1
|
Murala MST, Gairola V, Sayedahmed EE, Mittal SK. Next-Generation Adenoviral Vector-Based Vaccines for Severe Acute Respiratory Syndrome Coronavirus-2. Vaccines (Basel) 2025; 13:406. [PMID: 40333307 PMCID: PMC12031563 DOI: 10.3390/vaccines13040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
This review systematically revises adenovirus (Ad) biology, vector structure, immune responses, and currently available Ad vector COVID-19 vaccines. It analyzes the challenges associated with the Ad vector-based vaccines, including preexisting vector immunity and other side effects. Moreover, this review explores novel and innovative strategies to overcome these constraints for developing next-generation vaccines for broad protection to cover emerging SARS-CoV-2 variants. The future refinement of Ad vaccine platforms will be pivotal in achieving durable immunity against emerging variants for global preparedness.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.S.T.M.); (V.G.); (E.E.S.)
| |
Collapse
|
2
|
Zhang Y, Fang L, Wang Z, Zhang C, Zhao J, Daemi HB, Zhang M, Yuan L, Han X, Li L, Fu ZF, Zhou M, Zhao L. A modified recombinant adenovirus vector containing dual rabies virus G expression cassettes confers robust and long-lasting humoral immunity in mice, cats, and dogs. Emerg Microbes Infect 2024; 13:2300461. [PMID: 38164714 PMCID: PMC10810672 DOI: 10.1080/22221751.2023.2300461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
During the COVID-19 epidemic, the incidence of rabies has increased in several countries, especially in remote and disadvantaged areas, due to inadequate surveillance and declining immunization coverage. Multiple vaccinations with inactivated rabies virus vaccines for pre- or post-exposure prophylaxis are considered inefficient, expensive and impractical in developing countries. Herein, three modified human recombinant adenoviruses type 5 designated Adv-RVG, Adv-E1-RVG, and Adv-RVDG, carrying rabies virus G (RVG) expression cassettes in various combinations within E1 or E3 genomic regions, were constructed to serve as rabies vaccine candidates. Adv-RVDG mediated greater RVG expression both in vitro and in vivo and induced a more robust and durable humoral immune response than the rabies vaccine strain SAD-L16, Adv-RVG, and Adv-E1-RVG by more effectively activating the dendritic cells (DCs) - follicular helper T (Tfh) cells - germinal centre (GC) / memory B cells (MBCs) - long-lived plasma cells (LLPCs) axis with 100% survival after a lethal RABV challenge in mice during the 24-week study period. Similarly, dogs and cats immunized with Adv-RVDG showed stronger and longer-lasting antibody responses than those vaccinated with a commercial inactivated rabies vaccine and showed good tolerance to Adv-RVDG. In conclusion, our study demonstrated that simultaneous insertion of protective antigens into the E1 and E3 genomic regions of adenovirus vector can significantly enhance the immunogenicity of adenoviral-vectored vaccines, providing a theoretical and practical basis for the subsequent development of multivalent and multi-conjugated vaccines using recombinant adenovirus platform. Meanwhile, our data suggest Adv-RVDG is a safe, efficient, and economical vaccine for mass-coverage immunization.
Collapse
Affiliation(s)
- Yuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Lingying Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Hakimeh Baghaei Daemi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mai Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Liwen Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaohu Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Linfeng Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ming Zhou
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Francisco AG, Reyes JCB, Tabios IKB, Cruz CJG, Ang MAC, Heralde FM, Lacuna ARG, de Paz-Silava SLM. Seroprevalence of human adenovirus type 5 neutralizing antibodies in the Philippines. PLoS One 2023; 18:e0293046. [PMID: 38039314 PMCID: PMC10691707 DOI: 10.1371/journal.pone.0293046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Human adenovirus (HAdV), particularly the HAdV type 5 (HAdV-5), has been extensively utilized in the development of vector vaccines due to its high immunogenicity, good safety profile, and ease of propagation. However, one of the main challenges in its use is the presence of pre-existing immunity among vaccine recipients. Pre-existing neutralizing antibodies (NAbs) can prevent the uptake of HAdV-5 vectors and reduce vaccine efficacy. Hence, this study investigated the seroprevalence of NAbs against HAdV-5 in urban and rural regions of the Philippines. Luciferase-based neutralization assay was performed on 391 plasma/serum samples. Out of these samples, 346 or 88.5% were positive for HAdV-5 NAbs, and the majority of them (56.8%) had high titers against the virus. Among the regions included in this study, Bicol (Region V) had the highest seroprevalence rate (94.1%). Our findings show that a significant number of adults in the Philippines have pre-existing immunity against HAdV-5. This supports the recommendation that vaccination programs in the country should consider implementing vaccination techniques, such as a prime-boost regimen or addition of booster doses, to address the potential negative effects of pre-existing HAdV-5 immunity in the efficacy of adenoviral vector-based vaccines.
Collapse
Affiliation(s)
- Abialbon G. Francisco
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - John Carlo B. Reyes
- Department of Laboratories, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Ian Kim B. Tabios
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Criselda Jean G. Cruz
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Mark Angelo C. Ang
- Department of Laboratories, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
- Department of Pathology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Francisco M. Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Azita Racquel G. Lacuna
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | | |
Collapse
|
4
|
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A, Jesawadawala M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines (Basel) 2023; 11:432. [PMID: 36851309 PMCID: PMC9965371 DOI: 10.3390/vaccines11020432] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Disha Valu
- Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bindra Patel
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Anup Kumar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Sanjay Prasad
- Cell and Gene Therapy Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Mariya Jesawadawala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
5
|
Marquez-Martinez S, Vijayan A, Khan S, Zahn R. Cell entry and innate sensing shape adaptive immune responses to adenovirus-based vaccines. Curr Opin Immunol 2023; 80:102282. [PMID: 36716578 DOI: 10.1016/j.coi.2023.102282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.
Collapse
Affiliation(s)
- Sonia Marquez-Martinez
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands.
| | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| |
Collapse
|
6
|
Folegatti PM, Jenkin D, Morris S, Gilbert S, Kim D, Robertson JS, Smith ER, Martin E, Gurwith M, Chen RT, For the Benefit-Risk Assessment of VAccines by TechnolOgy Working Group BRAVATO, ex-V3SWG). Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2022; 40:5248-5262. [PMID: 35715352 PMCID: PMC9194875 DOI: 10.1016/j.vaccine.2022.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.
Collapse
Affiliation(s)
| | | | | | | | - Denny Kim
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - James S. Robertson
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R. Smith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA,Corresponding author
| | - Emalee Martin
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Marc Gurwith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T. Chen
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
7
|
Zhou P, Wang X, Xing M, Yang X, Wu M, Shi H, Zhu C, Wang X, Guo Y, Tang S, Huang Z, Zhou D. Intratumoral delivery of a novel oncolytic adenovirus encoding human antibody against PD-1 elicits enhanced antitumor efficacy. Mol Ther Oncolytics 2022; 25:236-248. [PMID: 35615266 PMCID: PMC9118129 DOI: 10.1016/j.omto.2022.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
To date, diverse combination therapies with immune checkpoint inhibitors (ICIs), particularly oncolytic virotherapy, have demonstrated enhanced therapeutic outcomes in cancer treatment. However, high pre-existing immunity against the widely used adenovirus human serotype 5 (AdHu5) limits its extensive clinical application. In this study, we constructed an innovative oncolytic virus (OV) based on a chimpanzee adenoviral vector with low seropositivity in the human population, named AdC68-spE1A-αPD-1, which endows the parental OV (AdC68-spE1A-ΔE3) with the ability to express full-length anti-human programmed cell death-1 monoclonal antibody (αPD-1). In vitro studies indicated that the AdC68-spE1A-αPD-1 retained parental oncolytic capacity, and αPD-1 was efficiently secreted from the infected tumor cells and bound exclusively to human PD-1 (hPD-1) protein. In vivo, intratumoral treatment with AdC68-spE1A-αPD-1 resulted in significant tumor suppression, prolonged overall survival, and enhanced systemic antitumor memory response in an hPD-1 knockin mouse tumor model. This strategy outperformed the unarmed OV and was comparable with combination therapy with intratumoral injection of AdC68-spE1A-ΔE3 and systemic administration of commercial αPD-1. In summary, AdC68-spE1A-αPD-1 is a cost-effective approach with potential clinical applications. .
