1
|
Mishra SR, Modak A, Awasthi M, Sobha A, Sreekumar E. Ponatinib and other clinically approved inhibitors of Src and Rho-A kinases abrogate dengue virus serotype 2- induced endothelial permeability. Virulence 2025; 16:2489751. [PMID: 40189910 PMCID: PMC11980456 DOI: 10.1080/21505594.2025.2489751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/04/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Severe dengue often presents as shock syndrome with enhanced vascular permeability and plasma leakage into tissue spaces. In vitro studies have documented the role of Src family kinases (SFKs) and RhoA-kinases (ROCK) in dengue virus serotype 2 (DENV2)-induced endothelial permeability. Here, we show that the FDA-approved SFK inhibitors Bosutinib, Vandetanib and Ponatinib, as well as the ROCK inhibitors, Netarsudil and Ripasudil significantly inhibit DENV2-induced endothelial permeability. In cultured telomerase immortalized human microvascular endothelial cells (HMEC-1), treatment with these inhibitors reduced the phosphorylation of VE-Cadherin, Src and myosin light chain 2 (MLC2) proteins that were upregulated during DENV2 infection. It also prevented the loss of VE-Cadherin from the inter-endothelial cell junctions induced by viral infection. In in-vivo studies using DENV2-infected AG129 IFN receptor-α/β/γ deficient mice, ponatinib, when administered 24 h post-infection onwards, demonstrated significant benefits in improving body weight, clinical outcomes, and survival rates. While all virus-infected, untreated mice died by day-10 post-infection, 80% of the ponatinib-treated mice survived, and approximately 60% were still alive at the end of the 15-day observation period. The treatment also significantly reduced disease severity factors such as vascular leakage, thrombocytopenia; mRNA transcript levels of proinflammatory cytokines such as IL-1β and TNF-α; and restored liver function. Comparable effects were observed even when ponatinib treatment was initiated after symptom onset. The results highlight ponatinib as an effective therapeutic option in severe dengue; and also a similar potential for other FDA- approved SFK and ROCK inhibitors.
Collapse
Affiliation(s)
- Srishti Rajkumar Mishra
- Molecular Virology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Ayan Modak
- Molecular Virology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India
| | - Mansi Awasthi
- Molecular Virology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Archana Sobha
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thonnakkal, Thiruvananthapuram, India
| |
Collapse
|
2
|
Roa-Linares VC, Betancur-Galvis LA, González-Cardenete MA, Garcia-Blanco MA, Gallego-Gomez JC. Broad-spectrum antiviral ferruginol analog affects the viral proteins translation and actin remodeling during dengue virus infection. Antiviral Res 2025; 237:106139. [PMID: 40043781 DOI: 10.1016/j.antiviral.2025.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Dengue virus infection is the most important arbovirosis around the world. To date, no antiviral drugs have been approved for its treatment. Host-targeted antivirals (HTA) have emerged as a promising strategy, because of their high barrier to resistance. Using plaque-forming unit assays, molecular docking, fluorescence microscopy, image analysis, and molecular/cellular assays, it was found that 18-(phthalimide-2-yl)-ferruginol, a semi-synthetic analog of the bioactive diterpenoid ferruginol, couples with high affinity to RhoA GTPase. In addition, this molecule dramatically reduced actin filament formation and induced cellular morphological changes, when added to cell cultures before or after infection, without effect on microtubules or intermediate filaments. RhoA activation in infected cells was affected when the compound was added after 6 h.p.i. Furthermore, this compound decreased dengue virus-2 (DENV-2) E protein, NS3 protein, and dsRNA as measured by fluorescence microscopy, and changes in the distribution pattern of these viral components. 18-(phthalimide-2-yl)-ferruginol treatment at 6 and 12 h.p.i. reduces the virus yield. Western blot and RT-qPCR assays reveal that this analog decreased viral protein translation. Flow cytometry and wound-healing experiments also hint that cellular effects prompted for this compound do not relate to early apoptotic events and they could be reversible. Overall, our findings strongly suggest that 18-(phthalimide-2-yl)-ferruginol has an HTA mechanism, possibly disrupting the polyprotein translation of DENV-2 via alteration of RhoA-mediated actin remodeling and other related cellular and viral processes.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Translational Medicine Group, Medicine Faculty, Institute for Medical Research, Universidad de Antioquia, Medellín, Colombia; Crisalida Research Group, Faculty of Medical and Health Sciences, Universidad de Santander, Cucuta, Colombia.
| | - Liliana A Betancur-Galvis
- Translational Medicine Group, Medicine Faculty, Institute for Medical Research, Universidad de Antioquia, Medellín, Colombia; Group of Investigative Dermatology, Medicine Faculty, Institute for Medical Research, Universidad de Antioquia, Medellín, Colombia
| | - Miguel A González-Cardenete
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain.
