1
|
Wang X, Gao L, Wang S, Zhang X, Feng R, Jia S. Metagenomic insights into the assembly, function, and key taxa of bacterial community in full-scale pesticide wastewater treatment processes. ENVIRONMENTAL RESEARCH 2025; 271:121037. [PMID: 39920962 DOI: 10.1016/j.envres.2025.121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Pesticide wastewater emerges as a typical refractory wastewater, characterized by complex composition and high toxicity, posing significant treatment challenges. Bacterial communities are responsible for biological treatment of refractory wastewater in full-scale pesticide wastewater treatment plants (PWWTPs), providing important implications for optimizing system performance and improving management strategies. However, the knowledge of their composition, diversity, function, assembly patterns, and biological interactions remains limited. Therefore, this study applied high-throughput sequencing, machine learning models, and statistical analysis to investigate key features of bacterial communities in eight PWWTPs. We found that Proteobacteria and Bacteroidota were the most abundant phyla, with Pseudomonas, Hyphomicrobium, Comamonas, and Thauera being dominant genera. Bacterial community distribution and diversity varied significantly among influents, sludges, and effluents, with sludges and effluents exhibiting higher diversity, richness, and evenness compared to influents. Deterministic processes primarily shaped the bacterial communities, accounting for 77.12%, 61.44%, and 64.05% of variation in influents, sludges, and effluents, respectively. Homogeneous selection explained 47.71%, 31.37%, and 31.37% of variation across these communities. Key modules (Module 1 in influents, Modules 3 and 4 in sludges, and Module 1 in effluents) were significantly associated with various metabolic and degradative functions (p < 0.05). Core taxa identified by Random Forest analysis were strongly linked to key metabolic and degradation functions, such as the metabolism of cofactors and vitamins, carbohydrates, and amino acids as well as the degradation of benzoate, aminobenzoate, nitrotoluene, chloroalkane, and chloroalkene. This study deepens our understanding of bacterial community dynamics and key features in pesticide wastewater treatment systems, offering scientific guidance for process optimization, efficiency improvement, and system stability assessment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Li S, Dong X, Humez P, Borecki J, Birks J, McClain C, Mayer B, Strous M, Diao M. Proteomic evidence for aerobic methane production in groundwater by methylotrophic Methylotenera. THE ISME JOURNAL 2025; 19:wraf024. [PMID: 39927982 PMCID: PMC11978286 DOI: 10.1093/ismejo/wraf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Members of Methylotenera are signature denitrifiers and methylotrophs commonly found together with methanotrophic bacteria in lakes and freshwater sediments. Here, we show that three distinct Methylotenera ecotypes were abundant in methane-rich groundwaters recharged during the Pleistocene. Just like in surface water biomes, groundwater Methylotenera often co-occurred with methane-oxidizing bacteria, even though they were generally unable to denitrify. One abundant Methylotenera ecotype expressed a pathway for aerobic methane production from methylphosphonate. This phosphate-acquisition strategy was recently found to contribute to methane production in the oligotrophic, oxic upper ocean. Gene organization, phylogeny, and 3D protein structure of the key enzyme, carbon-phosphorus lyase subunit PhnJ, were consistent with a role in phosphate uptake. We conclude that phosphate may be a limiting nutrient in productive, methane-rich aquifers, and that methylphosphonate degradation might contribute to groundwater methane production.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Xiaoli Dong
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
- Provincial Laboratory for Public Health, Calgary, AB T2N 4W4, Canada
| | - Pauline Humez
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Joanna Borecki
- Alberta Environment and Protected Areas, Calgary, AB T2L 2K8, Canada
| | - Jean Birks
- Alberta Environment and Protected Areas, Calgary, AB T2L 2K8, Canada
| | - Cynthia McClain
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Bernhard Mayer
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Muhe Diao
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Rothrock MJ, Zwirzitz B, Al Hakeem WG, Oladeinde A, Guard JY, Li X. 16S amplicon-based microbiome biomapping of a commercial broiler hatchery. Anim Microbiome 2024; 6:46. [PMID: 39123264 PMCID: PMC11312677 DOI: 10.1186/s42523-024-00334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Hatcheries, where eggs from multiple breeder farms are incubated and hatched before being sent to different broiler farms, represent a nexus point in the commercial production of broilers in the United States. Considering all downstream microbial quality and safety aspects of broiler production (live production, processing, consumer use) can be potentially affected by the hatchery, a better understanding of microbial ecology within commercial hatcheries is essential. Therefore, a commercial broiler hatchery was biomapped using 16S rRNA amplicon-based microbiome analyses of four sample type categories (Air, Egg, Water, Facility) across five different places in the pre-hatch, hatch, and post-hatch areas. While distinct microbiota were found for each sample type category and hatchery area, microbial community analyses revealed that Egg microbiota trended towards clustering with the facility-related samples when moving from the prehatch to post-hatch areas, highlighting the potential effect of the hatchery environment in shaping the pre-harvest broiler-related microbiota. Prevalence analyses revealed 20 ASVs (Core20) present in the core microbiota of all sample types and areas, with each ASV possessing a unique distribution throughout the hatchery. Interestingly, three Enterobacteriaceae ASVs were in the Core20, including Salmonella. Subsequent analyses showed that Salmonella, while a minor prehatch and hatch Core20ASV, dominated the Enterobacteriaceae niche and total microbiota in the chick pad feces in the post-hatch area of the hatchery, and the presence of this Salmonella ASV in the post-hatch feces was associated with swabs of breakroom tables. These findings highlight the complexity of commercial hatchery microbiota, including identifying chick pad feces and breakroom tables as potentially important sampling or disinfection targets for hatchery managers to focus their Salmonella mitigation efforts to reduce loads entering live production farms.
Collapse
Affiliation(s)
- Michael J Rothrock
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA.
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Walid G Al Hakeem
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA
- Oak Ridge Institute for Science and Education, US-DOE, Oak Ridge, Tennessee, USA
| | - Adelumola Oladeinde
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA
| | - Jean Y Guard
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA
| | - Xiang Li
- Egg and Poultry Production Safety Research Unit, USDA-ARS, US National Poultry Research Center, 950 College Station Rd., Athens, GA, USA
| |
Collapse
|
4
|
Zhong KX, Chan AM, Collicutt B, Daspe M, Finke JF, Foss M, Green TJ, Harley CDG, Hesketh AV, Miller KM, Otto SP, Rolheiser K, Saunders R, Sutherland BJG, Suttle CA. The prokaryotic and eukaryotic microbiome of Pacific oyster spat is shaped by ocean warming but not acidification. Appl Environ Microbiol 2024; 90:e0005224. [PMID: 38466091 PMCID: PMC11022565 DOI: 10.1128/aem.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Pacific oysters (Magallana gigas, a.k.a. Crassostrea gigas), the most widely farmed oysters, are under threat from climate change and emerging pathogens. In part, their resilience may be affected by their microbiome, which, in turn, may be influenced by ocean warming and acidification. To understand these impacts, we exposed early-development Pacific oyster spat to different temperatures (18°C and 24°C) and pCO2 levels (800, 1,600, and 2,800 µatm) in a fully crossed design for 3 weeks. Under all conditions, the microbiome changed over time, with a large decrease in the relative abundance of potentially pathogenic ciliates (Uronema marinum) in all treatments with time. The microbiome composition differed significantly with temperature, but not acidification, indicating that Pacific oyster spat microbiomes can be altered by ocean warming but is resilient to ocean acidification in our experiments. Microbial taxa differed in relative abundance with temperature, implying different adaptive strategies and ecological specializations among microorganisms. Additionally, a small proportion (~0.2% of the total taxa) of the relatively abundant microbial taxa were core constituents (>50% occurrence among samples) across different temperatures, pCO2 levels, or time. Some taxa, including A4b bacteria and members of the family Saprospiraceae in the phyla Chloroflexi (syn. Chloroflexota) and Bacteroidetes (syn. Bacteroidota), respectively, as well as protists in the genera Labyrinthula and Aplanochytrium in the class Labyrinthulomycetes, and Pseudoperkinsus tapetis in the class Ichthyosporea were core constituents across temperatures, pCO2 levels, and time, suggesting that they play an important, albeit unknown, role in maintaining the structural and functional stability of the Pacific oyster spat microbiome in response to ocean warming and acidification. These findings highlight the flexibility of the spat microbiome to environmental changes.IMPORTANCEPacific oysters are the most economically important and widely farmed species of oyster, and their production depends on healthy oyster spat. In turn, spat health and productivity are affected by the associated microbiota; yet, studies have not scrutinized the effects of temperature and pCO2 on the prokaryotic and eukaryotic microbiomes of spat. Here, we show that both the prokaryotic and, for the first time, eukaryotic microbiome of Pacific oyster spat are surprisingly resilient to changes in acidification, but sensitive to ocean warming. The findings have potential implications for oyster survival amid climate change and underscore the need to understand temperature and pCO2 effects on the microbiome and the cascading effects on oyster health and productivity.
Collapse
Affiliation(s)
- Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M. Chan
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Maxim Daspe
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan F. Finke
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Megan Foss
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Timothy J. Green
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, British Columbia, Canada
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Christopher D. G. Harley
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amelia V. Hesketh
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Sarah P. Otto
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Ben J. G. Sutherland
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Curtis A. Suttle
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Zhu X, Deng Y, Liu Y. Methylocystis dominates methane oxidation in glacier foreland soil at elevated temperature. FEMS Microbiol Lett 2024; 371:fnae011. [PMID: 38366911 DOI: 10.1093/femsle/fnae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.
Collapse
Affiliation(s)
- Xinshu Zhu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Salter C, Westrick JA, Chaganti SR, Birbeck JA, Peraino NJ, Weisener CG. Elucidating microbial mechanisms of microcystin-LR degradation in Lake Erie beach sand through metabolomics and metatranscriptomics. WATER RESEARCH 2023; 247:120816. [PMID: 37952399 DOI: 10.1016/j.watres.2023.120816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
As one of five Laurentian Great Lakes, Lake Erie ranks among the top freshwater drinking sources and ecosystems globally. Historical and current agriculture mismanagement and climate change sustains the environmental landscape for late summer cyanobacterial harmful algal blooms, and consequently, cyanotoxins such as microcystin (MC). Microcystin microbial degradation is a promising mitigation strategy, however the mechanisms controlling the breakdown of MCs in Lake Erie are not well understood. Pelee Island, Ontario, Canada is located in the western basin of Lake Erie and the bacterial community in the sand has demonstrated the capacity of metabolizing the toxin. Through a multi-omic approach, the metabolic, functional and taxonomical signatures of the Pelee Island microbial community during MC-LR degradation was investigated over a 48-hour period to comprehensively study the degradation mechanism. Cleavage of bonds surrounding nitrogen atoms and the upregulation of nitrogen deamination (dadA, alanine dehydrogenase, leucine dehydrogenase) and assimilation genes (glnA, gltB) suggests a targeted isolation of nitrogen by the microbial community for energy production. Methylotrophic pathways RuMP and H4MPT control assimilation and dissimilation of carbon, respectively and differential abundance of Methylophilales indicates an interconnected role through electron exchange of denitrification and methylotrophic pathways. The detected metabolites did not resolve a clear breakdown pathway, but rather the diversity of products in combination with taxonomic and functional results supports that a variety of strategies are applied, such as epoxidation, hydroxylation, and aromatic degradation. Annual repeated exposure to the toxin may have allowed the community to adaptatively establish a novel pathway through functional plasticity and horizontal gene transfer. The culmination of these results reveals the complexity of the Pelee Island sand community and supports a dynamic and cooperative metabolism between microbial species to achieve MC degradation.