Collapse
Affiliation(s)
- Ping Zhou
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuchen Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Xing
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xi Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mangteng Wu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyang Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Caihong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shubing Tang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhong Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
8
|
Powers TW, Mullins EK, Zhang K, Binder JJ, Friese O, Runnels HA, Thompson LC. Identification of Recombinant Chimpanzee Adenovirus C68 Degradation Products Detected by AEX-HPLC. Front Bioeng Biotechnol 2022; 10:753481. [PMID: 35449595 PMCID: PMC9017566 DOI: 10.3389/fbioe.2022.753481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/09/2022] [Indexed: 12/01/2022] Open
Abstract
Physicochemical tests represent important tools for the analytical control strategy of biotherapeutics. For adenoviral modalities, anion-exchange high performance liquid chromatography (AEX-HPLC) represents an important methodology, as it is able to simultaneously provide information on viral particle concentration, product purity and surface charge in a high-throughput manner. During product development of an adenoviral-based therapeutic, an accelerated stability study was performed and showed changes in each of the AEX-HPLC reportable attributes. These changes also correlated with a decrease in product infectivity prompting a detailed characterization of the impurity and mechanism of the surface charge change. Characterization experiments identified the impurity to be free hexon trimer, suggesting that capsid degradation could be contributing to both the impurity and reduced particle concentration. Additional mass spectrometry characterization identified deamidation of specific hexon residues to be associated with the external surface charge modification observed upon thermal stress conditions. To demonstrate a causal relationship between deamidation and surface charge changes observed by AEX-HPLC, site-directed mutagenesis experiments were performed. Through this effort, it was concluded that deamidation of asparagine 414 was responsible for the surface charge alteration observed in the AEX-HPLC profile but was not associated with the reduction in infectivity. Overall, this manuscript details critical characterization efforts conducted to enable understanding of a pivotal physicochemical test for adenoviral based therapeutics.
Collapse
Affiliation(s)
- Thomas W. Powers
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Elise K. Mullins
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Kun Zhang
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Joseph J. Binder
- Cancer Vaccines and Immunotherapeutics, Pfizer Inc., San Diego, CA, United States
| | - Olga Friese
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Herbert A. Runnels
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Lawrence C. Thompson
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
- *Correspondence: Lawrence C. Thompson,
| |
Collapse
|
9
|
Dai X, Zhao W, Tong X, Liu W, Zeng X, Duan X, Wu H, Wang L, Huang Z, Tang X, Yang Y. Non-clinical immunogenicity, biodistribution and toxicology evaluation of a chimpanzee adenovirus-based COVID-19 vaccine in rat and rhesus macaque. Arch Toxicol 2022; 96:1437-1453. [PMID: 35226134 PMCID: PMC8883008 DOI: 10.1007/s00204-021-03221-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 has rapidly expanded into a serious global pandemic. Due to the high morbidity and mortality of COVID-19, there is an urgent need to develop safe and effective vaccines. AdC68-19S is an investigational chimpanzee adenovirus serotype 68 (AdC68) vector-based vaccine which encodes the full-length spike protein of SARS-CoV-2. Here, we evaluated the immunogenicity, biodistribution and safety profiles of the candidate vaccine AdC68-19S in Sprague Dawley (SD) rat and rhesus macaque under GLP conditions. To characterize the biodistribution profile of AdC68-19S, SD rats were given a single intramuscular injection of AdC68-19S 2 × 1011 VP/dose. Designated organs were collected on day 1, day 2, day 4, day 8 and day 15. Genomic DNA was extracted from all samples and was further quantified by real-time quantitative polymerase chain reaction (qPCR). To characterize the toxicology and immunogenicity profiles of AdC68-19S, the rats and rhesus macaques were injected intramuscularly with AdC68-19S up to 2 × 1011vp/dose or 4 × 1011vp/dose (2 and fourfold the proposed clinical dose of 1 × 1011vp/dose) on two or three occasions with a 14-day interval period, respectively. In addition to the conventional toxicological evaluation indexes, the antigen-specific cellular and humoral responses were evaluated. We proved that multiple intramuscular injections could elicit effective and long-lasting neutralizing antibody responses and Th1 T cell responses. AdC68-19S was mainly distributed in injection sites and no AdC68-19S related toxicological reaction was observed. In conclusion, these results have shown that AdC68-19S could induce an effective immune response with a good safety profile, and is a promising candidate vaccine against COVID-19.
Collapse
Affiliation(s)
- Xuedong Dai
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Weijun Zhao
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xin Tong
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China
| | - Wei Liu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xianhuan Zeng
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xiaohui Duan
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Hua Wu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Lili Wang
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China
| | - Zhen Huang
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China.
| | - Xinying Tang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China.
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China.
| |
Collapse
|
10
|
Mullins EK, Powers TW, Zobel J, Clawson KM, Barnes LF, Draper BE, Zou Q, Binder JJ, Dai S, Zhang K, Friese O, Runnels HA, Jarrold MF, Thompson LC. Characterization of Recombinant Chimpanzee Adenovirus C68 Low and High-Density Particles: Impact on Determination of Viral Particle Titer. Front Bioeng Biotechnol 2021; 9:753480. [PMID: 34805110 PMCID: PMC8599148 DOI: 10.3389/fbioe.2021.753480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
We observed differential infectivity and product yield between two recombinant chimpanzee adenovirus C68 constructs whose primary difference was genome length. To determine a possible reason for this outcome, we characterized the proportion and composition of the empty and packaged capsids. Both analytical ultracentrifugation (AUC) and differential centrifugation sedimentation (DCS, a rapid and quantitative method for measuring adenoviral packaging variants) were employed for an initial assessment of genome packaging and showed multiple species whose abundance deviated between the virus builds but not manufacturing campaigns. Identity of the packaging variants was confirmed by charge detection mass spectrometry (CDMS), the first known application of this technique to analyze adenovirus. The empty and packaged capsid populations were separated via preparative ultracentrifugation and then combined into a series of mixtures. These mixtures showed the oft-utilized denaturing A260 adenoviral particle titer method will underestimate the actual particle titer by as much as three-fold depending on the empty/full ratio. In contrast, liquid chromatography with fluorescence detection proves to be a superior viral particle titer methodology.
Collapse
Affiliation(s)
- Elise K Mullins
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Thomas W Powers
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Jim Zobel
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Kory M Clawson
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Lauren F Barnes
- Chemistry Department, Indiana University, Bloomington, IN, United States
| | | | - Qin Zou
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Joseph J Binder
- Cancer Vaccines and Immunotherapies, Pfizer Inc., San Diego, CA, United States
| | - Stanley Dai
- Nektar Therapeutics, San Francisco, CA, United States
| | - Kun Zhang
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Olga Friese
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Herbert A Runnels
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, Bloomington, IN, United States
| | - Lawrence C Thompson
- Analytical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, United States
| |
Collapse
|
11
|
Mustafa Z, Burster T. Comments on Thrombosis After Vaccination: The Leader Sequence of the Spike Protein Might Be Responsible for Thrombosis and Antibody-Mediated Thrombocytopenia. Viral Immunol 2021; 34:669-672. [PMID: 34788138 DOI: 10.1089/vim.2021.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zhadyra Mustafa
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan Republic
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan Republic
| |
Collapse
|
12
|
Sayedahmed EE, Elkashif A, Alhashimi M, Sambhara S, Mittal SK. Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8040574. [PMID: 33019589 PMCID: PMC7712206 DOI: 10.3390/vaccines8040574] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
13
|
Wang X, Zhou P, Wu M, Yang K, Guo J, Wang X, Li J, Fang Z, Wang G, Xing M, Zhou D. Adenovirus delivery of encoded monoclonal antibody protects against different types of influenza virus infection. NPJ Vaccines 2020; 5:57. [PMID: 32665862 PMCID: PMC7347565 DOI: 10.1038/s41541-020-0206-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the high mutation and recombination rates of the influenza virus, current clinically licensed influenza vaccines and anti-influenza drugs provide limited protection against the emerging influenza virus epidemic. Therefore, universal influenza vaccines with high efficacy are urgently needed to ensure human safety and health. Passive immunization of influenza broadly neutralizing antibodies may become an ideal option for controlling influenza infection. CR9114 isolated from the peripheral blood mononuclear cells of healthy donors is a broadly neutralizing monoclonal antibody that targets different types of influenza viruses. As the adenovirus vector is one of the most promising delivery vehicles, we employed the chimpanzee adenoviral vector, AdC68, to express CR9114 as a universal anti-influenza vaccine, termed AdC68-CR9114, and evaluated its antibody expression and its broad spectrum of prophylactic and therapeutic effects in animal models. Based on our findings, AdC68-CR9114-infected cell expressed the broadly neutralizing antibody at a high level in vitro and in vivo, exhibited biological functions, and protected mice from different types of influenza virus infection at different time points. The findings from this study shed light on a new strategy for controlling and preventing influenza infection.