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77550, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Juan C Gallego-Gomez
- Translational Medicine Group, Medicine Faculty, Institute for Medical Research, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
3
|
Apoorva, Kumar A, Singh SK. Dengue virus NS1 hits hard at the barrier integrity of human cerebral microvascular endothelial cells via cellular microRNA dysregulations. Tissue Barriers 2024:2424628. [PMID: 39508307 DOI: 10.1080/21688370.2024.2424628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
Dengue virus (DENV) infections are commonly reported in the tropical and subtropical regions of the world. DENV is reported to exploit various strategies to cross the blood-brain barrier. The NS1 protein of DENV plays an important role in viral neuropathogenesis, resulting in endothelial hyperpermeability and cytokine-induced vascular leak. miRNAs are short non-coding RNAs that play an important role in post-transcriptional gene regulations. However, no comprehensive information about the involvement of miRNAs in DENV-NS1-mediated neuropathogenesis has been explored to date. We observed that DENV-NS1 significantly alters the cellular miRNome of human cerebral microvascular endothelial cells in a bystander fashion. Subsequent target prediction and pathway enrichment analysis indicated that these microRNAs and their corresponding target genes are involved in pathways associated with blood-brain barrier dysfunction such as "Adherens junction" and "Tight junction". Additionally, several miRNA-mRNA pairs were also found to be involved in cellular signaling pathways related to cytokine production, for instance, "Jak-STAT signaling pathway", "Chemokine signaling pathway", "IL-17 signaling pathway", "NF-κB signaling pathway", and "Viral protein interaction with cytokine and cytokine receptor". The dysregulated production of inflammatory cytokines is reported to compromise BBB permeability. This study is the first report to demonstrate that DENV-NS1-mediated miRNA perturbations are crucial in compromising endothelial barrier integrity. It also offers insights into potential therapeutic targets to mitigate DENV-NS1-induced vascular permeability and inflammation.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Atul Kumar
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India
- Delhi School of Public Health, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Modak A, Mishra SR, Awasthi M, Aravind A, Singh S, Sreekumar E. Fingolimod (FTY720), an FDA-approved sphingosine 1-phosphate (S1P) receptor agonist, restores endothelial hyperpermeability in cellular and animal models of dengue virus serotype 2 infection. IUBMB Life 2024; 76:267-285. [PMID: 38031996 DOI: 10.1002/iub.2795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both in vitro systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.
Collapse
Affiliation(s)
- Ayan Modak
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Srishti Rajkumar Mishra
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Mansi Awasthi
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Arya Aravind
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Sneha Singh
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Bourgeois NM, Wei L, Ho NNT, Neal ML, Seferos D, Tongogara T, Mast FD, Aitchison JD, Kaushansky A. Multiple receptor tyrosine kinases regulate dengue infection of hepatocytes. Front Cell Infect Microbiol 2024; 14:1264525. [PMID: 38585651 PMCID: PMC10995305 DOI: 10.3389/fcimb.2024.1264525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression. Methods To evaluate kinase regulation of DENV infection, we performed kinase regression (KiR), a machine learning approach that predicts kinase regulators of infection using existing drug-target information and a small drug screen. We infected hepatocytes with DENV in vitro in the presence of a panel of 38 kinase inhibitors then quantified the effect of each inhibitor on infection rate. We employed elastic net regularization on these data to obtain predictions of which of 291 kinases are regulating DENV infection. Results Thirty-six kinases were predicted to have a functional role. Intriguingly, seven of the predicted kinases - EPH receptor A4 (EPHA4), EPH receptor B3 (EPHB3), EPH receptor B4 (EPHB4), erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 2 (FGFR2), Insulin like growth factor 1 receptor (IGF1R), and ret proto-oncogene (RET) - belong to the receptor tyrosine kinase (RTK) family, which are already therapeutic targets in the clinic. We demonstrate that predicted RTKs are expressed at higher levels in DENV infected cells. Knockdown of EPHB4, ERBB2, FGFR2, or IGF1R reduces DENV infection in hepatocytes. Finally, we observe differential temporal induction of ERBB2 and IGF1R following DENV infection, highlighting their unique roles in regulating DENV. Discussion Collectively, our findings underscore the significance of multiple RTKs in DENV infection and advocate further exploration of RTK-oriented interventions against dengue.
Collapse
Affiliation(s)
- Natasha M. Bourgeois
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Nhi N. T. Ho
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Denali Seferos
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Tinotenda Tongogara
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Das S, Ahmad Z, Singh S, Singh S, Wright RE, Giri S, Kumar A. Oral administration of S-nitroso-L-glutathione (GSNO) provides anti-inflammatory and cytoprotective effects during ocular bacterial infections. Cell Mol Life Sci 2023; 80:309. [PMID: 37770649 PMCID: PMC11072052 DOI: 10.1007/s00018-023-04963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Bacterial endophthalmitis is a severe complication of eye surgeries that can lead to vision loss. Current treatment involves intravitreal antibiotic injections that control bacterial growth but not inflammation. To identify newer therapeutic targets to promote inflammation resolution in endophthalmitis, we recently employed an untargeted metabolomics approach. This led to the discovery that the levels of S-nitroso-L-glutathione (GSNO) were significantly reduced in an experimental murine Staphylococcus aureus (SA) endophthalmitis model. In this study, we tested the hypothesis whether GSNO supplementation via different routes (oral, intravitreal) provides protection during bacterial endophthalmitis. Our results show that prophylactic administration of GSNO via intravitreal injections ameliorated SA endophthalmitis. Therapeutically, oral administration of GSNO was found to be most effective in reducing intraocular inflammation and bacterial burden. Moreover, oral GSNO treatment synergized with intravitreal antibiotic injections in reducing the severity of endophthalmitis. Furthermore, in vitro experiments using cultured human retinal Muller glia and retinal pigment epithelial (RPE) cells showed that GSNO treatment reduced SA-induced inflammatory mediators and cell death. Notably, both in-vivo and ex-vivo data showed that GSNO strengthened the outer blood-retinal barrier during endophthalmitis. Collectively, our study demonstrates GSNO as a potential therapeutic agent for the treatment of intraocular infections due to its dual anti-inflammatory and cytoprotective properties.