Collapse
Affiliation(s)
- Chelsea Salter
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Judy A Westrick
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, United States
| | - Johnna A Birbeck
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Nicholas J Peraino
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
7
|
Oh S, Nguyen HT. Activated sludge microbiome with H 2O 2-modified biochar enhances the treatment resilience and detoxification of oxytetracycline and its toxic byproducts. ENVIRONMENTAL RESEARCH 2023; 236:116832. [PMID: 37543124 DOI: 10.1016/j.envres.2023.116832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
The widespread presence of oxytetracycline (OTC) in aquatic ecosystems poses both health risks and ecological concerns. The present study revealed the beneficial role of hydrogen peroxide (H2O2)-pretreated biochar (BC) derived from agricultural hardwood waste in an activated sludge (AS) bioprocess. The BC addition significantly enhanced the removal and detoxification of OTC and its byproducts. BC was initially modified using H2O2 to improve its OTC adsorption. Two AS reactors were then established, one with H2O2-modified BC and one without, and both were exposed to OTC. The BC-added reactor exhibited significantly higher OTC removal rates during both the start-up (0.97 d-1) and steady-state (0.98 d-1) phases than the reactor without BC (0.54 d-1 and 0.83 d-1, respectively). Two novel transformation pathways for OTC were proposed, with four byproducts originating from OTC identified, some of which were found to be more toxic than OTC itself. The BC-added reactor had significantly higher system functioning in terms of its heterotrophic activity and the reduction of the toxicity of OTC and its byproducts, as illustrated by structure-based toxicity simulations, antimicrobial susceptibility experiments, analytical chemistry, and bioinformatics analysis. Bioinformatics revealed two novel bacterial populations closely related to the known OTC-degrader Pandoraea. The ecophysiology and selective enrichment of these populations suggested their role in the enzymatic breakdown and detoxification of OTC (e.g., via demethylation and hydrogenation). Overall, the present study highlighted the beneficial role of H2O2-modified BC in combination with the AS microbiome in terms of enhancing treatment performance and resilience, reducing the toxicological disruption to biodiversity, and detoxifying micropollutants.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Hiep T Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Liu X, Wang H, Wang W, Cheng X, Wang Y, Li Q, Li L, Ma L, Lu X, Tuovinen OH. Nitrate determines the bacterial habitat specialization and impacts microbial functions in a subsurface karst cave. Front Microbiol 2023; 14:1115449. [PMID: 36846803 PMCID: PMC9947541 DOI: 10.3389/fmicb.2023.1115449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Karst caves are usually considered as natural laboratories to study pristine microbiomes in subsurface biosphere. However, effects of the increasingly detected nitrate in underground karst ecosystem due to the acid rain impact on microbiota and their functions in subsurface karst caves have remained largely unknown. In this study, samples of weathered rocks and sediments were collected from the Chang Cave, Hubei province and subjected to high-throughput sequencing of 16S rRNA genes. The results showed that nitrate significantly impacted bacterial compositions, interactions, and functions in different habitats. Bacterial communities clustered according to their habitats with distinguished indicator groups identified for each individual habitat. Nitrate shaped the overall bacterial communities across two habitats with a contribution of 27.2%, whereas the pH and TOC, respectively, structured bacterial communities in weathered rocks and sediments. Alpha and beta diversities of bacterial communities increased with nitrate concentration in both habitats, with nitrate directly affecting alpha diversity in sediments, but indirectly on weathered rocks by lowering pH. Nitrate impacted more on bacterial communities in weathered rocks at the genus level than in sediments because more genera significantly correlated with nitrate concentration in weathered rocks. Diverse keystone taxa involved in nitrogen cycling were identified in the co-occurrence networks such as nitrate reducers, ammonium-oxidizers, and N2-fixers. Tax4Fun2 analysis further confirmed the dominance of genes involved in nitrogen cycling. Genes of methane metabolism and carbon fixation were also dominant. The dominance of dissimilatory and assimilatory nitrate reduction in nitrogen cycling substantiated nitrate impact on bacterial functions. Our results for the first time revealed the impact of nitrate on subsurface karst ecosystem in terms of bacterial compositions, interactions, and functions, providing an important reference for further deciphering the disturbance of human activities on the subsurface biosphere.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Weiqi Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiheng Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qing Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Lu Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Gomez NCF, Onda DFL. Potential of sediment bacterial communities from Manila Bay (Philippines) to degrade low-density polyethylene (LDPE). Arch Microbiol 2022; 205:38. [PMID: 36565350 DOI: 10.1007/s00203-022-03366-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/02/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022]
Abstract
The persistence of plastics and its effects in different environments where they accumulate, particularly in coastal areas, is of serious concern. These plastics exhibit signs of degradation, possibly mediated by microorganisms. In this study, we investigated the potential of sediment microbial communities from Manila Bay, Philippines, which has a severe plastics problem, to degrade low-density polyethylene (LDPE). Plastics in selected sites were quantified and sediment samples from sites with the lowest and highest plastic accumulation were collected. These sediments were then introduced and incubated with LDPE in vitro for a period of 91 days. Fourier transform infrared spectroscopy detected the appearance of carbonyl and vinyl products on the plastic surface, indicating structural surface modifications attributed to polymer degradation. Communities attached to the plastics were profiled using high-throughput sequencing of the V4-V5 region of the 16S rRNA gene. Members of the phylum Proteobacteria dominated the plastic surface throughout the experiment. Several bacterial taxa associated with hydrocarbon degradation were also enriched, with some taxa positively correlating with the biodegradation indices, suggesting potential active roles in the partial biodegradation of plastics. Other taxa were also present, which might be consuming by-products or providing nourishment for other groups, indicating synergy in utilizing the plastic as the main carbon source and creation of a microenvironment within the plastics biofilm. This study showed that sediment microbes from Manila Bay may have naturally occurring microbial groups potentially capable of partially degrading plastics, supporting previous studies that the biodegradation potential for plastics is ubiquitously present in marine microbial assemblages.
Collapse
Affiliation(s)
- Norchel Corcia F Gomez
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Velasquez St., 1101, Quezon City, Philippines
| | - Deo Florence L Onda
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Velasquez St., 1101, Quezon City, Philippines.
| |
Collapse
|
10
|
Tetrahydroisoquinoline N-methyltransferase from Methylotenera Is an Essential Enzyme for the Biodegradation of Berberine in Soil Water. Molecules 2022; 27:molecules27175442. [PMID: 36080208 PMCID: PMC9457531 DOI: 10.3390/molecules27175442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Berberine (BBR), a Chinese herbal medicine used in intestinal infection, has been applied as a botanical pesticide in the prevention of fungal disease in recent years. However, its degradation in the environment remains poorly understood. Here, we investigated BBR’s degradation in soil water from different sources accompanied by its effect on bacterial diversity. Our results indicated that BBR was only degraded in soil water, while it was stable in tap water, river water and aquaculture water. Bacterial amplicon results of these samples suggested that the degradation of BBR was closely related to the enrichment of Methylotenera. To reveal this special relationship, we used bioinformatics tools to make alignments between the whole genome of Methylotenera and the pathway of BBR’s degradation. An ortholog of Tetrahydroisoquinoline N-methyltransferase from plant was discovered only in Methylotenera that catalyzed a crucial step in BBR’s degradation pathway. In summary, our work indicated that Methylotenera was an essential bacterial genus in the degradation of BBR in the environment because of its Tetrahydroisoquinoline N-methyltransferase. This study provided new insights into BBR’s degradation in the environment, laying foundations for its application as a botanical pesticide.
Collapse
|
11
|
Garcia-Lopez E, Ruiz-Blas F, Sanchez-Casanova S, Peña Perez S, Martin-Cerezo ML, Cid C. Microbial Communities in Volcanic Glacier Ecosystems. Front Microbiol 2022; 13:825632. [PMID: 35547132 PMCID: PMC9084427 DOI: 10.3389/fmicb.2022.825632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Glaciers constitute a polyextremophilic environment characterized by low temperatures, high solar radiation, a lack of nutrients, and low water availability. However, glaciers located in volcanic regions have special characteristics, since the volcanic foci provide them with heat and nutrients that allow the growth of microbial communities highly adapted to this environment. Most of the studies on these glacial ecosystems have been carried out in volcanic environments in the northern hemisphere, including Iceland and the Pacific Northwest. To better know, the microbial diversity of the underexplored glacial ecosystems and to check what their specific characteristics were, we studied the structure of bacterial communities living in volcanic glaciers in Deception Island, Antarctica, and in the Kamchatka peninsula. In addition to geographic coordinates, many other glacier environmental factors (like volcanic activity, altitude, temperature, pH, or ice chemical composition) that can influence the diversity and distribution of microbial communities were considered in this study. Finally, using their taxonomic assignments, an attempt was made to compare how different or similar are the biogeochemical cycles in which these microbiomes are involved.
Collapse
Affiliation(s)
- Eva Garcia-Lopez
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Fatima Ruiz-Blas
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Sonia Peña Perez
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Cristina Cid
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
12
|
Garcia-Lopez E, Moreno A, Bartolomé M, Leunda M, Sancho C, Cid C. Glacial Ice Age Shapes Microbiome Composition in a Receding Southern European Glacier. Front Microbiol 2021; 12:714537. [PMID: 34867842 PMCID: PMC8636055 DOI: 10.3389/fmicb.2021.714537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Glaciers and their microbiomes are exceptional witnesses of the environmental conditions from remote times. Climate change is threatening mountain glaciers, and especially those found in southern Europe, such as the Monte Perdido Glacier (northern Spain, Central Pyrenees). This study focuses on the reconstruction of the history of microbial communities over time. The microorganisms that inhabit the Monte Perdido Glacier were identified using high-throughput sequencing, and the microbial communities were compared along an altitudinal transect covering most of the preserved ice sequence in the glacier. The results showed that the glacial ice age gradient did shape the diversity of microbial populations, which presented large differences throughout the last 2000 years. Variations in microbial community diversity were influenced by glacial conditions over time (nutrient concentration, chemical composition, and ice age). Some groups were exclusively identified in the oldest samples as the bacterial phyla Fusobacteria and Calditrichaeota, or the eukaryotic class Rhodophyceae. Among groups only found in modern samples, the green sulfur bacteria (phylum Chlorobi) stood out, as well as the bacterial phylum Gemmatimonadetes and the eukaryotic class Tubulinea. A patent impact of human contamination was also observed on the glacier microbiome. The oldest samples, corresponding to the Roman Empire times, were influenced by the beginning of mining exploitation in the Pyrenean area, with the presence of metal-tolerant microorganisms. The most recent samples comprise 600-year-old ancient ice in which current communities are living.