Collapse
Affiliation(s)
- Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508 China
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ping Zhou
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mangteng Wu
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kaiyan Yang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingao Guo
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuchen Wang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun Li
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihao Fang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guiqin Wang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508 China
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
14
|
Bots ST, Hoeben RC. Non-Human Primate-Derived Adenoviruses for Future Use as Oncolytic Agents? Int J Mol Sci 2020; 21:ijms21144821. [PMID: 32650405 PMCID: PMC7404033 DOI: 10.3390/ijms21144821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Non-human primate (NHP)-derived adenoviruses have formed a valuable alternative for the use of human adenoviruses in vaccine development and gene therapy strategies by virtue of the low seroprevalence of neutralizing immunity in the human population. The more recent use of several human adenoviruses as oncolytic agents has exhibited excellent safety profiles and firm evidence of clinical efficacy. This proffers the question whether NHP-derived adenoviruses could also be employed for viral oncolysis in human patients. While vaccine vectors are conventionally made as replication-defective vectors, in oncolytic applications replication-competent viruses are used. The data on NHP-derived adenoviral vectors obtained from vaccination studies can only partially support the suitability of NHP-derived adenoviruses for use in oncolytic virus therapy. In addition, the use of NHP-derived adenoviruses in humans might be received warily given the recent zoonotic infections with influenza viruses and coronaviruses. In this review, we discuss the similarities and differences between human- and NHP-derived adenoviruses in view of their use as oncolytic agents. These include their genome organization, receptor use, replication and cell lysis, modulation of the host’s immune responses, as well as their pathogenicity in humans. Together, the data should facilitate a rational and data-supported decision on the suitability of NHP-derived adenoviruses for prospective use in oncolytic virus therapy.
Collapse
|
15
|
Fonseca JA, McCaffery JN, Kashentseva E, Singh B, Dmitriev IP, Curiel DT, Moreno A. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice. Vaccine 2017; 35:3239-3248. [PMID: 28483199 PMCID: PMC5522619 DOI: 10.1016/j.vaccine.2017.04.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4+ T cell responses. Based on evidence that viral vectors increase CD8+ T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8+ T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8+ T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States
| | - Jessica N McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Elena Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Igor P Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States.
| |
Collapse
|
16
|
Both haemagglutinin-specific antibody and T cell responses induced by a chimpanzee adenoviral vaccine confer protection against influenza H7N9 viral challenge. Sci Rep 2017; 7:1854. [PMID: 28500340 PMCID: PMC5431854 DOI: 10.1038/s41598-017-02019-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Since 2013, the outbreak or sporadic infection of a new reassortant H7N9 influenza virus in China has resulted in hundreds of deaths and thousands of illnesses. An H7N9 vaccine is urgently needed, as a licensed human vaccine against H7N9 influenza is currently not available. Here, we developed a recombinant adenovirus-based vaccine, AdC68-H7HA, by cloning the H7N9 haemagglutinin (HA) gene into the chimpanzee adenoviral vector AdC68. The efficacy of AdC68-H7HA was evaluated in mice as well as guinea pigs. For comparison, an H7N9 DNA vaccine based on HA was also generated and tested in mice and guinea pigs. The results demonstrated that both AdC68-H7HA and the DNA vaccine prime-adenovirus boost regimen induced potent immune responses in animals and completely protected mice from lethal H7N9 influenza viral challenge. A post-immunization serum transfer experiment showed that antibody responses could completely protect against lethal challenge, while a T cell depletion experiment indicated that HA-specific CD8+ T cells responses also contributed to protection. Therefore, both HA-specific humoral immunity and cellular immunity play important roles in the protection. These data suggest that the chimpanzee adenovirus expressing HA is a promising vaccine candidate for H7N9 virus or other influenza viral subtypes.
Collapse
|
17
|
Cheng T, Wang X, Song Y, Tang X, Zhang C, Zhang H, Jin X, Zhou D. Chimpanzee adenovirus vector-based avian influenza vaccine completely protects mice against lethal challenge of H5N1. Vaccine 2016; 34:4875-4883. [DOI: 10.1016/j.vaccine.2016.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/03/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023]
|
18
|
The Coxsackievirus and Adenovirus Receptor: Glycosylation and the Extracellular D2 Domain Are Not Required for Coxsackievirus B3 Infection. J Virol 2016; 90:5601-5610. [PMID: 27030267 DOI: 10.1128/jvi.00315-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily (IgSF) and functions as a receptor for coxsackie B viruses (CVBs). The extracellular portion of CAR comprises two glycosylated immunoglobulin-like domains, D1 and D2. CAR-D1 binds to the virus and is essential for virus infection; however, it is not known whether D2 is also important for infection, and the role of glycosylation has not been explored. To understand the function of these structural components in CAR-mediated CVB3 infection, we generated a panel of human (h) CAR deletion and substitution mutants and analyzed their functionality as CVB receptors, examining both virus binding and replication. Lack of glycosylation of the CAR-D1 or -D2 domains did not adversely affect CVB3 binding or infection, indicating that the glycosylation of CAR is not required for its receptor functions. Deletion of the D2 domain reduced CVB3 binding, with a proportionate reduction in the efficiency of virus infection. Replacement of D2 with the homologous D2 domain from chicken CAR, or with the heterologous type C2 immunoglobulin-like domain from IgSF11, another IgSF member, fully restored receptor function; however, replacement of CAR-D2 with domains from CD155 or CD80 restored function only in part. These data indicate that glycosylation of the extracellular domain of hCAR plays no role in CVB3 receptor function and that CAR-D2 is not specifically required. The D2 domain may function largely as a spacer permitting virus access to D1; however, the data may also suggest that D2 affects virus binding by influencing the conformation of D1. IMPORTANCE An important step in virus infection is the initial interaction of the virus with its cellular receptor. Although the role in infection of the extracellular CAR-D1, cytoplasmic, and transmembrane domains have been analyzed extensively, nothing is known about the function of CAR-D2 and the extracellular glycosylation of CAR. Our data indicate that glycosylation of the extracellular CAR domain has only minor importance for the function of CAR as CVB3 receptor and that the D2 domain is not essential per se but contributes to receptor function by promoting the exposure of the D1 domain on the cell surface. These results contribute to our understanding of the coxsackievirus-receptor interactions.
Collapse
|
19
|
Abstract
Many nonhuman adenoviruses (AdVs) of simian, bovine, porcine, canine, ovine, murine, and fowl origin are being developed as gene delivery systems for recombinant vaccines and gene therapy applications. In addition to circumventing preexisting human AdV (HAdV) immunity, nonhuman AdV vectors utilize coxsackievirus-adenovirus receptor or other receptors for vector internalization, thereby expanding the range of cell types that can be targeted. Nonhuman AdV vectors also provide excellent platforms for veterinary vaccines. A specific nonhuman AdV vector when used in its species of origin could provide an excellent animal model for evaluating the vector efficacy and pathogenesis. These vectors are useful in prime–boost approaches with other AdV vectors or with other gene delivery systems including DNA immunization and viral or bacterial vectors. When multiple vector inoculations are required, nonhuman AdV vectors could supplement HAdV or other viral vectors.
