1
|
Punchihewage-Don AJ, Chen Z, Meng J, Parveen S. Whole genome sequencing of Salmonella serovars isolated from organic and non-organic whole broiler carcasses on the eastern shore of Maryland, USA. Food Res Int 2025; 211:116349. [PMID: 40356090 DOI: 10.1016/j.foodres.2025.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/13/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Multidrug-resistant Salmonella is becoming a public health hazard. This study aimed to investigate the genomic diversity of the selected Salmonella serovars isolated from organic and non-organic chickens using whole-genome sequencing (WGS). A total of 94 Salmonella isolates [Infantis (n = 71), Enteritidis (n = 13), Typhimurium (n = 10)] recovered from organic and non-organic retail chickens were subjected to WGS using Illumina MiSeq. All Salmonella isolates contained at least one antibiotic resistance (AR) gene (ARG). All S. Typhimurium and S. Enteritidis isolates, and 98.6 % of S. Infantis isolates possessed aac(6')-Iaa which predicted resistant to aminoglycosides. Most isolates harbored ARGs for sulfonamides, β-lactamase inhibitors, tetracyclines, and fluoroquinolone/quinolone resistance regardless of chicken types. Fisher's exact test indicated a significantly higher prevalence of ARGs in Salmonella isolated from organic chickens. The virulence genes that stimulate Salmonella pathogenicity island 1 (SPI1) encoding, type three secretion system 1 (TTSS-1) translocated effectors, SPI2 encoding, TTSS-2 translocated effectors, fimbrial adherence determinants, serum resistance, stress adaptation and Mg2+ uptake were observed in every serovar regardless of chicken types. Seven plasmids were detected in Salmonella isolates from non-organic chicken, including IncFIB(pN55391), IncFIB(S), Col(BS512), IncFII(S), IncX1, IncC, and ColpVC, whereas Salmonella isolates from organic chicken carried only three plasmids [IncFIB(pN55391), Col(BS512), and IncC]. Phylogenetic analysis confirmed that a significant portion of the isolates had single nucleotide polymorphism (SNP) distances greater than the threshold (SNP ≤ 20), indicating genetic distance among them. These results suggest that the Salmonella isolates from organic and non-organic chickens possessed various AR and virulence genes and thus have the potential to cause salmonellosis.
Collapse
Affiliation(s)
- Anuradha J Punchihewage-Don
- Food Microbiology and Safety Laboratory, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, and Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20740, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, and Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20740, USA
| | - Salina Parveen
- Food Microbiology and Safety Laboratory, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| |
Collapse
|
2
|
Eeckhaut V, Van Rysselberghe N, Verbanck S, Ducatelle R, Van Immerseel F. Oral vaccination of young broilers with a live Salmonella Typhimurium vaccine reduces caecal and internal organ colonization following a Salmonella Infantis challenge in a seeder-bird model. Avian Pathol 2024; 53:492-498. [PMID: 38813600 DOI: 10.1080/03079457.2024.2362223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
Poultry products are an important source of foodborne Salmonella infections in humans. Amongst these, the prevalence of S. Infantis is rising. In this study, the protection efficacy of an authorized live-attenuated S. Typhimurium vaccine against S. Infantis, was examined using a seeder-bird model in broilers. Vaccinated birds displayed a significantly lower colonization of S. Infantis bacteria in the caeca compared to the non-vaccinated counterparts (P = 0.017), with no significant differences observed in the spleen among the groups, three days post-infection. Thirty-two days post-infection, the disparity in average S. Infantis concentration between all-vaccinated and non-vaccinated birds was significant in both caeca (P = 0.0003) and spleen (P = 0.0002). Interestingly, a third group, consisting of seeder birds that were not vaccinated but housed with vaccinated penmates, exhibited significantly lower S. Infantis levels in both caeca (P = 0.0014) and spleen (P < 0.0001) compared to the non-vaccinated group. These findings underscore the potential of a live-attenuated S. Typhimurium vaccine administered to 2-day-old chicks in conferring protection against S. Infantis in broilers up to slaughter age.
Collapse
Affiliation(s)
- Venessa Eeckhaut
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University Merelbeke, Belgium
| | - Nathalie Van Rysselberghe
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University Merelbeke, Belgium
| | - Serge Verbanck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University Merelbeke, Belgium
| |
Collapse
|
3
|
Amel R, Abderrazek B, Sana F, Ahmed S, Mariem Z, Lamia K, Asma F, Ben Slama MR, Ilhem BBB. Molecular mechanisms impact on fluoroquinolone resistance among E.coli from enteric carriage monitoring before prostate biopsy and earliest description of qnrB81. Sci Rep 2024; 14:29324. [PMID: 39592650 PMCID: PMC11599381 DOI: 10.1038/s41598-024-77844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Fluoroquinolone-resistant (FQs-R) microorganisms causing infectious complications after ultrasound-guided needle biopsy of the prostate (TRUS-BP) have become an important challenge in healthcare settings globally, questioning the continued utility of FQ as the preferred prophylactic agent. This study aimed to characterize molecular mechanisms of resistance on FQs-R E. coli isolated from the enteric microbiota of patients undergoing (TRUS-BP) and to highlight their impact on Minimum Inhibitory Concentrations (MICs). From February 2016 to December 2018, the incidence of rectal carriage of Qs-FQs resistant Enterobacterales detected from rectal swabs of patients before undergoing (TRUS-BP) was 61.06% (80/131) all related to E. coli species. Based on the MICs range of Qs (24-256 mg/L) and FQs (0.24-128 mg/L) breakpoint by EUCAST, we categorized these E. coli isolates into three resistance profiles (I, II, and III) associated with the patterns of chromosomal mutations in the quinolone resistance-determining regions (QRDRs) of gyrA and parC and the plasmid-mediated quinolone resistance encoding genes (PMQRs) detected by PCR-based assay and sequencing; MICs increase in an escalation step according to the co-occurrence of multiple molecular mechanisms. The mutation of the gyrA gene was the most frequent on codons (Ser83Leu/Thr/Tyr/Trp and Asp87Asn); mutation on the parC gene was the least on codons (Ser80Iso/Leu and Glu84 Val/Gly/Lys). PMQRs genes (4 qnrB ,7 qnrS, and one aac(6')-Ib-cr) were determined within 15% of the isolates. Allelic variation allows us to report earliest the qnrB81 determinant in an E. coli isolate. Among isolates (35%) belonged to the notorious ST131 lineage. The phylogenetic group showed a predominance of B2 group (51, 25%), however (PFGE) revealed a high level of clonal variability. Worrying incidence of FQs-R E. coli isolates in the rectal flora of our local population showed the potential to cause post-infection. FQ resistance is a complex interplay between mutations in the QRDRs and PMQR determinants that impact MICs. The importance of intestinal microbiota as a reservoir of resistant strains and pandemic clones encourages driving mitigation challenges to characterize molecular mechanisms of antimicrobial resistance to adapt prophylactic therapy, control infection, and ensure epidemiological monitoring.
Collapse
Affiliation(s)
- Rehaiem Amel
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory «Antimicrobial resistance», University of Tunis El Manar, 1007, Tunis, Tunisia.
