasensitive amplicon barcoding for next-generation sequencing facilitating sequence error and amplification-bias correction. Sci Rep 2020; 10:10570. [PMID: 32601361 PMCID: PMC7324614 DOI: 10.1038/s41598-020-67290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/01/2020] [Indexed: 11/08/2022] Open
Abstract
The ability to accurately characterize DNA variant proportions using PCR amplification is key to many genetic studies, including studying tumor heterogeneity, 16S microbiome, viral and immune receptor sequencing. We develop a novel generalizable ultrasensitive amplicon barcoding approach that significantly reduces the inflation/deflation of DNA variant proportions due to PCR amplification biases and sequencing errors. This method was applied to immune receptor sequencing, where it significantly improves the quality and estimation of diversity of the resulting library.
Collapse
|
34
|
Barry M, Phan MV, Akkielah L, Al-Majed F, Alhetheel A, Somily A, Alsubaie SS, McNabb SJ, Cotten M, Zumla A, Memish ZA. Nosocomial outbreak of the Middle East Respiratory Syndrome coronavirus: A phylogenetic, epidemiological, clinical and infection control analysis. Travel Med Infect Dis 2020; 37:101807. [PMID: 32599173 PMCID: PMC7319941 DOI: 10.1016/j.tmaid.2020.101807] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Background Middle East Respiratory Syndrome coronavirus (MERS-CoV) continues to cause intermittent community and nosocomial outbreaks. Obtaining data on specific source(s) and transmission dynamics of MERS-CoV during nosocomial outbreaks has been challenging. We performed a clinical, epidemiological and phylogenetic investigation of an outbreak of MERS-CoV at a University Hospital in Riyadh, Kingdom of Saudi Arabia. Methods Clinical, epidemiological and infection control data were obtained from patients and Healthcare workers (HCWs). Full genome sequencing was conducted on nucleic acid extracted directly from MERS-CoV PCR-confirmed clinical samples and phylogenetic analysis performed. Phylogenetic analysis combined with published MERS-CoV genomes was performed. HCWs compliance with infection control practices was also assessed. Results Of 235 persons investigated, there were 23 laboratory confirmed MERS cases, 10 were inpatients and 13 HCWs. Eight of 10 MERS inpatients died (80% mortality). There were no deaths among HCWs. The primary index case assumed from epidemiological investigation was not substantiated phylogenetically. 17/18 MERS cases were linked both phylogenetically and epidemiologically. One asymptomatic HCW yielded a MERS-CoV genome not directly linked to any other case in the investigation. Five HCWs with mild symptoms yielded >75% full MERS-CoV genome sequences. HCW compliance with use of gowns was 62.1%, gloves 69.7%, and masks 57.6%. Conclusions Several factors and sources, including a HCW MERS-CoV ‘carrier phenomenon’, occur during nosocomial MERS-CoV outbreaks. Phylogenetic analyses of MERS-CoV linked to clinical and epidemiological information is essential for outbreak investigation. The specific role of apparently healthy HCWs in causing nosocomial outbreaks requires further definition.
Collapse
Affiliation(s)
- Mazin Barry
- Infectious Diseases Division, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
| | - My Vt Phan
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom.
| | - Layan Akkielah
- Department of Internal Medicine, King Khalid University Hospital, Riyadh, Saudi Arabia.
| | - Fahad Al-Majed
- Infectious Diseases Division, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulkarim Alhetheel
- Division of Microbiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
| | - Ali Somily
- Division of Microbiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
| | - Sarah Suliman Alsubaie
- Division of Pediatric Infectious Diseases, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
| | - Scott Jn McNabb
- Emory University, Rollins School of Public Health, Atlanta, GA, USA.
| | - Matthew Cotten
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Alimuddin Zumla
- Division of Infection and Immunity, Center for Clinical Microbiology, University College London, UK; National Institute of Health Research Biomedical Research Centre at UCL Hospitals, London, UK.