Collapse
Affiliation(s)
- Eva Garcia-Lopez
- Molecular Evolution Department, Centro de Astrobiologia (CSIC-INTA), Madrid, Spain
| | - Ana Moreno
- Departamento de Procesos Geoambientales y Cambio Global, Instituto Pirenaico de Ecología-CSIC, Zaragoza, Spain
| | - Miguel Bartolomé
- Departamento de Geología, Museo de Ciencias Naturales-CSIC, Madrid, Spain
| | - Maria Leunda
- Oeschger Centre for Climate Change Research, Institute of Plant Sciences, University of Bern, Bern, Switzerland.,Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carlos Sancho
- Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
| | - Cristina Cid
- Molecular Evolution Department, Centro de Astrobiologia (CSIC-INTA), Madrid, Spain
| |
Collapse
|
13
|
Sun FL, Wang YS, Wu ML, Sun CC, Jiang ZY, Cheng H, Fei J. Bacterial community variations in the South China Sea driven by different chemical conditions. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1808-1815. [PMID: 34269924 DOI: 10.1007/s10646-021-02455-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, Illumina MiSeq sequencing of the 16 S rRNA gene was used to describe the bacterial communities in the South China Sea (SCS) during the southwest monsoon period. We targeted different regions in the SCS and showed that bacterial community was driven by the effects of the river, upwelling, and mesoscale eddy through changing the environmental factors (salinity, temperature, and nutrients). Distinct bacterial communities were observed among different chemical conditions, especially between the estuary and the open sea. The abundance of Burkholderiales, Frankiales, Flavobacteriales, and Rhodobacterales dominated the estuary and its adjacent waters. Bacteria in cyclonic eddy were dominated by Methylophilales and Pseudomonadales, whereas Prochlorococcus, SAR11 clade, and Oceanospirillales had relatively high abundance in the anticyclonic eddy. Overall, the abundance of specific phylotypes significantly varied among samples with different chemical conditions. Chemical conditions probably act as a driver that shapes and controls the diversity of bacteria in the SCS. This study suggests that the interaction between microbial and environmental conditions needs to be further considered to fully understand the diversity and function of marine microbes.
Collapse
Affiliation(s)
- Fu-Lin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, 518121, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, 518121, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Mei-Lin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, 518121, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhao-Yu Jiang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
14
|
Miyadera T, Kojima H, Fukui M. Methyloradius palustris gen. nov., sp. nov., a methanol-oxidizing bacterium isolated from snow. Arch Microbiol 2021; 203:5715-5721. [PMID: 34476514 DOI: 10.1007/s00203-021-02559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
A novel methylotrophic bacterium, strain Zm11T, was isolated from reddish brown snow collected in a moor in Japan. Cells of the isolate were Gram-stain-negative, motile, and rod-shaped (0.6-0.7 × 1.2-2.7 μm). Growth was observed at 5-32 °C with an optimum growth temperature of 25-28 °C. The pH range for growth was 5.4-7.8 with an optimum pH of 6.8. The strain utilized only methanol as carbon and energy sources for aerobic growth. The major cellular fatty acids (> 40% of total) were summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C16: 0. The predominant quinone was Q-8, and major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The complete genome of strain Zm11T is composed of a circular chromosome (2,800,413 bp), with G + C content of 46.4 mol%. Phylogenetic analyses were conducted based on the 16S rRNA gene sequence and conserved proteins encoded in the genome. The results of analyses indicate that strain Zm11T is a member of the family Methylophilaceae but does not belong to any existing genus. On the basis of its genomic and phenotypic properties, strain Zm11T (= DSM111909T = NBRC114766T) is proposed as the type strain of a new species in a new genus, Methyloradius palustris gen. nov., sp. nov.
Collapse
Affiliation(s)
- Takeshi Miyadera
- Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, 060-0810, Japan.,The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
15
|
Fodelianakis S, Washburne AD, Bourquin M, Pramateftaki P, Kohler TJ, Styllas M, Tolosano M, De Staercke V, Schön M, Busi SB, Brandani J, Wilmes P, Peter H, Battin TJ. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME JOURNAL 2021; 16:666-675. [PMID: 34522009 PMCID: PMC8857233 DOI: 10.1038/s41396-021-01106-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 02/01/2023]
Abstract
Glacier-fed streams (GFSs) are extreme and rapidly vanishing ecosystems, and yet they harbor diverse microbial communities. Although our understanding of the GFS microbiome has recently increased, we do not know which microbial clades are ecologically successful in these ecosystems, nor do we understand potentially underlying mechanisms. Ecologically successful clades should be more prevalent across GFSs compared to other clades, which should be reflected as clade-wise distinctly low phylogenetic turnover. However, methods to assess such patterns are currently missing. Here we developed and applied a novel analytical framework, “phyloscore analysis”, to identify clades with lower spatial phylogenetic turnover than other clades in the sediment microbiome across twenty GFSs in New Zealand. These clades constituted up to 44% and 64% of community α-diversity and abundance, respectively. Furthermore, both their α-diversity and abundance increased as sediment chlorophyll a decreased, corroborating their ecological success in GFS habitats largely devoid of primary production. These clades also contained elevated levels of putative microdiversity than others, which could potentially explain their high prevalence in GFSs. This hitherto unknown microdiversity may be threatened as glaciers shrink, urging towards further genomic and functional exploration of the GFS microbiome.
Collapse
Affiliation(s)
- Stilianos Fodelianakis
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| | | | - Massimo Bourquin
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Tyler J Kohler
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Michail Styllas
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Matteo Tolosano
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vincent De Staercke
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Martina Schön
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jade Brandani
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paul Wilmes
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Hannes Peter
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Tom J Battin
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| |
Collapse
|
16
|
Chen YH, Chiang PW, Rogozin DY, Degermendzhy AG, Chiu HH, Tang SL. Salvaging high-quality genomes of microbial species from a meromictic lake using a hybrid sequencing approach. Commun Biol 2021; 4:996. [PMID: 34426638 PMCID: PMC8382752 DOI: 10.1038/s42003-021-02510-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 11/08/2022] Open
Abstract
Most of Earth's bacteria have yet to be cultivated. The metabolic and functional potentials of these uncultivated microorganisms thus remain mysterious, and the metagenome-assembled genome (MAG) approach is the most robust method for uncovering these potentials. However, MAGs discovered by conventional metagenomic assembly and binning are usually highly fragmented genomes with heterogeneous sequence contamination. In this study, we combined Illumina and Nanopore data to develop a new workflow to reconstruct 233 MAGs-six novel bacterial orders, 20 families, 66 genera, and 154 species-from Lake Shunet, a secluded meromictic lake in Siberia. With our workflow, the average N50 of reconstructed MAGs greatly increased 10-40-fold compared to when the conventional Illumina assembly and binning method were used. More importantly, six complete MAGs were recovered from our datasets. The recovery of 154 novel species MAGs from a rarely explored lake greatly expands the current bacterial genome encyclopedia.
Collapse
Affiliation(s)
- Yu-Hsiang Chen
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Denis Yu Rogozin
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Andrey G Degermendzhy
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Hsiu-Hui Chiu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sen-Lin Tang
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
17
|
Rummel CD, Lechtenfeld OJ, Kallies R, Benke A, Herzsprung P, Rynek R, Wagner S, Potthoff A, Jahnke A, Schmitt-Jansen M. Conditioning Film and Early Biofilm Succession on Plastic Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11006-11018. [PMID: 34339175 DOI: 10.1021/acs.est.0c07875] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the context of environmental plastic pollution, it is still under debate if and how the "plastisphere", a plastic-specific microbial community, emerges. In this study, we tested the hypothesis that the first conditioning film of dissolved organic matter (DOM) sorbs selectively to polymer substrates and that microbial attachment is governed in a substrate-dependent manner. We investigated the adsorption of stream water-derived DOM to polyethylene terephthalate (PET), polystyrene (PS), and glass (as control) including UV-weathered surfaces by Fourier-transform ion cyclotron mass spectrometry. Generally, the saturated, high-molecular mass and thus more hydrophobic fraction of the original stream water DOM preferentially adsorbed to the substrates. The UV-weathered polymers adsorbed more polar, hydrophilic OM as compared to the dark controls. The amplicon sequencing data of the initial microbial colonization process revealed a tendency of substrate specificity for biofilm attachment after 24 h and a clear convergence of the communities after 72 h of incubation. Conclusively, the adsorbed OM layer developed depending on the materials' surface properties and increased the water contact angles, indicating higher surface hydrophobicity as compared to pristine surfaces. This study improves our understanding of molecular and biological interactions at the polymer/water interface that are relevant to understand the ecological impact of plastic pollution on a community level.
Collapse
Affiliation(s)
- Christoph D Rummel
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Annegret Benke
- Department of Powder and Suspension Characterization, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden, Germany
| | - Peter Herzsprung
- Department of Lake Research, Helmholtz Centre for Environmental Research-UFZ, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Robby Rynek
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Water and Energy Management (iwe), University of Applied Science, Alfons-Goppel-Platz 1, 95028 Hof, Germany
| | - Annegret Potthoff
- Department of Powder and Suspension Characterization, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden, Germany
| | - Annika Jahnke
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52047 Aachen, Germany
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
18
|
Yamaguchi T, Mahmood A, Ito T, Kataoka R. Non-target Impact of Dinotefuran and Azoxystrobin on Soil Bacterial Community and Nitrification. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:996-1002. [PMID: 33687536 DOI: 10.1007/s00128-021-03163-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Pesticides to protect crops from pests are subject to rigorous risk assessment before registration in Japan. However, further information needs to be collected regarding the assessment of impacts on the natural environment. In particular, nitrifying bacteria play a role in converting ammonium salts to nitrates in soil. However, there is limited research covering the effects of insecticides on nitrification, despite several fungicides and herbicides have an inhibitory effect on nitrifying bacteria. Therefore, we investigated the effect of pesticides on the nitrification when applied to soil. The application of both pesticides promoted ammonia oxidation, and suppressed nitrite oxidation in a high-concentration treatment of dinotefuran. In addition, it was clarified that the diversity and species richness of soil bacteria was significantly reduced when the pesticides were applied to the soil, and that the specific soil bacteria (Metyhlotenera spp.) dominated the application of the pesticides.
Collapse
Affiliation(s)
- Taku Yamaguchi
- Department of Environmental Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Ahmad Mahmood
- Department of Environmental Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Takahide Ito
- Department of Environmental Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Ryota Kataoka
- Department of Environmental Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan.
| |
Collapse
|
19
|
Varsadiya M, Urich T, Hugelius G, Bárta J. Microbiome structure and functional potential in permafrost soils of the Western Canadian Arctic. FEMS Microbiol Ecol 2021; 97:6102547. [PMID: 33452882 DOI: 10.1093/femsec/fiab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 01/12/2023] Open
Abstract
Substantial amounts of topsoil organic matter (OM) in Arctic Cryosols have been translocated by the process of cryoturbation into deeper soil horizons (cryoOM), reducing its decomposition. Recent Arctic warming deepens the Cryosols´ active layer, making more topsoil and cryoOM carbon accessible for microbial transformation. To quantify bacteria, archaea and selected microbial groups (methanogens - mcrA gene and diazotrophs - nifH gene) and to investigate bacterial and archaeal diversity, we collected 83 soil samples from four different soil horizons of three distinct tundra types located in Qikiqtaruk (Hershel Island, Western Canada). In general, the abundance of bacteria and diazotrophs decreased from topsoil to permafrost, but not for cryoOM. No such difference was observed for archaea and methanogens. CryoOM was enriched with oligotrophic (slow-growing microorganism) taxa capable of recalcitrant OM degradation. We found distinct microbial patterns in each tundra type: topsoil from wet-polygonal tundra had the lowest abundance of bacteria and diazotrophs, but the highest abundance of methanogens. Wet-polygonal tundra, therefore, represented a hotspot for methanogenesis. Oligotrophic and copiotrophic (fast-growing microorganism) genera of methanogens and diazotrophs were distinctly distributed in topsoil and cryoOM, resulting in different rates of nitrogen flux into these horizons affecting OM vulnerability and potential CO2 and CH4 release.