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia.
| | - Bouzouita Abderrazek
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory «Antimicrobial resistance», University of Tunis El Manar, 1007, Tunis, Tunisia
- Charles Nicolle Hospital, Urology ward, 1006, Tunis, Tunisia
| | - Ferjani Sana
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory «Antimicrobial resistance», University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | - Saadi Ahmed
- Charles Nicolle Hospital, Urology ward, 1006, Tunis, Tunisia
| | - Zrelli Mariem
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory «Antimicrobial resistance», University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | - Kanzari Lamia
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory «Antimicrobial resistance», University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | - Ferjani Asma
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory «Antimicrobial resistance», University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | | | - Boutiba Ben Boubaker Ilhem
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory «Antimicrobial resistance», University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| |
Collapse
|
4
|
dos Santos AMP, Panzenhagen P, Ferrari RG, Portes AB, de Jesus AC, Ochioni A, Rodrigues D, Toro M, Meng J, Allard M, Conte-Junior CA. Genomic characterization of a clonal emergent Salmonella Minnesota lineage in Brazil reveals the presence of a novel megaplasmid of resistance and virulence. Appl Environ Microbiol 2024; 90:e0157924. [PMID: 39475288 PMCID: PMC11577784 DOI: 10.1128/aem.01579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
Salmonella Minnesota has emerged in Brazil as the predominant serovar in poultry and poultry products, along with Salmonella Heidelberg. To understand the emergence of Salmonella Minnesota over the last few years in Brazil, we performed a comparative analysis between 69 selected S. Minnesota genomes from Pathogen Detection database and 65 clonal emergent genomes isolated from Brazil. We demonstrate the presence of multidrug resistance genes against tetracycline [tet(A)], sulfonamide (sul2), and AmpC beta-lactamase (blaCMY-2) in emergent genomes, along with the carriage of a megaplasmid of resistance and virulence (~210 kb), designated pESM (plasmid for emergent Salmonella Minnesota). pESM is an IncC/A2 plasmid predicted to increase S. Minnesota environmental tolerance to mercury (mer operon) and provide resistance to tetracycline and ampicillin due to the presence of tet(A) and blaCMY-2, respectively. Moreover, pESM carries the yersiniabactin siderophore (high-pathogenicity island of Yersinia) related to the iron uptake. The temporal inference demonstrated that the most recent common ancestor dated from ~1978 and that the clonal emergent genomes carrying the pESM belong to a completely different lineage of S. Minnesota. Our results indicate that the presence of pESM likely contributes to the emergence of S. Minnesota and is precisely related to the successful spread of this particular clonal lineage in Brazil.IMPORTANCESalmonella Minnesota has emerged in Brazil as one of the leading serovars related to human and animal infection, presenting high virulence and antibiotic resistance to drugs classified as the highest priority for clinical treatment in humans. This study performed whole-genome sequencing, temporal analysis, and phylogenetics to understand the genetic insights related to the emergence of Salmonella Minnesota in Brazil. Long-read sequencing has led to the identification and characterization of a unique megaplasmid carrying virulence, antibiotic resistance, and heavy-metal tolerance genes, which may play a central role in S. Minnesota's successful emergence in Brazil and possibly worldwide. The potentially high transmissibility of this plasmid between clones and serovars represents a risk to public health since its acquisition may increase Salmonella's fitness, virulence, resistance, and persistence. Understanding the genetic aspects related to the emergence of serovars can help devise measures to mitigate the spread of hazardous multidrug-resistant strains.
Collapse
Affiliation(s)
- Anamaria M. P. dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Enterobacteria (LABENT), Fundação Oswaldo Cruz – FIOCRUZ, Av. Brasil, 4365, Pavilhão Rocha Lima, Rio de Janeiro, Brazil
| | - Rafaela G. Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Microorganism Structure, Department of General Microbiology, Institute of Microbiology Paulo de Góes (IMPG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Carolina de Jesus
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Alan Ochioni
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Dália Rodrigues
- Laboratory of Enterobacteria (LABENT), Fundação Oswaldo Cruz – FIOCRUZ, Av. Brasil, 4365, Pavilhão Rocha Lima, Rio de Janeiro, Brazil
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland (UMD) at College Park, College Park, Maryland, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland (UMD) at College Park, College Park, Maryland, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration (FDA), College Park, Maryland, USA
| | - Carlos A. Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Kang H, Kim H, Lee J, Jeon JH, Kim S, Park Y, Joo I, Kim H. Genetic Characteristics of Multidrug-Resistant Salmonella Isolated from Poultry Meat in South Korea. Microorganisms 2024; 12:1646. [PMID: 39203488 PMCID: PMC11356708 DOI: 10.3390/microorganisms12081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Given the lack of genetic characterization data for multidrug-resistant (MDR) Salmonella in South Korean poultry, we analyzed 53 MDR Salmonella strains from 1232 poultry meat samples (723 chicken, 509 duck) using whole-genome sequencing. Five serotypes were identified: S. Infantis (30/53, 56.6%), S. Enteritidis (11/53, 20.8%), S. Virchow (9/53, 17.0%), S. Agona (2/53, 3.8%), and S. Indiana (1/53, 1.9%). Sequence types (STs) included ST32, ST11, ST16, ST13, and ST17, with three major clusters, each having two subclusters. Eight core genome sequence types (cgSTs) were identified: 225993, 2268, 58360, 150996, 232041, 96964, 117577, and 267045. Salmonella Infantis and S. Enteritidis had two (117577, 267045) and three (225993, 2268, 58360) cgSTs, respectively, whereas S. Virchow showed allelic differences in identical cgSTs. The S. Enteritidis subcluster was classified as chicken or duck. Twenty-eight antimicrobial resistance genes (ARGs), 10 plasmid replicons, 11 Salmonella pathogenicity islands (SPIs), and 230 virulence genes were identified, showing distinct profiles by cluster and subcluster. Salmonella Infantis, the primary MDR Salmonella, carried the IncFIB (pN55391) plasmid, 10-11 ARGs, nine SPIs, and approximately 163 virulence genes. Three major MDR Salmonella serotypes (S. Infantis, S. Enteritidis, and S. Virchow) had specific genetic profiles that can inform epidemiological surveillance.
Collapse
Affiliation(s)
- Haiseong Kang
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Hansol Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Jonghoon Lee
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Ji Hye Jeon
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Seokhwan Kim
- Food Standard Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea;
| | - Yongchjun Park
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Insun Joo
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Hyochin Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| |
Collapse
|
6
|
Wang J, Fenster DA, Vaddu S, Bhumanapalli S, Kataria J, Sidhu G, Leone C, Singh M, Dalloul RA, Thippareddi H. Colonization, spread and persistence of Salmonella (Typhimurium, Infantis and Reading) in internal organs of broilers. Poult Sci 2024; 103:103806. [PMID: 38749104 PMCID: PMC11108970 DOI: 10.1016/j.psj.2024.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Transfer of Salmonella to internal organs of broilers over a 35 d grow-out period was evaluated. A total of 360 one-day old chicks were placed in 18 floor pens of 3 groups with 6 replicate pens each. On d 0, broilers were orally challenged with a cocktail of Salmonella (equal population of marked serovars; nalidixic acid-resistant S. Typhimurium, rifampicin-resistant S. Infantis, and kanamycin-resistant S. Reading) to have 3 groups: L (low; ∼2 log CFU/bird); M (medium; ∼5 log CFU/bird); and H (High; ∼8 log CFU/bird). On d 2, 7 and 35, 4 birds/pen were euthanized and ceca, liver, and spleen samples were collected aseptically. Gizzard samples (4/pen) were collected on d 35. The concentration of Salmonella in liver and spleen were transformed to binary outcomes (positive and negative) and fitted in glm function of R using cecal Salmonella concentrations (log CFU/g) and inoculation doses (L, M, and H) as inputs. On d 2, H group showed greater (P ≤ 0.05) cecal colonization of all 3 serovars compared to L and M groups. However, M group showed greater (P ≤ 0.05) colonization of all 3 serovars in the liver and spleen compared to L group. Salmonella colonization increased linearly in the ceca and quadratically in the liver and spleen with increasing challenge dose (P ≤ 0.05). On d 35, L group had greater (P ≤ 0.05) S. Infantis colonization in the ceca and liver compared to M and H groups (P ≤ 0.05). Moreover, within each group on d 35, the concentration of S. Reading was greater than those of S. Typhimurium and S. Infantis for all 3 doses in the ceca and high dose in the liver and gizzard (P ≤ 0.05). Salmonella colonization diminished in the ceca, liver, and spleen during grow-out from d 0 to d 35 (P ≤ 0.05). On d 35, birds challenged with different doses of Salmonella cocktail showed a similar total Salmonella spp. population in the ceca (ca. 3.14 log CFU/g), liver (ca. 0.54 log CFU/g), spleen (ca. 0.31 log CFU/g), and gizzard (ca. 0.42 log CFU/g). Estimates from the fitted logistic model showed that one log CFU/g increase in cecal Salmonella concentration will result in an increase in relative risk of liver and spleen being Salmonella-positive by 4.02 and 3.40 times (P ≤ 0.01), respectively. Broilers from H or M group had a lower risk (28 and 23%) of being Salmonella-positive in the liver compared to the L group when the cecal Salmonella concentration is the same (P ≤ 0.05). Oral challenge of broilers with Salmonella spp. with various doses resulted in linear or quadratic increases in Salmonella colonization in the internal organs during early age and these populations decreased during grow-out (d 35). This research can provide guidance on practices to effectively mitigate the risk of Salmonella from chicken parts and enhance public health.