Collapse
Affiliation(s)
- Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Robert Emery Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Escudero-Flórez M, Torres-Hoyos D, Miranda-Brand Y, Boudreau RL, Gallego-Gómez JC, Vicente-Manzanares M. Dengue Virus Infection Alters Inter-Endothelial Junctions and Promotes Endothelial-Mesenchymal-Transition-Like Changes in Human Microvascular Endothelial Cells. Viruses 2023; 15:1437. [PMID: 37515125 PMCID: PMC10386726 DOI: 10.3390/v15071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Dengue virus (DENV) is a pathogenic arbovirus that causes human disease. The most severe stage of the disease (severe dengue) is characterized by vascular leakage, hypovolemic shock, and organ failure. Endothelial dysfunction underlies these phenomena, but the causal mechanisms of endothelial dysfunction are poorly characterized. This study investigated the role of c-ABL kinase in DENV-induced endothelial dysfunction. Silencing c-ABL with artificial miRNA or targeting its catalytic activity with imatinib revealed that c-ABL is required for the early steps of DENV infection. DENV-2 infection and conditioned media from DENV-infected cells increased endothelial expression of c-ABL and CRKII phosphorylation, promoted expression of mesenchymal markers, e.g., vimentin and N-cadherin, and decreased the levels of endothelial-specific proteins, e.g., VE-cadherin and ZO-1. These effects were reverted by silencing or inhibiting c-ABL. As part of the acquisition of a mesenchymal phenotype, DENV infection and treatment with conditioned media from DENV-infected cells increased endothelial cell motility in a c-ABL-dependent manner. In conclusion, DENV infection promotes a c-ABL-dependent endothelial phenotypic change that leads to the loss of intercellular junctions and acquisition of motility.
Collapse
Affiliation(s)
- Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - David Torres-Hoyos
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Yaneth Miranda-Brand
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Ryan L. Boudreau
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Roa-Linares VC, Escudero-Flórez M, Vicente-Manzanares M, Gallego-Gómez JC. Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses 2023; 15:v15030776. [PMID: 36992484 PMCID: PMC10058429 DOI: 10.3390/v15030776] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The recent COVID-19 crisis has highlighted the importance of RNA-based viruses. The most prominent members of this group are SARS-CoV-2 (coronavirus), HIV (human immunodeficiency virus), EBOV (Ebola virus), DENV (dengue virus), HCV (hepatitis C virus), ZIKV (Zika virus), CHIKV (chikungunya virus), and influenza A virus. With the exception of retroviruses which produce reverse transcriptase, the majority of RNA viruses encode RNA-dependent RNA polymerases which do not include molecular proofreading tools, underlying the high mutation capacity of these viruses as they multiply in the host cells. Together with their ability to manipulate the immune system of the host in different ways, their high mutation frequency poses a challenge to develop effective and durable vaccination and/or treatments. Consequently, the use of antiviral targeting agents, while an important part of the therapeutic strategy against infection, may lead to the selection of drug-resistant variants. The crucial role of the host cell replicative and processing machinery is essential for the replicative cycle of the viruses and has driven attention to the potential use of drugs directed to the host machinery as therapeutic alternatives to treat viral infections. In this review, we discuss small molecules with antiviral effects that target cellular factors in different steps of the infectious cycle of many RNA viruses. We emphasize the repurposing of FDA-approved drugs with broad-spectrum antiviral activity. Finally, we postulate that the ferruginol analog (18-(phthalimide-2-yl) ferruginol) is a potential host-targeted antiviral.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Juan C Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
9
|
Molecular Determinants of Tissue Specificity of Flavivirus Nonstructural Protein 1 Interaction with Endothelial Cells. J Virol 2022; 96:e0066122. [PMID: 36106873 PMCID: PMC9555157 DOI: 10.1128/jvi.00661-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the mosquito-borne flavivirus genus such as dengue (DENV), West Nile (WNV), and Zika (ZIKV) viruses cause distinct diseases and affect different tissues. We previously found that the secreted flaviviral nonstructural protein 1 (NS1) interacts with endothelial cells and disrupts endothelial barrier function in a tissue-specific manner consistent with the disease tropism of the respective viruses. However, the underlying molecular mechanism of this tissue-specific NS1-endothelial cell interaction is not well understood. To elucidate the distinct role(s) that the wing and β-ladder domains of NS1 play in NS1 interactions with endothelial cells, we constructed flavivirus NS1 chimeras that exchanged the wing and β-ladder domains in a pairwise manner between DENV, WNV, and ZIKV NS1. We found that both the NS1 wing and β-ladder domains conferred NS1 tissue-specific endothelial dysfunction, with the wing conferring cell binding and the β-ladder involved in inducing endothelial hyperpermeability as measured by transendothelial electrical resistance. To narrow down the amino acids dictating cell binding specificity, we utilized the DENV-WNV NS1 chimera and identified residues 91 to 93 (GDI) of DENV NS1 as a molecular motif determining binding specificity. Further, using an in vivo mouse model of localized leak, we found that the GDI motif of the wing domain was essential for triggering DENV NS1-induced vascular leak in mouse dermis. Taken together, we identify molecular determinants of flavivirus NS1 that confer NS1 binding and vascular leak and highlight the importance of the NS1 wing domain for flavivirus pathogenesis. IMPORTANCE Flavivirus NS1 is secreted into the bloodstream from infected cells during a viral infection. Dengue virus NS1 contributes to severe dengue pathology such as endothelial dysfunction and vascular leak independently of the virus. We have shown that multiple flavivirus NS1 proteins result in endothelial dysfunction in a tissue-specific manner consistent with their respective viral tropism. Here, we aimed to identify the molecular determinants that make some, but not other, flavivirus NS1 proteins bind to select endothelial cells in vitro and cause vascular leak in a mouse model. We identified the wing domain of NS1 as a primary determinant conferring differential endothelial dysfunction and vascular leak and narrowed the contributing amino acid residues to a three-residue motif within the wing domain. The insights from this study pave the way for future studies on the effects of flavivirus NS1 on viral dissemination and pathogenesis and offer potential new avenues for antiviral therapies.
