1
|
Eltabey SM, Ibrahim AH, Zaky MM, Ibrahim AE, Alrashdi YBA, El Deeb S, Saleh MM. Targeting virulence of resistant Escherichia coli by the FDA-approved drugs sitagliptin and nitazoxanide as an alternative antimicrobial approach. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01215-7. [PMID: 39470968 DOI: 10.1007/s12223-024-01215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The spread of multidrug-resistant Escherichia coli in healthcare facilities is a global challenge. Hospital-acquired infections produced by Escherichia coli include gastrointestinal, blood-borne, urinary tract, surgical sites, and neonatal infections. Therefore, novel approaches are needed to deal with this pathogen and its rising resistance. The concept of attenuating virulence factors is an alternative strategy that might lead to low levels of resistance and combat this pathogen. A sub-inhibitory concentration (¼ MIC) of sitagliptin and nitazoxanide was used for phenotypic assessments of Escherichia coli virulence factors such as biofilm production, swimming motility, serum resistance, and protease production. Moreover, qRT-PCR was used to determine the impact of sub-MIC of the tested drugs on the relative expression levels of papC, fimH, fliC, kpsMTII, ompT_m, and stcE genes encoding virulence factors in Escherichia coli. Also, an in vivo model was conducted as a confirmatory test. Phenotypically, our findings demonstrated that the tested strains showed a significant decrease in all the tested virulence factors. Moreover, the genotypic results showed a significant downregulation in the relative expression levels of all the tested genes. Besides, the examined drugs were found to be effective in protecting mice against Escherichia coli pathogenesis. Sitagliptin and nitazoxanide exhibited strong anti-virulence activities against Escherichia coli. In addition, it is recommended that they might function as adjuvant in the management of Escherichia coli infections with either conventional antimicrobial agents or alone as alternative treatment measures.
Collapse
Affiliation(s)
- Sara M Eltabey
- Microbiology Program, Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ali H Ibrahim
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mahmoud M Zaky
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman.
| | | | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, Brunswick, Germany.
| | - Moustafa M Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Faculty of Pharmacy, Ashour University, Baghdad, Iraq
| |
Collapse
|
2
|
Cowardin CA, Syed S, Iqbal N, Jamil Z, Sadiq K, Iqbal J, Ali SA, Moore SR. Environmental enteric dysfunction: gut and microbiota adaptation in pregnancy and infancy. Nat Rev Gastroenterol Hepatol 2023; 20:223-237. [PMID: 36526906 PMCID: PMC10065936 DOI: 10.1038/s41575-022-00714-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 03/31/2023]
Abstract
Environmental enteric dysfunction (EED) is a subclinical syndrome of intestinal inflammation, malabsorption and barrier disruption that is highly prevalent in low- and middle-income countries in which poverty, food insecurity and frequent exposure to enteric pathogens impair growth, immunity and neurodevelopment in children. In this Review, we discuss advances in our understanding of EED, intestinal adaptation and the gut microbiome over the 'first 1,000 days' of life, spanning pregnancy and early childhood. Data on maternal EED are emerging, and they mirror earlier findings of increased risks for preterm birth and fetal growth restriction in mothers with either active inflammatory bowel disease or coeliac disease. The intense metabolic demands of pregnancy and lactation drive gut adaptation, including dramatic changes in the composition, function and mother-to-child transmission of the gut microbiota. We urgently need to elucidate the mechanisms by which EED undermines these critical processes so that we can improve global strategies to prevent and reverse intergenerational cycles of undernutrition.
Collapse
Affiliation(s)
- Carrie A Cowardin
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Sana Syed
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zehra Jamil
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Syed Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Consumption of a multi-deficient diet causes dynamic changes in the intestinal morphofunctional barrier, body composition and impaired physical development in post-weaning mice. Br J Nutr 2023; 129:745-758. [PMID: 35485727 DOI: 10.1017/s0007114522001271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Few studies have focused on nutrient-deficient diets and associated pathobiological dynamics of body composition and intestinal barrier function. This study evaluated the impact of a nutrient-deficient diet on physical development and intestinal morphofunctional barrier in mice. C57BL/6 (21 days of age) mice were fed a Northeastern Brazil regional basic diet (RBD) or a control diet for 21 d. The animals were subjected to bioimpedance analysis, lactulose test, morphometric analysis and quantitative reverse transcription-PCR to evaluate tight junctions and intestinal transporters. RBD feeding significantly reduced weight (P < 0·05) from day 5, weight gain from day 3 and tail length from day 14. The intake of RBD reduced total body water, extracellular fluid, fat mass and fat-free mass from day 7 (P < 0·05). RBD induced changes in the jejunum, with an increase in the villus:crypt ratio on day 7, followed by reduction on days 14 and 21 (P < 0·05). Lactulose:mannitol ratio increased on day 14 (P < 0·05). Changes in intestinal barrier function on day 14 were associated with reductions in claudin-1 and occludin, and on day 21, there was a reduction in the levels of claudin-2 and occludin. SGLT-1 levels decreased on day 21. RBD compromises body composition and physical development with dynamic changes in intestinal barrier morphofunctional. RBD is associated with damage to intestinal permeability, reduced levels of claudin-1 and occludin transcripts and return of bowel function in a chronic period.
Collapse
|
4
|
Kwasi DA, Babalola CP, Olubiyi OO, Hoffmann J, Uzochukwu IC, Okeke IN. Antibiofilm agents with therapeutic potential against enteroaggregative Escherichia coli. PLoS Negl Trop Dis 2022; 16:e0010809. [PMID: 36201560 PMCID: PMC9578610 DOI: 10.1371/journal.pntd.0010809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/18/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is a predominant but neglected enteric pathogen implicated in infantile diarrhoea and nutrient malabsorption. There are no non-antibiotic approaches to dealing with persistent infection by these exceptional colonizers, which form copious biofilms. We screened the Medicines for Malaria Venture Pathogen Box for chemical entities that inhibit EAEC biofilm formation. METHODOLOGY We used EAEC strains, 042 and MND005E in a medium-throughput crystal violet-based antibiofilm screen. Hits were confirmed in concentration-dependence, growth kinetic and time course assays and activity spectra were determined against a panel of 25 other EAEC strains. Antibiofilm activity against isogenic EAEC mutants, molecular docking simulations and comparative genomic analysis were used to identify the mechanism of action of one hit. PRINCIPAL FINDINGS In all, five compounds (1.25%) reproducibly inhibited biofilm accumulation by at least one strain by 30-85% while inhibiting growth by under 10%. Hits exhibited potent antibiofilm activity at concentrations at least 10-fold lower than those reported for nitazoxanide, the only known EAEC biofilm inhibitor. Reflective of known EAEC heterogeneity, only one hit was active against both screen isolates, but three hits showed broad antibiofilm activity against a larger panel of strains. Mechanism of action studies point to the EAEC anti-aggregation protein (Aap), dispersin, as the target of compound MMV687800. CONCLUSIONS This study identified five compounds, not previously described as anti-adhesins or Gram-negative antibacterials, with significant EAEC antibiofilm activity. Molecule, MMV687800 targets the EAEC Aap. In vitro small-molecule inhibition of EAEC colonization opens a way to new therapeutic approaches against EAEC infection.