Collapse
Affiliation(s)
- Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Davis A Fenster
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Sasikala Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Jasmine Kataria
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Gaganpreet Sidhu
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Cortney Leone
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Manpreet Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
7
|
Vinueza-Burgos C, Hidalgo-Arellano L, Gómez-Coronado C, Medina-Santana JL, Cevallos-Almeida M. Prevalence, serovars, and risk factors associated with the presence of Salmonella in pork sold in public markets in Quito, Ecuador. F1000Res 2024; 12:1367. [PMID: 38882713 PMCID: PMC11176892 DOI: 10.12688/f1000research.138671.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 06/18/2024] Open
Abstract
Background Salmonella enterica are bacteria that include more than 2,500 serovars. Most of these serovars have been linked to human foodborne illnesses, mainly related to poultry and pigs. Thus, these animals are considered the reservoirs of many Salmonella serovars and strains related to antibiotic resistance. This study aimed to determine the prevalence, serovars, β-lactam resistance genes, and the risk factors associated with Salmonella enterica in pork commercialized in open markets of Quito city. Methods For this, 165 pork meat samples were taken from municipal markets in three areas in the city. These samples were microbiologically processed following the ISO 6579-2014 standardized method. The polymerase chain reaction (PCR) test was used to identify Salmonella serotyping and resistance genes. Strains not identified by PCR were typed by the Kauffman White Le Minor scheme. A multivariate analysis was performed to identify risk factors associated with the presence of the microorganism. Results Salmonella prevalence in pork was 9.1%. Identified serovars were 4, [5], 12: i:- (53.3%), Infantis (33.3%), and Derby (13.4%). Furthermore, the β-lactam resistance genes bla CTX-M-65 could be identified in three S. infantis isolates. Multivariate analysis showed that temperature (above 8°C) and cutting surfaces (wood) presented significant association values. Conclusions In conclusion, pork in traditional markets of Quito is contaminated with Salmonella enterica, whose main serovars pose a public health concern, and shows beta-lactam resistance.
Collapse
Affiliation(s)
- Christian Vinueza-Burgos
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR). Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Pichincha, Ecuador
| | - Luis Hidalgo-Arellano
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Pichincha, Ecuador
| | - Carlos Gómez-Coronado
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Pichincha, Ecuador
| | - José Luis Medina-Santana
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR). Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Pichincha, Ecuador
| | - María Cevallos-Almeida
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Pichincha, Ecuador
| |
Collapse
|
8
|
Wiederkehr CM, Alvarez J, Torre-Fuentes L, Crespo-Lopez OI, Calfucura P, Ugarte-Ruiz M, Toledo V, Lurz PWW, Retamal P. Salmonella in Coastal Birds in Chile: Detection of a Multidrug-Resistant S. Infantis Bearing the bla CTX-M-65 Gene in a pESI-Like Megaplasmid in Humboldt Penguins. Transbound Emerg Dis 2024; 2024:1949535. [PMID: 40303178 PMCID: PMC12020390 DOI: 10.1155/2024/1949535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 05/02/2025]
Abstract
Salmonella enterica is one of the most important foodborne pathogens worldwide, and the emergence of multidrug resistance (MDR) clones can aggravate its public health importance. Wildlife species may act as reservoirs of these clones, but their role is not well understood. In this study, faecal samples from shorebirds, with a focus on the endangered Humboldt penguin (Spheniscus humboldti), collected from five sites in central Chile with different levels of anthropogenic pressure were analysed to characterize antimicrobial resistant S. enterica serovars. Overall, Salmonella was isolated from 22 of the 595 samples (3.7%), with positivity ranging between 1.6% and 9.5%, depending on the sampling site. Four of the Salmonella isolates were retrieved from Humboldt penguin samples (1.4% positive samples in this species). Serovars Infantis (nine isolates), Typhimurium (six), Goldcoast (four), and Enteritidis, Agona, and Give (one isolate each) were identified. Resistance levels were the highest for sulphamethoxazole (13/21 isolates with a non-wild-type phenotype), ciprofloxacin, tetracycline, and trimethoprim (11/21 each). Whole-genome sequencing performed on eight S. Infantis strains revealed that seven carried the plasmid replicon IncFIB (pN55391), indicating the presence of the pESI-like megaplasmid, harbouring resistance determinants to multiple antimicrobial classes as well as heavy metal, biocides, and virulence-related genes. Furthermore, five S. Infantis isolates that showed an ESBL phenotype carried the bla CTX-M-65 gene, three of which were detected in Humboldt penguin faeces. The finding of an international emerging S. Infantis clone in protected wildlife is of concern to environmental, animal, and public health specialists, supporting initiatives for an active surveillance of resistance and virulence traits in wildlife exposed to anthropogenic areas.