| | - Ziad A Memish
- Senior Infectious Diseases Consultant & Director Research & Innovation Center, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Faculty of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
35
|
Jones J, Depledge DP, Breuer J, Ebert-Keel K, Elliott G. Genetic and phenotypic intrastrain variation in herpes simplex virus type 1 Glasgow strain 17 syn+-derived viruses. J Gen Virol 2020; 100:1701-1713. [PMID: 31661047 DOI: 10.1099/jgv.0.001343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Glasgow s17 syn+ strain of herpes simplex virus 1 (HSV1) is arguably the best characterized strain and has provided the reference sequence for HSV1 genetic studies. Here we show that our original s17 syn+ stock was a mixed population from which we have isolated a minor variant that, unlike other strains in the laboratory, fails to be efficiently released from infected cells and spreads predominantly by direct cell-to-cell transmission. Analysis of other s17-derived viruses that had been isolated elsewhere revealed a number with the same release phenotype. Second-generation sequencing of 8 plaque-purified s17-derived viruses revealed sequences that vary by 50 single-nucleotide polymorphisms (SNPs), including approximately 10 coding SNPs. This compared to interstrain variations of around 800 SNPs in strain Sc16, of which a quarter were coding changes. Amongst the variations found within s17, we identified 13 variants of glycoprotein C within the original stock of virus that were predominantly a consequence of altered homopolymeric runs of C residues. Characterization of seven isolates coding for different forms of gC indicated that all were expressed, despite six of them lacking a transmembrane domain. While the release phenotype did not correlate directly with any of these identified gC variations, further demonstration that nine clinical isolates of HSV1 also fail to spread through extracellular release raises the possibility that propagation in tissue culture had altered the HSV1 s17 transmission phenotype. Hence, the s17 intrastrain variation identified here offers an excellent model for understanding both HSV1 transmission and tissue culture adaptation.
Collapse
Affiliation(s)
- Juliet Jones
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Daniel Pearce Depledge
- Present address: Department of Medicine, New York University School of Medicine, New York, USA.,Division of Infection and Immunity, University College London, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Katja Ebert-Keel
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
36
|
Gloria‐Soria A, Mendiola SY, Morley VJ, Alto BW, Turner PE. Prior evolution in stochastic versus constant temperatures affects RNA virus evolvability at a thermal extreme. Ecol Evol 2020; 10:5440-5450. [PMID: 32607165 PMCID: PMC7319105 DOI: 10.1002/ece3.6287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
It is unclear how historical adaptation versus maladaptation in a prior environment affects population evolvability in a novel habitat. Prior work showed that vesicular stomatitis virus (VSV) populations evolved at constant 37°C improved in cellular infection at both 29°C and 37°C; in contrast, those evolved under random changing temperatures between 29°C and 37°C failed to improve. Here, we tested whether prior evolution affected the rate of adaptation at the thermal-niche edge: 40°C. After 40 virus generations in the new environment, we observed that populations historically evolved at random temperatures showed greater adaptability. Deep sequencing revealed that most of the newly evolved mutations were de novo. Also, two novel evolved mutations in the VSV glycoprotein and replicase genes tended to co-occur in the populations previously evolved at constant 37°C, whereas this parallelism was not seen in populations with prior random temperature evolution. These results suggest that prior adaptation under constant versus random temperatures constrained the mutation landscape that could improve fitness in the novel 40°C environment, perhaps owing to differing epistatic effects of new mutations entering genetic architectures that earlier diverged. We concluded that RNA viruses maladapted to their previous environment could "leapfrog" over counterparts of higher fitness, to achieve faster adaptability in a novel environment.