Collapse
|
20
|
Dicks MDJ, Spencer AJ, Coughlan L, Bauza K, Gilbert SC, Hill AVS, Cottingham MG. Differential immunogenicity between HAdV-5 and chimpanzee adenovirus vector ChAdOx1 is independent of fiber and penton RGD loop sequences in mice. Sci Rep 2015; 5:16756. [PMID: 26576856 PMCID: PMC4649739 DOI: 10.1038/srep16756] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/19/2015] [Indexed: 01/30/2023] Open
Abstract
Replication defective adenoviruses are promising vectors for the delivery of vaccine antigens. However, the potential of a vector to elicit transgene-specific adaptive immune responses is largely dependent on the viral serotype used. HAdV-5 (Human adenovirus C) vectors are more immunogenic than chimpanzee adenovirus vectors from species Human adenovirus E (ChAdOx1 and AdC68) in mice, though the mechanisms responsible for these differences in immunogenicity remain poorly understood. In this study, superior immunogenicity was associated with markedly higher levels of transgene expression in vivo, particularly within draining lymph nodes. To investigate the viral factors contributing to these phenotypes, we generated recombinant ChAdOx1 vectors by exchanging components of the viral capsid reported to be principally involved in cell entry with the corresponding sequences from HAdV-5. Remarkably, pseudotyping with the HAdV-5 fiber and/or penton RGD loop had little to no effect on in vivo transgene expression or transgene-specific adaptive immune responses despite considerable species-specific sequence heterogeneity in these components. Our results suggest that mechanisms governing vector transduction after intramuscular administration in mice may be different from those described in vitro.
Collapse
Affiliation(s)
- Matthew D. J. Dicks
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Alexandra J. Spencer
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lynda Coughlan
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Karolis Bauza
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Sarah C. Gilbert
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Adrian V. S. Hill
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Matthew G. Cottingham
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
21
|
Jeyanathan M, Thanthrige-Don N, Afkhami S, Lai R, Damjanovic D, Zganiacz A, Feng X, Yao XD, Rosenthal KL, Medina MF, Gauldie J, Ertl HC, Xing Z. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection. Mucosal Immunol 2015; 8:1373-87. [PMID: 25872483 DOI: 10.1038/mi.2015.29] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette-Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.
Collapse
Affiliation(s)
- M Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - N Thanthrige-Don
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S Afkhami
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - R Lai
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - D Damjanovic
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - A Zganiacz
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X Feng
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X-D Yao
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - K L Rosenthal
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - M Fe Medina
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J Gauldie
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - H C Ertl
- Department of Immunology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Z Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5-based Constructs. Mol Ther 2015; 24:6-16. [PMID: 26478249 PMCID: PMC4754553 DOI: 10.1038/mt.2015.194] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022] Open
Abstract
Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes.
Collapse
|
23
|
Expression of human decay-accelerating factor on intestinal epithelium of transgenic mice does not facilitate infection by the enteral route. J Virol 2015; 89:4311-8. [PMID: 25653430 DOI: 10.1128/jvi.03468-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In vitro, infection of polarized human intestinal epithelial cells by coxsackievirus B3 (CVB3) depends on virus interaction with decay-accelerating factor (DAF), a receptor expressed on the apical cell surface. Although mice are highly susceptible to CVB3 infection when virus is delivered by intraperitoneal injection, infection by the enteral route is very inefficient. Murine DAF, unlike human DAF, does not bind virus, and we hypothesized that the absence of an accessible receptor on the intestinal surface is an important barrier to infection by the oral route. We generated transgenic mice that express human DAF specifically on intestinal epithelium and measured their susceptibility to infection by a DAF-binding CVB3 isolate. Human DAF permitted CVB3 to bind to the intestinal surface ex vivo and to infect polarized monolayers of small-intestinal epithelial cells derived from DAF transgenic mice. However, expression of human DAF did not facilitate infection by the enteral route either in immunocompetent animals or in animals deficient in the interferon alpha/beta receptor. These results indicate that the absence of an apical receptor on intestinal epithelium is not the major barrier to infection of mice by the oral route. IMPORTANCE CVB3 infection of human intestinal epithelial cells depends on DAF at the apical cell surface, and expression of human DAF on murine intestinal epithelial cells permits their infection in vitro. However, expression of human DAF on the intestinal surface of transgenic mice did not facilitate infection by the oral route. Although the role of intestinal DAF in human infection has not been directly examined, these results suggest that DAF is not the critical factor in mice.
Collapse
|
24
|
Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 2014; 25:285-300. [PMID: 24499174 DOI: 10.1089/hum.2013.228] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- 1 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
25
|
Abstract
Viral vectors have been developed as vaccine platforms for a number of pathogens and tumors. In particular, adenovirus (Ad)-based vectors expressing genes coding for pathogen or tumor antigens have proven efficacious to induce protective immunity. Major challenges in the use of Ad vectors are the high prevalence of anti-Ad immunity and the recent observation during an Ad-based HIV vaccine trial that led to increased HIV-1 acquisition in the presence of circulating anti-Ad5 neutralizing antibodies. In this review we summarize strategies to address these challenges and focus on modifications of the Ad capsid to enhance the adjuvant effect of anti-Ad immunogenicity and to circumvent pre-existing immunity. In addition, we summarize the current status and potential of other viral vector vaccines based on adeno-associated viruses, lentiviruses and poxviruses.
Collapse
|
26
|
Adenovirus serotype 5 neutralizing antibodies target both hexon and fiber following vaccination and natural infection. J Virol 2011; 86:625-9. [PMID: 22072776 DOI: 10.1128/jvi.06254-11] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The immunogenicity of adenovirus serotype 5 (Ad5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against the hexon hypervariable regions (HVRs). However, the role of NAbs directed against other capsid components, particularly the adenovirus fiber, remains unclear. Here we show that Ad5 NAbs target both hexon and fiber following vaccination and natural infection. Utilizing neutralization assays with capsid chimeric vectors, we observed that NAb responses to hexon appeared dominant and NAb responses against fiber were subdominant in sera from vaccinated mice, vaccinated humans, and naturally exposed humans. A novel chimeric Ad5 vector in which both the hexon HVRs and the fiber knob were exchanged nearly completely evaded Ad5-specific NAbs both in vitro and in vivo.
Collapse
|
27
|
Krause A, Whu WZ, Xu Y, Joh J, Crystal RG, Worgall S. Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF. Vaccine 2011; 29:2131-9. [PMID: 21215829 PMCID: PMC3061442 DOI: 10.1016/j.vaccine.2010.12.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Replication-deficient adenoviral (Ad) vectors are an attractive platform for a vaccine against lung infections caused by Pseudomonas aeruginosa. Ad vectors based on non-human serotypes have been developed to circumvent the problem of pre-existing anti-Ad immunity in humans. The present study analyzes the anti-P. aeruginosa systemic and lung mucosal immunity elicited by a non-human primate-based AdC7 vector expressing the outer membrane protein F (AdC7OprF) of P. aeruginosa. Intramuscular immunization of mice with AdC7OprF induced similar levels of serum and mucosal anti-OprF IgG and increased levels of anti-OprF IgA in lung epithelial lining fluid (ELF) compared to immunization with a human serotype Ad5OprF vector (p>0.05). OprF-specific INF-γ in splenic T cells stimulated with OprF-pulsed syngeneic splenic dendritic cells (DC) was similar following immunization with AdC7OprF compared to Ad5OprF (p>0.05). In contrast, OprF-specific INF-γ responses in lung T cells stimulated with either spleen or lung DC were increased following immunization with AdC7OprF compared to Ad5OprF (p<0.05). Interestingly, direct administration of AdC7OprF to the respiratory tract resulted in an increase of OprF-specific IgG in serum, OprF-specific IgG and IgA in lung ELF, and OprF-specific INF-γ in lung T-cells compared to immunization with Ad5OprF, and survival following challenge with a lethal dose of P. aeruginosa. These data demonstrate that systemic or lung mucosal immunization with an AdC7-based vaccine vector induces superior pulmonary humoral and cellular anti-transgene immunity compared to immunization with an Ad5-based vector and favors AdC7-based vectors as vaccines to induce lung mucosal immunity.