Collapse
Affiliation(s)
- David A. Kwasi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Chinedum P. Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Center for Drug Discovery, Development and Production, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - Olujide O. Olubiyi
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Jennifer Hoffmann
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Ikemefuna C. Uzochukwu
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University Awka, Anambra State, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| |
Collapse
|
5
|
Moran-Garcia N, Lopez-Saucedo C, Becerra A, Meza-Segura M, Hernandez-Cazares F, Guerrero-Baez J, Galindo-Gómez S, Tsutsumi V, Schnoor M, Méndez-Tenorio A, Nataro JP, Estrada-Garcia T. A Novel Adult Murine Model of Typical Enteroaggregative Escherichia coli Infection Reveals Microbiota Dysbiosis, Mucus Secretion, and AAF/II-Mediated Expression and Localization of β-Catenin and Expression of MUC1 in Ileum. Front Cell Infect Microbiol 2022; 12:885191. [PMID: 35706909 PMCID: PMC9190437 DOI: 10.3389/fcimb.2022.885191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Typical enteroaggregative Escherichia coli (tEAEC) is a diarrheagenic E. coli pathotype associated with pediatric and traveler’s diarrhea. Even without diarrhea, EAEC infections in children also lead to increased gut inflammation and growth shortfalls. EAEC strain’s defining phenotype is the aggregative adherence pattern on epithelial cells attributable to the aggregative adherence fimbriae (AAF). EAEC only causes diarrhea in humans; therefore, not much is known of the exact intestinal region of infection and damage or its interactions with intestinal enterocytes in vivo and in situ. This study aimed to develop a new tEAEC mouse model of infection, characterize the microbiota of infected mice, and evaluate in situ the expression of host adherence and surface molecules triggering EAEC infection and the role of the EAEC AAF-II in adherence. Six-week-old C57BL/6 mice, without previous antibiotic treatment, were orally challenged with EAEC 042 strain or EAEC 042 AAF-II mutant (ΔAAF/II) strain, or DAEC-MXR strain (diffusely adherent E. coli clinical isolate), and with saline solution (control group). Paraffin sections of the colon and ileum were stained with H&E and periodic acid-Schiff. ZO-1, β-catenin, MUC1, and bacteria were analyzed by immunofluorescence. EAEC-infected mice, in comparison with DAEC-MXR-infected and control mice, significantly lost weight during the first 3 days. After 7 days post-infection, mucus production was increased in the colon and ileum, ZO-1 localization remained unaltered, and morphological alterations were more pronounced in the ileum since increased expression and apical localization of β-catenin in ileal enterocytes were observed. EAEC-infected mice developed dysbiosis 21 days post-infection. At 4 days post-infection, EAEC strain 042 formed a biofilm on ileal villi and increased the expression and apical localization of β-catenin in ileal enterocytes; these effects were not seen in animals infected with the 042 ΔAAF/II strain. At 3 days post-infection, MUC1 expression on ileal enterocytes was mainly detectable among infected mice and colocalized with 042 strains on the enterocyte surface. We developed a novel mouse model of EAEC infection, which mimics human infection, not an illness, revealing that EAEC 042 exerts its pathogenic effects in the mouse ileum and causes dysbiosis. This model is a unique tool to unveil early molecular mechanisms of EAEC infection in vivo and in situ.
Collapse
Affiliation(s)
| | | | - Adriana Becerra
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| | - Mario Meza-Segura
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| | - Alfonso Méndez-Tenorio
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Teresa Estrada-Garcia
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
- *Correspondence: Teresa Estrada-Garcia,
| |
Collapse
|
6
|
Zhao X, Lv Y, Adam FEA, Xie Q, Wang B, Bai X, Wang X, Shan H, Wang X, Liu H, Dang R, Wang J, Yang Z. Comparison of Antimicrobial Resistance, Virulence Genes, Phylogroups, and Biofilm Formation of Escherichia coli Isolated From Intensive Farming and Free-Range Sheep. Front Microbiol 2021; 12:699927. [PMID: 34394043 PMCID: PMC8362090 DOI: 10.3389/fmicb.2021.699927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Pathogenic E. coli are among the most frequently isolated bacterial pathogens on large-scale sheep farms in China. Antibiotic use in wool sheep production is a risk factor for promoting the emergence of resistant E. coli. To reveal the differences of E. coli populations in sheep from different farming systems the antimicrobial resistance, virulence genes, biofilm formation, and phylogroups of 500 E. coli isolates obtained between September 2019 and December 2020 in northwest China from diarrheic infections of intensive farming and free-range sheep were analyzed. The antimicrobial susceptibility test for 12 classes of antimicrobial agents was determined using the broth microdilution susceptibility method, and PCR was used to detect the differences in virulence genes and phylogroups. Additionally, biofilm formation was determined using microtiter plate and slide agglutination methods. Among the 500 E. coli isolates, the majority of the isolates were multidrug resistant (75.4%) and carried at least one virulence gene (94.8%). We observed that 412 (82.4%), 360 (72.0%), and 266 (53.2%) are found to be resistant to sulfisoxazole, florfenicol, and tetracyclines, respectively. Resistance was also observed to mequindox (46.8%), ampicillin (43.6%), spectinomycin (38.6%), enrofloxacin (34.2%), ceftiofur (21.0%), gentamycin (20.4%), ceftazidime (17.8%), and polymyxin B (7.8%) but no resistance was found to meropenem. These results showed that strains from free-range subjects had fewer antibiotic resistance strains rather than sheep that were intensively farmed (P < 0.05). We observed fifteen virulence genes, of which etrA (n = 401, 80.2%) is the most common. In addition, EAEC (86.4%) is dominant among free-range sheep and EHEC (80.1%) is dominant among intensive farming. Among all virulence genes, the strongest correlation was found between etrA and papC gene (P < 0.001, OR = 455.68). Similarly, the strongest correlation was also found between eltA and sulfisoxazole (P < 0.001, OR = 877). Furthermore, the majority of the E. coli isolates belonged to phylogroup B1 (50.6%), followed by phylogroup C (20.6%), A (7.4%), E (7.4%), D (5.8%), B2 (1.6%), and F (1%). Interestingly, phylogroup B2 and D were all distributed in intensive farms. In addition, 33 (6.6%), 373 (74.6%), and 94 (18.8%) showed moderate, weak, and no connection biofilm formation ability, respectively. These data uncovered that wool sheep serve as a reservoir of pathogenic E. coli harboring multiple resistance phenotypes and virulence genes. The overlapping virulence-associated traits between IPEC and ExPEC indicated the zoonotic potential and safety threats of sheep food products. It is urgent to improve the proper use of antimicrobials in China as well as other countries.
Collapse
Affiliation(s)
- Xueliang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunyang Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | | | - Qingfang Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xindong Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyuan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Honghu Shan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Modgil V, Chaudhary P, Bharti B, Mahindroo J, Yousuf M, Koundal M, Mohan B, Taneja N. Prevalence, Virulence Gene Profiling, and Characterization of Enteroaggregative Escherichia coli from Children with Acute Diarrhea, Asymptomatic Nourished, and Malnourished Children Younger Than 5 Years of Age in India. J Pediatr 2021; 234:106-114.e5. [PMID: 33713662 DOI: 10.1016/j.jpeds.2021.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study the significance of enteroaggregative Escherichia coli (EAEC) as a pathogen causing acute diarrhea and a commensal in healthy nourished and malnourished children younger than five years of age in the Chandigarh region and to address possible traits of EAEC virulence genes, biofilm formation, phylogroups, and antibiotic resistance that would be correlated with diarrhea or carriage. STUDY DESIGN Stool samples were obtained from children with acute diarrhea (n = 548), as well as nourished (n = 550), and malnourished controls without diarrhea (n = 110). E coli isolates were confirmed as EAEC by pCVD432 polymerase chain reaction. Multiplex polymerase chain reactions were used to identify 22 virulence-related genes and phylogeny. Antibiotic susceptibility, adherence, and biofilm-forming potential also were studied. RESULTS Overall, 16.6% of children were malnourished. EAEC detection was greater among children with acute diarrhea (16%) than nourished (6%) and malnourished nondiarrheal controls (2.7%). We found an association of EAEC infections with age <2 years (P = .0001) in the diarrheal group. Adhesive variants adhesion fimbriae IV and adhesion fimbriae II were significantly associated with diarrhea. The aggR and aar genes showed a positive and negative association with the severity of disease (P = .0004 and P = .0003). A high degree of multidrug resistance was found (73.8%) in the diarrheal group. Most EAEC strains from the diarrheal group belonged to B2 and D phylogroups, whereas strains from non-diarrheal groups, which belonged to phylogroup B1. CONCLUSIONS EAEC is a significant contributor to childhood diarrhea, its presence as a commensal, and the significance of the association of various virulence factors among the EAEC isolated from diarrheal and non-diarrheal stools. These data reinforce the importance of aggR and aar as positive and negative regulators and the contribution of AAF/II and AAF/IV fimbria for the pathobiology of EAEC.