Collapse
Affiliation(s)
- Andrea Gloria‐Soria
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
- Present address:
Department of Environmental Sciences, Center for Vector Biology and Zoonotic DiseasesThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Sandra Y. Mendiola
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
- Present address:
Department of BiologyEmory UniversityAtlantaGA30322USA
| | - Valerie J. Morley
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
- Present address:
Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Barry W. Alto
- Florida Medical Entomology LaboratoryUniversity of FloridaVero BeachFLUSA
| | - Paul E. Turner
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
- Program in MicrobiologyYale School of MedicineNew HavenCTUSA
| |
Collapse
|
37
|
Świętoń E, Tarasiuk K, Olszewska-Tomczyk M, Iwan E, Śmietanka K. A Turkey-origin H9N2 Avian Influenza Virus Shows Low Pathogenicity but Different Within-Host Diversity in Experimentally Infected Turkeys, Quail and Ducks. Viruses 2020; 12:v12030319. [PMID: 32188100 PMCID: PMC7150878 DOI: 10.3390/v12030319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Avian influenza virus (AIV) is a highly diverse and widespread poultry pathogen. Its evolution and adaptation may be affected by multiple host and ecological factors, which are still poorly understood. In the present study, a turkey-origin H9N2 AIV was used as a model to investigate the within-host diversity of the virus in turkeys, quail and ducks in conjunction with the clinical course, shedding and seroconversion. Ten birds were inoculated oculonasally with a dose of 106 EID50 of the virus and monitored for 14 days. Virus shedding, transmission and seroconversion were evaluated, and swabs collected at selected time-points were characterized in deep sequencing to assess virus diversity. In general, the virus showed low pathogenicity for the examined bird species, but differences in shedding patterns, seroconversion and clinical outcome were noted. The highest heterogeneity of the virus population as measured by the number of single nucleotide polymorphisms and Shannon entropy was found in oropharyngeal swabs from quail, followed by turkeys and ducks. This suggests a strong bottleneck was imposed on the virus during replication in ducks, which can be explained by its poor adaptation and stronger selection pressure in waterfowl. The high within-host virus diversity in quail with high level of respiratory shedding and asymptomatic course of infection may contribute to our understanding of the role of quail as an intermediate host for adaptation of AIV to other species of poultry. In contrast, low virus complexity was observed in cloacal swabs, mainly from turkeys, showing that the within-host diversity may vary between different replication sites. Consequences of these observations on the virus evolution and adaptation require further investigation.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
- Correspondence:
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| | - Monika Olszewska-Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| | - Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland;
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| |
Collapse
|
38
|
Wang M, Yan J, Zhu L, Wang M, Liu L, Yu R, Chen M, Xun J, Zhang Y, Yi Z, Zhang S. The Establishment of Infectious Clone and Single Round Infectious Particles for Coxsackievirus A10. Virol Sin 2020; 35:426-435. [PMID: 32144688 DOI: 10.1007/s12250-020-00198-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023] Open
Abstract
Coxsackievirus A10 (CVA10) is one of the major etiological agents of hand, foot, and mouth disease. There are no vaccine and antiviral drugs for controlling CVA10 infection. Reverse genetic tools for CVA10 will benefit its mechanistic study and development of vaccines and antivirals. Here, two infectious clones for the prototype and a Myc-tagged CVA10 were constructed. Viable CVA10 viruses were harvested by transfecting the viral mRNA into human rhabdomyosarcoma (RD) cells. Rescued CVA10 was further confirmed by next generation sequencing and characterized experimentally. We also constructed the vectors for CVA10 subgenomic replicon with luciferase reporter and viral capsid with EGFP reporter, respectively. Co-transfection of the viral replicon RNA and capsid expresser in human embryonic kidney 293T (HEK293T) cells led to the production of single round infectious particles (SRIPs). Based on CVA10 replicon RNA, SRIPs with either the enterovirus A71 (EVA71) capsid or the CVA10 capsid were generated. Infection by EVA71 SRIPs required SCARB2, while CVA10 SRIPs did not. Finally, we showed great improvement of the replicon activity and SRIPs production by insertion of a cis-active hammerhead ribozyme (HHRib) before the 5'-untranslated region (UTR). In summary, reverse genetic tools for prototype strain of CVA10, including both the infectious clone and the SRIPs system, were successfully established. These tools will facilitate the basic and translational study of CVA10.