Collapse
Affiliation(s)
- Milan Varsadiya
- Department of Ecosystems Biology, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8 17487 Greifswald, Germany
| | - Gustaf Hugelius
- Department of Physical Geography, Stockholm University, 106 91, Stockholm, Sweden
| | - Jiří Bárta
- Department of Ecosystems Biology, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
20
|
Galachyants AD, Krasnopeev AY, Podlesnaya GV, Potapov SA, Sukhanova EV, Tikhonova IV, Zimens EA, Kabilov MR, Zhuchenko NA, Gorshkova AS, Suslova MY, Belykh OI. Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal. Microorganisms 2021; 9:842. [PMID: 33920057 PMCID: PMC8071047 DOI: 10.3390/microorganisms9040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes.
Collapse
Affiliation(s)
- Agnia Dmitrievna Galachyants
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Andrey Yurjevich Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Galina Vladimirovna Podlesnaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Sergey Anatoljevich Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Elena Viktorovna Sukhanova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Irina Vasiljevna Tikhonova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Ekaterina Andreevna Zimens
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Marsel Rasimovich Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia Albertovna Zhuchenko
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Anna Sergeevna Gorshkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| |
Collapse
|
21
|
Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M, Wanner G, Overmann J. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 33433313 DOI: 10.1099/ijsem.0.004631] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1 ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.
Collapse
Affiliation(s)
- Selma Vieira
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Katharina J Huber
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Alicia Geppert
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Manja Luckner
- Department of Biology I, Biozentrum Ludwig Maximilian University of Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Department of Biology I, Biozentrum Ludwig Maximilian University of Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jörg Overmann
- Braunschweig University of Technology, Spielmanstraße 7, 38106 Braunschweig, Germany.,Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
22
|
Ruiz-Lopez S, Foster L, Boothman C, Cole N, Morris K, Lloyd JR. Identification of a Stable Hydrogen-Driven Microbiome in a Highly Radioactive Storage Facility on the Sellafield Site. Front Microbiol 2020; 11:587556. [PMID: 33329459 PMCID: PMC7732693 DOI: 10.3389/fmicb.2020.587556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022] Open
Abstract
The use of nuclear power has been a significant part of the United Kingdom’s energy portfolio with the Sellafield site being used for power production and more recently reprocessing and decommissioning of spent nuclear fuel activities. Before being reprocessed, spent nuclear fuel is stored in water ponds with significant levels of background radioactivity and in high alkalinity (to minimize fuel corrosion). Despite these challenging conditions, the presence of microbial communities has been detected. To gain further insight into the microbial communities present in extreme environments, an indoor, hyper-alkaline, oligotrophic, and radioactive spent fuel storage pond (INP) located on the Sellafield site was analyzed. Water samples were collected from sample points within the INP complex, and also the purge water feeding tank (FT) that supplies water to the pond, and were screened for the presence of the 16S and 18S rRNA genes to inform sequencing requirements over a period of 30 months. Only 16S rRNA genes were successfully amplified for sequencing, suggesting that the microbial communities in the INP were dominated by prokaryotes. Quantitative Polymerase Chain Reaction (qPCR) analysis targeting 16S rRNA genes suggested that bacterial cells in the order of 104–106 mL–1 were present in the samples, with loadings rising with time. Next generation Illumina MiSeq sequencing was performed to identify the dominant microorganisms at eight sampling times. The 16S rRNA gene sequence analysis suggested that 70% and 91% from of the OTUs samples, from the FT and INP respectively, belonged to the phylum Proteobacteria, mainly from the alpha and beta subclasses. The remaining OTUs were assigned primarily to the phyla Acidobacteria, Bacteroidetes, and, Cyanobacteria. Overall the most abundant genera identified were Hydrogenophaga, Curvibacter, Porphyrobacter, Rhodoferax, Polaromonas, Sediminibacterium, Roseococcus, and Sphingomonas. The presence of organisms most closely related to Hydrogenophaga species in the INP areas, suggests the metabolism of hydrogen as an energy source, most likely linked to hydrolysis of water caused by the stored fuel. Isolation of axenic cultures using a range of minimal and rich media was also attempted, but only relatively minor components (from the phylum Bacteroidetes) of the pond water communities were obtained, emphasizing the importance of DNA-based, not culture-dependent techniques, for assessing the microbiome of nuclear facilities.
Collapse
Affiliation(s)
- Sharon Ruiz-Lopez
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| | - Lynn Foster
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| | - Chris Boothman
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| | - Nick Cole
- Sellafield Ltd., Warrington, United Kingdom
| | - Katherine Morris
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| |
Collapse
|
23
|
Shang Y, Wu X, Wei Q, Dou H, Wang X, Chen J, Zhang H, Ma S, Zhang H. Total Arsenic, pH, and Sulfate Are the Main Environmental Factors Affecting the Microbial Ecology of the Water and Sediments in Hulun Lake, China. Front Microbiol 2020; 11:548607. [PMID: 33072010 PMCID: PMC7541820 DOI: 10.3389/fmicb.2020.548607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/24/2020] [Indexed: 01/29/2023] Open
Abstract
Bacteria have the metabolic potential to produce a diverse array of secondary metabolites, which have important roles in biogeochemical cycling processes. However, for Hulun Lake and the rivers that enter into it, the bacterial community structures and their effects have not previously been widely studied, limiting our ecological understanding of this habitat. To address this, we have analyzed the bacterial communities in the water ecosystem of the Hulun Lake Basin. 16S rRNA high-throughput sequencing identified 64 phyla, 165 classes, 218 orders, 386 families, and 740 genera of bacteria across all samples. The dominant phyla in the central area of the lake were Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria, while in all other areas, Proteobacteria, Actinobacteria, and Bacteroidetes were dominant. The microbial community structures were significantly affected by environmental factors [arsenic (As), pH, and sulfate (SO4 2-)] and their location in the lake. The species richness in the sediments of Hulun Lake was higher than in the water, and this ecosystem harbored the highest proportion of unclassified sequences, representing unclassified bacteria. This study provides basic data for future investigations into the Hulun lake ecosystem and for water microbial monitoring and protection measures.
Collapse
Affiliation(s)
- Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shengchao Ma
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
24
|
Coupled Microbiological–Isotopic Approach for Studying Hydrodynamics in Deep Reservoirs: The Case of the Val d’Agri Oilfield (Southern Italy). WATER 2020. [DOI: 10.3390/w12051483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The studies upstream of the petroleum industry include oil and gas geological exploration and are usually focused on geological, structural, geophysical, and modeling techniques. In this research, the application of a coupled microbiological–isotopic approach was explored to assess its potential as an adequate characterization and monitoring tool of geofluids in oilfield areas, in order to expand and refine the information acquired through more consolidated practices. The test site was selected within the Val d’Agri oilfield, where some natural hydrocarbon springs have been documented since the 19th century in the Tramutola area. Close to these springs, several tens of exploration and production wells were drilled in the first half of the 20th century. The results demonstrated the effectiveness of the proposed approach for the analysis of fluid dynamics in complex systems, such as oilfield areas, and highlighted the capacity of microbial communities to “behave” as “bio-thermometers”, that is, as indicators of the different temperatures in various subsurface compartments.
Collapse
|
25
|
Xu X, Zhu J, Thies JE, Wu W. Methanol-linked synergy between aerobic methanotrophs and denitrifiers enhanced nitrate removal efficiency in a membrane biofilm reactor under a low O 2:CH 4 ratio. WATER RESEARCH 2020; 174:115595. [PMID: 32097807 DOI: 10.1016/j.watres.2020.115595] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Nitrate removal efficiency of aerobic methane oxidation coupled with denitrification (AME-D) process was elevated by enhancing the methanol-linked synergy in a membrane biofilm reactor (MBfR) under a low O2:CH4 ratio. After 140 days' enrichment, the nitrate removal rate increased significantly from 3 to 4 mg-N L-1 d-1 to 22.09 ± 1.21 mg-N L-1 d-1 and the indicator, mol CH4 consumed/mol reduced NO3--N (C/N ratio), decreased to 1.79 which was very close to the theoretical minimum value (1.27-1.39). The increased nitrate removal efficiency was largely related to the enhanced relationship between aerobic methanotrophs and methanol-utilizing denitrifiers. Type I methanotrophs and some denitrifiers, especially those potential methanol-utilizing denitrifiers from Methylobacillus, Methylotenera, Methylophilus and Methyloversatilis, were abundant in the MBfR sludge. Aerobic methanotrophs and potential methanol-utilizing denitrifiers were closely associated in many globular aggregates (5-10 μm diameter) in the MBfR sludge, which may have promoted the denitrifiers to capture methanol released by methanotrophs efficiently. If we assume methanol is the only cross-feeding intermediate in the MBfR, about 38-60% of the CH4 supplied would be converted to methanol and secreted rather than continuing to be oxidized. At least 63% of this secreted methanol should be utilized for denitrification instead of being oxidized by oxygen in the MBfR. These findings suggest that the nitrate removal efficiency of the AME-D process could be significantly improved.
Collapse
Affiliation(s)
- Xingkun Xu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, 310058, China
| | - Janice E Thies
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Lv H, Sahin N, Tani A. Methylotenera oryzisoli sp. nov., a lanthanide-dependent methylotrophic bacteria isolated from rice field soil. Int J Syst Evol Microbiol 2020; 70:2713-2718. [DOI: 10.1099/ijsem.0.004098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new lanthanide (Ln3+)-dependent methanol-utilizing bacterial strain, La3113T, was isolated from rice field soil and its taxonomic position was investigated using polyphasic approaches. The strain was aerobic, Gram-stain-negative, strongly motile, catalase-positive and cytochrome oxidase-positive. It could neither catalyse the hydrolysis of urea nor reduce nitrate to nitrite. Growth was observed within a temperature range of 10–40 °C and a pH range of 6–8, with optimum growth at 28 °C and pH 7. Methylamine was utilized as the single source of energy, carbon and nitrogen, and it was oxidized by methylamine dehydrogenase. C16 : 1
ω7c, C16 : 1
ω6c and C16 : 0 were the dominant cellular fatty acids. Its draft genome (2.67 Mbp and 44.9 mol% G+C content) encodes genes including three Ln3+-dependent methanol dehydrogenase (XoxF-type MDH) genes, those for formaldehyde assimilation (ribulose monophosphate pathway), formate dehydrogenases and methylamine dehydrogenases, but not Ca2+-dependent MDH (MxaFI-MDH), which characterizes the species as a Ln3+-dependent methylotroph. The 16S rRNA gene sequence showed that strain La3113T belongs to the genus
Methylotenera
and is closely related to
Methylotenera mobilis
JLW8T (98.29 % identity). The digital DNA–DNA hybridization (dDDH) values (less than 30 %) and average nucleotide identity (ANI) values (less than 85 %) between genomes of strain La3113T and related type strains were lower than the thresholds for species delineation (70 % for dDDH and 95–96 % for ANI). On the basis of these polyphasic approaches, we propose a novel
Methylotenera
species, Methylotenera oryzisoli sp. nov. (type strain La3113T=NBRC 111954T=DSM 103219T).