Collapse
Affiliation(s)
- Vinay Modgil
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Chaudhary
- Department of Pediatrics Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhavneet Bharti
- Department of Pediatrics Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaspreet Mahindroo
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Md Yousuf
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenakshi Koundal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
9
|
Guerrant RL, Bolick DT, Swann JR. Modeling Enteropathy or Diarrhea with the Top Bacterial and Protozoal Pathogens: Differential Determinants of Outcomes. ACS Infect Dis 2021; 7:1020-1031. [PMID: 33901398 PMCID: PMC8154416 DOI: 10.1021/acsinfecdis.0c00831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Developing effective
therapeutics or preventive interventions for
important health threats is greatly enhanced whenever accessible models
can enable the assessment of clinically important outcomes. While
no non-human model is ever perfect, inexpensive in vivo small animal models in such as mice are often of great help in assessing
the relevant efficacy of potential interventions. In addition to acute
diarrhea, the long-term growth and developmental effects of enteric
infections, with or without overt diarrhea, are increasingly recognized.
To address these diverse effects, inexpensive animal models are proving
to be very helpful. Herein, we review the major clinical concerns
with enteric parasitic and bacterial infections that are extremely
common worldwide, especially in vulnerable young children living in
impoverished areas, and the recently published murine models of these
infections and their outcomes. We find that common dietary deficiencies
seen in children in developing areas have striking effects on diarrhea
and enteropathy outcomes in mice. However, these effects differ with
different pathogens. Specifically, the effects of protein or zinc
deficiency differ considerably with different major protozoal and
bacterial pathogens, suggesting different pathogenetic pathways and
intervention effects. The pathogens reviewed are the seven top parasitic
and bacterial pathogens seen in children, namely, Cryptosporidium, Giardia, Campylobacter, Shigella, enterotoxigenic Escherichia coli (ETEC), enteroaggregative E. coli (EAEC), and enteropathogenic E. coli (EPEC).
Collapse
Affiliation(s)
- Richard L. Guerrant
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - David T. Bolick
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
11
|
Bauer KC, Huus KE, Brown EM, Bozorgmehr T, Petersen C, Cirstea MS, Woodward SE, McCoy J, Hun J, Pamplona R, Ayala V, Finlay BB. Dietary Intervention Reverses Fatty Liver and Altered Gut Microbiota during Early-Life Undernutrition. mSystems 2020; 5:e00499-20. [PMID: 32900869 PMCID: PMC7483509 DOI: 10.1128/msystems.00499-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/01/2020] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), largely studied as a condition of overnutrition, also presents in undernourished populations. Like NAFLD, undernutrition disrupts systemic metabolism and has been linked to gut microbiota dysbiosis. Indeed, chronic exposures to fecal microbes contribute to undernutrition pathology in regions with poor sanitation. Despite a growing prevalence of fatty liver disease, the influence of undernutrition and the gut microbiota remain largely unexplored. Here, we utilize an established murine model (C57BL/6J mice placed on a malnourished diet that received iterative Escherichia coli/Bacteroidales gavage [MBG mice]) that combines a protein/fat-deficient diet and iterative exposure to specific, fecal microbes. Fecal-oral contamination exacerbates triglyceride accumulation in undernourished mice. MBG livers exhibit diffuse lipidosis accompanied by striking shifts in fatty acid, glycerophospholipid, and retinol metabolism. Multiomic analyses revealed metabolomic pathways linked to the undernourished gut microbiome and hepatic steatosis, including phenylacetate metabolism. Intriguingly, fatty liver features were observed only in the early-life, but not adult, MBG model despite similar liver metabolomic profiles. Importantly, we demonstrate that dietary intervention largely mitigates aberrant metabolomic and microbiome features in MBG mice. These findings indicate a crucial window in early-life development that, when disrupted by nutritional deficiency, may significantly influence liver function. Our work provides a multifaceted study of how diet and gut microbes inform fatty liver progression and reversal during undernutrition.IMPORTANCE Nonalcoholic fatty liver disease (NAFLD) remains a global epidemic, but it is often studied in the context of obesity and aging. Nutritional deficits, however, also trigger hepatic steatosis, influencing health trajectories in undernourished pediatric populations. Here, we report that exposure to specific gut microbes impacts fatty liver pathology in mice fed a protein/fat-deficient diet. We utilize a multiomics approach to (i) characterize NAFLD in the context of early undernutrition and (ii) examine the impact of diet and gut microbes in the pathology and reversal of hepatic steatosis. We provide compelling evidence that an early-life, critical development window facilitates undernutrition-induced fatty liver pathology. Moreover, we demonstrate that sustained dietary intervention largely reverses fatty liver features and microbiome shifts observed during early-life malnutrition.
Collapse
Affiliation(s)
- K C Bauer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - K E Huus
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - E M Brown
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Petersen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - M S Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - S E Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - J McCoy
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Hun
- The Metabolomics Innovation Centre, University of Victoria, British Columbia, Canada
| | - R Pamplona
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain
- Department of Metabolomic Physiology, Universitat de Lleida, Lleida, Spain
| | - V Ayala
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain
- Department of Metabolomic Physiology, Universitat de Lleida, Lleida, Spain
| | - B B Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Michael H, Langel SN, Miyazaki A, Paim FC, Chepngeno J, Alhamo MA, Fischer DD, Srivastava V, Kathayat D, Deblais L, Rajashekara G, Saif LJ, Vlasova AN. Malnutrition Decreases Antibody Secreting Cell Numbers Induced by an Oral Attenuated Human Rotavirus Vaccine in a Human Infant Fecal Microbiota Transplanted Gnotobiotic Pig Model. Front Immunol 2020; 11:196. [PMID: 32117313 PMCID: PMC7033455 DOI: 10.3389/fimmu.2020.00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 01/31/2023] Open
Abstract
Human rotavirus (HRV) is a leading cause of morbidity and mortality in children, especially in developing countries. Malnutrition is prevalent in these countries, which may contribute to the decreased oral vaccine efficacy, posing a concern for global health. Neonatal gnotobiotic (Gn) pigs closely resemble human infants in their anatomy, physiology, and outbred status and are a unique model to investigate malnutrition, oral live attenuated HRV (AttHRV) vaccination, and subsequent virulent HRV (VirHRV) challenge. We evaluated the impact of malnutrition on AttHRV vaccine efficacy and B cell immune responses in neonatal germfree (GF) or Gn pigs transplanted with human infant fecal microbiota (HIFM). Pigs were fed either deficient or sufficient bovine milk diets. Malnutrition did not significantly affect the serum and intestinal contents total or HRV-specific IgG and IgA antibody titers pre VirHRV challenge. However, HRV-specific IgG and IgA antibody secreting cells (ASCs) were reduced in blood or intestinal tissues following AttHRV vaccination and pre VirHRV challenge in deficient HIFM transplanted pigs. Furthermore, post-VirHRV challenge, deficient HIFM pigs had decreased total Ig and HRV-specific IgG and IgA antibody titers in serum or intestinal contents, in addition to decreased HRV-specific IgG and IgA ASCs in blood and ileum, compared with sufficient HIFM pigs. Our results indicate that deficient diet impairs B cell mucosal, and systemic immune responses following HRV vaccination, and challenge. The impaired immune responses contributed to the decreased protective efficacy of the AttHRV vaccine, suggesting that malnutrition may significantly reduce the effectiveness of oral HRV vaccines in children in developing countries.