Collapse
Affiliation(s)
- Clara M. Wiederkehr
- VISAVET Health Surveillance CentreUniversidad Complutense de MadridMadridSpain
- Departamento de Sanidad AnimalFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - Julio Alvarez
- VISAVET Health Surveillance CentreUniversidad Complutense de MadridMadridSpain
- Departamento de Sanidad AnimalFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance CentreUniversidad Complutense de MadridMadridSpain
| | | | - Paulina Calfucura
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
| | - Maria Ugarte-Ruiz
- VISAVET Health Surveillance CentreUniversidad Complutense de MadridMadridSpain
| | - Viviana Toledo
- Servicio Agrícola y Ganadero de ChileMinisterio de AgriculturaSantiagoChile
| | - Peter W. W. Lurz
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghEdinburghScotlandUK
| | - Patricio Retamal
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
| |
Collapse
|
9
|
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP. CRISPR and CRISPR-MVLST reveal conserved spacer distribution and high similarity among Salmonella enterica serovar Infantis genomes from Brazil and other countries. Mol Genet Genomics 2024; 299:61. [PMID: 38806731 DOI: 10.1007/s00438-024-02147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. Do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. Do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
10
|
Vilela FP, Felice AG, Seribelli AA, Rodrigues DP, Soares SC, Allard MW, Falcão JP. Comparative genomics reveals high genetic similarity among strains of Salmonella enterica serovar Infantis isolated from multiple sources in Brazil. PeerJ 2024; 12:e17306. [PMID: 38784399 PMCID: PMC11114117 DOI: 10.7717/peerj.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Background Salmonella enterica serovar Infantis (Salmonella Infantis) is a zoonotic, ubiquitous and foodborne pathogen of worldwide distribution. Despite Brazil's relevance as a major meat exporter, few studies were conducted to characterize strains of this serovar by genomic analyses in this country. Therefore, this study aimed to assess the diversity of 80 Salmonella Infantis strains isolated from veterinary, food and human sources in Brazil between 2013 and 2018 by comparative genomic analyses. Additional genomes of non-Brazilian countries (n = 18) were included for comparison purposes in some analyses. Methods Analyses of whole-genome multi-locus sequence typing (wgMLST), using PGAdb-builder, and of fragmented genomes, using Gegenees, were conducted to compare the 80 Brazilian strains to the 18 non-Brazilian genomes. Pangenome analyses and calculations were performed for all Salmonella Infantis genomes analyzed. The presence of prophages was determined using PHASTER for the 80 Brazilian strains. The genome plasticity using BLAST Ring Image Generator (BRIG) and gene synteny using Mauve were evaluated for 20 selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Unique orthologous protein clusters were searched in ten selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Results wgMLST and Gegenees showed a high genomic similarity among some Brazilian Salmonella Infantis genomes, and also the correlation of some clusters with non-Brazilian genomes. Gegenees also showed an overall similarity >91% among all Salmonella Infantis genomes. Pangenome calculations revealed an open pangenome for all Salmonella Infantis subsets analyzed and a high gene content in the core genomes. Fifteen types of prophages were detected among 97.5% of the Brazilian strains. BRIG and Mauve demonstrated a high structural similarity among the Brazilian and non-Brazilian isolates. Unique orthologous protein clusters related to biological processes, molecular functions, and cellular components were detected among Brazilian and non-Brazilian genomes. Conclusion The results presented using different genomic approaches emphasized the significant genomic similarity among Brazilian Salmonella Infantis genomes analyzed, suggesting wide distribution of closely related genotypes among diverse sources in Brazil. The data generated contributed to novel information regarding the genomic diversity of Brazilian and non-Brazilian Salmonella Infantis in comparison. The different genetically related subtypes of Salmonella Infantis from Brazil can either occur exclusively within the country, or also in other countries, suggesting that some exportation of the Brazilian genotypes may have already occurred.
Collapse
Affiliation(s)
- Felipe P. Vilela
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analyses, Toxicology and Food Science, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andrei G. Felice
- Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Amanda A. Seribelli
- Medical School of Ribeirão Preto, Department of Cellular and Molecular Biology, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dália P. Rodrigues
- Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Siomar C. Soares
- Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marc W. Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Juliana P. Falcão
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analyses, Toxicology and Food Science, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Sevilla-Navarro S, Torres-Boncompte J, Garcia-Llorens J, Bernabéu-Gimeno M, Domingo-Calap P, Catalá-Gregori P. Fighting Salmonella Infantis: bacteriophage-driven cleaning and disinfection strategies for broiler farms. Front Microbiol 2024; 15:1401479. [PMID: 38812676 PMCID: PMC11134195 DOI: 10.3389/fmicb.2024.1401479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Salmonella is a bacterium that can cause food-borne infections and is responsible for the most common gastrointestinal illnesses. The emergence of multi-drug resistant (MDR) strains worldwide is a major threat, representing a major challenge in public health. To reduce its incidence, the One Health approach is required, and the development of new biocontrol protocols will help prevent or eliminate the spread of Salmonella. Prevention measures, such as on-farm cleaning and disinfection protocols, are a crucial step in reducing infection to new flocks and eliminating bacteria that remain in the facilities. However, MDR Salmonella species, such as S. Infantis, are highly resistant to conventional cleaning and disinfection protocols, with an increased ability to persist in the broiler farm environment. The need for alternative biocontrol methods has led to the use of bacteriophages or phages, viruses that target bacteria, as promising tools. Thus, the aim of this study was to evaluate the efficacy of phages as a biocide against S. Infantis isolates in combination with cleaning and disinfection protocols in 10 commercial poultry farms. Methods All commercial farms selected in this study had persistent Salmonella, even after the routinely used cleaning and disinfection procedures. In addition, Salmonella isolated before treatment were phenotypically characterized by antimicrobial resistance patterns. Results The results showed that 100% of S. Infantis were resistant to at least one antibiotic, and > 70% were MDR. Phages were then isolated against the in-farm bacteria, purified, and multiplied for each poultry farm. The cleaning and disinfection protocols included the application of the lytic phages (vB_Si_CECAV_FGS009; vB_Si_CECAV_FGS017; vB_Si_CECAV_FGS029 and vB_Si_CECAV _FGS030) twice at 24-h intervals between cleaning and disinfection. Following the cleaning and disinfection procedures, Salmonella detection was reduced from 100% after cleaning to 36% after applying the phages and dropped to 0% after the final step of disinfection, thus eliminating Salmonella from the farm facilities. Discussion This study demonstrates that bacteriophage application after cleaning and before disinfection enhances the removal of MDR Salmonella Infantis in commercial broiler farms, suggesting their use as biocontrol agents to reduce Salmonella, a major public health concern.
Collapse
Affiliation(s)
- Sandra Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain
| | - Jan Torres-Boncompte
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain
| | - Josep Garcia-Llorens
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain
| | - Mireia Bernabéu-Gimeno
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Pilar Domingo-Calap
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Pablo Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain
| |
Collapse
|
12
|
Mattock J, Chattaway MA, Hartman H, Dallman TJ, Smith AM, Keddy K, Petrovska L, Manners EJ, Duze ST, Smouse S, Tau N, Timme R, Baker DJ, Mather AE, Wain J, Langridge GC. A One Health Perspective on Salmonella enterica Serovar Infantis, an Emerging Human Multidrug-Resistant Pathogen. Emerg Infect Dis 2024; 30:701-710. [PMID: 38526070 PMCID: PMC10977846 DOI: 10.3201/eid3004.231031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen.
Collapse
Affiliation(s)
| | - Marie Anne Chattaway
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Hassan Hartman
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | | | - Anthony M. Smith
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Karen Keddy
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | | | | | - Sanelisiwe T. Duze
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Shannon Smouse
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Nomsa Tau
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Ruth Timme
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Dave J. Baker
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Alison E. Mather
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - John Wain
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Gemma C. Langridge
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| |
Collapse
|
13
|
Li C, Tate H, Huang X, Hsu CH, Harrison LB, Zhao S, Fortenberry GZ, Dessai U, McDermott PF, Strain EA. The spread of pESI-mediated extended-spectrum cephalosporin resistance in Salmonella serovars-Infantis, Senftenberg, and Alachua isolated from food animal sources in the United States. PLoS One 2024; 19:e0299354. [PMID: 38483966 PMCID: PMC10939224 DOI: 10.1371/journal.pone.0299354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
The goal of this study is to investigate the origin, prevalence, and evolution of the pESI megaplasmid in Salmonella isolated from animals, foods, and humans. We queried 510,097 Salmonella genomes under the National Center for Biotechnology Information (NCBI) Pathogen Detection (PD) database for the presence of potential sequences containing the pESI plasmid in animal, food, and environmental sources. The presence of the pESI megaplasmid was confirmed by using seven plasmid-specific markers (rdA, pilL, SogS, TrbA, ipf, ipr2 and IncFIB(pN55391)). The plasmid and chromosome phylogeny of these isolates was inferred from single nucleotide polymorphisms (SNPs). Our search resolved six Salmonella clusters carrying the pESI plasmid. Four were emergent Salmonella Infantis clusters, and one each belonged to serovar Senftenberg and Alachua. The Infantis cluster with a pESI plasmid carrying blaCTX-M-65 gene was the biggest of the four emergent Infantis clusters, with over 10,000 isolates. This cluster was first detected in South America and has since spread widely in United States. Over time the composition of pESI in United States has changed with the average number of resistance genes showing a decrease from 9 in 2014 to 5 in 2022, resulting from changes in gene content in two integrons present in the plasmid. A recent and emerging cluster of Senftenberg, which carries the blaCTX-M-65 gene and is primarily associated with turkey sources, was the second largest in the United States. SNP analysis showed that this cluster likely originated in North Carolina with the recent acquisition of the pESI plasmid. A single Alachua isolate from turkey was also found to carry the pESI plasmid containing blaCTX-M-65 gene. The study of the pESI plasmid, its evolution and mechanism of spread can help us in developing appropriate strategies for the prevention and further spread of this multi-drug resistant plasmid in Salmonella in poultry and humans.