Collapse
Affiliation(s)
- Haoxin Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, PR China
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla Sitki Kocman University, Kotekli, Mugla, Turkey
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
27
|
Zhang M, Xu M, Xu S, Zhang L, Lin K, Zhang L, Bai M, Zhang C, Zhou H. Response of the Bacterial Community and Antibiotic Resistance in Overnight Stagnant Water from a Municipal Pipeline. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061995. [PMID: 32197379 PMCID: PMC7143130 DOI: 10.3390/ijerph17061995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/15/2023]
Abstract
Although drinking water safety has raised considerable concern, to date, the hidden health risks in newly released overnight water from a municipal pipeline have seldom received attention. In this study, bacterial community composition and the response of antibiotic-resistant bacteria (ARB) to ciprofloxacin, azithromycin, tetracycline, penicillin, and cephalosporin in overnight stagnant water were analyzed. With increases in heterotrophic bacteria plate count (HPC) during water stagnation, the numbers of ARB and the ARB/HPC ratios for the five antibiotics in resident water were observed to increase, which illustrated that the prevalence of ARB rose in the pipe network water during stagnation time (ST). Furthermore, during water stagnation for 12 h, an increase in bacteria related to fermentation was also observed. When the ST rose to 48 h, the fermentation bacteria become non-significant, and this was related to the exchange of pipe network water during daytime stagnation within the 48-h period. The antibiotic resistance index (ARI) showed that tetracycline had the highest resistance level in fresh water, and then decreased during water stagnation. When ST increased to 12 h, all ARI values of the five antibiotics were low, which was associated with changes in parameters during water retention and reduced resistance during short-term stagnation. When the ST increased to 24 and 48 h, the resistance to most antibiotics (except for tetracycline) increased, which showed that increasing antibiotic resistance is caused by the formation of biofilms in the pipeline during water stagnation.
Collapse
Affiliation(s)
- Minglu Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Mengyao Xu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Shaofeng Xu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Lingyue Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Kaizong Lin
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Lei Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
| | - Miao Bai
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
- Correspondence:
| | - He Zhou
- Beijing Boda Water Company, Beijing 100176, China;
| |
Collapse
|
28
|
Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. THE ISME JOURNAL 2019; 13:2764-2777. [PMID: 31292537 PMCID: PMC6794327 DOI: 10.1038/s41396-019-0471-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The most abundant aquatic microbes are small in cell and genome size. Genome-streamlining theory predicts gene loss caused by evolutionary selection driven by environmental factors, favouring superior competitors for limiting resources. However, evolutionary histories of such abundant, genome-streamlined microbes remain largely unknown. Here we reconstruct the series of steps in the evolution of some of the most abundant genome-streamlined microbes in freshwaters ("Ca. Methylopumilus") and oceans (marine lineage OM43). A broad genomic spectrum is visible in the family Methylophilaceae (Betaproteobacteria), from sediment microbes with medium-sized genomes (2-3 Mbp genome size), an occasionally blooming pelagic intermediate (1.7 Mbp), and the most reduced pelagic forms (1.3 Mbp). We show that a habitat transition from freshwater sediment to the relatively oligotrophic pelagial was accompanied by progressive gene loss and adaptive gains. Gene loss has mainly affected functions not necessarily required or advantageous in the pelagial or is encoded by redundant pathways. Likewise, we identified genes providing adaptations to oligotrophic conditions that have been transmitted horizontally from pelagic freshwater microbes. Remarkably, the secondary transition from the pelagial of lakes to the oceans required only slight modifications, i.e., adaptations to higher salinity, gained via horizontal gene transfer from indigenous microbes. Our study provides first genomic evidence of genome reduction taking place during habitat transitions. In this regard, the family Methylophilaceae is an exceptional model for tracing the evolutionary history of genome streamlining as such a collection of evolutionarily related microbes from different habitats is rare in the microbial world.
Collapse
Affiliation(s)
- Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic.
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland.
| | - Daniel Schaefle
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Melissa Kaspar
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Stefan M Neuenschwander
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| |
Collapse
|
29
|
Chen Q, Yang Z, Qi K, Zhao C. Different pollutant removal efficiencies of artificial aquatic plants in black-odor rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33946-33952. [PMID: 30032368 DOI: 10.1007/s11356-018-2696-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Black-odor rivers have become a prominent environmental problem, especially for developing countries. A laboratory experiment was conducted to determine the optimum operating parameters of artificial aquatic plants (AAP) to provide a theoretical and scientific basis for their application in black-odor rivers. The purification mechanism of operating parameters for AAP was also explored at the micro-organic and genetic levels by high-throughput sequencing. Chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) were measured in systems with different AAP lengths and pH. After 24 days, the best removal efficiencies of APP for COD and NH4+-N were 90.07 and 82.40% for 100 cm and 90.70 and 91.90% for pH values of 8.0-9.0, respectively. High-throughput sequencing analysis revealed that the relative abundance of Flavobacterium in the AAP was 7.80% at 50 cm, while the proportion increased to 29.30% at 100 cm. The abundance of microorganisms improved continuously with increased length, and the ratio of Acinetobacter increased obviously at pH 8.0-9.0 relative to pH 6.0-7.0. Furthermore, the AAP were used in Qihe Artificial Wetland in Shandong Province, China. The results revealed that the average removal efficiencies of AAP for COD and NH4+-N were 27.75 and 14.34%, respectively, in the artificial wetland. Therefore, AAP was beneficial to the growth of bacteria and could be used in the treatment of black-odor rivers.
Collapse
Affiliation(s)
- Qingfeng Chen
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Zhao Yang
- School of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Kemei Qi
- School of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Changsheng Zhao
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
30
|
Pseudomethylobacillus aquaticus gen. nov., sp. nov., a new member of the family Methylophilaceae isolated from an artificial reservoir. Int J Syst Evol Microbiol 2019; 69:3551-3559. [DOI: 10.1099/ijsem.0.003661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Shen Y, Stedtfeld RD, Guo X, Bhalsod GD, Jeon S, Tiedje JM, Li H, Zhang W. Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. ENVIRONMENT INTERNATIONAL 2019; 131:105031. [PMID: 31336252 DOI: 10.1016/j.envint.2019.105031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/29/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
New classes of emerging contaminants such as pharmaceuticals, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) have received increasing attention due to rapid increases of their abundance in agroecosystems. As food consumption is a direct exposure pathway of pharmaceuticals, ARB, and ARGs to humans, it is important to understand changes of bacterial communities and ARG profiles in food crops produced with contaminated soils and waters. This study examined the level and type of ARGs and bacterial community composition in soil, and lettuce shoots and roots under soil-surface or overhead irrigation with pharmaceuticals-contaminated water, using high throughput qPCR and 16S rRNA amplicon sequencing techniques, respectively. In total 52 ARG subtypes were detected in the soil, lettuce shoot and root samples, with mobile genetic elements (MGEs), and macrolide-lincosamide-streptogramin B (MLSB) and multidrug resistance (MDR) genes as dominant types. The overall abundance and diversity of ARGs and bacteria associated with lettuce shoots under soil-surface irrigation were lower than those under overhead irrigation, indicating soil-surface irrigation may have lower risks of producing food crops with high abundance of ARGs. ARG profiles and bacterial communities were sensitive to pharmaceutical exposure, but no consistent patterns of changes were observed. MGE intl1 was consistently more abundant with pharmaceutical exposure than in the absence of pharmaceuticals. Pharmaceutical exposure enriched Proteobacteria (specifically Methylophilaceae) and decreased bacterial alpha diversity. Finally, there were significant interplays among bacteria community, antibiotic concentrations, and ARG abundance possibly involving hotspots including Sphingomonadaceae, Pirellulaceae, and Chitinophagaceae, MGEs (intl1 and tnpA_1) and MDR genes (mexF and oprJ).
Collapse
Affiliation(s)
- Yike Shen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States; Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, United States
| | - Xueping Guo
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States; Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, United States; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gemini D Bhalsod
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States; Cook County Unit, University of Illinois Extension, Arlington Heights, IL 60004, United States
| | - Sangho Jeon
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States; National Institute of Agricultural Sciences, Rural Development Administration, Wanju 54875, Republic of Korea
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States; Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, United States
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States; Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
32
|
Lathifah AN, Guo Y, Sakagami N, Suda W, Higuchi M, Nishizawa T, Prijambada ID, Ohta H. Comparative Characterization of Bacterial Communities in Moss-Covered and Unvegetated Volcanic Deposits of Mount Merapi, Indonesia. Microbes Environ 2019; 34:268-277. [PMID: 31327812 PMCID: PMC6759343 DOI: 10.1264/jsme2.me19041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Abstract
Microbial colonization, followed by succession, on newly exposed volcanic substrates represents the beginning of the development of an early ecosystem. During early succession, colonization by mosses or plants significantly alters the pioneer microbial community composition through the photosynthetic carbon input. To provide further insights into this process, we investigated the three-year-old volcanic deposits of Mount Merapi, Indonesia. Samples were collected from unvegetated (BRD) and moss-covered (BRUD) sites. Forest site soil (FRS) near the volcanic deposit-covered area was also collected for reference. An analysis of BRD and BRUD revealed high culturable cell densities (1.7-8.5×105 CFU g-1) despite their low total C (<0.01%). FRS possessed high CFU (3×106 g-1); however, its relative value per unit of total C (2.6%) was lower than that of the deposit samples. Based on the tag pyrosequencing of 16S rRNA genes, the BRD bacterial community was characterized by a higher number of betaproteobacterial families (or genus), represented by chemolithotrophic Methylophilaceae, Leptothrix, and Sulfuricellaceae. In contrast, BRUD was predominated by different betaproteobacterial families, such as Oxalobacteraceae, Comamonadaceae, and Rhodocyclaceae. Some bacterial (Oxalobacteraceae) sequences were phylogenetically related to those of known moss-associated bacteria. Within the FRS community, Proteobacteria was the most abundant phylum, followed by Acidobacteria, whereas Burkholderiaceae was the most dominant bacterial family within FRS. These results suggest that an inter-family succession of Betaproteobacteria occurred in response to colonization by mosses, followed by plants.