Collapse
Affiliation(s)
- Husheem Michael
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie N Langel
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Ayako Miyazaki
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States.,Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Francine C Paim
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Moyasar A Alhamo
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - David D Fischer
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Vishal Srivastava
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Dipak Kathayat
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Loic Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
13
|
DeBoer MD, Guerrant RL. Ongoing Challenges to Understanding and Interrupting Environmental Enteric Dysfunction. J Pediatr 2019; 210:8-9. [PMID: 30926153 DOI: 10.1016/j.jpeds.2019.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022]
Affiliation(s)
- Mark D DeBoer
- Pediatric Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Infectious Diseases and International Health, Department of Medicine and, Center for Global Health, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
14
|
Bartelt LA, Bolick DT, Guerrant RL. Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cell Mol Gastroenterol Hepatol 2019; 7:692-707. [PMID: 30630118 PMCID: PMC6477186 DOI: 10.1016/j.jcmgh.2018.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Environmental enteric dysfunction (EED) (also referred to as environmental enteropathy) is a subclinical chronic intestinal disorder that is an emerging contributor to early childhood malnutrition. EED is common in resource-limited settings, and is postulated to consist of small intestinal injury, dysfunctional nutrient absorption, and chronic inflammation that results in impaired early child growth attainment. Although there is emerging interest in the hypothetical potential for chemical toxins in the environmental exposome to contribute to EED, the propensity of published data, and hence the focus of this review, implicates a critical role of environmental microbes. Early childhood malnutrition and EED are most prevalent in resource-limited settings where food is limited, and inadequate access to clean water and sanitation results in frequent gastrointestinal pathogen exposures. Even as overt diarrhea rates in these settings decline, silent enteric infections and faltering growth persist. Furthermore, beyond restricted physical growth, EED and/or enteric pathogens also associate with impaired oral vaccine responses, impaired cognitive development, and may even accelerate metabolic syndrome and its cardiovascular consequences. As these potentially costly long-term consequences of early childhood enteric infections increasingly are appreciated, novel therapeutic strategies that reverse damage resulting from nutritional deficiencies and microbial insults in the developing small intestine are needed. Given the inherent limitations in investigating how specific intestinal pathogens directly injure the small intestine in children, animal models provide an affordable and controlled opportunity to elucidate causal sequelae of specific enteric infections, to differentiate consequences of defined nutrient deprivation alone from co-incident enteropathogen insults, and to correlate the resulting gut pathologies with their functional impact during vulnerable early life windows.
Collapse
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - David T Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
15
|
Nataro JP, Guerrant RL. Chronic consequences on human health induced by microbial pathogens: Growth faltering among children in developing countries. Vaccine 2017; 35:6807-6812. [DOI: 10.1016/j.vaccine.2017.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
|
16
|
Abstract
The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population.
Collapse
|
17
|
Vonaesch P, Tondeur L, Breurec S, Bata P, Nguyen LBL, Frank T, Farra A, Rafaï C, Giles-Vernick T, Gody JC, Gouandjika-Vasilache I, Sansonetti P, Vray M. Factors associated with stunting in healthy children aged 5 years and less living in Bangui (RCA). PLoS One 2017; 12:e0182363. [PMID: 28796794 PMCID: PMC5552116 DOI: 10.1371/journal.pone.0182363] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
Stunting remains a major public health concern worldwide. Although its global prevalence is slowly decreasing, the actual number of affected children is still rising in Sub-Saharan Africa. In the Central African Republic (CAR), about one third of all children below the age of five are stunted. Stunting is correlated with many long-term consequences, including poor cognitive development and a higher rate of morbidity and mortality, making stunting a major contributor to poverty. In CAR, little is known about the factors that contribute to stunting. This study aimed at analysing, in a cross-sectional study, the main factors associated with stunting in a group of 414 children recruited between December 2011 and November 2013, aged five years or less and living in Bangui. For all children, demographic, socio-economic and anthropometric data were recorded and asymptomatic enteropathogen carriage was assessed in stool samples using classical microbiological assays. The study group had a mean age of 14.2±10 months. Fifty-eight percent (292/414) were boys, and 36 percent (148/414) exhibited stunted growth. Of the stunted children, 51% (75/148) showed a moderate delay in linear growth for their age group [height-for-age z-score (HAZ) between -2 and -3 SD] while 49% (73/148) presented a severe delay (HAZ < -3). Factors significantly associated with stunting included gender (aOR: 1.67; 95% CI: 1.07; 2.62 for boys compared to girls) and age (aOR of 3.98 (95% CI: 2.45; 6.46) for toddlers and aOR 4.42 (95% CI: 2.36; 8.28) for children compared to infants). Most importantly, we identified being overweight [weight-for-height z-score (WHZ) > 2 SD; aOR: 3.21; 95% CI: 1.50; 6.90 of overweight compared to normal weight] as also being significantly associated with stunting. This is the first study showing that even in the poorest countries of the world there is an association of stunting with being overweight.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Unité d'épidémiologie et d'expertise des maladies émergentes, Institut Pasteur, Paris, France
| | - Laura Tondeur
- Unité d'épidémiologie et d'expertise des maladies émergentes, Institut Pasteur, Paris, France
| | - Sébastien Breurec
- Laboratoire de Microbiologie Clinique et Environnementale, Centre Hospitalo-Universitaire, Pointe-à-Pitre/Les Abymes, Guadeloupe, France
- Laboratoire de Bactériologie médicale, Institut Pasteur de Bangui, Bangui, République Centrafricaine
- Université des Antilles, Faculté de Médecine, Pointe-aà-Pitre, Guadeloupe, France
| | - Petula Bata
- Complexe Pédiatrique de Bangui, Bangui, République Centrafricaine
| | - Liem Binh Luong Nguyen
- Laboratoire de Bactériologie médicale, Institut Pasteur de Bangui, Bangui, République Centrafricaine
| | - Thierry Frank
- Laboratoire de Bactériologie médicale, Institut Pasteur de Bangui, Bangui, République Centrafricaine
| | - Alain Farra
- Laboratoire de Bactériologie médicale, Institut Pasteur de Bangui, Bangui, République Centrafricaine
| | - Clotaire Rafaï
- Laboratoire de Bactériologie médicale, Institut Pasteur de Bangui, Bangui, République Centrafricaine
| | - Tamara Giles-Vernick
- Unité d'épidémiologie et d'expertise des maladies émergentes, Institut Pasteur, Paris, France
| | | | | | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
| | - Muriel Vray
- Unité d'épidémiologie et d'expertise des maladies émergentes, Institut Pasteur, Paris, France
- Unité d’épidémiologie des maladies infectieuses, Institut Pasteur de Dakar, Dakar, Sénégal
- * E-mail:
| |
Collapse
|
18
|
Protein Malnutrition Alters Tryptophan and Angiotensin-Converting Enzyme 2 Homeostasis and Adaptive Immune Responses in Human Rotavirus-Infected Gnotobiotic Pigs with Human Infant Fecal Microbiota Transplant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017. [PMID: 28637803 DOI: 10.1128/cvi.00172-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Malnutrition leads to increased morbidity and is evident in almost half of all deaths in children under the age of 5 years. Mortality due to rotavirus diarrhea is common in developing countries where malnutrition is prevalent; however, the relationship between malnutrition and rotavirus infection remains unclear. In this study, gnotobiotic pigs transplanted with the fecal microbiota of a healthy 2-month-old infant were fed protein-sufficient or -deficient diets and infected with virulent human rotavirus (HRV). After human rotavirus infection, protein-deficient pigs had decreased human rotavirus antibody titers and total IgA concentrations, systemic T helper (CD3+ CD4+) and cytotoxic T (CD3+ CD8+) lymphocyte frequencies, and serum tryptophan and angiotensin I-converting enzyme 2. Additionally, deficient-diet pigs had impaired tryptophan catabolism postinfection compared with sufficient-diet pigs. Tryptophan supplementation was tested as an intervention in additional groups of fecal microbiota-transplanted, rotavirus-infected, sufficient- and deficient-diet pigs. Tryptophan supplementation increased the frequencies of regulatory (CD4+ or CD8+ CD25+ FoxP3+) T cells in pigs on both the sufficient and the deficient diets. These results suggest that a protein-deficient diet impairs activation of the adaptive immune response following HRV infection and alters tryptophan homeostasis.