Collapse
Affiliation(s)
- Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Xinyang Huang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety Security Systems, University of Maryland,College Park, Maryland, United States of America
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Lucas B. Harrison
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Gamola Z. Fortenberry
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, Georgia, United States of America
| | - Uday Dessai
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, Georgia, United States of America
| | - Patrick F. McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Errol A. Strain
- Center for Food Safety and Applied Nutrition, College Park, Maryland, United States of America
| |
Collapse
|
14
|
Guzinski J, Potter J, Tang Y, Davies R, Teale C, Petrovska L. Geographical and temporal distribution of multidrug-resistant Salmonella Infantis in Europe and the Americas. Front Microbiol 2024; 14:1244533. [PMID: 38414709 PMCID: PMC10896835 DOI: 10.3389/fmicb.2023.1244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024] Open
Abstract
Recently emerged S. Infantis strains carrying resistance to several commonly used antimicrobials have been reported from different parts of the globe, causing human cases of salmonellosis and with occurrence reported predominantly in broiler chickens. Here, we performed phylogenetic and genetic clustering analyses to describe the population structure of 417 S. Infantis originating from multiple European countries and the Americas collected between 1985 and 2019. Of these, 171 were collected from 56 distinct premises located in England and Wales (E/W) between 2009 and 2019, including isolates linked to incursions of multidrug-resistant (MDR) strains from Europe associated with imported poultry meat. The analysis facilitated the comparison of isolates from different E/W sources with isolates originating from other countries. There was a high degree of congruency between the outputs of different types of population structure analyses revealing that the E/W and central European (Germany, Hungary, and Poland) isolates formed several disparate groups, which were distinct from the cluster relating to the United States (USA) and Ecuador/Peru, but that isolates from Brazil were closely related to the E/W and the central European isolates. Nearly half of the analysed strains/genomes (194/417) harboured the IncFIB(pN55391) replicon typical of the "parasitic" pESI-like megaplasmid found in diverse strains of S. Infantis. The isolates that contained the IncFIB(pN55391) replicon clustered together, despite originating from different parts of the globe. This outcome was corroborated by the time-measured phylogeny, which indicated that the initial acquisition of IncFIB(pN55391) likely occurred in Europe in the late 1980s, with a single introduction of IncFIB(pN55391)-carrying S. Infantis to the Americas several years later. Most of the antimicrobial resistance (AMR) genes were identified in isolates that harboured one or more different plasmids, but based on the short-read assemblies, only a minority of the resistance genes found in these isolates were identified as being associated with the detected plasmids, whereas the hybrid assemblies comprising the short and long reads demonstrated that the majority of the identified AMR genes were associated with IncFIB(pN55391) and other detected plasmid replicon types. This finding underlies the importance of applying appropriate methodologies to investigate associations of AMR genes with bacterial plasmids.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Joshua Potter
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Yue Tang
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Rob Davies
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | | | | |
Collapse
|
15
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J 2024; 22:e8583. [PMID: 38419967 PMCID: PMC10900121 DOI: 10.2903/j.efsa.2024.8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla OXA-48 or bla OXA-48-like genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, bla NDM-5 and bla VIM-1 genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.
Collapse
|
16
|
Russo I, Fischer J, Uelze L, Napoleoni M, Schiavano GF, Andreoni F, Brandi G, Amagliani G. From farm to fork: Spread of a multidrug resistant Salmonella Infantis clone encoding bla CTX-M-1 on pESI-like plasmids in Central Italy. Int J Food Microbiol 2024; 410:110490. [PMID: 37992554 DOI: 10.1016/j.ijfoodmicro.2023.110490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) is one of the "top five Salmonella serovars" of clinical significance in the European Union (EU). Antimicrobial resistant and extended spectrum β-lactamase (ESBL) AmpC-producing S. Infantis have been described in food production systems and human clinical samples in Italy. Recently, an increase of MDR S. Infantis carrying blaCTX-M genes involved in 3rd generation cephalosporin resistance was noticed in the EU, including Italy, mainly due to the spread of S. Infantis harboring a pESI-like plasmid. The aim of this study was to investigate the occurrence of the S. Infantis pESI-like plasmid among antibiotic resistant S. Infantis strains isolated at different points of the food chain, and to provide a phylogenetic analysis to gain further insight on their transmission pathways from 'farm to fork'. MDR S. Infantis strains (n. 35) isolated from 2016 to 2021 at different stages of the food chain (animals, food, food-related environments, and humans) were investigated with in depth molecular characterization using real-time PCR, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and whole genome sequencing (WGS). Our study reported the occurrence of S. Infantis strains harboring pESI-like plasmids, carrying blaCTX-M-1 genes, in Central Italy, at different sampling points along the food chain. Results confirmed the presence of a plasmid with a molecular size around 224-310 kb, thus consistent with the pESI-like, in 97 % of the 35 samples investigated. Two variants of S. Infantis pESI-like IncFIB(K)_1_Kpn3 were detected, one associated with the European clone carrying blaCTX-M-1 (21 isolates) and the other associated with U.S. isolates carrying blaCTX-M-65 (2 isolates, pESI-like U.S. variant). The majority was resistant to 3rd generation cephalosporins but none of the strains tested positive for the carbapenemase encoding genes. A total of 118 virulence genes were identified in isolates harboring the pESI-like plasmid. cgMLST and SNP-based analysis revealed the presence of one main cluster, composed by strains isolated from the environment, animals, food and humans. The results of this investigation underline the importance of phylogenetic studies to monitor and understand pathogen and AMR spread in a One Health approach.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Jennie Fischer
- BfR, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Laura Uelze
- BfR, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maira Napoleoni
- Regional Reference Center for Enteric Pathogens Marche, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | | | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Clinical Pathology, Urbino Hospital, AST Pesaro-Urbino, Marche, Urbino, Italy
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
17
|
Diamant I, Adani B, Sylman M, Rahav G, Gal-Mor O. The transcriptional regulation of the horizontally acquired iron uptake system, yersiniabactin and its contribution to oxidative stress tolerance and pathogenicity of globally emerging salmonella strains. Gut Microbes 2024; 16:2369339. [PMID: 38962965 PMCID: PMC11225919 DOI: 10.1080/19490976.2024.2369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.
Collapse
Affiliation(s)
- Imbar Diamant
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Adani
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Meir Sylman
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Dlamini SB, Gigante AM, Hooton SPT, Atterbury RJ. Efficacy of Different Encapsulation Techniques on the Viability and Stability of Diverse Phage under Simulated Gastric Conditions. Microorganisms 2023; 11:2389. [PMID: 37894046 PMCID: PMC10608910 DOI: 10.3390/microorganisms11102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Salmonella causes a range of diseases in humans and livestock of considerable public health and economic importance. Widespread antimicrobial use, particularly in intensively produced livestock (e.g., poultry and pigs) may contribute to the rise of multidrug-resistant Salmonella strains. Alternative treatments such as bacteriophages have shown promise when used to reduce the intestinal carriage of Salmonella in livestock. However, the digestive enzymes and low pH encountered in the monogastric GI tract can significantly reduce phage viability and impact therapeutic outcomes. This study deployed alginate-carrageenan microcapsules with and without CaCO3 to protect a genomically diverse set of five Salmonella bacteriophages from simulated gastrointestinal conditions. None of the unprotected phage could be recovered following exposure to pH < 3 for 10 min. Alginate-carrageenan encapsulation improved phage viability at pH 2-2.5 after exposure for 10 min, but not at pH 2 after 1 h. Including 1% (w/v) CaCO3 in the formulation further reduced phage loss to <0.5 log10 PFU/mL, even after 1 h at pH 2. In all cases, phage were efficiently released from the microcapsules following a shift to a neutral pH (7.5), simulating passage to the duodenum. In summary, alginate-carrageenan-CaCO3 encapsulation is a promising approach for targeted intestinal delivery of genomically diverse Salmonella bacteriophages.