Collapse
Affiliation(s)
- Min Wang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Jingjing Yan
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Liuyao Zhu
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Meng Wang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Lizhen Liu
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Rui Yu
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Ming Chen
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Jingna Xun
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Yuling Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Zhigang Yi
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
39
|
Genomic monitoring to understand the emergence and spread of Usutu virus in the Netherlands, 2016-2018. Sci Rep 2020; 10:2798. [PMID: 32071379 PMCID: PMC7029044 DOI: 10.1038/s41598-020-59692-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus circulating in Western Europe that causes die-offs of mainly common blackbirds (Turdus merula). In the Netherlands, USUV was first detected in 2016, when it was identified as the likely cause of an outbreak in birds. In this study, dead blackbirds were collected, screened for the presence of USUV and submitted to Nanopore-based sequencing. Genomic sequences of 112 USUV were obtained and phylogenetic analysis showed that most viruses identified belonged to the USUV Africa 3 lineage, and molecular clock analysis evaluated their most recent common ancestor to 10 to 4 years before first detection of USUV in the Netherlands. USUV Europe 3 lineage, commonly found in Germany, was less frequently detected. This analyses further suggest some extent of circulation of USUV between the Netherlands, Germany and Belgium, as well as likely overwintering of USUV in the Netherlands.
Collapse
|
40
|
Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González N, González-Candelas F. High-throughput sequencing (HTS) for the analysis of viral populations. INFECTION GENETICS AND EVOLUTION 2020; 80:104208. [PMID: 32001386 DOI: 10.1016/j.meegid.2020.104208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely application of this implementation will be the analysis of viral genomics, because the huge population sizes, high mutation rates and very fast replacement of viral populations have demonstrated the limited information obtained with Sanger technology. In this review, we describe new technologies and provide guidelines for the high-throughput sequencing and genetic and evolutionary analyses of viral populations and metaviromes, including software applications. With the development of new HTS technologies, new and refurbished molecular and bioinformatic tools are also constantly being developed to process and integrate HTS data. These allow assembling viral genomes and inferring viral population diversity and dynamics. Finally, we also present several applications of these approaches to the analysis of viral clinical samples including transmission clusters and outbreak characterization.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain; Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Juan Carlos Galán
- Microbiology Service, Hospital Ramón y Cajal, Madrid, Spain; CIBER in Epidemiology and Public Health, Spain.
| | - Mª Alma Bracho
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.
| | - Julia Hillung
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Neris García-González
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| |
Collapse
|
41
|
Extensive recombination challenges the utility of Sugarcane mosaic virus phylogeny and strain typing. Sci Rep 2019; 9:20067. [PMID: 31882631 PMCID: PMC6934591 DOI: 10.1038/s41598-019-56227-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022] Open
Abstract
Sugarcane mosaic virus (SCMV) is distributed worldwide and infects three major crops: sugarcane, maize, and sorghum. The impact of SCMV is increased by its interaction with Maize chlorotic mottle virus which causes the synergistic maize disease maize lethal necrosis. Here, we characterised maize lethal necrosis-infected maize from multiple sites in East Africa, and found that SCMV was present in all thirty samples. This distribution pattern indicates that SCMV is a major partner virus in the East African maize lethal necrosis outbreak. Consistent with previous studies, our SCMV isolates were highly variable with several statistically supported recombination hot- and cold-spots across the SCMV genome. The recombination events generate conflicting phylogenetic signals from different fragments of the SCMV genome, so it is not appropriate to group SCMV genomes by simple similarity.
Collapse
|
42
|
Strubbia S, Phan MVT, Schaeffer J, Koopmans M, Cotten M, Le Guyader FS. Characterization of Norovirus and Other Human Enteric Viruses in Sewage and Stool Samples Through Next-Generation Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:400-409. [PMID: 31446609 PMCID: PMC6848244 DOI: 10.1007/s12560-019-09402-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/17/2019] [Indexed: 05/06/2023]
Abstract
This study aimed to optimize a method to identify human enteric viruses in sewage and stool samples using random primed next-generation sequencing. We tested three methods, two employed virus enrichment based on the binding properties of the viral capsid using pig-mucin capture or by selecting viral RNA prior to library preparation through a capture using the SureSelect target enrichment. The third method was based on a non-specific biophysical precipitation with polyethylene glycol. Full genomes of a number of common human enteric viruses including norovirus, rotavirus, husavirus, enterovirus and astrovirus were obtained. In stool samples full norovirus genome were detected as well as partial enterovirus genome. A variety of norovirus sequences was detected in sewage samples, with genogroup II being more prevalent. Interestingly, the pig-mucin capture enhanced not only the recovery of norovirus and rotavirus but also recovery of astrovirus, sapovirus and husavirus. Documenting sewage virome using these methods provides information for molecular epidemiology and may be useful in developing strategies to prevent further spread of viruses.