Collapse
|
19
|
Abstract
Environmental enteropathy is a chronic condition of the small intestine associated with increased intestinal permeability, mucosal inflammation, malabsorption, and systemic inflammation. It is commonly accompanied by enteric infections and is misleadingly considered a subclinical disease. Potential effects of enteric infections and enteropathy on vaccine responses, child growth, cognitive development, and even later life obesity, diabetes, and metabolic syndrome are increasingly being recognized. Herein, we review the evolving challenges to defining environmental enteropathy and enteric infections, current evidence for the magnitude and determinants of its burden, new assessment tools, and relevant interventions.
Collapse
Affiliation(s)
- Elizabeth T Rogawski
- Department of Public Health Sciences, University of Virginia, PO Box 801379, Carter Harrison Research Building MR-6, 345 Crispell Drive, Room 2520, Charlottesville, VA 22908-1379, USA; Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801379, Carter Harrison Research Building MR-6, 345 Crispell Drive, Room 2520, Charlottesville, VA 22908-1379, USA.
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801379, Carter Harrison Research Building MR-6, 345 Crispell Drive, Room 2520, Charlottesville, VA 22908-1379, USA
| |
Collapse
|
20
|
Rogawski ET, Guerrant RL, Havt A, Lima IFN, Medeiros PHQS, Seidman JC, McCormick BJJ, Babji S, Hariraju D, Bodhidatta L, Shrestha J, Anania J, Maro A, Samie A, Yori PP, Qureshi S, Mahfuz M, Bessong PO, Kosek MN, Ahmed T, Bhutta ZA, Lang DR, Gottlieb M, Houpt ER, Lima AAM. Epidemiology of enteroaggregative Escherichia coli infections and associated outcomes in the MAL-ED birth cohort. PLoS Negl Trop Dis 2017; 11:e0005798. [PMID: 28742106 PMCID: PMC5542697 DOI: 10.1371/journal.pntd.0005798] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/03/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
Abstract
Background Enteroaggregative E. coli (EAEC) have been associated with mildly inflammatory diarrhea in outbreaks and in travelers and have been increasingly recognized as enteric pathogens in young children with and without overt diarrhea. We examined the risk factors for EAEC infections and their associations with environmental enteropathy biomarkers and growth outcomes over the first two years of life in eight low-resource settings of the MAL-ED study. Methods EAEC infections were detected by PCR gene probes for aatA and aaiC virulence traits in 27,094 non-diarrheal surveillance stools and 7,692 diarrheal stools from 2,092 children in the MAL-ED birth cohort. We identified risk factors for EAEC and estimated the associations of EAEC with diarrhea, enteropathy biomarker concentrations, and both short-term (one to three months) and long-term (to two years of age) growth. Results Overall, 9,581 samples (27.5%) were positive for EAEC, and almost all children had at least one detection (94.8%) by two years of age. Exclusive breastfeeding, higher enrollment weight, and macrolide use within the preceding 15 days were protective. Although not associated with diarrhea, EAEC infections were weakly associated with biomarkers of intestinal inflammation and more strongly with reduced length at two years of age (LAZ difference associated with high frequency of EAEC detections: -0.30, 95% CI: -0.44, -0.16). Conclusions Asymptomatic EAEC infections were common early in life and were associated with linear growth shortfalls. Associations with intestinal inflammation were small in magnitude, but suggest a pathway for the growth impact. Increasing the duration of exclusive breastfeeding may help prevent these potentially inflammatory infections and reduce the long-term impact of early exposure to EAEC. Enteroaggregative E. coli (EAEC) are pathogens that infect the intestine and can cause diarrhea. They are also commonly identified among young children in low-resource settings, who can carry the pathogen without symptomatic diarrhea. We examined the risk factors for EAEC infections and their associations with child health outcomes over the first two years of life in eight low-resource settings of the MAL-ED study. EAEC infections were detected using molecular methods in more than 30,000 stools collected from 2,092 children in the MAL-ED study. We identified risk factors for EAEC and estimated the associations of EAEC with diarrhea, markers of intestinal health, and child growth. Almost all children were infected with EAEC at least once by two years of age. Exclusive breastfeeding, higher enrollment weight, and recent macrolide antibiotic use were protective against these infections. Although not associated with diarrhea in these children, EAEC infections were associated with intestinal inflammation and reduced length at two years of age. EAEC may impact child development, even in the absence of diarrhea, by causing intestinal inflammation and impairing child growth.
Collapse
Affiliation(s)
- Elizabeth T. Rogawski
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alexandre Havt
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ila F. N. Lima
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Pedro H. Q. S. Medeiros
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Jessica C. Seidman
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Benjamin J. J. McCormick
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Dinesh Hariraju
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Japhat Anania
- Haydom Global Health Research Center, Haydom Lutheran Hospital, Haydom, Tanzania
| | - Athanasia Maro
- Haydom Global Health Research Center, Haydom Lutheran Hospital, Haydom, Tanzania
| | - Amidou Samie
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | | | - Shahida Qureshi
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Pascal O. Bessong
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Margaret N. Kosek
- Asociación Benéfica PRISMA, Iquitos, Peru
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Zulfiqar A. Bhutta
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Dennis R. Lang
- Foundation for the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Gottlieb
- Foundation for the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Aldo A. M. Lima
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | | |
Collapse
|
21
|
Havt A, Lima IF, Medeiros PH, Clementino MA, Santos AK, Amaral MS, Veras HN, Prata MM, Lima NL, Di Moura A, Leite ÁM, Soares AM, Filho JQ, Houpt ER, Nataro JP, Guerrant RL, Lima AA. Prevalence and virulence gene profiling of enteroaggregative Escherichia coli in malnourished and nourished Brazilian children. Diagn Microbiol Infect Dis 2017; 89:98-105. [PMID: 28780245 PMCID: PMC5608016 DOI: 10.1016/j.diagmicrobio.2017.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023]
Abstract
The impact of enteroaggregative E. coli (EAEC) infection on childhood malnutrition and inflammation has been suggested, regardless of diarrhea. We investigated whether EAEC and its virulence-related genes (VRGs) are associated with malnutrition in a case-control study. Children aged 6-24 months from Brazil were enrolled as malnourished if weight-for-age Z-score (WAZ) ≤ -2 and nourished if WAZ > -1. Stools were cultured and examined for E. coli. DNA was extracted from fecal isolates and tested for EAEC by polymerase chain reaction (PCR). Positive samples were analyzed by 5 multiplex PCRs to identify 20 EAEC VRGs. Biomarkers of intestinal barrier function and inflammation were measured. The prevalence of EAEC was 39.94%. Samples that presented both aaiC and aatA genes were associated with malnutrition (P = 0.045). A high prevalence of VRGs was observed and the aafC gene was significantly associated with malnourished (P = 0.0101). Strains lacking aar and pic genes were associated with malnutrition (P = 0.018), while the concomitant presence of aar, pic, agg4A, and capU genes was associated with nourished (P = 0.031). These data reinforce the EAEC impact on malnutrition, the importance of aar as negative regulator and the great contribution of AAF/II fimbria for the pathobiology of EAEC.