Collapse
|
10
|
Low-Dose X-Ray Increases Paracellular Permeability of Human Renal Glomerular Endothelial Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5382420. [PMID: 36267304 PMCID: PMC9578893 DOI: 10.1155/2022/5382420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Objective Glomerular endothelium functions as a filtration barrier of metabolites in the kidney. Although X-ray irradiation modulated the permeability of the vascular endothelium, the response of human renal glomerular endothelial cells (HRGECs) to low-dose X-ray irradiation has not been investigated. We evaluated the impacts of low-dose X-ray irradiation on HRGECs and revealed the underlying mechanism. Methods HRGECs were exposed to X-ray with doses of 0, 0.1, 0.5, 1.0, and 2.0 Gy. The proliferation, viability, and apoptosis of HRGECs were examined by MTT assay, trypan blue staining assay, and TUNEL staining, respectively. The paracellular permeability was assessed by paracellular permeability assay. The expression of VE-cadherin was investigated via immunofluorescence assay. Western blot and qRT-PCR detected the expression levels of VE-cadherin and CLDN5. Besides, the expression levels of pVE-cadherin (pY658), TGF-β, TGF-βRI, Src, p-Src, Smad2, p-Smad2, Smad3, p-Smad3, SNAIL, SLUG, and apoptosis-related proteins were tested by Western blot. Results The proliferation, viability, and apoptosis of HRGECs were not affected by low-dose (<2.0 Gy) X-ray irradiation. X-ray irradiation dose-dependently reduced the level of VE-cadherin, and VE-cadherin and CLDN5 levels were reduced with X-ray irradiation. The levels of pY658, p-Src, p-Smad2, and p-Smad3 were upregulated with the increase in X-ray dose. Besides, the paracellular permeability of HRGECs was increased by even low-dose (<2.0 Gy) X-ray irradiation. Therefore, low-dose X-ray irradiation reduced the cumulative content of VE-cadherin and increased the level of pY658 via activation of the TGF-β signaling pathway. Conclusion Even though low-dose X-ray exposure had no impact on proliferation, viability, and apoptosis of HRGECs, it increased the paracellular permeability by deterioration and downregulation of VE-cadherin through stimulating the TGF-β signaling pathway. This study built the framework for kidney response to low-dose irradiation exposure.
Collapse
|
11
|
Singh S, Singh S, Kumar A. Systemic Candida albicans Infection in Mice Causes Endogenous Endophthalmitis via Breaching the Outer Blood-Retinal Barrier. Microbiol Spectr 2022; 10:e0165822. [PMID: 35913202 PMCID: PMC9431129 DOI: 10.1128/spectrum.01658-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is the leading cause of endogenous fungal endophthalmitis; however, its pathobiology studies are limited. Moreover, the contribution of host factors in the pathogenesis of Candida endophthalmitis remains unclear. In the present study, we developed a murine model of C. albicans endogenous endophthalmitis and investigated the molecular pathobiology of ocular candidiasis and blood-retinal barrier permeability. Our data show that intravenous injection of C. albicans in immunocompetent C57BL/6 mice led to endogenous endophthalmitis without causing mortality, and C. albicans was detected in the eyes at 3 days postinfection and persisted for up to 10 days. The intraocular presence of C. albicans coincided with a decrease in retinal function and increased expression of inflammatory mediators (tumor necrosis factor alpha [TNF-α], interleukin 1β [IL-1β], MIP2, and KC) and antimicrobial peptides (human β-defensins [hBDs] and LL37) in mouse retinal tissue. C. albicans infection disrupted the blood-retinal barrier (BRB) by decreasing the expression of tight junction (ZO-1) and adherens junction (E-cadherin, N/R-cadherin) proteins. In vitro studies using human retinal pigment epithelial (ARPE-19) cells showed time-dependent activation of eIF2α, extracellular signal-related kinase (ERK), and NF-κB signaling and decreased activity of AMP-activated protein kinase (AMPK) leading to the induction of an inflammatory response upon C. albicans infection. Moreover, C. albicans-infected cells exhibited increased cellular permeability coinciding with a reduction in cellular junction proteins. Overall, our study provides new insight into the molecular pathogenesis of C. albicans endogenous endophthalmitis. Furthermore, the experimental models developed in the study can be used to identify newer therapeutic targets or test the efficacy of drugs to treat and prevent fungal endophthalmitis. IMPORTANCE Patients with candidemia often experience endophthalmitis, a blinding infectious eye disease. However, the pathogenesis of Candida endophthalmitis is not well understood. Here, using in vivo and in vitro experimental models, we describe events leading to the invasion of Candida into the eye. We show that Candida from the systemic circulation disrupts the protective blood-retinal barrier and causes endogenous endophthalmitis. Our study highlights an important role of retinal pigment epithelial cells in evoking innate inflammatory and antimicrobial responses toward C. albicans infection. This study allows a better understanding of the pathobiology of fungal endophthalmitis, which can lead to the discovery of novel therapeutic targets to treat ocular fungal infections.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
12
|
Puerta-Guardo H, Biering SB, de Sousa FTG, Shu J, Glasner DR, Li J, Blanc SF, Beatty PR, Harris E. Flavivirus NS1 Triggers Tissue-Specific Disassembly of Intercellular Junctions Leading to Barrier Dysfunction and Vascular Leak in a GSK-3β-Dependent Manner. Pathogens 2022; 11:615. [PMID: 35745469 PMCID: PMC9228372 DOI: 10.3390/pathogens11060615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
The flavivirus nonstructural protein 1 (NS1) is secreted from infected cells and contributes to endothelial barrier dysfunction and vascular leak in a tissue-dependent manner. This phenomenon occurs in part via disruption of the endothelial glycocalyx layer (EGL) lining the endothelium. Additionally, we and others have shown that soluble DENV NS1 induces disassembly of intercellular junctions (IJCs), a group of cellular proteins critical for maintaining endothelial homeostasis and regulating vascular permeability; however, the specific mechanisms by which NS1 mediates IJC disruption remain unclear. Here, we investigated the relative contribution of five flavivirus NS1 proteins, from dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses, to the expression and localization of the intercellular junction proteins β-catenin and VE-cadherin in endothelial cells from human umbilical vein and brain tissues. We found that flavivirus NS1 induced the mislocalization of β-catenin and VE-cadherin in a tissue-dependent manner, reflecting flavivirus disease tropism. Mechanistically, we observed that NS1 treatment of cells triggered internalization of VE-cadherin, likely via clathrin-mediated endocytosis, and phosphorylation of β-catenin, part of a canonical IJC remodeling pathway during breakdown of endothelial barriers that activates glycogen synthase kinase-3β (GSK-3β). Supporting this model, we found that a chemical inhibitor of GSK-3β reduced both NS1-induced permeability of human umbilical vein and brain microvascular endothelial cell monolayers in vitro and vascular leakage in a mouse dorsal intradermal model. These findings provide insight into the molecular mechanisms regulating NS1-mediated endothelial dysfunction and identify GSK-3β as a potential therapeutic target for treatment of vascular leakage during severe dengue disease.