Collapse
Affiliation(s)
- Sofia Strubbia
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, BP 21105, 44311, Nantes Cedex 3, France
| | - My V T Phan
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Julien Schaeffer
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, BP 21105, 44311, Nantes Cedex 3, France
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Matthew Cotten
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- London School of Hygiene and Tropical Medicine, London, UK
- Uganda Virus Research Institute, Entebbe, Uganda
- MRC-Centre for Virus Research, Glasgow, UK
| | - Françoise S Le Guyader
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, BP 21105, 44311, Nantes Cedex 3, France.
| |
Collapse
|
43
|
Blackburn RM, Frampton D, Smith CM, Fragaszy EB, Watson SJ, Ferns RB, Binter Š, Coen PG, Grant P, Shallcross LJ, Kozlakidis Z, Pillay D, Kellam P, Hué S, Nastouli E, Hayward AC. Nosocomial transmission of influenza: A retrospective cross-sectional study using next generation sequencing at a hospital in England (2012-2014). Influenza Other Respir Viruses 2019; 13:556-563. [PMID: 31536169 PMCID: PMC6800305 DOI: 10.1111/irv.12679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The extent of transmission of influenza in hospital settings is poorly understood. Next generation sequencing may improve this by providing information on the genetic relatedness of viral strains. OBJECTIVES We aimed to apply next generation sequencing to describe transmission in hospital and compare with methods based on routinely-collected data. METHODS All influenza samples taken through routine care from patients at University College London Hospitals NHS Foundation Trust (September 2012 to March 2014) were included. We conducted Illumina sequencing and identified genetic clusters. We compared nosocomial transmission estimates defined using classical methods (based on time from admission to sample) and genetic clustering. We identified pairs of cases with space-time links and assessed genetic relatedness. RESULTS We sequenced influenza sampled from 214 patients. There were 180 unique genetic strains, 16 (8.8%) of which seeded a new transmission chain. Nosocomial transmission was indicated for 32 (15.0%) cases using the classical definition and 34 (15.8%) based on genetic clustering. Of the 50 patients in a genetic cluster, 11 (22.0%) had known space-time links with other cases in the same cluster. Genetic distances between pairs of cases with space-time links were lower than for pairs without spatial links (P < .001). CONCLUSIONS Genetic data confirmed that nosocomial transmission contributes significantly to the hospital burden of influenza and elucidated transmission chains. Prospective next generation sequencing could support outbreak investigations and monitor the impact of infection and control measures.
Collapse
Affiliation(s)
| | | | | | - Ellen B. Fragaszy
- Institute of Health InformaticsUCLLondonUK
- Department of Infectious Disease EpidemiologyFaculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
| | - Simon J. Watson
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
| | - R. Bridget Ferns
- Clinical Microbiology and VirologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Špela Binter
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
| | - Pietro G. Coen
- Infection Control DepartmentUniversity College London HospitalsNHS Foundation TrustLondonUK
| | - Paul Grant
- Clinical Microbiology and VirologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | | | - Zisis Kozlakidis
- Institute of Health InformaticsUCLLondonUK
- International Agency for Research on CancerWorld Health OrganizationLyonFrance
| | - Deenan Pillay
- Division of Infection and ImmunityUCLLondonUK
- Africa Health Research InstituteDurbanSouth Africa
| | - Paul Kellam
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
| | - Stéphane Hué
- Department of Infectious Disease EpidemiologyFaculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
| | - Eleni Nastouli
- Clinical Microbiology and VirologyUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Population, Policy and PracticeUCL Institute of Child HealthLondonUK
| | | |
Collapse
|
44
|