Collapse
Affiliation(s)
- Alexandre Havt
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil.
| | - Ila Fn Lima
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Pedro Hqs Medeiros
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Marco Af Clementino
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Ana Ks Santos
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Marília Smg Amaral
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Herlice N Veras
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Mara Mg Prata
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Noélia L Lima
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Alessandra Di Moura
- Institute for the Promotion of Nutrition and Human Development, 15 Professor Carlos Lobo, 60281-740, Fortaleza, Ceará, Brazil
| | - Álvaro M Leite
- Institute for the Promotion of Nutrition and Human Development, 15 Professor Carlos Lobo, 60281-740, Fortaleza, Ceará, Brazil
| | - Alberto M Soares
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - José Q Filho
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Eric R Houpt
- Center for Global Health & Division of Infectious Diseases and International Health and Department of Pediatrics, University of Virginia, 1400 W Main Street, 22908-1379, Charlottesville, VA, USA
| | - James P Nataro
- Center for Global Health & Division of Infectious Diseases and International Health and Department of Pediatrics, University of Virginia, 1400 W Main Street, 22908-1379, Charlottesville, VA, USA
| | - Richard L Guerrant
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil; Center for Global Health & Division of Infectious Diseases and International Health and Department of Pediatrics, University of Virginia, 1400 W Main Street, 22908-1379, Charlottesville, VA, USA
| | - Aldo Am Lima
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil; Center for Global Health & Division of Infectious Diseases and International Health and Department of Pediatrics, University of Virginia, 1400 W Main Street, 22908-1379, Charlottesville, VA, USA
| |
Collapse
|
22
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
23
|
Sampaio IC, Medeiros PHQS, Rodrigues FAP, Cavalcante PA, Ribeiro SA, Oliveira JS, Prata MMG, Costa DVS, Fonseca SGC, Guedes MM, Soares AM, Brito GAC, Havt A, Moore SR, Lima AAM. Impact of acute undernutrition on growth, ileal morphology and nutrient transport in a murine model. ACTA ACUST UNITED AC 2016; 49:e5340. [PMID: 27737316 PMCID: PMC5064774 DOI: 10.1590/1414-431x20165340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
Abstract
Undernutrition represents a major public health challenge for middle- and low-income
countries. This study aimed to evaluate whether a multideficient Northeast Brazil
regional basic diet (RBD) induces acute morphological and functional changes in the
ileum of mice. Swiss mice (∼25 g) were allocated into two groups: i) control mice
were fed a standard diet and II) undernourished mice were fed the RBD. After 7 days,
mice were killed and the ileum collected for evaluation of electrophysiological
parameters (Ussing chambers), transcription (RT-qPCR) and protein expression (western
blotting) of intestinal transporters and tight junctions. Body weight gain was
significantly decreased in the undernourished group, which also showed decreased
crypt depth but no alterations in villus height. Electrophysiology measurements
showed a reduced basal short circuit current (Isc) in the undernourished group, with no differences in transepithelial
resistance. Specific substrate-evoked Isc related to affinity and efficacy (glutamine and alanyl-glutamine) were
not different between groups, except for the maximum Isc (efficacy) induced by glucose. Transcription of Sglt1
and Pept1 was significantly higher in the undernourished group,
while SN-2 transcription was decreased. No changes were found in
transcription of CAT-1 and CFTR, while claudin-2 and occludin transcriptions were
significantly increased in the undernourished group. Despite mRNA changes, SGLT-1,
PEPT-1, claudin-2 and occludin protein expression showed no difference between
groups. These results demonstrate early effects of the RBD on mice, which include
reduced body weight and crypt depth in the absence of significant alterations to
villus morphology, intestinal transporters and tight junction expression.
Collapse
Affiliation(s)
- I C Sampaio
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P H Q S Medeiros
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F A P Rodrigues
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P A Cavalcante
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S A Ribeiro
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J S Oliveira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M M G Prata
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D V S Costa
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S G C Fonseca
- Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M M Guedes
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A M Soares
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - G A C Brito
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S R Moore
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - A A M Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
24
|
Guerrant RL, Leite AM, Pinkerton R, Medeiros PHQS, Cavalcante PA, DeBoer M, Kosek M, Duggan C, Gewirtz A, Kagan JC, Gauthier AE, Swann J, Mayneris-Perxachs J, Bolick DT, Maier EA, Guedes MM, Moore SR, Petri WA, Havt A, Lima IF, Prata MDMG, Michaleckyj JC, Scharf RJ, Sturgeon C, Fasano A, Lima AAM. Biomarkers of Environmental Enteropathy, Inflammation, Stunting, and Impaired Growth in Children in Northeast Brazil. PLoS One 2016; 11:e0158772. [PMID: 27690129 PMCID: PMC5045163 DOI: 10.1371/journal.pone.0158772] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 01/27/2023] Open
Abstract
Critical to the design and assessment of interventions for enteropathy and its developmental consequences in children living in impoverished conditions are non-invasive biomarkers that can detect intestinal damage and predict its effects on growth and development. We therefore assessed fecal, urinary and systemic biomarkers of enteropathy and growth predictors in 375 6–26 month-old children with varying degrees of malnutrition (stunting or wasting) in Northeast Brazil. 301 of these children returned for followup anthropometry after 2-6m. Biomarkers that correlated with stunting included plasma IgA anti-LPS and anti-FliC, zonulin (if >12m old), and intestinal FABP (I-FABP, suggesting prior barrier disruption); and with citrulline, tryptophan and with lower serum amyloid A (SAA) (suggesting impaired defenses). In contrast, subsequent growth was predicted in those with higher fecal MPO or A1AT and also by higher L/M, plasma LPS, I-FABP and SAA (showing intestinal barrier disruption and inflammation). Better growth was predicted in girls with higher plasma citrulline and in boys with higher plasma tryptophan. Interactions were also seen with fecal MPO and neopterin in predicting subsequent growth impairment. Biomarkers clustered into markers of 1) functional intestinal barrier disruption and translocation, 2) structural intestinal barrier disruption and inflammation and 3) systemic inflammation. Principle components pathway analyses also showed that L/M with %L, I-FABP and MPO associate with impaired growth, while also (like MPO) associating with a systemic inflammation cluster of kynurenine, LBP, sCD14, SAA and K/T. Systemic evidence of LPS translocation associated with stunting, while markers of barrier disruption or repair (A1AT and Reg1 with low zonulin) associated with fecal MPO and neopterin. We conclude that key noninvasive biomarkers of intestinal barrier disruption, LPS translocation and of intestinal and systemic inflammation can help elucidate how we recognize, understand, and assess effective interventions for enteropathy and its growth and developmental consequences in children in impoverished settings.