Collapse
Affiliation(s)
- Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
- Laboratorio de Virologia, CIR-Biomedicas y Unidad Colaborativa de Bioensayos Entomologicos (UCBE), Universidad Autonoma de Yucatan, Merida 97000, Mexico
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Francielle Tramontini Gomes de Sousa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Jeffrey Shu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Dustin R. Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Jeffrey Li
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Sophie F. Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - P. Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| |
Collapse
|
13
|
Wu YH, Chen WC, Tseng CK, Chen YH, Lin CK, Lee JC. Heme oxygenase-1 inhibits DENV-induced endothelial hyperpermeability and serves as a potential target against dengue hemorrhagic fever. FASEB J 2021; 36:e22110. [PMID: 34918393 DOI: 10.1096/fj.202100688rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/02/2023]
Abstract
Dengue virus (DENV) is a cause of vascular endothelial dysfunction and vascular leakage, which are characterized as hallmarks of dengue hemorrhagic fever or dengue shock syndrome, which become a severe global health emergency with substantial morbidity and mortality. Currently, there are still no promising therapeutics to alleviate the dengue-associated vascular hemorrhage in a clinical setting. In the present study, we first observed that heme oxygenase-1 (HO-1) expression level was highly suppressed in severe DENV-infected patients. In contrast, the overexpression of HO-1 could attenuate DENV-induced pathogenesis, including plasma leakage and thrombocytopenia, in an AG129 mouse model. Our data indicate that overexpression of HO-1 or its metabolite biliverdin can maintain endothelial integrity upon DENV infection in vitro and in vivo. We further characterized the positive regulatory effect of HO-1 on the endothelial adhesion factor vascular endothelial-cadherin to decrease DENV-induced endothelial hyperpermeability. Subsequently, we confirmed that two medicinal plant-derived compounds, andrographolide, and celastrol, widely used as a nutritional or medicinal supplement are useful to attenuate DENV-induced plasma leakage through induction of the HO-1 expression in DENV-infected AG129 mice. In conclusion, our findings reveal that induction of the HO-1 signal pathway is a promising option for the treatment of DENV-induced vascular pathologies.
Collapse
Affiliation(s)
- Yu-Hsuan Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chun Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Kuang Lin
- Department of Marine Biotechnology and Resources, Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Graduate Institute of Medicine in College of Medicine and Graduate Institute of Natural Products in College of Pharmacy, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Affiliation(s)
- Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
- * E-mail: (AT); (TWY)
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Po Ying Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- * E-mail: (AT); (TWY)
| |
Collapse
|
15
|
Ghildiyal R, Gabrani R. Computational analysis of human host binding partners of chikungunya and dengue viruses during coinfection. Pathog Dis 2021; 79:6373922. [PMID: 34550340 DOI: 10.1093/femspd/ftab046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Mosquito-borne viral diseases like chikungunya and dengue infections can cause severe illness and have become major public health concerns. Chikungunya virus (CHIKV) and dengue virus (DENV) infections share similar primary clinical manifestations and are transmitted by the same vector. Thus, the probability of their coinfection gets increased with more severe clinical complications in the patients. The present study was undertaken to elucidate the common human interacting partners of CHIKV and DENV proteins during coinfection. The viral-host protein-protein interactome was constructed using Cytoscape. Subsequently, significant host interactors were identified during coinfection. The network analysis elucidated 57 human proteins interacting with both CHIKV and DENV, represented as hub-bottlenecks. The functional and biological analyses of the 40 hub-bottlenecks revealed that they are associated with phosphoinositide 3-kinases (PI3K)/AKT, p53 signaling pathways, regulation of cell cycle and apoptosis during coinfection. Moreover, the molecular docking analysis uncovered the tight and robust binding of selected hub-bottlenecks with CHIKV/DENV proteins. Additionally, 23 hub-bottlenecks were predicted as druggable candidates that could be targeted to eradicate the host-viral interactions. The elucidated common host binding partners during DENV and CHIKV coinfection as well as indicated approved drugs can support the therapeutics development.