Strubbia S, Schaeffer J, Oude Munnink BB, Besnard A, Phan MVT, Nieuwenhuijse DF, de Graaf M, Schapendonk CME, Wacrenier C, Cotten M, Koopmans MPG, Le Guyader FS. Metavirome Sequencing to Evaluate Norovirus Diversity in Sewage and Related Bioaccumulated Oysters. Front Microbiol 2019; 10:2394. [PMID: 31681246 PMCID: PMC6811496 DOI: 10.3389/fmicb.2019.02394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Metagenomic sequencing is a promising method to determine the virus diversity in environmental samples such as sewage or shellfish. However, to identify the short RNA genomes of human enteric viruses among the large diversity of nucleic acids present in such complex matrices, method optimization is still needed. This work presents methodological developments focused on norovirus, a small ssRNA non-enveloped virus known as the major cause of human gastroenteritis worldwide and frequently present in human excreta and sewage. Different elution protocols were applied and Illumina MiSeq technology were used to study norovirus diversity. A double approach, agnostic deep sequencing and a capture-based approach (VirCapSeq-VERT) was used to identify norovirus in environmental samples. Family-specific viral contigs were classified and sorted by SLIM and final norovirus contigs were genotyped using the online Norovirus genotyping tool v2.0. From sewage samples, 14 norovirus genogroup I sequences were identified of which six were complete genomes. For norovirus genogroup II, nine sequences were identified and three of them comprised more than half of the genome. In oyster samples bioaccumulated with these sewage samples, only the use of an enrichment step during library preparation allowed successful identification of nine different sequences of norovirus genogroup I and four for genogroup II (>500 bp). This study demonstrates the importance of method development to increase virus recovery, and the interest of a capture-based approach to be able to identify viruses present at low concentrations.
Collapse
Affiliation(s)
- Sofia Strubbia
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, Nantes, France
| | - Julien Schaeffer
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, Nantes, France
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alban Besnard
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, Nantes, France
| | - My V T Phan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - David F Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Candice Wacrenier
- Laboratoire de Microbiologie, LSEM-SG2M-RBE, Ifremer, Nantes, France
| | - Matthew Cotten
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
45
|
Chen KY, Santos Afonso ED, Enouf V, Isel C, Naffakh N. Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer. PLoS Pathog 2019; 15:e1008034. [PMID: 31581279 PMCID: PMC6776259 DOI: 10.1371/journal.ppat.1008034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022] Open
Abstract
The influenza A virus RNA-dependent RNA polymerase complex consists in three subunits, PB2, PB1 and PA, that perform transcription and replication of the viral genome through very distinct mechanisms. Biochemical and structural studies have revealed that the polymerase can adopt multiple conformations and form oligomers. However so far it remained unclear whether the available oligomeric crystal structures represent a functional state of the polymerase. Here we gained new insights into this question, by investigating the incompatibility between non-cognate subunits of influenza polymerase brought together through genetic reassortment. We observed that a 7:1 reassortant virus whose PB2 segment derives from the A/WSN/33 (WSN) virus in an otherwise A/PR/8/34 (PR8) backbone is attenuated, despite a 97% identity between the PR8-PB2 and WSN-PB2 proteins. Independent serial passages led to the selection of phenotypic revertants bearing distinct second-site mutations on PA, PB1 and/or PB2. The constellation of mutations present on one revertant virus was studied extensively using reverse genetics and cell-based reconstitution of the viral polymerase. The PA-E349K mutation appeared to play a major role in correcting the initial defect in replication (cRNA -> vRNA) of the PR8xWSN-PB2 reassortant. Strikingly the PA-E349K mutation, and also the PB2-G74R and PB1-K577G mutations present on other revertants, are located at a dimerization interface of the polymerase. All three restore wild-type-like polymerase activity in a minigenome assay while decreasing the level of polymerase dimerization. Overall, our data show that the polymerase subunits co-evolve to ensure not only optimal inter-subunit interactions within the heterotrimer, but also proper levels of dimerization of the heterotrimer which appears to be essential for efficient viral RNA replication. Our findings point to influenza polymerase dimerization as a feature that is controlled by a complex interplay of genetic determinants, can restrict genetic reassortment, and could become a target for antiviral drug development.