Collapse
Affiliation(s)
- Sicelo B Dlamini
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Adriano M Gigante
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Steven P T Hooton
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Robert J Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| |
Collapse
|
19
|
Hess C, Drauch V, Spergser J, Kornschober C, Hess M. Detection of Atypical Salmonella Infantis Phenotypes in Broiler Environmental Samples. Microbiol Spectr 2023; 11:e0010623. [PMID: 37166309 PMCID: PMC10269699 DOI: 10.1128/spectrum.00106-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 05/12/2023] Open
Abstract
In numerous countries, strict and targeted measures concerning Salmonella monitoring and control are implemented and high quality of surveillance is ensured by obligatory investigation of samples from the primary production level of animals according to EN/ISO standards. Here, 2 phenotypic characteristics of Salmonella exhibited on compulsory media are crucial, namely, motility demonstrated on modified semisolid Rappaport Vassiliadis agar (MSRV), and production of hydrogen sulfide (H2S) on xylose lysine deoxycholate agar (XLD). In the present study, we describe the detection of Salmonella Infantis variants found in broiler environmental samples with major alterations in their growth characteristics on MSRV, XLD, and brilliant green-phenol red-agar (BPLS). The variants proved to be non-motile on MSRV and displayed non-confirming colony appearances on the previously mentioned selective agars. The growth spectrum comprised pinhead sized yellow colonies with small black centers, but also pinpoint sized colorless colonies, both colony types of regular shape. Our work contributes to highlight the finding of S. Infantis variants which possess more than one phenotypic deviation from the "typical" growth characteristics and by this limit the detection power of the actual obligatory used media. IMPORTANCE Salmonellosis caused by non-typhoidal Salmonella serovars is the second most frequently reported zoonotic disease in humans in the EU. The transmission of these agents is mainly via contaminated food of animal origin. In this context, poultry products are the main source of infection. Therefore, continuous and standardized surveillance of the prevalence of such Salmonella serovars at the primary production level is essential. Our findings show the phenotypic heterogeneity of the serovar Infantis and provide growth characteristics of atypical variants. Such variants pass unnoticed official screening methods, resulting in incorrect identification and being underrepresented in epidemiological surveillance programs.
Collapse
Affiliation(s)
- Claudia Hess
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Victoria Drauch
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Joachim Spergser
- Institute for Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christian Kornschober
- National Reference Centre for Salmonella, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
20
|
Srednik ME, Morningstar-Shaw BR, Hicks JA, Tong C, Mackie TA, Schlater LK. Whole-genome sequencing and phylogenetic analysis capture the emergence of a multi-drug resistant Salmonella enterica serovar Infantis clone from diagnostic animal samples in the United States. Front Microbiol 2023; 14:1166908. [PMID: 37333652 PMCID: PMC10272548 DOI: 10.3389/fmicb.2023.1166908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Salmonella enterica is a major cause of foodborne illness in the United States. A multi-drug resistant (MDR) emergent Salmonella Infantis (ESI) with a megaplasmid (pESI) was first identified in Israel and Italy and subsequently reported worldwide. The ESI clone carrying an extended spectrum β-lactamase blaCTX-M-65 on a pESI-like plasmid and a mutation in the gyrA gene has recently been found in the United States in poultry meat. Methods We analyzed the phenotypic and genotypic antimicrobial resistance, genomics and phylogeny of 200 S. infantis isolates from animal diagnostic samples. Results Of these, 33.5% were resistant to at least one antimicrobial and 19.5% were multi-drug resistant (MDR). Eleven isolates from different animal sources were phenotypically and genetically similar to the ESI clone. These isolates had a D87Y mutation in the gyrA gene conferring reduced susceptibility to ciprofloxacin and harbored a combination of 6-10 resistance genes: blaCTX-M-65, aac(3)-IVa, aadA1, aph(4)-Ia, aph(3')-Ia, floR, sul1, dfrA14, tetA, and fosA. These 11 isolates carried class I and class II integrons and three virulence genes: sinH, involved in adhesion and invasion, ybtQ and ybtP, associated with iron transport. These isolates were also closely related to each other (separated by 7 to 27 SNPs) and phylogenetically related to the ESI clone recently found in the U.S. Discussion This dataset captured the emergence of the MDR ESI clone in multiple animal species and the first report of a pESI-like plasmid in isolates from horses in the U.S.
Collapse
Affiliation(s)
- Mariela E. Srednik
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Brenda R. Morningstar-Shaw
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Jessica A. Hicks
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Christopher Tong
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Tonya A. Mackie
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Linda K. Schlater
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| |
Collapse
|
21
|
Card RM, Chisnall T, Begum R, Sarker MS, Hossain MS, Sagor MS, Mahmud MA, Uddin ASMA, Karim MR, Lindahl JF, Samad MA. Multidrug-resistant non-typhoidal Salmonella of public health significance recovered from migratory birds in Bangladesh. Front Microbiol 2023; 14:1162657. [PMID: 37256054 PMCID: PMC10226424 DOI: 10.3389/fmicb.2023.1162657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023] Open
Abstract
Non-typhoidal Salmonella provides an exemplar for the One Health approach as it encompasses public and animal health, food safety, and environmental considerations. The contribution of environmental aspects is currently less well-defined. The purpose of this study was to determine the carriage occurrence of non-typhoidal Salmonella in migratory birds in Bangladesh and assess the potential significance to public and animal health. Cloacal swabs (N = 453) were collected in the years 2018-2020 from Tanguar and Hakaluki Haors, important wetland ecosystems in Northeastern Bangladesh. The prevalence of Salmonella was 13.5% (61 positive swabs). Classical serotyping identified six serovars: Salmonella enterica subsp. enterica serovars Perth, Kentucky, Albany, Infantis, Weltevreden, and Brancaster. Resistance towards 14 antimicrobials was assessed by broth microdilution minimum inhibitory concentration determination and the antimicrobial resistance (AMR) genotype established by whole-genome sequencing. S. Perth and S. Weltevreden isolates were susceptible and harbored no acquired AMR genes. Isolates from the remaining serovars were multidrug resistant, commonly possessing resistance to tetracycline, ampicillin, chloramphenicol, sulfamethoxazole, trimethoprim, and ciprofloxacin. Salmonella resistant to ciprofloxacin meets WHO criteria for priority pathogens. There was excellent concordance between resistance phenotype and the presence of corresponding AMR genes, many of which reside on Salmonella Genomic Islands. High-level ciprofloxacin resistance correlated with the presence of mutations in the chromosomal gyrB and/or parC genes. The S. Kentucky isolates were ST198, a widely distributed multidrug-resistant lineage reported in humans and animals, and constituting an ongoing risk to public health worldwide. We have demonstrated that multidrug-resistant non-typhoidal Salmonella of public health significance can be recovered from migratory birds. A potential for risk can manifest through direct interaction, transmission to food-producing livestock on farms, and dissemination via the long range migratory movements of birds. Risks can be mitigated by measures including continued surveillance and implementation of good farm biosecurity practices.