Collapse
Affiliation(s)
- Anja Krause
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
28
|
Corredor JC, Nagy E. The non-essential left end region of the fowl adenovirus 9 genome is suitable for foreign gene insertion/replacement. Virus Res 2010; 149:167-74. [PMID: 20132849 DOI: 10.1016/j.virusres.2010.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 11/26/2022]
Abstract
The goals of this study were to demonstrate that a non-essential region at the left end of the fowl adenovirus 9 (FAdV-9) genome could be used to generate recombinant viruses, examine their in vitro growth characteristics and determine their ability to transduce non-avian cells. Three FAdV-9 vectors (rFAdV-9s) were generated carrying the enhanced-green fluorescent protein (EGFP) gene: FAdV-9inEGFP, FAdV-9 Delta 1-EGFP and FAdV-9 Delta 4-EGFP. FAdV-9inEGFP carried the EGFP cassette inserted into the non-essential region without deletion resulting in an increase of the genome size to 103.7% of the wild-type. FAdV-9 Delta 1-EGFP and FAdV-9 Delta 4-EGFP (rFAdV-9 Delta s) carried the EGFP cassette replacing the non-essential sequences at nucleotides 1194-2342 and 491-2782, respectively. All rFAdV-9s had wild-type growth kinetics and plaque morphology. The rFAdV-9 Delta s replicated in CH-SAH cells with the same titers as the wild-type virus. The FAdV-9inEGFP titers were approximately 1 log lower than those of rFAdV-9 Delta s and wt FAdV-9 at 36 and 48 h post-infection (h.p.i.). EGFP was expressed in avian and mammalian cells infected with rFAdV-9s. EGFP expression, based on spectrofluorometry, was significantly higher in chicken hepatoma cells infected with FAdV-9inEGFP than in those with rFAdV-9 Delta s at 18 and 24h.p.i, suggesting a functional role of some or all non-essential ORFs on foreign gene expression. This study demonstrated the suitability of the non-essential region as an insertion/replacement site for foreign genes to generate FAdV-9-based vectors that can be applied as recombinant vaccines for poultry or gene delivery vehicles for mammalian systems.
Collapse
Affiliation(s)
- Juan Carlos Corredor
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1 Canada
| | | |
Collapse
|
29
|
Santra S, Sun Y, Korioth-Schmitz B, Fitzgerald J, Charbonneau C, Santos G, Seaman MS, Ratcliffe SJ, Montefiori DC, Nabel GJ, Ertl HCJ, Letvin NL. Heterologous prime/boost immunizations of rhesus monkeys using chimpanzee adenovirus vectors. Vaccine 2009; 27:5837-45. [PMID: 19660588 PMCID: PMC2955883 DOI: 10.1016/j.vaccine.2009.07.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/16/2009] [Accepted: 07/18/2009] [Indexed: 11/28/2022]
Abstract
Pre-existing immunity to human adenovirus serotype 5 (AdHu5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAdHu5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. As a potential solution to this problem we developed adenovirus vaccine vectors of chimpanzee origin. In the present study we assessed the immunogenicity of various chimpanzee adenovirus vectors in a prime/boost regimen to HIV-1 envelope and SIV Gag-Pol in rhesus monkeys and their ability to protect against pathogenic viral challenge. Although rAdHu5-primed monkeys had higher magnitude T cell responses than rAdC7 or rAdC68 prior to challenge, the rAdC7-rAdC1/C5 and rAdHu5-rAdC1/C5 immunizations resulted in comparable magnitude recall cellular immune responses and comparable level of control of viremia post-challenge.
Collapse
Affiliation(s)
- Sampa Santra
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yue Sun
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Birgit Korioth-Schmitz
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Julie Fitzgerald
- Wistar Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Cherie Charbonneau
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Giannina Santos
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sarah J. Ratcliffe
- Wistar Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - David C. Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research and Development, Duke University Medical Center, Durham, NC
| | - Gary J. Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hildegund C. J. Ertl
- Wistar Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Norman L. Letvin
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Sharma A, Li X, Bangari DS, Mittal SK. Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143:184-94. [PMID: 19647886 PMCID: PMC2903974 DOI: 10.1016/j.virusres.2009.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/15/2009] [Indexed: 12/14/2022]
Abstract
Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
31
|
Tatsis N, Lasaro MO, Lin SW, Xiang ZQ, Zhou D, DiMenna L, Li H, Bian A, Abdulla S, Li Y, Giles-Davis W, Engram J, Ratcliffe SJ, Silvestri G, Ertl HC, Betts MR. Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:6587-99. [PMID: 19414814 PMCID: PMC2711537 DOI: 10.4049/jimmunol.0900317] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with preexisting neutralizing Abs against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here, we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee-derived Ad vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the chimpanzee-derived Ad vectors induced higher T and B cell responses than did repeated immunizations with the AdHu5 vector, especially in AdHu5-preexposed macaques.
Collapse
Affiliation(s)
- Nia Tatsis
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Shih-Wen Lin
- The Wistar Institute, Philadelphia, PA, USA
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Hua Li
- The Wistar Institute, Philadelphia, PA, USA
| | - Ang Bian
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Yan Li
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Jessica Engram
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah J. Ratcliffe
- Department of Biostatistics and Epidemiology, University of Pennsylvania, PA, USA
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol 2008; 82:3822-33. [PMID: 18256155 DOI: 10.1128/jvi.02568-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus serotype 5 (AdH5) vector vaccines elicit strong immune responses to the encoded antigen and have been used in various disease models. We designed AdH5 vectors expressing antigen under the control of a human cytomegalovirus (HCMV) immediate-early promoter containing its intron A sequence. The transcriptional levels of antigen and immune responses to antigen for vectors with the HCMV promoter with the intron A sequence (LP) were greater than those for AdH5 vectors using the HCMV promoter sequence without intron A (SP). We compared an E1E3-deleted AdH5 adenoviral vector, which affords more space for insertion of foreign sequences, and showed it to be as immunogenic as an E1-deleted AdH5 vector. Neutralizing antibodies to AdH5 limit the efficacy of vaccines based on the AdH5 serotype, and simian adenoviral vectors offer an attractive option to overcome this problem. We constructed E1E3-deleted human and simian adenoviral vectors encoding the pre-erythrocytic-stage malarial antigen Plasmodium berghei circumsporozoite protein. We compared the immunogenicity and efficacy of AdC6, a recombinant simian adenovirus serotype 6 vector, in a murine malaria model to those of AdH5 and the poxviral vectors MVA and FP9. AdC6 induced sterile protection from a single dose in 90% of mice, in contrast to AdH5 (25%) and poxviral vectors MVA and FP9 (0%). Adenoviral vectors maintained potent CD8(+) T-cell responses for a longer period after immunization than did poxviral vectors and mainly induced an effector memory phenotype of cells. Significantly, AdC6 was able to maintain protection in the presence of preexisting immunity to AdH5.
Collapse
|
33
|
Havenga M, Vogels R, Zuijdgeest D, Radosevic K, Mueller S, Sieuwerts M, Weichold F, Damen I, Kaspers J, Lemckert A, van Meerendonk M, van der Vlugt R, Holterman L, Hone D, Skeiky Y, Mintardjo R, Gillissen G, Barouch D, Sadoff J, Goudsmit J. Novel replication-incompetent adenoviral B-group vectors: high vector stability and yield in PER.C6 cells. J Gen Virol 2006; 87:2135-2143. [PMID: 16847108 DOI: 10.1099/vir.0.81956-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenoviral vectors based on adenovirus type 35 (rAd35) have the advantage of low natural vector immunity and induce strong, insert-specific T- and B-cell responses, making them prime-candidate vaccine carriers. However, severe vector-genome instability of E1-deleted rAd35 vectors was observed, hampering universal use. The instability of E1-deleted rAd35 vector proved to be caused by low pIX expression induced by removal of the pIX promoter, which was located in the E1B region of B-group viruses. Reinsertion of a minimal pIX promoter resulted in stable vectors able to harbour large DNA inserts (>5 kb). In addition, it is shown that replacement of the E4-Orf6 region of Ad35 by the E4-Orf6 region of Ad5 resulted in successful propagation of an E1-deleted rAd35 vector on existing E1-complementing cell lines, such as PER.C6 cells. The ability to produce these carriers on PER.C6 contributes significantly to the scale of manufacturing of rAd35-based vaccines. Next, a stable rAd35 vaccine was generated carrying Mycobacterium tuberculosis antigens Ag85A, Ag85B and TB10.4. The antigens were fused directly, resulting in expression of a single polyprotein. This vaccine induced dose-dependent CD4+ and CD8+ T-cell responses against multiple antigens in mice. It is concluded that the described improvements to the rAd35 vector contribute significantly to the further development of rAd35 carriers for mass-vaccination programmes for diseases such as tuberculosis, AIDS and malaria.