Collapse
Affiliation(s)
- Annisa N. Lathifah
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| | - Yong Guo
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| | - Nobuo Sakagami
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| | - Wataru Suda
- Department of Computational Biology, Graduate School of Frontier Science, The University of TokyoKashiwaJapan
| | - Masanobu Higuchi
- Department of Botany, National Museum of Nature and Science4–1–1, Amakubo, IbarakiJapan
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| | - Irfan D. Prijambada
- Graduate School of Biotechnology, University of Gadjah MadaYogyakartaIndonesia
| | - Hiroyuki Ohta
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology3–5–8 Saiwai-cho, Fuchu-shi, Tokyo 183–8509Japan
- Ibaraki University College of Agriculture3–21–1 Chuo, Ami-machi, Ibaraki 300–0393Japan
| |
Collapse
|
33
|
Taubert M, Grob C, Crombie A, Howat AM, Burns OJ, Weber M, Lott C, Kaster AK, Vollmers J, Jehmlich N, von Bergen M, Chen Y, Murrell JC. Communal metabolism by Methylococcaceae and Methylophilaceae is driving rapid aerobic methane oxidation in sediments of a shallow seep near Elba, Italy. Environ Microbiol 2019; 21:3780-3795. [PMID: 31267680 DOI: 10.1111/1462-2920.14728] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022]
Abstract
The release of abiotic methane from marine seeps into the atmosphere is a major source of this potent greenhouse gas. Methanotrophic microorganisms in methane seeps use methane as carbon and energy source, thus significantly mitigating global methane emissions. Here, we investigated microbial methane oxidation at the sediment-water interface of a shallow marine methane seep. Metagenomics and metaproteomics, combined with 13 C-methane stable isotope probing, demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalysing the first reaction step to methanol. We observed a transfer of carbon to methanol-oxidizing methylotrophs of the betaproteobacterial family Methylophilaceae, suggesting an interaction between methanotrophic and methylotrophic microorganisms that allowed for rapid methane oxidation. From our microcosms, we estimated methane oxidation rates of up to 871 nmol of methane per gram sediment per day. This implies that more than 50% of methane at the seep is removed by microbial oxidation at the sediment-water interface, based on previously reported in situ methane fluxes. The organic carbon produced was further assimilated by different heterotrophic microbes, demonstrating that the methane-oxidizing community supported a complex trophic network. Our results provide valuable eco-physiological insights into this specialized microbial community performing an ecosystem function of global relevance.
Collapse
Affiliation(s)
- Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159 07743, Jena, Germany.,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Carolina Grob
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Alexandra M Howat
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Oliver J Burns
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, Sinzheim, Germany.,HYDRA Field Station Elba, Italy.,Microsensor Group, Max Plank Institute for Marine Microbiology, 28359, Celsiusstr. 1, Bremen, Germany
| | - Christian Lott
- HYDRA Marine Sciences GmbH, Sinzheim, Germany.,HYDRA Field Station Elba, Italy.,Department of Symbiosis, Max Plank Institute for Marine Microbiology, 28359, Celsiusstr. 1, Bremen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Inhoffenstrasse 7B, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Inhoffenstrasse 7B, Braunschweig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103, Brüderstraße 32, Leipzig, Germany.,Department of Chemistry and Bioscience, University of Aalborg, 9220, Fredrik Bajers Vej 7H, Aalborg East, Denmark
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - John Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
34
|
Barba C, Folch A, Sanchez-Vila X, Martínez-Alonso M, Gaju N. Are dominant microbial sub-surface communities affected by water quality and soil characteristics? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:332-343. [PMID: 30818236 DOI: 10.1016/j.jenvman.2019.02.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Subsurface microorganisms must deal with quite extreme environmental conditions. The lack of light, oxygen, and potentially nutrients are the main environmental stresses faced by subsurface microbial communities. Likewise, environmental disruptions providing an unbalanced positive input of nutrients force microorganisms to adapt to varying conditions, visible in the changes in microbial community diversity. In order to test microbial community adaptation to environmental changes, we performed a study in a surface Managed Aquifer Recharge facility, consisting of a settlement basin (two-day residence time) and an infiltration pond. Data on groundwater hydrochemistry, soil texture, and microbial characterization was compiled from surface water, groundwater, and soil samples at two distinct recharge operation conditions. Multivariate statistics by means of Principal Component Analysis (PCA) was the technique used to map the relevant dimensionality reduced combinations of input variables that properly describe the system behavior. The methodology selected allows including variables of different nature and displaying very different range values. Strong differences in the microbial assemblage under recharge conditions were found, coupled to hydrochemistry and grain-size distribution variables. Also, some microbial groups displayed correlations with either carbon or nitrogen cycles, especially showing abundant populations of denitrifying bacteria in groundwater. A significant correlation was found between Methylotenera mobilis and the concentrations of NO3 and SO4, and also between Vogesella indigofera and the presence of DOC in the infiltrating water. Also, microbial communities present at the bottom of the pond correlated with representative descriptors of soil grain size distribution.
Collapse
Affiliation(s)
- Carme Barba
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), C/Jordi Girona 1-3, 08034, Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain.
| | - Albert Folch
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), C/Jordi Girona 1-3, 08034, Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain.
| | - Xavier Sanchez-Vila
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), C/Jordi Girona 1-3, 08034, Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain.
| | - Maira Martínez-Alonso
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| | - Núria Gaju
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| |
Collapse
|
35
|
Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00190-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Liu B, Zhang R, Xia X, Zhang W, Gao M, Lu Q, Lin K. Toxicity responses of bacterial community as a biological indicator after repeated exposure to lead (Pb) in the presence of decabromodiphenyl ether (BDE209). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36278-36286. [PMID: 30368700 DOI: 10.1007/s11356-018-3342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Continuous exposure of chemicals could cause various environmental impacts. Decabromodiphenyl ether (BDE209) and lead (Pb) can co-exist and are discharged simultaneously at e-waste recycling sites (EWRSs). Extensive concerns have been attracted by their toxic effects on soil microorganisms. Thus, by using high-throughput sequencing, this study explored bacterial community responses in a soil system after repeated Pb exposure in the presence of BDE209 in the laboratory during 90-day indoor incubation period. Gene sequencing of 16S rDNA performed on an Illumina MiSeq platform proved that one-off Pb exposure caused higher microbial abundance and community diversity. Additionally, both repetitive Pb treatment and exogenous BDE209 input could change bacterial community composition. Twenty-three different bacterial phyla were detected in the soil samples, while more than 90% of the sequences in each treatment belonged to a narrow variety. The sequence analyses elucidated that Proteobacteria, Acidobacteria, and Bacteroidetes were the top three dominant phyla. Our observations could provide a few insights into the ecological risks of Pb and BDE209 co-existed contamination in soils at EWRSs.
Collapse
Affiliation(s)
- Bo Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Pharmaceutical School, Shanghai, 200135, China
| | - Rong Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoqian Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Mengwen Gao
- Baowu Group Environmental Resources Technology Co., Ltd., Shanghai, 200439, China
| | - Qiang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
37
|
Gonzalez-Martínez A, Chengyuan S, Rodriguez-Sanchez A, Pozo C, Gonzalez-Lopez J, Vahala R. Application of microbial fuel cell technology for wastewater treatment and electricity generation under Nordic countries climate conditions: Study of performance and microbial communities. BIORESOURCE TECHNOLOGY 2018; 270:1-10. [PMID: 30199700 DOI: 10.1016/j.biortech.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Two microbial fuel cells were inoculated with activated sludge from Finland and operated under moderate (25 °C) and low (8 °C) temperatures. Operation under real urban wastewater showed similarities in chemical oxygen demand removal and voltage generated, although moderate temperature supported higher ammonium oxidation. Fungi disappeared in the microbial fuel cell operated at temperature of 25 °C. Archaea domain was dominated by methanogenic archaea at both temperature scenarios. Important differences were observed in bacterial communities between both temperatures, however generating similar voltage. The results supported that the implementation of microbial fuel cells in Nordic countries operating under real conditions could be successful, as well as suggested the flexibility of cold-adapted inoculum for starting-up microbial fuel cells, regardless of the operating temperature of the system, obtaining higher COD removal and voltage generation performances at low temperature than at moderate temperature.
Collapse
Affiliation(s)
| | - Su Chengyuan
- Department of Environmental Engineering, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, People's Republic of China
| | | | - Clementina Pozo
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| |
Collapse
|
38
|
Beganskas S, Gorski G, Weathers T, Fisher AT, Schmidt C, Saltikov C, Redford K, Stoneburner B, Harmon R, Weir W. A horizontal permeable reactive barrier stimulates nitrate removal and shifts microbial ecology during rapid infiltration for managed recharge. WATER RESEARCH 2018; 144:274-284. [PMID: 30048866 DOI: 10.1016/j.watres.2018.07.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
We present results from field experiments linking hydrology, geochemistry, and microbiology during infiltration at a field site that is used for managed aquifer recharge (MAR). These experiments measured how a horizontal permeable reactive barrier (PRB) made of woodchips impacted subsurface nitrate removal and microbial ecology. Concentrations of dissolved organic carbon consistently increased in infiltrating water below the PRB, but not in un-amended native soil. The average nitrate removal rate in soils below the PRB was 1.5 g/m2/day NO3-N, despite rapid infiltration (up to 1.9 m/d) and a short fluid residence time within the woodchips (≤6 h). In contrast, 0.09 g/m2/day NO3-N was removed on average in native soil. Residual nitrate in infiltrating water below the PRB was enriched in δ15N and δ18O, with low and variable isotopic enrichment factors that are consistent with denitrification during rapid infiltration. Many putative denitrifying bacteria were significantly enhanced in the soil below a PRB; Methylotenera mobilis and genera Microbacterium, Polaromonas, and Novosphingobium had log2 fold-changes of +4.9, +5.6, +7.2, and +11.8, respectively. These bacteria were present before infiltration and were not enhanced in native soil. It appears that the woodchip PRB contributed to favorable conditions in the underlying soil for enhanced nitrate removal, quantitatively shifting soil microbial ecology. These results suggest that using a horizontal PRB could improve water quality during rapid infiltration for MAR.
Collapse
Affiliation(s)
- Sarah Beganskas
- Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Galen Gorski
- Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Tess Weathers
- Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andrew T Fisher
- Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Calla Schmidt
- Environmental Science, University of San Francisco, San Francisco, CA, 94117, USA
| | - Chad Saltikov
- Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Kaitlyn Redford
- Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Brendon Stoneburner
- Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Ryan Harmon
- Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Walker Weir
- Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
39
|
Guo B, Manchester M, Luby T, Frigon D. Composition of heterotrophic specialized sub-guilds defined by a positive RNA and polyhydroxyalkanoate correlation in activated sludge. WATER RESEARCH 2018; 144:561-571. [PMID: 30081336 DOI: 10.1016/j.watres.2018.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/20/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Microbial heterotrophic guilds in activated sludge wastewater treatment systems have complex population structures and functions. A previously proposed heterotrophic-specialist model states that heterotrophs consist of sub-guilds specialized in consuming specific classes of compounds, either readily degradable substrate (RDS) or slowly degradable substrate (SDS) according to current mathematical modeling practices for wastewater treatment processes. It follows from metabolic considerations that the levels of RNA and polyhydroxyalkanoate (PHA) are correlated for strains of the same species growing in different environments; a conjecture previously tested. The proposed classification of heterotrophs into RDS or SDS consumers predicts that the same correlation would also be found across heterotrophic species in conventional activated sludge systems; this prediction was tested in the current study. The positive correlation between the RNA and PHA levels was observed in 9 conventional activated sludge plants in two independent sampling times and it was also found stable over a 6-month regular sampling period at one of these plants. Together, these results imply that the levels of RNA and PHA can be used to define heterotrophic-specialist sub-guilds. In order to gain insight in the species composition of the defined sub-guilds, flow cytometry cell sorting was used to further analyze one of the activated sludge samples. Four sorted sub-samples were obtained (high-RNA/high-PHA, low-RNA/high-PHA, high-RNA/low-PHA, and low-RNA/low-PHA), and the phylogenetic composition of each was determined using 16S rRNA gene amplicon pyrosequencing. Heterotrophic genera were identified across 12 phyla, and their representation in each sorted sub-sample showed that the high-RNA/high-PHA and low-RNA/low-PHA groups were most dissimilar. The enriched genera in these sorted sub-samples are suggested to represent the composition of heterotrophic-specialized sub-guilds defined by the kinetics of substrate consumption.