Collapse
Affiliation(s)
- Richard L. Guerrant
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
- * E-mail:
| | - Alvaro M. Leite
- Clinical Research Unit, Federal University of Ceara, Fortaleza, Brazil
| | - Relana Pinkerton
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | | | | | - Mark DeBoer
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Margaret Kosek
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Christopher Duggan
- Division of Gastroenterology at Boston Children’s Hospital, Harvard University, Boston, MA, United States of America
| | - Andrew Gewirtz
- Institute for Biomedical Sciences in the Center for Inflammation, Immunity and Infection at Georgia State University, Atlanta, GA, United States of America
| | - Jonathan C. Kagan
- Division of Gastroenterology at Boston Children’s Hospital, Harvard University, Boston, MA, United States of America
| | - Anna E. Gauthier
- Division of Gastroenterology at Boston Children’s Hospital, Harvard University, Boston, MA, United States of America
| | | | | | - David T. Bolick
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Elizabeth A. Maier
- Cincinnati Children’s Hospital, Cincinnati, OH, United States of America
| | - Marjorie M. Guedes
- Cincinnati Children’s Hospital, Cincinnati, OH, United States of America
| | - Sean R. Moore
- Cincinnati Children’s Hospital, Cincinnati, OH, United States of America
| | - William A. Petri
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Alexandre Havt
- Clinical Research Unit, Federal University of Ceara, Fortaleza, Brazil
| | - Ila F. Lima
- Clinical Research Unit, Federal University of Ceara, Fortaleza, Brazil
| | | | - Josyf C. Michaleckyj
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Rebecca J. Scharf
- University of Virginia School of Medicine (Division of Infectious Diseases and International Health, Department of Medicine, Department of Pediatrics and Center for Global Health), Charlottesville, VA, United States of America
| | - Craig Sturgeon
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition at Massachusetts General Hospital for Children, Harvard University, Boston, MA, United States of America
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition at Massachusetts General Hospital for Children, Harvard University, Boston, MA, United States of America
| | - Aldo A. M. Lima
- Clinical Research Unit, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
25
|
Bartelt LA, Bolick DT, Kolling GL, Roche JK, Zaenker EI, Lara AM, Noronha FJ, Cowardin CA, Moore JH, Turner JR, Warren CA, Buck GA, Guerrant RL. Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model. PLoS Negl Trop Dis 2016; 10:e0004820. [PMID: 27467505 PMCID: PMC4965189 DOI: 10.1371/journal.pntd.0004820] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023] Open
Abstract
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. Cryptosporidium attributable morbidities in malnourished children are increasingly recognized. Exactly how malnutrition interferes with host mucosal immunity to diarrheal pathogens and mucosal vaccine responses remains unclear. Dissecting these interactions in an experimental model of cryptosporidiosis can uncover new insights into novel therapeutic approaches against a pathogen for which effective therapies and vaccines are currently unavailable. We demonstrate that although malnutrition diminishes baseline (primary) Th1-type mucosal immunity these deficits can be partially overcome via non-specific mucosal strategies (S. Typhi and CpG) and completely restored after a sub-clinical (low-dose) exposure to viable C. parvum. These results add insight into preventive strategies to help alleviate Cryptosporidium-specific diarrhea in children in low-resource settings and abrogate prolonged post-infection sequelae.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - David T. Bolick
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - James K. Roche
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Edna I. Zaenker
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ana M. Lara
- Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Francisco Jose Noronha
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carrie A. Cowardin
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - John H. Moore
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jerrold R. Turner
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Pathology and Medicine—Gastroenterology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Cirle A. Warren
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gregory A. Buck
- Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard L. Guerrant
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
26
|
Kumar M, Dhaka P, Vijay D, Vergis J, Mohan V, Kumar A, Kurkure NV, Barbuddhe SB, Malik SVS, Rawool DB. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli. Int J Antimicrob Agents 2016; 48:265-70. [PMID: 27451088 DOI: 10.1016/j.ijantimicag.2016.05.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/14/2016] [Indexed: 12/18/2022]
Abstract
The in vitro and in vivo antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus were evaluated individually and synergistically against multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC). In vitro evaluation of each probiotic strain when co-cultured with MDR-EAEC isolates revealed a reduction in MDR-EAEC counts (eosin-methylene blue agar) in a dose- and time-dependent manner: probiotics at a dose rate of 10(10) CFU inhibited MDR-EAEC isolates at 72 h post-inoculation (PI), whereas at lower concentrations (10(8) and 10(9) CFU) MDR-EAEC isolates were inhibited at 96 h PI. The synergistic antimicrobial effect of both probiotic strains (each at 10(10) CFU) was highly significant (P < 0.01) and inhibited the growth of MDR-EAEC isolates at 24 h PI. For in vivo evaluation, weaned mice were fed orally with 10(7) CFU of MDR-EAEC. At Day 3 post-infection, treated mice were fed orally with the probiotic strains (each at 10(10) CFU). Compared with the control, post-treatment a significant (P < 0.01) reduction in MDR-EAEC counts was observed in faeces by Day 2 and in intestinal tissues of treated mice by Days 3 and 4 as evidenced by plate count (mean 2.71 log and 2.27 log, respectively) and real-time PCR (mean 1.62 log and 1.57 log, respectively) methods. Histopathologically, comparatively mild changes were observed in the ileum and colon from Days 3 to 5 post-treatment with probiotics; however, from Day 6 the changes were regenerative or normal. These observations suggest that these probiotic strains can serve as alternative therapeutics against MDR-EAEC-associated infections in humans and animals.
Collapse
Affiliation(s)
- Manesh Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India
| | - Pankaj Dhaka
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India
| | - Deepthi Vijay
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India
| | - Jess Vergis
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India
| | - Vysakh Mohan
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India
| | - Ashok Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal Science and Fishery University, Nagpur 440006, India
| | | | - S V S Malik
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India
| | - Deepak B Rawool
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India.
| |
Collapse
|
27
|
Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane. Antimicrob Agents Chemother 2016; 60:2028-38. [PMID: 26824945 DOI: 10.1128/aac.02221-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022] Open
Abstract
Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly.
Collapse
|
28
|
Verma M, Hontecillas R, Abedi V, Leber A, Tubau-Juni N, Philipson C, Carbo A, Bassaganya-Riera J. Modeling-Enabled Systems Nutritional Immunology. Front Nutr 2016; 3:5. [PMID: 26909350 PMCID: PMC4754447 DOI: 10.3389/fnut.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
This review highlights the fundamental role of nutrition in the maintenance of health, the immune response, and disease prevention. Emerging global mechanistic insights in the field of nutritional immunology cannot be gained through reductionist methods alone or by analyzing a single nutrient at a time. We propose to investigate nutritional immunology as a massively interacting system of interconnected multistage and multiscale networks that encompass hidden mechanisms by which nutrition, microbiome, metabolism, genetic predisposition, and the immune system interact to delineate health and disease. The review sets an unconventional path to apply complex science methodologies to nutritional immunology research, discovery, and development through “use cases” centered around the impact of nutrition on the gut microbiome and immune responses. Our systems nutritional immunology analyses, which include modeling and informatics methodologies in combination with pre-clinical and clinical studies, have the potential to discover emerging systems-wide properties at the interface of the immune system, nutrition, microbiome, and metabolism.