Collapse
Affiliation(s)
- Roderick M. Card
- Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Thomas Chisnall
- Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Ruhena Begum
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Samun Sarker
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Muhammad Sazzad Hossain
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Shahjalal Sagor
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Mohammad Asheak Mahmud
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - A. S. M. Ashab Uddin
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Rezaul Karim
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Johanna F. Lindahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammed Abdus Samad
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| |
Collapse
|
22
|
Development of a rapid diagnostic test based on loop-mediated isothermal amplification to identify the most frequent non-typhoidal Salmonella serovars from culture. Eur J Clin Microbiol Infect Dis 2023; 42:461-470. [PMID: 36810725 PMCID: PMC9998568 DOI: 10.1007/s10096-023-04571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Identification of Salmonella serovars is performed by conventional seroagglutination or sequencing. These methods are labor-intensive and require technical experience. An easy-to-perform assay allowing the timely identification of the most common non-typhoidal serovars (NTS) is needed. In this study, a molecular assay based on loop-mediated isothermal amplification (LAMP) targeting specific gene sequences of Salmonella Enteritidis, S. Typhimurium, S. Infantis, S. Derby, and S. Choleraesuis has been developed for rapid serovar identification from cultured colonies. A total of 318 Salmonella strains and 25 isolates of other Enterobacterales species that served as negative controls were analyzed. All S. Enteritidis (n = 40), S. Infantis (n = 27), and S. Choleraesuis (n = 11) strains were correctly identified. Seven out of 104 S. Typhimurium and 10 out of 38 S. Derby strains missed a positive signal. Cross-reactions of the gene targets were only rarely observed and restricted to the S. Typhimurium primer set (5 false-positives). Sensitivity and specificity of the assay compared to seroagglutination were as follows: 100% and 100% for S. Enteritidis, 93.3% and 97.7% for S. Typhimurium, 100% and 100% for S. Infantis, 73.7% and 100% for S. Derby, and 100% and 100% for S. Choleraesuis, respectively. With results available in just a few minutes of hands-on time and a test run time of 20 min, the LAMP assay developed here may be a useful tool for the rapid identification of common Salmonella NTS in daily routine diagnostics.
Collapse
|
23
|
Krüger GI, Pardo-Esté C, Zepeda P, Olivares-Pacheco J, Galleguillos N, Suarez M, Castro-Severyn J, Alvarez-Thon L, Tello M, Valdes JH, Saavedra CP. Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. Front Microbiol 2023; 14:1072793. [PMID: 37007466 PMCID: PMC10061128 DOI: 10.3389/fmicb.2023.1072793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds.
Collapse
Affiliation(s)
- Gabriel I. Krüger
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Phillippi Zepeda
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antibacteriana en Bacterias Patógenas Ambientales GRABPA, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nicolas Galleguillos
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcia Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Luis Alvarez-Thon
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge H. Valdes
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- *Correspondence: Claudia P. Saavedra,
| |
Collapse
|
24
|
Alba P, Carfora V, Feltrin F, Diaconu EL, Sorbara L, Dell'Aira E, Cerci T, Ianzano A, Donati V, Franco A, Battisti A. Evidence of structural rearrangements in ESBL-positive pESI(like) megaplasmids of S.Infantis. FEMS Microbiol Lett 2023; 370:7049104. [PMID: 36806934 PMCID: PMC9990980 DOI: 10.1093/femsle/fnad014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
The increasing prevalence of pESI(like)-positive, multidrug-resistant (MDR) S. Infantis in Europe is a cause of major concern. As previously demonstrated, the pESI(like) megaplasmid is not only a carrier of antimicrobial resistant (AMR) genes (at least tet, dfr, and sul genes), but also harbours several virulence and fitness genes, and toxin/antitoxin systems that enhance its persistence in the S. Infantis host. In this study, five prototype pESI(like) plasmids, of either CTX-M-1 or CTX-M-65 ESBL-producing strains, were long-read sequenced using Oxford Nanopore Technology (ONT), and their complete sequences were resolved. Comparison of the structure and gene content of the five sequenced plasmids, and further comparison with previously published pESI(like) sequences, indicated that although the sequence of such pESI(like) 'mosaic' plasmids remains almost identical, their structures appear different and composed of regions inserted or transposed after different events. The results obtained in this study are essential to better understand the plasticity and the evolution of the pESI(like) megaplasmid, and therefore to better address risk management options and policy decisions to fight against AMR and MDR in Salmonella and other food-borne pathogens. Graphical representation of the pESI-like plasmid complete sequence (ID 12037823/11). Block colours indicate the function of the genes: red: repB gene; pink: class I integrons (IntI); yellow; mobile elements; blue: resistance genes; green: toxin/anti-toxin systems; grey: mer operon; light green: genes involve in conjugation.
Collapse
Affiliation(s)
- Patricia Alba
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Virginia Carfora
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Fabiola Feltrin
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Elena Lavinia Diaconu
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Luigi Sorbara
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Elena Dell'Aira
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Tamara Cerci
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Angela Ianzano
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Valentina Donati
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Alessia Franco
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Antonio Battisti
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| |
Collapse
|
25
|
Papić B, Kušar D, Mićunović J, Pirš M, Ocepek M, Avberšek J. Clonal Spread of pESI-Positive Multidrug-Resistant ST32 Salmonella enterica Serovar Infantis Isolates among Broilers and Humans in Slovenia. Microbiol Spectr 2022; 10:e0248122. [PMID: 36250854 PMCID: PMC9769575 DOI: 10.1128/spectrum.02481-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Infantis is the most prevalent serovar found in broilers and broiler meat and is among the top five serovars responsible for human infections in Europe. In 2008, a multidrug-resistant S. Infantis isolate emerged in Israel with a mosaic megaplasmid named pESI, associated with increased virulence, biofilm formation, and multidrug resistance. Since then, S. Infantis clones with pESI-like plasmids have been reported worldwide, replacing pESI-free clones. Here, we typed 161 S. Infantis isolates of poultry (n = 133) and human clinical (n = 28) origin using whole-genome sequencing. The isolates were collected between 2007 and 2021. In addition, we performed PacBio/Illumina sequencing for two representative pESI-like plasmids and compared them with publicly available sequences. All isolates belonged to sequence type 32 (ST32), except for one isolate that represented a novel single-locus variant of ST32. Core genome MLST (cgMLST) analysis revealed 14 clusters of genetically closely related isolates, of which four suggested broiler-to-human transmission of S. Infantis. pESI-like plasmids were present in 148/161 (91.9%) isolates; all were highly similar to the publicly available pESI-like sequences but lacked extended-spectrum beta-lactamase (ESBL) genes. PacBio/Illumina hybrid assembly allowed the reconstruction of two novel complete pESI variants. The present study revealed that the multidrug-resistant, pESI-positive S. Infantis clone became the predominant S. Infantis clone in Slovenian broilers and humans during the last decade. Continued surveillance of resistant S. Infantis clones along the food chain is needed to guide public health efforts. IMPORTANCE Salmonella Infantis clones with pESI-like plasmids harboring several virulence and resistance genes have been reported worldwide. In the present study, we compared the population structure of 161 Salmonella Infantis isolates obtained from humans and broilers in Slovenia from 2007 to 2021. Whole-genome sequencing showed that most human isolates clustered apart from broiler isolates, suggesting an alternative source of infection. Most isolates were multidrug resistant due to the presence of pESI-like plasmids, of which two variants (pS89 and pS19) were fully reconstructed using long-read sequencing. Both exhibited high similarity with the original Israeli pESI plasmid and German p2747 plasmid. The prototype plasmid pS89 harbored the typical pESI-associated resistance genes aadA1, qacEΔ1, sul1, and tet(A), which were absent in the truncated plasmid pS19.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jasna Mićunović
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Pirš