Collapse
Affiliation(s)
- Ritu Ghildiyal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201309, India
| | - Reema Gabrani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201309, India
| |
Collapse
|
16
|
Butsabong T, Felippe M, Campagnolo P, Maringer K. The emerging role of perivascular cells (pericytes) in viral pathogenesis. J Gen Virol 2021; 102. [PMID: 34424156 PMCID: PMC8513640 DOI: 10.1099/jgv.0.001634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses may exploit the cardiovascular system to facilitate transmission or within-host dissemination, and the symptoms of many viral diseases stem at least in part from a loss of vascular integrity. The microvascular architecture is comprised of an endothelial cell barrier ensheathed by perivascular cells (pericytes). Pericytes are antigen-presenting cells (APCs) and play crucial roles in angiogenesis and the maintenance of microvascular integrity through complex reciprocal contact-mediated and paracrine crosstalk with endothelial cells. We here review the emerging ways that viruses interact with pericytes and pay consideration to how these interactions influence microvascular function and viral pathogenesis. Major outcomes of virus-pericyte interactions include vascular leakage or haemorrhage, organ tropism facilitated by barrier disruption, including viral penetration of the blood-brain barrier and placenta, as well as inflammatory, neurological, cognitive and developmental sequelae. The underlying pathogenic mechanisms may include direct infection of pericytes, pericyte modulation by secreted viral gene products and/or the dysregulation of paracrine signalling from or to pericytes. Viruses we cover include the herpesvirus human cytomegalovirus (HCMV, Human betaherpesvirus 5), the retrovirus human immunodeficiency virus (HIV; causative agent of acquired immunodeficiency syndrome, AIDS, and HIV-associated neurocognitive disorder, HAND), the flaviviruses dengue virus (DENV), Japanese encephalitis virus (JEV) and Zika virus (ZIKV), and the coronavirus severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2; causative agent of coronavirus disease 2019, COVID-19). We touch on promising pericyte-focussed therapies for treating the diseases caused by these important human pathogens, many of which are emerging viruses or are causing new or long-standing global pandemics.
Collapse
Affiliation(s)
- Teemapron Butsabong
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Mariana Felippe
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Paola Campagnolo
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
17
|
Pan P, Li G, Shen M, Yu Z, Ge W, Lao Z, Fan Y, Chen K, Ding Z, Wang W, Wan P, Shereen MA, Luo Z, Chen X, Zhang Q, Lin L, Wu J. DENV NS1 and MMP-9 cooperate to induce vascular leakage by altering endothelial cell adhesion and tight junction. PLoS Pathog 2021; 17:e1008603. [PMID: 34310658 PMCID: PMC8341711 DOI: 10.1371/journal.ppat.1008603] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/05/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne pathogen that causes a spectrum of diseases including life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage is a common clinical crisis in DHF/DSS patients and highly associated with increased endothelial permeability. The presence of vascular leakage causes hypotension, circulatory failure, and disseminated intravascular coagulation as the disease progresses of DHF/DSS patients, which can lead to the death of patients. However, the mechanisms by which DENV infection caused the vascular leakage are not fully understood. This study reveals a distinct mechanism by which DENV induces endothelial permeability and vascular leakage in human endothelial cells and mice tissues. We initially show that DENV2 promotes the matrix metalloproteinase-9 (MMP-9) expression and secretion in DHF patients’ sera, peripheral blood mononuclear cells (PBMCs), and macrophages. This study further reveals that DENV non-structural protein 1 (NS1) induces MMP-9 expression through activating the nuclear factor κB (NF-κB) signaling pathway. Additionally, NS1 facilitates the MMP-9 enzymatic activity, which alters the adhesion and tight junction and vascular leakage in human endothelial cells and mouse tissues. Moreover, NS1 recruits MMP-9 to interact with β-catenin and Zona occludens protein-1/2 (ZO-1 and ZO-2) and to degrade the important adhesion and tight junction proteins, thereby inducing endothelial hyperpermeability and vascular leakage in human endothelial cells and mouse tissues. Thus, we reveal that DENV NS1 and MMP-9 cooperatively induce vascular leakage by impairing endothelial cell adhesion and tight junction, and suggest that MMP-9 may serve as a potential target for the treatment of hypovolemia in DSS/DHF patients. DENV is the most common mosquito-transmitted viral pathogen in humans. In general, DENV-infected patients are asymptomatic or have flu-like symptoms with fever and rash. However, in severe cases of DENV infection, the diseases may progress to dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), the leading causes of morbidity and mortality in school-age children in tropical and subtropical regions. DENV-induced vascular leakage is characterized by enhanced vascular permeability without morphological damage to the capillary endothelium. This study reveals a possible mechanism by which DENV NS1 and MMP-9 cooperatively induce vascular leakage. NS1 also recruits MMP-9 to degrade β-catenin, ZO-1, and ZO-2 that leads to intervene endothelial hyperpermeability in human endothelial cells and mouse vascular. Moreover, the authors further reveal that DENV activates NF-κB signaling pathway to induce MMP-9 expression in patients, mice, PBMC, and macrophages though NS1 protein. This study would provide new in signs into the pathogenesis of DENV infection, and suggest that MMP-9 may act as a drug target for the prevention and treatment of DENV-associated diseases.