Collapse
Affiliation(s)
- Bing Guo
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada
| | - Marie Manchester
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada; Story Environmental and Geomatics, 332 Main St, Haileybury, Ontario, P0J 1K0, Canada
| | - Theresa Luby
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada; Stantec, 200-325 25, Street SE, Calgary, Alberta, T2A 7H8, Canada
| | - Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada.
| |
Collapse
|
40
|
Shelton JL, Andrews RS, Akob DM, DeVera CA, Mumford A, McCray JE, McIntosh JC. Microbial community composition of a hydrocarbon reservoir 40 years after a CO2 enhanced oil recovery flood. FEMS Microbiol Ecol 2018; 94:5067868. [PMID: 30101289 PMCID: PMC6108538 DOI: 10.1093/femsec/fiy153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Injecting CO2 into depleted oil reservoirs to extract additional crude oil is a common enhanced oil recovery (CO2-EOR) technique. However, little is known about how in situ microbial communities may be impacted by CO2 flooding, or if any permanent microbiological changes occur after flooding has ceased. Formation water was collected from an oil field that was flooded for CO2-EOR in the 1980s, including samples from areas affected by or outside of the flood region, to determine the impacts of CO2-EOR on reservoir microbial communities. Archaea, specifically methanogens, were more abundant than bacteria in all samples, while identified bacteria exhibited much greater diversity than the archaea. Microbial communities in CO2-impacted and non-impacted samples did not significantly differ (ANOSIM: Statistic R = -0.2597, significance = 0.769). However, several low abundance bacteria were found to be significantly associated with the CO2-affected group; very few of these species are known to metabolize CO2 or are associated with CO2-rich habitats. Although this study had limitations, on a broad scale, either the CO2 flood did not impact the microbial community composition of the target formation, or microbial communities in affected wells may have reverted back to pre-injection conditions over the ca. 40 years since the CO2-EOR.
Collapse
Affiliation(s)
- Jenna Lk Shelton
- Eastern Energy Resources Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Robert S Andrews
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Denise M Akob
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Christina A DeVera
- Eastern Energy Resources Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Adam Mumford
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illisnois Street, Golden, CO, 80401 USA.,Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401 USA
| | - Jennifer C McIntosh
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721 USA
| |
Collapse
|
41
|
Huang J, Yu Z, Chistoserdova L. Lanthanide-Dependent Methanol Dehydrogenases of XoxF4 and XoxF5 Clades Are Differentially Distributed Among Methylotrophic Bacteria and They Reveal Different Biochemical Properties. Front Microbiol 2018; 9:1366. [PMID: 29997591 PMCID: PMC6028718 DOI: 10.3389/fmicb.2018.01366] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023] Open
Abstract
Lanthanide-dependent alcohol dehydrogenases have recently emerged as environmentally important enzymes, most prominently represented in methylotrophic bacteria. The diversity of these enzymes, their environmental distribution, and their biochemistry, as well as their evolutionary relationships with their calcium-dependent counterparts remain virtually untapped. Here, we make important advances toward understanding lanthanide-dependent methylotrophy by assessing the distribution of XoxF4 and XoxF5 clades of lanthanide methanol dehydrogenases among, respectively, Methylophilaceae and non-Methylophilaceae methylotrophs, and we carry out comparative biochemical characterization of XoxF4 and XoxF5 enzymes, demonstrating differences in their properties, including catalytic efficiencies. We conclude that one subtype of the XoxF4 enzyme, XoxF4-1 is the dominant type in nature while other XoxF4 subtypes appear to be auxiliary, representatives of this clade only found in the Methylophilaceae (Betaproteobacteria). In contrast, we demonstrate that XoxF5 enzymes are widespread among Alpha-, Beta-, and Gammaproteobacteria. We purified and biochemically characterized two XoxF4 enzymes (XoxF4-1 and XoxF4-2), both from Methylotenera mobilis, and one XoxF5 enzyme, from Methylomonas sp., after expressing their His-tagged versions in respective natural hosts. All three enzymes showed broad specificities toward alcohols and aldehydes and strict dependence on lighter lanthanides. However, they revealed differences in their properties in terms of optimal pH for in vitro activity, ammonia dependence, the range of lanthanides that could serve as cofactors, and in kinetic properties. Overall, our data advance the understanding of the biochemistry and environmental distribution of these recently discovered enzymes that appear to be key enzymes in lanthanide-dependent methylotrophy.
Collapse
Affiliation(s)
- Jing Huang
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Zheng Yu
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
42
|
Lv H, Sahin N, Tani A. Isolation and genomic characterization ofNovimethylophilus kurashikiensisgen. nov. sp. nov., a new lanthanide-dependent methylotrophic species ofMethylophilaceae. Environ Microbiol 2018; 20:1204-1223. [DOI: 10.1111/1462-2920.14062] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Haoxin Lv
- Institute of Plant Science and Resources, Okayama University; Okayama Japan
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla Sitki Kocman University; 48170 Kotekli, Mugla Turkey
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University; Okayama Japan
| |
Collapse
|
43
|
Yang X, Chen Y, Wu R, Nie Z, Han Z, Tan K, Chen L. Potential of biogenic methane for pilot-scale fermentation ex situ with lump anthracite and the changes of methanogenic consortia. J Ind Microbiol Biotechnol 2018; 45:229-237. [PMID: 29460215 DOI: 10.1007/s10295-018-2023-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 11/28/2022]
Abstract
Pilot-scale fermentation is one of the important processes for achieving industrialization of biogenic coalbed methane (CBM), although the mechanism of biogenic CBM remains unknown. In this study, 16 samples of formation water from CBM production wells were collected and enriched for methane production, and the methane content was between 3.1 and 21.4%. The formation water of maximum methane production was used as inoculum source for pilot-scale fermentation. The maximum methane yield of the pilot-scale fermentation with lump anthracite amendment reached 13.66 μmol CH4/mL, suggesting that indigenous microorganisms from formation water degraded coal to produce methane. Illumina high-throughput sequencing analysis revealed that the bacterial and archaeal communities in the formation water sample differed greatly from the methanogic water enrichment culture. The hydrogenotrophic methanogen Methanocalculus dominated the formation water. Acetoclastic methanogens, from the order Methanosarcinales, dominated coal bioconversion. Thus, the biogenic methanogenic pathway ex situ cannot be simply identified according to methanogenic archaea in the original inoculum. Importantly, this study was the first time to successfully simulate methanogenesis in large-capacity fermentors (160 L) with lump anthracite amendment, and the result was also a realistic case for methane generation in pilot-scale ex situ.
Collapse
Affiliation(s)
- Xiuqing Yang
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| | - Yanmei Chen
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Ruiwei Wu
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Zhiqiang Nie
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Zuoying Han
- State Key Laboratory of Coal and Coalbed Methane Co-mining, Jincheng, 048000, China.,Yi'an Lanyan Coal and Coalbed Methane Simultaneous Extraction Technology Co., Ltd, Jincheng, 048000, China
| | - Kaili Tan
- State Key Laboratory of Coal and Coalbed Methane Co-mining, Jincheng, 048000, China.,Yi'an Lanyan Coal and Coalbed Methane Simultaneous Extraction Technology Co., Ltd, Jincheng, 048000, China
| | - Linyong Chen
- State Key Laboratory of Coal and Coalbed Methane Co-mining, Jincheng, 048000, China.,Yi'an Lanyan Coal and Coalbed Methane Simultaneous Extraction Technology Co., Ltd, Jincheng, 048000, China
| |
Collapse
|
44
|
Mauffrey F, Cucaita A, Constant P, Villemur R. Denitrifying metabolism of the methylotrophic marine bacterium Methylophaga nitratireducenticrescens strain JAM1. PeerJ 2017; 5:e4098. [PMID: 29201569 PMCID: PMC5710167 DOI: 10.7717/peerj.4098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Methylophaga nitratireducenticrescens strain JAM1 is a methylotrophic, marine bacterium that was isolated from a denitrification reactor treating a closed-circuit seawater aquarium. It can sustain growth under anoxic conditions by reducing nitrate ([Formula: see text]) to nitrite ([Formula: see text]). These physiological traits are attributed to gene clusters that encode two dissimilatory nitrate reductases (Nar). Strain JAM1 also contains gene clusters encoding two nitric oxide (NO) reductases and one nitrous oxide (N2O) reductase, suggesting that NO and N2O can be reduced by strain JAM1. Here we characterized further the denitrifying activities of M. nitratireducenticrescens JAM1. METHODS Series of oxic and anoxic cultures of strain JAM1 were performed with N2O, [Formula: see text] or sodium nitroprusside, and growth and N2O, [Formula: see text], [Formula: see text] and N2 concentrations were measured. Ammonium ([Formula: see text])-free cultures were also tested to assess the dynamics of N2O, [Formula: see text] and [Formula: see text]. Isotopic labeling of N2O was performed in 15NH4+-amended cultures. Cultures with the JAM1ΔnarG1narG2 double mutant were performed to assess the involvement of the Nar systems on N2O production. Finally, RT-qPCR was used to measure the gene expression levels of the denitrification genes cytochrome bc-type nitric oxide reductase (cnorB1 and cnorB2) and nitrous oxide reductase (nosZ), and also nnrS and norR that encode NO-sensitive regulators. RESULTS Strain JAM1 can reduce NO to N2O and N2O to N2 and can sustain growth under anoxic conditions by reducing N2O as the sole electron acceptor. Although strain JAM1 lacks a gene encoding a dissimilatory [Formula: see text] reductase, [Formula: see text]-amended cultures produce N2O, representing up to 6% of the N-input. [Formula: see text] was shown to be the key intermediate of this production process. Upregulation in the expression of cnorB1, cnorB2, nnrS and norR during the growth and the N2O accumulation phases suggests NO production in strain JAM1 cultures. DISCUSSION By showing that all the three denitrification reductases are active, this demonstrates that M. nitratireducenticrescens JAM1 is one of many bacteria species that maintain genes associated primarily with denitrification, but not necessarily related to the maintenance of the entire pathway. The reason to maintain such an incomplete pathway could be related to the specific role of strain JAM1 in the denitrifying biofilm of the denitrification reactor from which it originates. The production of N2O in strain JAM1 did not involve Nar, contrary to what was demonstrated in Escherichia coli. M. nitratireducenticrescens JAM1 is the only reported Methylophaga species that has the capacity to grow under anoxic conditions by using [Formula: see text] and N2O as sole electron acceptors for its growth. It is also one of a few marine methylotrophs that is studied at the physiological and genetic levels in relation to its capacity to perform denitrifying activities.