Collapse
Affiliation(s)
- Kuang-Yu Chen
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Vincent Enouf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, Paris, France
- Pasteur International Bioresources network (PIBnet), Plateforme de Microbiologie Mutualisée (P2M), Institut Pasteur, Paris, France
| | - Catherine Isel
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
46
|
Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 2019; 574:122-126. [PMID: 31554970 PMCID: PMC6795535 DOI: 10.1038/s41586-019-1595-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/21/2019] [Indexed: 01/22/2023]
Abstract
B cells are important in the pathogenesis of many, and perhaps all, immune-mediated diseases (IMDs). Each B cell expresses a single B cell receptor (BCR)1, with the diverse range of BCRs expressed by an individual’s total B cell population being termed the “BCR repertoire”. Our understanding of the BCR repertoire in the context of IMDs is incomplete, and defining this could reveal new insights into pathogenesis and therapy. We therefore compared the BCR repertoire in systemic lupus erythematosus (SLE), ANCA-associated vasculitis (AAV), Crohn’s disease (CD), Behçet’s disease (BD), eosinophilic granulomatosis with polyangiitis (EGPA) and IgA vasculitis (IgAV), analysing BCR clonality, and immunoglobulin heavy chain gene (IGHV) and, in particular, isotype usage. An IgA-dominated increased clonality in SLE and CD, together with skewed IGHV gene usage in these and other diseases, suggested a microbial contribution to pathogenesis. Different immunosuppressive treatment had specific and distinct impacts on the repertoire; B cells persisting after rituximab were predominately isotype-switched and clonally expanded, the inverse of those persisting after mycophenolate mofetil. A comparative analysis of the BCR repertoire in immune-mediated disease reveals a complex B cell architecture, providing a platform for understanding pathological mechanisms and designing treatment strategies.
Collapse
|
47
|
Bergervoet SA, Pritz-Verschuren SBE, Gonzales JL, Bossers A, Poen MJ, Dutta J, Khan Z, Kriti D, van Bakel H, Bouwstra R, Fouchier RAM, Beerens N. Circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands, 2006-2016. Sci Rep 2019; 9:13681. [PMID: 31548582 PMCID: PMC6757041 DOI: 10.1038/s41598-019-50170-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
In this study, we explore the circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands. Surveillance data collected between 2006 and 2016 was used to evaluate subtype diversity, spatiotemporal distribution and genetic relationships between wild bird and poultry viruses. We observed close species-dependent associations among hemagglutinin and neuraminidase subtypes. Not all subtypes detected in wild birds were found in poultry, suggesting transmission to poultry is selective and likely depends on viral factors that determine host range restriction. Subtypes commonly detected in poultry were in wild birds most frequently detected in mallards and geese. Different temporal patterns in virus prevalence were observed between wild bird species. Virus detections in domestic ducks coincided with the prevalence peak in wild ducks, whereas virus detections in other poultry types were made throughout the year. Genetic analysis of the surface genes demonstrated that most poultry viruses were related to locally circulating wild bird viruses, but no direct spatiotemporal link was observed. Results indicate prolonged undetected virus circulation and frequent reassortment events with local and newly introduced viruses within the wild bird population. Increased knowledge on LPAI virus circulation can be used to improve surveillance strategies.
Collapse
Affiliation(s)
- Saskia A Bergervoet
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jose L Gonzales
- Department of Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Marjolein J Poen
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.
| |
Collapse
|
48
|
Świętoń E, Olszewska-Tomczyk M, Giza A, Śmietanka K. Evolution of H9N2 low pathogenic avian influenza virus during passages in chickens. INFECTION GENETICS AND EVOLUTION 2019; 75:103979. [PMID: 31351233 DOI: 10.1016/j.meegid.2019.103979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
The process of avian influenza virus (AIV) evolution in a new host was investigated in the experiment in which ten serial passages of a turkey-derived H9N2 AIV were carried out in specific pathogen free chickens (3 birds/group) inoculated by oculonasal route. Oropharyngeal swabs collected 3 days post infection were used for inoculation of birds in the next passage and subjected to analysis using deep sequencing. In total, eight mutations in the consensus sequence were found in the viral pool derived from the 10th passage: four mutations (2 in PB1 and 2 in HA) were present in the inoculum as minority variants while the other four (2 in NP, 1 in PA and 1 in HA) emerged during the passages in chickens. The detected fluctuations in the genetic heterogeneity of viral pools from consecutive passages were most likely attributed to the selective bottleneck. The genes known for bearing molecular determinants of the AIV host specificity (HA, PB2, PB1, PA) contributed most to the overall virus diversity. In some cases, a fast selection of the novel variant was noticed. For example, the amino-acid substitution N337K in the haemagglutinin (HA) cleavage site region detected in the 6th passage as low frequency variant had undergone rapid selection and became predominant in the 7th passage. Interestingly, detection of identical mutation in the field H9N2 isolates 1-year apart suggests that this substitution might provide the virus with a selective advantage. However, the role of specific mutations and their influence on the virus adaptation or fitness are mostly unknown and require further investigations.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland.