Collapse
Affiliation(s)
- M Havenga
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - R Vogels
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - D Zuijdgeest
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - K Radosevic
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - S Mueller
- AERAS Global TB Vaccine Foundation, 7500 Old Georgetown Road, Bethesda, MD 20814, USA
| | - M Sieuwerts
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - F Weichold
- AERAS Global TB Vaccine Foundation, 7500 Old Georgetown Road, Bethesda, MD 20814, USA
| | - I Damen
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - J Kaspers
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - A Lemckert
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - M van Meerendonk
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - R van der Vlugt
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - L Holterman
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - D Hone
- AERAS Global TB Vaccine Foundation, 7500 Old Georgetown Road, Bethesda, MD 20814, USA
| | - Y Skeiky
- AERAS Global TB Vaccine Foundation, 7500 Old Georgetown Road, Bethesda, MD 20814, USA
| | - R Mintardjo
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - G Gillissen
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - D Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J Sadoff
- AERAS Global TB Vaccine Foundation, 7500 Old Georgetown Road, Bethesda, MD 20814, USA
| | - J Goudsmit
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| |
Collapse
|
34
|
Tatsis N, Tesema L, Robinson ER, Giles-Davis W, McCoy K, Gao GP, Wilson JM, Ertl HCJ. Chimpanzee-origin adenovirus vectors as vaccine carriers. Gene Ther 2006; 13:421-9. [PMID: 16319951 DOI: 10.1038/sj.gt.3302675] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vaccines based on replication-defective adenoviral vectors are being developed for infectious agents and tumor-associated antigens. Early work focused on vaccines derived from a common human serotype of adenovirus, that is, adenovirus of the serotype 5 (AdHu5). Neutralizing antibodies against AdHu5 virus, present in a large percentage of the human population, dampen the efficacy of vaccines based on this carrier. To circumvent this problem, we generated vectors derived from chimpanzee adenoviruses. Here we describe some basic parameters of vectors derived from chimpanzee adenoviruses C68 and C7, including growth characteristics, yields of infectious particles, effects of additional deletions in E3 and E4 and lengths of the inserted foreign sequence as they relate to the suitability for their eventual development as vaccine carriers for clinical use.
Collapse
Affiliation(s)
- N Tatsis
- Immunology Program, Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Thirion C, Lochmüller H, Ruzsics Z, Boelhauve M, König C, Thedieck C, Kutik S, Geiger C, Kochanek S, Volpers C, Burgert HG. Adenovirus Vectors Based on Human Adenovirus Type 19a Have High Potential for Human Muscle-Directed Gene Therapy. Hum Gene Ther 2006; 17:193-205. [PMID: 16454653 DOI: 10.1089/hum.2006.17.193] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Until recently, adenovirus-based gene therapy has been almost exclusively based on human adenovirus serotype 5 (Ad5). The aim of this study was to systematically compare the efficiency of transduction of primary muscle cells from various species by two adenoviral vectors from subgroups C and D. Transduction of a panel of myoblasts demonstrated a striking specificity of an Ad19a-based replication-defective E1-deleted vector (Ad19aEGFP) for human cells, whereas the Ad5-based vector had high affinity for nonhuman primate myoblasts. Transgene expression correlated well with cell-associated vector genomes. Up to 6.59% of the initially applied Ad19aEGFP vector particles were taken up by human myoblasts, as compared with 0.1% of the corresponding Ad5 vector. Remarkably, Ad19aEGFP but not Ad5EGFP efficiently transduced differentiated human myotubes, an in vitro model for skeletal muscle transduction. Uptake of Ad19aEGFP vector particles in human myotubes was 12-fold more efficient than that of Ad5EGFP. Moreover, both vectors demonstrated an early block at the level of vector uptake in mouse myoblasts and rat L6 cells. Investigation of the underlying mechanism for binding and uptake of the two vectors by human myoblasts showed high susceptibility for Ad19a to neuraminidase and wheat germ agglutinin (WGA) lectin, whereas Ad5-mediated transduction was dependent on binding to the coxsackie-adenovirus receptor (CAR) and sensitive to soluble RGD peptide and heparin. Our study offers insights into species-dependent factors that determine Ad tropism and, moreover, provides a basis for application of the novel Ad19a-based vector for gene transfer into human skeletal muscle.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Animals
- Cells, Cultured
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Epitopes/chemistry
- Epitopes/metabolism
- Flow Cytometry/methods
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Genetic Vectors/pharmacology
- Heparitin Sulfate/metabolism
- Humans
- Mice
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/virology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscle, Skeletal/virology
- Myoblasts/cytology
- Myoblasts/virology
- N-Acetylneuraminic Acid/chemistry
- N-Acetylneuraminic Acid/metabolism
- Rats
- Receptors, Virus/chemistry
- Receptors, Virus/metabolism
- Species Specificity
- Transduction, Genetic
- Tropism
- Virus Replication
Collapse
Affiliation(s)
- Christian Thirion
- Gene Center, Friedrich Baur Institute, and Department of Neurology, Ludwig-Maximilians-University, Munich 81377, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stevenson M, Boos E, Herbert C, Hale A, Green N, Lyons M, Chandler L, Ulbrich K, van Rooijen N, Mautner V, Fisher K, Seymour L. Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells. Gene Ther 2006; 13:356-68. [PMID: 16355117 DOI: 10.1038/sj.gt.3302655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 08/16/2005] [Accepted: 08/18/2005] [Indexed: 11/08/2022]
Abstract
Non-human adenovirus vectors have attractive immunological properties for gene therapy but are frequently restricted by inefficient transduction of human target cells. Using chicken embryo lethal orphan (CELO) virus, we employed a nongenetic mechanism of polymer coating and retargeting with basic fibroblast growth factor (bFGF-pc-CELOluc), a strategy that permits efficient tropism modification of human adenovirus. bFGF-pc-CELOluc showed efficient uptake and transgene expression in chick embryo fibroblasts (CEF), and increased levels of binding and internalization in a variety of human cell lines. Transgene expression was also greater than unmodified CELOluc in PC-3 human prostate cells, although the specific activity (RLU per internalized viral genome) was decreased. In CEF, the specific activity of bFGF-pc-CELOluc was considerably higher than in the human prostate cell line PC-3. Retargeted virus was fully resistant to inhibition by human serum with known adenovirus-neutralizing activity in vitro, while in mice CELOluc was cleared less rapidly from the blood than Adluc following i.v. administration in the presence of adenovirus neutralizing serum. Polymer coating and retargeting with bFGF further reduced rates of clearance for both viruses, suggesting protection against both neutralizing and opsonizing factors. The data indicate that CELO virus may be retargeted to infect human cells via alternative, potentially disease-specific, receptors and resist the effects of pre-existing humoral immunity.