Collapse
Affiliation(s)
- Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaomiao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiwei Ge
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zizhao Lao
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keli Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhihao Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pin Wan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Xulin Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Luping Lin
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Eighth People’s Hospital, Guangzhou, China
- * E-mail: (LL); (JW)
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Foshan Institute of Medical Microbiology, Foshan, China
- * E-mail: (LL); (JW)
| |
Collapse
|
18
|
Biering SB, Akey DL, Wong MP, Brown WC, Lo NTN, Puerta-Guardo H, Tramontini Gomes de Sousa F, Wang C, Konwerski JR, Espinosa DA, Bockhaus NJ, Glasner DR, Li J, Blanc SF, Juan EY, Elledge SJ, Mina MJ, Beatty PR, Smith JL, Harris E. Structural basis for antibody inhibition of flavivirus NS1-triggered endothelial dysfunction. Science 2021; 371:194-200. [PMID: 33414220 PMCID: PMC8000976 DOI: 10.1126/science.abc0476] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023]
Abstract
Medically important flaviviruses cause diverse disease pathologies and collectively are responsible for a major global disease burden. A contributing factor to pathogenesis is secreted flavivirus nonstructural protein 1 (NS1). Despite demonstrated protection by NS1-specific antibodies against lethal flavivirus challenge, the structural and mechanistic basis remains unknown. Here, we present three crystal structures of full-length dengue virus NS1 complexed with a flavivirus-cross-reactive, NS1-specific monoclonal antibody, 2B7, at resolutions between 2.89 and 3.96 angstroms. These structures reveal a protective mechanism by which two domains of NS1 are antagonized simultaneously. The NS1 wing domain mediates cell binding, whereas the β-ladder triggers downstream events, both of which are required for dengue, Zika, and West Nile virus NS1-mediated endothelial dysfunction. These observations provide a mechanistic explanation for 2B7 protection against NS1-induced pathology and demonstrate the potential of one antibody to treat infections by multiple flaviviruses.
Collapse
Affiliation(s)
- Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - W Clay Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas T N Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Jamie R Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Nicholas J Bockhaus
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Jeffrey Li
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Evan Y Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, and Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Mina
- Center for Communicable Disease Dynamics, Department of Epidemiology, and Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
19
|
Ouwendijk WJ, van den Ham HJ, Delany MW, van Kampen JJ, van Nierop GP, Mehraban T, Zaaraoui-Boutahar F, van IJcken WF, van den Brand JM, de Vries RD, Andeweg AC, Verjans GM. Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation. JCI Insight 2020; 5:138900. [PMID: 33021967 PMCID: PMC7710321 DOI: 10.1172/jci.insight.138900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
Primary varicella-zoster virus (VZV) infection in adults is often complicated by severe pneumonia, which is difficult to treat and is associated with high morbidity and mortality. Here, the simian varicella virus (SVV) nonhuman primate (NHP) model was used to investigate the pathogenesis of varicella pneumonia. SVV infection resulted in transient fever, viremia, and robust virus replication in alveolar pneumocytes and bronchus-associated lymphoid tissue. Clearance of infectious virus from lungs coincided with robust innate immune responses, leading to recruitment of inflammatory cells, mainly neutrophils and lymphocytes, and finally severe acute lung injury. SVV infection caused neutrophil activation and formation of neutrophil extracellular traps (NETs) in vitro and in vivo. Notably, NETs were also detected in lung and blood specimens of varicella pneumonia patients. Lung pathology in the SVV NHP model was associated with dysregulated expression of alveolar epithelial cell tight junction proteins (claudin-2, claudin-10, and claudin-18) and alveolar endothelial adherens junction protein VE-cadherin. Importantly, factors released by activated neutrophils, including NETs, were sufficient to reduce claudin-18 and VE-cadherin expression in NHP lung slice cultures. Collectively, the data indicate that alveolar barrier disruption in varicella pneumonia is associated with NET formation.
Collapse
Affiliation(s)
| | - Henk-Jan van den Ham
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands.,ENPICOM BV, 's-Hertogenbosch, Netherlands
| | - Mark W Delany
- Department of Pathobiology, Faculty of Veterinary Science, Utrecht University, Utrecht, Netherlands
| | | | | | - Tamana Mehraban
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Judith Ma van den Brand
- Department of Pathobiology, Faculty of Veterinary Science, Utrecht University, Utrecht, Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Arno C Andeweg
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
20
|
Chia PY, Teo A, Yeo TW. Overview of the Assessment of Endothelial Function in Humans. Front Med (Lausanne) 2020; 7:542567. [PMID: 33117828 PMCID: PMC7575777 DOI: 10.3389/fmed.2020.542567] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The endothelium is recognized to play an important role in various physiological functions including vascular tone, permeability, anticoagulation, and angiogenesis. Endothelial dysfunction is increasingly recognized to contribute to pathophysiology of many disease states, and depending on the disease stimuli, mechanisms underlying the endothelial dysfunction may be markedly different. As such, numerous techniques to measure different aspects of endothelial dysfunction have been developed and refined as available technology improves. Current available reviews on quantifying endothelial dysfunction generally concentrate on a single aspect of endothelial function, although diseases may affect more than one aspect of endothelial function. Here, we aim to provide an overview on the techniques available for the assessment of the different aspects of endothelial function in humans, human tissues or cells, namely vascular tone modulation, permeability, anticoagulation and fibrinolysis, and the use of endothelial biomarkers as predictors of outcomes.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine and Radiology and Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
21
|
Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection. PLoS One 2020; 15:e0237141. [PMID: 32764789 PMCID: PMC7413495 DOI: 10.1371/journal.pone.0237141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
Collapse
|
22
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
23
|
High Levels of Serum Angiopoietin 2 and Angiopoietin 2/1 Ratio at the Critical Stage of Dengue Hemorrhagic Fever in Patients and Association with Clinical and Biochemical Parameters. J Clin Microbiol 2020; 58:JCM.00436-19. [PMID: 31941693 DOI: 10.1128/jcm.00436-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/08/2020] [Indexed: 01/17/2023] Open
Abstract
Longitudinal changes of serum angiopoietin 1 (Ang-1) and angiopoietin 2 (Ang-2) associated with endothelial stability in dengue patients with different disease stages were studied. Serum Ang-1 and Ang-2 levels were measured in confirmed dengue fever (DF) patients on admission (DFA, n = 40) and discharge (DFD, n = 20); in dengue hemorrhagic fever (DHF) patients on admission (DHFA, n = 40), at critical stage (DHFC, n = 36), and on discharge (DHFD, n = 20); and in healthy controls (HC, n = 25). DHFC had the highest serum Ang-2 and lowest Ang-1 levels compared to DFA, DHFA, and HC (P < 0.050). The ratio of serum Ang-2/Ang-1 in DHFC was the highest among all study categories tested (P < 0.001). Significant positive correlations were observed between serum Ang-1 and platelet count in DHFA (Pearson r = 0.653, P < 0.001) and between Ang-1 and pulse pressure in DHFC (r = 0.636, P = 0.001). Using a cutoff value of 1.01 for the Ang-2/Ang-1 ratio for DHFC, a sensitivity of 83.2% and a specificity of 81.2% discerning DF from DHF were obtained. Therefore, serum Ang-2/Ang-1 could be used as a biomarker for endothelial dysfunction in severe dengue at the critical stage.