Collapse
Affiliation(s)
- Florian Mauffrey
- INRS–Institut Armand-Frappier, Laval, Québec, Canada
- Laboratoire de santé publique du Québec, Ste-Anne-de-Bellevue, Québec, Canada
| | | | | | | |
Collapse
|
45
|
Wright J, Kirchner V, Bernard W, Ulrich N, McLimans C, Campa MF, Hazen T, Macbeth T, Marabello D, McDermott J, Mackelprang R, Roth K, Lamendella R. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation. Front Microbiol 2017; 8:2300. [PMID: 29213257 PMCID: PMC5702783 DOI: 10.3389/fmicb.2017.02300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.
Collapse
Affiliation(s)
- Justin Wright
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
- Wright Labs, LLC, Huntingdon, PA, United States
| | - Veronica Kirchner
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - William Bernard
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Nikea Ulrich
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Christopher McLimans
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Maria F. Campa
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| | - Terry Hazen
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | | | | | | | - Rachel Mackelprang
- Department of Biology, California State University Northridge, Northridge, PA, United States
| | - Kimberly Roth
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Regina Lamendella
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
- Wright Labs, LLC, Huntingdon, PA, United States
| |
Collapse
|
46
|
Fu GM, Chen Y, Li RY, Yuan XQ, Liu CM, Li B, Wan Y. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep Biochem Biotechnol 2017; 47:782-788. [PMID: 28636478 DOI: 10.1080/10826068.2017.1342260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aspergillus oryzae A-F02, a glyphosate-degrading fungus, was isolated from an aeration tank in a pesticide factory. The pathway and rate-limiting step of glyphosate (GP) degradation were investigated through metabolite analysis. GP, aminomethylphosphonic acid (AMPA), and methylamine were detected in the fermentation liquid of A. oryzae A-F02, whereas sarcosine and glycine were not. The pathway of GP degradation in A. oryzae A-F02 was revealed: GP was first degraded into AMPA, which was then degraded into methylamine. Finally, methylamine was further degraded into other products. Investigating the effects of the exogenous addition of substrates and metabolites showed that the degradation of GP to AMPA is the rate-limiting step of GP degradation by A. oryzae A-F02. In addition, the accumulation of AMPA and methylamine did not cause feedback inhibition in GP degradation. Results showed that degrading GP to AMPA was a crucial step in the degradation of GP, which determines the degradation rate of GP by A. oryzae A-F02.
Collapse
Affiliation(s)
- Gui-Ming Fu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Yan Chen
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Ru-Yi Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Xiao-Qiang Yuan
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Cheng-Mei Liu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Bin Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Yin Wan
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| |
Collapse
|
47
|
Dafar A, Bankvall M, Çevik-Aras H, Jontell M, Sjöberg F. Lingual microbiota profiles of patients with geographic tongue. J Oral Microbiol 2017; 9:1355206. [PMID: 28839519 PMCID: PMC5560410 DOI: 10.1080/20002297.2017.1355206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/11/2017] [Indexed: 11/24/2022] Open
Abstract
Geographic tongue (GT) is an oral mucosal lesion that affects the tongue. The association between GT and the bacterial colonization profiles of the tongue is not clear. Lingual swabs were collected from lesion sites and healthy sites of 35 patients with GT (19 males and 16 females; Mage = 54.3 ± 16.1 years) and 22 controls (12 males and 10 females; Mage = 56.3 ± 15.8 years). Bacterial DNA was extracted and sequenced by next-generation sequencing. At the phylum level, Fusobacteria were significantly less abundant, while Spirochaetes were significantly more abundant in GT patients compared to controls. At the operational taxonomic units level, multivariate analysis revealed distinct clusters for the three groups based on the lingual microbiota composition. Acinetobacter and Delftia were significantly associated with GT lesion and healthy sites. However, Microbacterium, Leptospira, Methylotenera, and Lactococcus were significantly associated with GT lesion sites. Additionally, Mogibacterium and Simonsiella were significantly associated with GT healthy sites and controls. The changes in the lingual microbiota profiles of patients with GT imply a shift in the lingual bacterial ecology. However, it remains unknown if this shift is a consequence of the lesions or of factors associated with the initiation and progression of the disease.
Collapse
Affiliation(s)
- Amal Dafar
- Department of Oral Medicine and Pathology, Institute of Odontology, Gothenburg, Sweden
| | - Maria Bankvall
- Department of Oral Medicine and Pathology, Institute of Odontology, Gothenburg, Sweden
| | - Hülya Çevik-Aras
- Department of Oral Medicine and Pathology, Institute of Odontology, Gothenburg, Sweden
| | - Mats Jontell
- Department of Oral Medicine and Pathology, Institute of Odontology, Gothenburg, Sweden
| | - Fei Sjöberg
- Department of Infectious Diseases, Institute of Biomedicine and Department of Oncology, Institute of Clinical Sciences; The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Morrison JM, Baker KD, Zamor RM, Nikolai S, Elshahed MS, Youssef NH. Spatiotemporal analysis of microbial community dynamics during seasonal stratification events in a freshwater lake (Grand Lake, OK, USA). PLoS One 2017; 12:e0177488. [PMID: 28493994 PMCID: PMC5426677 DOI: 10.1371/journal.pone.0177488] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Many freshwater lakes undergo seasonal stratification, where the formation of phototrophic blooms in the epilimnion and subsequent sedimentation induces hypoxia/anoxia in the thermocline and hypolimnion. This autochthonously produced biomass represents a major seasonal organic input that impacts the entire ecosystem. While the limnological aspects of this process are fairly well documented, relatively little is known regarding the microbial community response to such events, especially in the deeper anoxic layers of the water column. Here, we conducted a spatiotemporal survey of the particle-associated and free-living microbial communities in a warm monomictic freshwater reservoir (Grand Lake O’ the Cherokees) in northeastern Oklahoma, USA. Pre-stratification samples (March) harbored a homogeneous community throughout the oxygenated water column dominated by typical oligotrophic aquatic lineages (acl clade within Actinobacteria, and Flavobacterium within the Bacteroidetes). The onset of phototrophic blooming in June induced the progression of this baseline community into two distinct trajectories. Within the oxic epilimnion, samples were characterized by the propagation of phototrophic (Prochlorococcus), and heterotrophic (Planctomycetes, Verrucomicrobia, and Beta-Proteobacteria) lineages. Within the oxygen-deficient thermocline and hypolimnion, the sedimentation of surface biomass induced the development of a highly diverse community, with the enrichment of Chloroflexi, “Latescibacteria”, Armatimonadetes, and Delta-Proteobacteria in the particle-associated fraction, and Gemmatimonadetes and “Omnitrophica” in the free-living fraction. Our work documents the development of multiple spatially and temporally distinct niches during lake stratification, and supports the enrichment of multiple yet-uncultured and poorly characterized lineages in the lake’s deeper oxygen-deficient layers, an ecologically relevant microbial niche that is often overlooked in lakes diversity surveys.
Collapse
Affiliation(s)
- Jessica M. Morrison
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States of America
| | - Kristina D. Baker
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States of America
| | - Richard M. Zamor
- Grand River Dam Authority (GRDA), Vinita, OK, United States of America
| | - Steve Nikolai
- Grand River Dam Authority (GRDA), Vinita, OK, United States of America
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States of America
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States of America
- * E-mail:
| |
Collapse
|
49
|
Szabó A, Korponai K, Kerepesi C, Somogyi B, Vörös L, Bartha D, Márialigeti K, Felföldi T. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 2017; 21:639-649. [PMID: 28389755 DOI: 10.1007/s00792-017-0932-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/31/2017] [Indexed: 11/26/2022]
Abstract
Soda pans of the Pannonian steppe are unique environments regarding their physical and chemical characteristics: shallowness, high turbidity, intermittent character, alkaline pH, polyhumic organic carbon concentration, hypertrophic condition, moderately high salinity, sodium and carbonate ion dominance. The pans are highly productive environments with picophytoplankton predominance. Little is known about the planktonic bacterial communities inhabiting these aquatic habitats; therefore, amplicon sequencing and shotgun metagenomics were applied to reveal their composition and functional properties. Results showed a taxonomically complex bacterial community which was distinct from other soda lakes regarding its composition, e.g. the dominance of class Alphaproteobacteria was observed within phylum Proteobacteria. The shotgun metagenomic analysis revealed several functional gene components related to the harsh and at the same time hypertrophic environmental conditions, e.g. proteins involved in stress response, transport and hydrolase systems targeting phytoplankton-derived organic matter. This is the first detailed report on the indigenous planktonic bacterial communities coping with the multiple extreme conditions present in the unique soda pans of the Pannonian steppe.
Collapse
Affiliation(s)
- Attila Szabó
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Kristóf Korponai
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Csaba Kerepesi
- Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Kende u. 13-17, 1111, Budapest, Hungary
| | - Boglárka Somogyi
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, 8237, Tihany, Hungary
| | - Lajos Vörös
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, 8237, Tihany, Hungary
| | - Dániel Bartha
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
50
|
Sanchez E, Bletz MC, Duntsch L, Bhuju S, Geffers R, Jarek M, Dohrmann AB, Tebbe CC, Steinfartz S, Vences M. Cutaneous Bacterial Communities of a Poisonous Salamander: a Perspective from Life Stages, Body Parts and Environmental Conditions. MICROBIAL ECOLOGY 2017; 73:455-465. [PMID: 27677894 DOI: 10.1007/s00248-016-0863-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/14/2016] [Indexed: 05/20/2023]
Abstract
Amphibian skin provides a habitat for bacterial communities in its mucus. Understanding the structure and function of this "mucosome" in the European fire salamander (Salamandra salamandra) is critical in the context of novel emerging pathogenic diseases. We compare the cutaneous bacterial communities of this species using amplicon-based sequencing of the 16S rRNA V4 region. Across 290 samples, over 4000 OTUs were identified, four of them consistently present in all samples. Larvae and post-metamorphs exhibited distinct cutaneous microbial communities. In adults, the parotoid gland surface had a community structure different from the head, dorsum, flanks and ventral side. Larvae from streams had higher phylogenetic diversity than those found in ponds. Their bacterial community structure also differed; species of Burkholderiaceae, Comamonadaceae, Methylophilaceae and Sphingomonadaceae were more abundant in pond larvae, possibly related to differences in factors like desiccation and decomposition rate in this environment. The observed differences in the cutaneous bacterial community among stages, body parts and habitats of fire salamanders suggest that both host and external factors shape these microbiota. We hypothesize that the variation in cutaneous bacterial communities might contribute to variation in pathogen susceptibility among individual salamanders.
Collapse
Affiliation(s)
- Eugenia Sanchez
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany.
| | - Molly C Bletz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Laura Duntsch
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Sabin Bhuju
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anja B Dohrmann
- Thünen Institute of Biodiversity, Bundesallee 50, 38116, Braunschweig, Germany
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 50, 38116, Braunschweig, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| |
Collapse
|