Collapse
Affiliation(s)
- M Stevenson
- Department of Clinical Pharmacology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thirion C, Lochmuller H, Ruzsics Z, Boelhauve M, Konig C, Thedieck C, Kutik S, Geiger C, Kochanek S, Volpers C, Burgert HG. Adenovirus Vectors Based on Human Adenovirus Type 19a Have High Potential for Human Muscle-Directed Gene Therapy. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
38
|
Hensley SE, Giles-Davis W, McCoy KC, Weninger W, Ertl HCJ. Dendritic cell maturation, but not CD8+ T cell induction, is dependent on type I IFN signaling during vaccination with adenovirus vectors. THE JOURNAL OF IMMUNOLOGY 2005; 175:6032-41. [PMID: 16237098 DOI: 10.4049/jimmunol.175.9.6032] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand how vaccines initiate adaptive immune responses, it is necessary to study how they interact with APCs such as dendritic cells (DCs). In this study, we analyzed interactions between recombinant adenovirus (Ad) vectors and mouse DCs. Mouse bone marrow-derived DCs transduced with Ad vectors produced type I IFN, which promoted the maturation of both transduced and bystander DCs. DCs transduced with a vector derived from a chimpanzee Ad serotype (AdC68) produced more type I IFN and matured more efficiently compared with DCs transduced with a vector derived from a human Ad serotype (AdHu5). Both vectors stimulated type I IFN production independently of viral transcription, replication, and TLR signaling. However, each vector induced type I IFN through distinct pathways; whereas AdHu5 vectors required phosphoinositide-3-OH kinase for type I IFN induction, AdC68 vectors did not. Both vectors induced strong transgene product-specific CD8+ T cell responses in wild-type mice. DCs isolated from mice that have a defect in type I IFN signaling failed to undergo full maturation after Ad vaccination, but surprisingly, these mice mounted strong transgene product-specific CD8+ T cell responses. In these mice, we were able to detect a small number of transduced DCs that expressed high levels of costimulatory molecules, and these DCs were able to stimulate transgene product-specific CD8+ T cells. Thus, type I IFN signaling is an important component of Ad-mediated DC maturation but is dispensable during the generation of transgene product-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Scott E Hensley
- Cell and Molecular Biology Group, Department of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Yuanming Zhang
- Division of Infectious Diseases, Children's Hospital of Philadelphia, PA, USA
| | | |
Collapse
|
40
|
Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2005; 24:849-62. [PMID: 16297508 PMCID: PMC1462960 DOI: 10.1016/j.vaccine.2005.08.101] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/29/2005] [Accepted: 08/25/2005] [Indexed: 12/30/2022]
Abstract
Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine-delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination.
Collapse
Affiliation(s)
| | - Suresh K. Mittal
- Corresponding author. Tel.: +1 765 496 2894; fax: +1 765 494 9830.
| |
Collapse
|
41
|
Abstract
Adenoviruses have transitioned from tools for gene replacement therapy to bona fide vaccine delivery vehicles. They are attractive vaccine vectors as they induce both innate and adaptive immune responses in mammalian hosts. Currently, adenovirus vectors are being tested as subunit vaccine systems for numerous infectious agents ranging from malaria to HIV-1. Additionally, they are being explored as vaccines against a multitude of tumor-associated antigens. In this review we describe the molecular biology of adenoviruses as well as ways the adenovirus vectors can be manipulated to enhance their efficacy as vaccine carriers. We describe methods of evaluating immune responses to transgene products expressed by adenoviral vectors and discuss data on adenoviral vaccines to a selected number of pathogens. Last, we comment on the limitations of using human adenoviral vectors and provide alternatives to circumvent these problems. This field is growing at an exciting and rapid pace, thus we have limited our scope to the use of adenoviral vectors as vaccines against viral pathogens.
Collapse
Affiliation(s)
| | - Hildegund C.J. Ertl
- To whom correspondence and reprint requests should be addressed. Fax: +1 (215) 898 3953
| |
Collapse
|
42
|
Bangari DS, Mittal SK. Porcine adenoviral vectors evade preexisting humoral immunity to adenoviruses and efficiently infect both human and murine cells in culture. Virus Res 2004; 105:127-36. [PMID: 15351486 DOI: 10.1016/j.virusres.2004.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/14/2004] [Accepted: 05/14/2004] [Indexed: 12/11/2022]
Abstract
Preexisting immunity against human adenoviruses (HAd) limits the efficiency of transduction of HAd vectors in humans. In addition, development of a vector-specific immune response after the first inoculation with a HAd vector further lowers vector uptake following readministration. We investigated the usefulness of porcine adenovirus serotype 3 (PAd3)-based vectors as a supplement to HAd vectors. Here we demonstrate that preexisting HAd-specific neutralizing antibodies in humans do not cross-neutralize PAd3. In order to generate E1A-deleted PAd3 vectors, an E1-complementing cell line of porcine origin was produced. E1A-deleted PAd3 vector expressing green fluorescent protein; GFP (PAd-GFP) and E1-deleted HAd5 vector expressing GFP (HAd-GFP) transduced human cell lines with comparable efficiencies. Both of these vectors efficiently transduced murine MT1A2 breast cancer cell line, while PAd-GFP transduced murine NIH 3T3 fibroblast cell line significantly better (P < 0.05) than HAd-GFP. These results suggest that PAd3 vectors would be promising supplement to HAd vectors as a delivery vehicle for recombinant vaccines and gene therapy applications.
Collapse
MESH Headings
- Adenovirus E1A Proteins/genetics
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adenoviruses, Human/physiology
- Adenoviruses, Porcine/genetics
- Adenoviruses, Porcine/immunology
- Adenoviruses, Porcine/physiology
- Animals
- Antibodies, Viral/immunology
- Cell Line
- Cell Line, Tumor
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Cross Reactions
- Gene Deletion
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Humans
- Mice
- NIH 3T3 Cells
- Neutralization Tests
- Receptors, Virus/metabolism
- Transduction, Genetic
- Virus Replication
Collapse
Affiliation(s)
- Dinesh S Bangari
- Laboratory of Gene Therapy and Purdue University Cancer Center, 1290 Lynn Hall, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
43
|
Abstract
An effective vaccine against malaria is urgently required to relieve the immense human suffering and mortality caused by this parasite. A successful subunit vaccine against the liver stage of malaria will require the induction of high levels of protective T cells. Despite success in small animal models, DNA vaccines fail to induce strong cellular immune responses in humans. However, DNA vaccines can induce a T-cell response that can be strongly boosted by recombinant viral vectors. We have evaluated this heterologous prime-boost approach using the Plasmodium berghei mouse model for immunogenicity and protective efficacy against malaria challenge using combinations of plasmid DNA, recombinant modified vaccinia virus Ankara, fowlpox virus, and non-replicating adenovirus. We have proceeded to test immunogenicity and efficacy of successful heterologous prime-boost vaccines in phase I/IIa trials in malaria naïve subjects in the UK and in semi-immune individuals in The Gambia. In these clinical trials, remarkably high levels of effector T-cell responses have been induced and significant protection documented in a human sporozoite challenge model. We summarize the preclinical design and development of these heterologous prime-boost vaccines and discuss the encouraging results that have been observed in vaccinated humans.
Collapse
Affiliation(s)
- Anne C Moore
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
44
|
Renaut L, Colin M, Leite JPG, Benko M, D'Halluin JC. Abolition of hCAR-dependent cell tropism using fiber knobs of Atadenovirus serotypes. Virology 2004; 321:189-204. [PMID: 15051380 DOI: 10.1016/j.virol.2003.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 10/31/2003] [Accepted: 12/29/2003] [Indexed: 01/19/2023]
Abstract
Most adenoviral vectors use in gene therapy protocols derive from species C. However, expression of the primary receptor (human Coxsackievirus and Adenovirus receptor, hCAR) for these AdV is variable on cancer cells. In vivo targeting of a therapeutic gene to specific cells has then become a major issue in gene therapy. The Ad fiber protein largely determines viral tropism through interaction with specific receptors. Hereto, we constructed a set of HAdV5 vectors carrying chimeric fibers with knob domains from nonhuman AdV, namely from the FAdV-1 (Aviadenovirus), DAdV-1, and BAdV-4 (Atadenovirus). Correspondents viruses were produced using an established new HEK293 cell line, which express the HAdV2 fiber. Recombinant HAdV harboring chimeric fibers constituted of the N-terminal domain of HAdV2, and knob domain of bovine adenovirus type 4 (BAdV-4) demonstrated the greatest reduction in fiber-mediated gene transfer into human cells expressing the hCAR. Moreover, this vector infects with a better efficiency than vector with wild-type fiber, the Chinese Hamster Ovarian (CHO) and SKOV3 cell lines, both from ovarian origin, hamster and human, respectively. These studies support the concept that changing the fiber knob domain to ablate hCAR interaction should result in a de- or retargeted adenoviral vector. The adenoviral vector with the chimeric HAdV2/BAdV-4 fiber lacking hCAR interaction and with an ovarian cell tropism could be a nice candidate to elaborate vectors for ovarian tumor therapy.