Collapse
|
24
|
Barbachano-Guerrero A, Endy TP, King CA. Dengue virus non-structural protein 1 activates the p38 MAPK pathway to decrease barrier integrity in primary human endothelial cells. J Gen Virol 2020; 101:484-496. [PMID: 32141809 DOI: 10.1099/jgv.0.001401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) causes an estimated 390 million infections worldwide annually, with severe forms of disease marked by vascular leakage. Endothelial cells (EC) are directly responsible for vascular homeostasis and are highly responsive to circulating mediators but are not commonly infected. DENV encodes seven non-structural (NS) proteins; with only one of those, NS1, secreted from infected cells and accumulating in the blood of patients. NS1 has been implicated in the pathogenesis of vascular permeability, but the mechanism is not completely understood. Here we used primary endothelial cells and an array of in vitro approaches to study the effect of NS1 in disease-relevant human ECs. Confocal microscopy demonstrated rapid NS1 internalization by ECs into endosomes with accumulation over time. Transcriptomic and pathway analysis showed significant changes in functions associated with EC homeostasis and vascular permeability. Functional significance of this activation was assessed by trans-endothelial electrical resistance and showed that NS1 induced rapid and transient loss in EC barrier function within 3 h post-treatment. To understand the molecular mechanism by which NS1 induced EC activation, we evaluated the stress-sensing p38 MAPK pathway known to be directly involved in EC permeability and inflammation. WB analysis of NS1-stimulated ECs showed clear activation of p38 MAPK and downstream effectors MAPKAPK-2 and HSP27 with chemical inhibition of the p38 MAP kinase pathway restoring barrier function. Our results suggest that DENV NS1 may be involved in the pathogenesis of severe dengue by activating the p38 MAPK in ECs, promoting increased permeability that characterizes severe disease.
Collapse
Affiliation(s)
| | - Timothy P Endy
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Christine A King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| |
Collapse
|
25
|
Furnon W, Fender P, Confort MP, Desloire S, Nangola S, Kitidee K, Leroux C, Ratinier M, Arnaud F, Lecollinet S, Boulanger P, Hong SS. Remodeling of the Actin Network Associated with the Non-Structural Protein 1 (NS1) of West Nile Virus and Formation of NS1-Containing Tunneling Nanotubes. Viruses 2019; 11:v11100901. [PMID: 31569658 PMCID: PMC6832617 DOI: 10.3390/v11100901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The cellular response to the recombinant NS1 protein of West Nile virus (NS1WNV) was studied using three different cell types: Vero E6 simian epithelial cells, SH-SY5Y human neuroblastoma cells, and U-87MG human astrocytoma cells. Cells were exposed to two different forms of NS1WNV: (i) the exogenous secreted form, sNS1WNV, added to the extracellular milieu; and (ii) the endogenous NS1WNV, the intracellular form expressed in plasmid-transfected cells. The cell attachment and uptake of sNS1WNV varied with the cell type and were only detectable in Vero E6 and SH-SY5Y cells. Addition of sNS1WNV to the cell culture medium resulted in significant remodeling of the actin filament network in Vero E6 cells. This effect was not observed in SH-SY5Y and U-87MG cells, implying that the cellular uptake of sNS1WNV and actin network remodeling were dependent on cell type. In the three cell types, NS1WNV-expressing cells formed filamentous projections reminiscent of tunneling nanotubes (TNTs). These TNT-like projections were found to contain actin and NS1WNV proteins. Interestingly, similar actin-rich, TNT-like filaments containing NS1WNV and the viral envelope glycoprotein EWNV were also observed in WNV-infected Vero E6 cells.
Collapse
Affiliation(s)
- Wilhelm Furnon
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Pascal Fender
- Institut de Biologie Structurale, CNRS UMR 5075, 38042 Grenoble, France.
| | - Marie-Pierre Confort
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Sophie Desloire
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Sawitree Nangola
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Kuntida Kitidee
- Center for Research & Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Caroline Leroux
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Maxime Ratinier
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- EPHE, PSL Research University, INRA, Université de Lyon, University Claude Bernard Lyon 1, UMR754, IVPC, Cedex 07, 69366 Lyon, France.
| | - Frédérick Arnaud
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- EPHE, PSL Research University, INRA, Université de Lyon, University Claude Bernard Lyon 1, UMR754, IVPC, Cedex 07, 69366 Lyon, France.
| | - Sylvie Lecollinet
- UMR-1161 Virology, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES Animal Health Laboratory, EURL on Equine Diseases, 94704 Maisons-Alfort, France.
| | - Pierre Boulanger
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Saw-See Hong
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale, 101, rue de Tolbiac, Cedex 13, 75654 Paris, France.
| |
Collapse
|