Collapse
Affiliation(s)
- Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | | | | | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
29
|
Moore JH, Pinheiro CCD, Zaenker EI, Bolick DT, Kolling GL, van Opstal E, Noronha FJD, De Medeiros PHQS, Rodriguez RS, Lima AA, Guerrant RL, Warren CA. Defined Nutrient Diets Alter Susceptibility to Clostridium difficile Associated Disease in a Murine Model. PLoS One 2015; 10:e0131829. [PMID: 26181795 PMCID: PMC4504475 DOI: 10.1371/journal.pone.0131829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/06/2015] [Indexed: 12/23/2022] Open
Abstract
Background Clostridium difficile is a major identifiable and treatable cause of antibiotic-associated diarrhea. Poor nutritional status contributes to mortality through weakened host defenses against various pathogens. The primary goal of this study was to assess the contribution of a reduced protein diet to the outcomes of C. difficile infection in a murine model. Methods C57BL/6 mice were fed a traditional house chow or a defined diet with either 20% protein or 2% protein and infected with C. difficile strain VPI10463. Animals were monitored for disease severity, clostridial shedding and fecal toxin levels. Select intestinal microbiota were measured in stool and C. difficile growth and toxin production were quantified ex vivo in intestinal contents from untreated or antibiotic-treated mice fed with the different diets. Results C. difficile infected mice fed with defined diets, particularly (and unexpectedly) with protein deficient diet, had increased survival, decreased weight loss, and decreased overall disease severity. C. difficile shedding and toxin in the stool of the traditional diet group was increased compared with either defined diet 1 day post infection. Mice fed with traditional diet had an increased intestinal Firmicutes to Bacteroidetes ratio following antibiotic exposure compared with either a 2% or 20% protein defined nutrient diet. Ex vivo inoculation of cecal contents from antibiotic-treated mice showed decreased toxin production and C. difficile growth in both defined diets compared with a traditional diet. Conclusions Low protein diets, and defined nutrient diets in general, were found to be protective against CDI in mice. Associated diet-induced alterations in intestinal microbiota may influence colonization resistance and clostridial toxin production in a defined nutrient diet compared to a traditional diet, leading to increased survival. However, mechanisms which led to survival differences between 2% and 20% protein defined nutrient diets need to be further elucidated.
Collapse
Affiliation(s)
- John H. Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Edna I. Zaenker
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - David T. Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Edward van Opstal
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | | | | | | | - Aldo A. Lima
- Biomedicine Institute, Federal University of Ceará, Fortaleza, Brazil
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cirle A. Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000PRIME REPORTS 2015; 7:62. [PMID: 26097735 PMCID: PMC4447054 DOI: 10.12703/p7-62] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases and International Health, University of VirginiaBox 801340, Charlottesville, VA 22908USA
| | - R. Balfour Sartor
- Division of Gastroenterology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel HillCampus Box 7032, Chapel Hill, NC 27599-7032USA
| |
Collapse
|
31
|
Bolick DT, Kolling GL, Moore JH, de Oliveira LA, Tung K, Philipson C, Viladomiu M, Hontecillas R, Bassaganya-Riera J, Guerrant RL. Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative Escherichia coli-induced diarrhea. Gut Microbes 2014; 5:618-27. [PMID: 25483331 PMCID: PMC4615194 DOI: 10.4161/19490976.2014.969642] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is increasingly recognized as a major cause of diarrheal disease globally. In the current study, we investigated the impact of zinc deficiency on the host and pathogenesis of EAEC. Several outcomes of EAEC infection were investigated including weight loss, EAEC shedding and tissue burden, leukocyte recruitment, intestinal cytokine expression, and virulence expression of the pathogen in vivo. Mice fed a protein source defined zinc deficient diet (dZD) had an 80% reduction of serum zinc and a 50% reduction of zinc in luminal contents of the bowel compared to mice fed a protein source defined control diet (dC). When challenged with EAEC, dZD mice had significantly greater weight loss, stool shedding, mucus production, and, most notably, diarrhea compared to dC mice. Zinc deficient mice had reduced infiltration of leukocytes into the ileum in response to infection suggesting an impaired immune response. Interestingly, expression of several EAEC virulence factors were increased in luminal contents of dZD mice. These data show a dual effect of dietary zinc in benefitting the host while impairing virulence of the pathogen. The study demonstrates the critical importance of zinc and may help elucidate the benefits of zinc supplementation in cases of childhood diarrhea and malnutrition.
Collapse
Affiliation(s)
- David T Bolick
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - Glynis L Kolling
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - John H Moore
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | | | - Kenneth Tung
- Department of Immunology; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - Casandra Philipson
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Monica Viladomiu
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Raquel Hontecillas
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Josep Bassaganya-Riera
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Richard L Guerrant
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA,Correspondence to: Richard L Guerrant;
| |
Collapse
|
32
|
Steiner TS. The worst of both worlds: examining the hypervirulence of the shigatoxigenic/enteroaggregative Escherichia coli O104:H4. J Infect Dis 2014; 210:1860-2. [PMID: 25038259 DOI: 10.1093/infdis/jiu400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Maier EA, Weage KJ, Guedes MM, Denson LA, McNeal MM, Bernstein DI, Moore SR. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice. Vaccine 2013; 32:48-53. [PMID: 24200975 PMCID: PMC3887447 DOI: 10.1016/j.vaccine.2013.10.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. METHODS We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams' diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. RESULTS RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (P<.0001). RRV vaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (P<.0001). Vaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (P<.05), however we detected no effects of undernutrition on viral clearance nor of infection on bodyweight. EDIM infection provoked higher anti-RV serum IgA levels in RBD vs. CD mice, regardless of vaccination (P<.0001). Last, RRV vaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (P<.0001). CONCLUSIONS Despite modulated IgA responses to vaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings.
Collapse
Affiliation(s)
- Elizabeth A Maier
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA
| | - Kristina J Weage
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA
| | - Marjorie M Guedes
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA
| | - Lee A Denson
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA
| | - Monica M McNeal
- Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA
| | - David I Bernstein
- Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA
| | - Sean R Moore
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA; Center for Global Child Health, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA.
| |
Collapse
|
34
|
Medeiros P, Bolick DT, Roche JK, Noronha F, Pinheiro C, Kolling GL, Lima A, Guerrant RL. The micronutrient zinc inhibits EAEC strain 042 adherence, biofilm formation, virulence gene expression, and epithelial cytokine responses benefiting the infected host. Virulence 2013; 4:624-33. [PMID: 23958904 DOI: 10.4161/viru.26120] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a major pathogen worldwide, associated with diarrheal disease in both children and adults, suggesting the need for new preventive and therapeutic treatments. We investigated the role of the micronutrient zinc in the pathogenesis of an E. coli strain associated with human disease. A variety of bacterial characteristics-growth in vitro, biofilm formation, adherence to IEC-6 epithelial cells, gene expression of putative EAEC virulence factors as well as EAEC-induced cytokine expression by HCT-8 cells-were quantified. At concentrations (≤ 0.05 mM) that did not alter EAEC growth (strain 042) but that are physiologic in serum, zinc markedly decreased the organism's ability to form biofilm (P<0.001), adhere to IEC-6 epithelial cells (P<0.01), and express putative EAEC virulence factors (aggR, aap, aatA, virK) (P<0.03). After exposure of the organism to zinc, the effect on virulence factor generation was prolonged (> 3 h). Further, EAEC-induced IL-8 mRNA and protein secretion by HCT-8 epithelial cells were significantly reduced by 0.05 mM zinc (P<0.03). Using an in vivo murine model of diet-induced zinc-deficiency, oral zinc supplementation (0.4 µg/mouse daily) administered after EAEC challenge (10 (10) CFU/mouse) significantly abrogated growth shortfalls (by>90%; P<0.01); furthermore, stool shedding was reduced (days 9-11) but tissue burden of organisms in the intestine was unchanged. These findings suggest several potential mechanisms whereby physiological levels of zinc alter pathogenetic events in the bacterium (reducing biofilm formation, adherence to epithelium, virulence factor expression) as well as the bacterium's effect on the epithelium (cytokine response to exposure to EAEC) to alter EAEC pathogenesis in vitro and in vivo. These effects may help explain and extend the benefits of zinc in childhood diarrhea and malnutrition.
Collapse
Affiliation(s)
- Pedro Medeiros
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA; Institute of Biomedicine; Federal University of Ceará; Fortaleza, CE Brazil
| | | | | | | | | | | | | | | |
Collapse
|