Collapse
Affiliation(s)
- Laurence Renaut
- Inserm UR524, Institut de Recherche sur le Cancer de Lille, 59045 Lille cedex, France
| | | | | | | | | |
Collapse
|
45
|
Pinto AR, Fitzgerald JC, Gao GP, Wilson JM, Ertl HCJ. Induction of CD8+ T cells to an HIV-1 antigen upon oral immunization of mice with a simian E1-deleted adenoviral vector. Vaccine 2004; 22:697-703. [PMID: 14741162 DOI: 10.1016/j.vaccine.2003.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An E1-deleted adenoviral recombinant derived from the chimpanzee serotype 6 expressing a codon-optimized truncated form of gag of human immunodeficiency virus type 1 (HIV-1) was tested for induction of a transgene product-specific CD8+ T cell response upon oral immunization of mice. The vector was shown to induce gag-specific CD8+ T cells detectable at moderate frequencies of approximately 0.5-1.0% in the spleens and to provide partial protection in a surrogate challenge model based on intraperitoneal (i.p.) infection of mice with a vaccinia virus recombinant expressing gag (VVgag) of HIV-1. Frequencies of gag-specific CD8+ T cells could be augmented by using a different, i.e., heterologous, vaccine carrier based on a distinct recombinant virus or an alternative adenoviral serotype expressing the same form of gag for oral or systemic-booster immunization.
Collapse
Affiliation(s)
- A R Pinto
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA
| | | | | | | | | |
Collapse
|
46
|
Xiang ZQ, Gao GP, Reyes-Sandoval A, Li Y, Wilson JM, Ertl HCJ. Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J Virol 2003; 77:10780-9. [PMID: 14512528 PMCID: PMC224991 DOI: 10.1128/jvi.77.20.10780-10789.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus vectors with E1 deleted of the human serotype 5 (AdHu5) and the chimpanzee serotype 68 (AdC68) expressing the glycoprotein of the Evelyn Rokiniki Abelseth strain of rabies virus were tested upon oral application for induction of systemic and mucosal transgene product-specific antibody responses in mice. Both vectors induced systemic and mucosal antibodies to rabies virus, including virus-neutralizing antibodies and protection against a severe intracerebral challenge with a mouse-adapted strain of rabies virus. Pre-existing immunity of AdHu5 virus, which dampens induction of transgene product-specific immunity elicited by AdHu5 vectors given systemically did not impair the response induced by oral vaccination. Oral priming-boosting regimens with either heterologous or homologous adenoviral vectors used sequentially increased both mucosal and systemic antibody titers to rabies virus [corrected]
Collapse
Affiliation(s)
- Z Q Xiang
- The Wistar Institute. Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
47
|
Sumbilla C, Ma H, Seth M, Inesi G. Dependence of exogenous SERCA gene expression on coxsackie adenovirus receptor levels in neonatal and adult cardiac myocytes. Arch Biochem Biophys 2003; 415:178-83. [PMID: 12831840 DOI: 10.1016/s0003-9861(03)00258-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We demonstrate that the efficiency of adenovirus-assisted exogenous Ca(2+) ATPase (SERCA) and reporter (EGFP) gene expression is much higher in primary cultures of myocytes from neonatal rat hearts, than in primary cultures of myocytes from adult rat hearts. In this respect, the neonatal myocytes behave similarly to the established COS-1 cell line. This difference is related to the level of coxsackie adenovirus receptor (CAR) that affects cell penetration and expression level of exogenous genes, and explains variations in the observed consequences of exposure to adenovirus vector carrying SERCA cDNA. Awareness of these differences should be highly advantageous in complementary studies of exogenous gene expression in neonatal and adult myocytes. It should also be advantageous in evaluating conditions yielding optimal ratios of functional benefits over possible toxic effects upon exogenous SERCA gene delivery to cardiac muscle.
Collapse
Affiliation(s)
- Carlota Sumbilla
- Department of Biochemistry, University of Maryland School of Medicine, 108 N Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | |
Collapse
|
48
|
Fitzgerald JC, Gao GP, Reyes-Sandoval A, Pavlakis GN, Xiang ZQ, Wlazlo AP, Giles-Davis W, Wilson JM, Ertl HCJ. A simian replication-defective adenoviral recombinant vaccine to HIV-1 gag. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1416-22. [PMID: 12538702 DOI: 10.4049/jimmunol.170.3.1416] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In animal models, E1-deleted human adenoviral recombinants of the serotype 5 (AdHu5) have shown high efficacy as vaccine carriers for different Ags including those of HIV-1. Humans are infected by common serotypes of human adenovirus such as AdHu5 early in life and a significant percentage has high levels of neutralizing Abs to these serotypes, which will very likely impair the efficacy of recombinant vaccines based on the homologous virus. To circumvent this problem, a novel replication-defective adenoviral vaccine carrier based on an E1-deleted recombinant of the chimpanzee adenovirus 68 (AdC68) was developed. An AdC68 construct expressing a codon-optimized, truncated form of gag of HIV-1 induces CD8(+) T cells to gag in mice which at the height of the immune response encompass nearly 20% of the entire splenic CD8(+) T cell population. The vaccine-induced immune response provides protection to challenge with a vaccinia gag recombinant virus. Induction of transgene-specific CD8(+) T cells and protection against viral challenge elicited by the AdC68 vaccines is not strongly inhibited in animals preimmune to AdHu5 virus. However, the response elicited by the AdHu5 vaccine is greatly attenuated in AdHu5 preimmune animals.
Collapse
MESH Headings
- Adenovirus E1 Proteins/deficiency
- Adenovirus E1 Proteins/genetics
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adenoviruses, Simian/genetics
- Adenoviruses, Simian/immunology
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cell Line
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Deletion
- Gene Expression Regulation, Viral/immunology
- Gene Products, gag/administration & dosage
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Kinetics
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred BALB C
- Pan troglodytes
- Transgenes/immunology
- Tumor Cells, Cultured
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
|
49
|
Petrella J, Cohen CJ, Gaetz J, Bergelson JM. A zebrafish coxsackievirus and adenovirus receptor homologue interacts with coxsackie B virus and adenovirus. J Virol 2002; 76:10503-6. [PMID: 12239327 PMCID: PMC136584 DOI: 10.1128/jvi.76.20.10503-10506.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, a zebrafish homologue of the coxsackievirus and adenovirus receptor (CAR) protein was identified. Although the extracellular domain of zebrafish CAR (zCAR) is less than 50% identical to that of human CAR (hCAR), zCAR mediated infection of transfected cells by both adenovirus type 5 and coxsackievirus B3. CAR residues interacting deep within the coxsackievirus canyon are highly conserved in zCAR and hCAR, which is consistent with the idea that receptor contacts within the canyon are responsible for coxsackievirus attachment. In contrast, CAR residues contacting the south edge of the canyon are not conserved, suggesting that receptor interaction with the viral "puff region" is not essential for attachment.
Collapse
Affiliation(s)
- JenniElizabeth Petrella
- Division of Immunologic and Infectious Diseases, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Thirion C, Larochelle N, Volpers C, Dunant P, Stucka R, Holland P, Nalbantoglu J, Kochanek S, Lochmüller H. Strategies for muscle-specific targeting of adenoviral gene transfer vectors. Neuromuscul Disord 2002; 12 Suppl 1:S30-9. [PMID: 12206792 DOI: 10.1016/s0960-8966(02)00079-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Currently, adenoviral transfer of therapeutic genes such as dystrophin is hampered by low transduction efficiency of adult skeletal muscle. This is largely due to the lack of appropriate virus attachment receptors on the myofiber surface. Recent studies in transgenic mice revealed that upregulation of Coxsackie- and adenovirus receptor improves gene transfer efficiency by approximately ten-fold. Conversely, the vector load that needed to be administered to achieve sufficient gene transfer could be lowered significantly. Reduced viral vector loads may help to control virally mediated toxicity and immunogenicity. To date, there are no drugs or methods known to increase Coxsackie- and adenovirus receptor expression in skeletal muscle that would be easily applicable in humans. However, alternative strategies such as vector retargeting are currently being investigated that may allow for an increase in binding of adenoviral vectors to skeletal muscle. Recent experiments have shown that directed mutagenesis of the adenoviral fiber knob allows for a significant reduction in Coxsackie- and adenovirus receptor binding and for introduction of a new binding domain. Therefore, vector retargeting towards efficient and specific infection of skeletal muscle may be achieved by directed genetic alteration of adenoviral capsid proteins.
Collapse
|