| | - Monika Olszewska-Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Aleksandra Giza
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
49
|
Genomic analysis of respiratory syncytial virus infections in households and utility in inferring who infects the infant. Sci Rep 2019; 9:10076. [PMID: 31296922 PMCID: PMC6624209 DOI: 10.1038/s41598-019-46509-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Infants (under 1-year-old) are at most risk of life threatening respiratory syncytial virus (RSV) disease. RSV epidemiological data alone has been insufficient in defining who acquires infection from whom (WAIFW) within households. We investigated RSV genomic variation within and between infected individuals and assessed its potential utility in tracking transmission in households. Over an entire single RSV season in coastal Kenya, nasal swabs were collected from members of 20 households every 3-4 days regardless of symptom status and screened for RSV nucleic acid. Next generation sequencing was used to generate >90% RSV full-length genomes for 51.1% of positive samples (191/374). Single nucleotide polymorphisms (SNPs) observed during household infection outbreaks ranged from 0-21 (median: 3) while SNPs observed during single-host infection episodes ranged from 0-17 (median: 1). Using the viral genomic data alone there was insufficient resolution to fully reconstruct within-household transmission chains. For households with clear index cases, the most likely source of infant infection was via a toddler (aged 1 to <3 years-old) or school-aged (aged 6 to <12 years-old) co-occupant. However, for best resolution of WAIFW within households, we suggest an integrated analysis of RSV genomic and epidemiological data.
Collapse
|
50
|
Welkers MRA, Pawestri HA, Fonville JM, Sampurno OD, Pater M, Holwerda M, Han AX, Russell CA, Jeeninga RE, Setiawaty V, de Jong MD, Eggink D. Genetic diversity and host adaptation of avian H5N1 influenza viruses during human infection. Emerg Microbes Infect 2019; 8:262-271. [PMID: 30866780 PMCID: PMC6455201 DOI: 10.1080/22221751.2019.1575700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continuing pandemic threat posed by avian influenza A/H5N1 viruses calls for improved insights into their evolution during human infection. We performed whole genome deep sequencing of respiratory specimens from 44 H5N1-infected individuals from Indonesia and found substantial within-host viral diversity. At nearly 30% of genome positions multiple amino acids were observed within or across samples, including positions implicated in aerosol transmission between ferrets. Amino acid variants detected our cohort were often found more frequently in available H5N1 sequences of human than avian isolates. We additionally identified previously unreported amino acid variants and multiple variants that increased in proportion over time in available sequential samples. Given the importance of the polymerase complex for host adaptation, we tested 121 amino acid variants found in the PB2, PB1 and PA subunits for their effects on polymerase activity in human cells. We identified multiple single amino acid variants in all three polymerase subunits that substantially increase polymerase activity including some with effects comparable to that of the widely recognized adaption and virulence marker PB2-E627 K. These results indicate highly dynamic evolutionary processes during human H5N1 virus infection and the potential existence of previously undocumented adaptive pathways.
Collapse
Affiliation(s)
- Matthijs R A Welkers
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Hana A Pawestri
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Judy M Fonville
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands.,c Department of Zoology , University of Cambridge , Cambridge , UK.,e Department of Medical Microbiology , PAMM , Veldhoven , Netherlands
| | - Ondri D Sampurno
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Maarten Pater
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Melle Holwerda
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Alvin X Han
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands.,d Bioinformatics Institute, A*STAR , Singapore , Singapore
| | - Colin A Russell
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Rienk E Jeeninga
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Vivi Setiawaty
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Menno D de Jong
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Dirk Eggink
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| |
Collapse
|