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP. Prevalence of efflux pump and heavy metal tolerance encoding genes among Salmonella enterica serovar Infantis strains from diverse sources in Brazil. PLoS One 2022; 17:e0277979. [PMID: 36413564 PMCID: PMC9681071 DOI: 10.1371/journal.pone.0277979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) is a non-typhoid, zoonotic and foodborne serovar with worldwide distribution, and often associated with increasing antimicrobial resistance. Efflux pumps are antimicrobial resistance mechanisms able to promote and increase resistance levels to multiple distinct drug classes. Heavy metal tolerance genes have been demonstrated to promote resistance against these compounds and act in the co-selection of antimicrobial resistant strains. Despite the relevance of S. Infantis in clinical and non-clinical fields, few studies worldwide have investigated the occurrence of such genes in strains from diverse sources. Therefore, the present study aimed at determining the prevalence of antimicrobial efflux pump and heavy metal tolerance genes and their genomic relatedness through core-genome multi-locus sequence typing (cgMLST) of 80 S. Infantis strains isolated from food, environmental, human and animal sources from 2013 to 2018 in Brazil. Twenty efflux pump encoding genes were detected, with 17 of these (acrA, acrB, baeR, crp, emrB, emrR, hns, kdpE, kpnF, marA, marR, mdtK, msbA, rsmA, sdiA, soxR and soxS) detected in all strains studied, golS in 98.75%, mdfA in 58.75% and tet(A) in 37.5%. Tolerance genes to arsenic (arsR) were detected in 100% of the strains, gold (golS and golT) in 98.75%, silver (silABCDEFPRS) in 36.25% and mercury (merR and merT) in 1.25%. cgMLST demonstrated a closer genetic relationship among strains harboring similar profiles of heavy metal and efflux pump encoding genes, despite their origin. In conclusion, the high prevalence of some efflux pump and heavy metal tolerance encoding genes alert us about the importance of strong surveillance measures to monitor resistance and the transmission of S. Infantis among diverse sources in Brazil.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto–USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
- * E-mail: (JPF); (MWA)
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto–USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
- * E-mail: (JPF); (MWA)
| |
Collapse
|
27
|
Retamal P, Gaspar J, Benavides MB, Saenz L, Galarce N, Aravena T, Cornejo J, Lapierre L. Virulence and antimicrobial resistance factors in Salmonella enterica serotypes isolated from pigs and chickens in central Chile. Front Vet Sci 2022; 9:971246. [PMID: 36204291 PMCID: PMC9530323 DOI: 10.3389/fvets.2022.971246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a food-borne pathogen with a wide host-range that during decades has been of public health concern in developed and developing countries. In Chile, the poultry and pig industries represent the biggest contribution of meat consumption in the population, and sanitary regulations have been imposed for Salmonella control. The aim of this work was to determine and characterize Salmonella strains isolated from pigs and chicken raised on commercials farms in Chile. For this, isolates belonging to pigs (n = 46) and poultry (n = 57) were genotyped by two multiplex PCR reactions and virulotyped by the PCR detection of virulence-associated genes. In addition, isolates were serotyped and analyzed by the Kirby Bauer assay to determine their antimicrobial resistance phenotypes. From these analyses 52 genotypes, six serotypes and several multidrug resistance phenotypes and different combinations of virulence-associated genes were detected. These results suggest that S. enterica in pigs and poultry in central Chile should be monitored due to potential consequences in public and animal health.
Collapse
Affiliation(s)
- Patricio Retamal
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Joaquim Gaspar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Magister en Ciencias Animales y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María Belén Benavides
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Magister en Ciencias Animales y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Leonardo Saenz
- Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Nicolás Galarce
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Trinidad Aravena
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Javiera Cornejo
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Lapierre
| |
Collapse
|
28
|
Khajanchi BK, Foley SL. Antimicrobial Resistance and Increased Virulence of Salmonella. Microorganisms 2022; 10:microorganisms10091829. [PMID: 36144431 PMCID: PMC9504589 DOI: 10.3390/microorganisms10091829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
|
29
|
Drauch V, Mitra T, Liebhart D, Hess M, Hess C. Infection dynamics of Salmonella Infantis vary considerably between chicken lines. Avian Pathol 2022; 51:561-573. [PMID: 35938538 DOI: 10.1080/03079457.2022.2108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractSalmonella (S.) Infantis is the most common serovar in broilers and broiler meat in the European Union. In the field, fast-growing broilers are reported to be more affected than slow-growing and layer birds. The present study investigated the infection dynamics and immunological response of four chicken lines in the course of a S. Infantis infection. Two commercial chicken lines, Ross 308 and Hubbard ISA-JA-757, and two experimentally chicken lines, specific pathogen free (SPF) layers and broilers, were infected at 2 days of age. Investigations focused on faecal shedding, bacterial colonisation, humoral and cellular immune response in the blood. Ross and SPF broilers were mainly attributed as high shedders followed by Hubbard. SPF layers showed the least shedding. This is in agreement with the caecal colonisation, SPF layers harboured significant less bacteria. Systemic spread of S. Infantis to liver and spleen was highest in Ross being statistically significant at 7 days of age compared to the other lines. Spread of infection to in-contact birds, was noticed 5 days post infection in every line. Antibody response occurred in every chicken line from day 21 of age onwards. In contrast to the other chicken lines, significant differences in T cell subsets and monocytes/macrophages were found between infected and negative Hubbard birds at 7 days of age. Uninfected SPF birds had significant higher immune cell counts (T cell subsets, B cells and monocytes /macrophages) compared to uninfected commercial birds, a fact important for future experimental settings. The results illustrate that the infection dynamics of S. Infantis is influenced by the chicken line resulting in a higher risk of transmission to humans from fast-growing broilers.
Collapse
Affiliation(s)
- V Drauch
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - T Mitra
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - D Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - M Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - C Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
30
|
Mattock J, Smith AM, Keddy KH, Manners EJ, Duze ST, Smouse S, Tau N, Baker D, Chattaway MA, Mather AE, Wain J, Langridge GC. Genetic characterization of Salmonella Infantis from South Africa, 2004-2016. Access Microbiol 2022; 4:acmi000371. [PMID: 36003217 PMCID: PMC9394735 DOI: 10.1099/acmi.0.000371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
Salmonella Infantis is presenting an increasing risk to public health. Of particular concern are the reports of pESI, a multidrug resistance (MDR) encoding megaplasmid, in isolates from multiple countries, but little is known about its presence or diversity in South Africa. Whole genome sequences of 387 S. Infantis isolates from South Africa (2004-2020) were analysed for genetic phylogeny, recombination frequency, antimicrobial resistance (AMR) determinants, plasmid presence and overall gene content. The population structure of South African S. Infantis was substantially different to S. Infantis reported elsewhere; only two thirds of isolates belonged to eBG31, while the remainder were identified as eBG297, a much rarer group globally. Significantly higher levels of recombination were observed in the eBG297 isolates, which was associated with the presence of prophages. The majority of isolates were putatively susceptible to antimicrobials (335/387) and lacked any plasmids (311/387); the megaplasmid pESI was present in just one isolate. A larger proportion of eBG31 isolates, 19% (49/263), contained at least one AMR determinant, compared to eBG297 at 2% (3/124). Comparison of the pan-genomes of isolates from either eBG identified 943 genes significantly associated with eBG, with 43 found exclusively in eBG31 isolates and 34 in eBG297 isolates. This, along with the single nucleotide polymorphism distance and difference in resistance profiles, suggests that eBG31 and eBG297 isolates occupy different niches within South Africa. If antibiotic-resistant S. Infantis emerges in South Africa, probably through the spread of the pESI plasmid, treatment of this infection would be compromised.
Collapse
Affiliation(s)
- Jennifer Mattock
- Norwich Medical School, University of East Anglia, Norwich, UK
- Present address: The Roslin Institute, University of Edinburgh, UK
| | - Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - Emma J. Manners
- Norwich Medical School, University of East Anglia, Norwich, UK
- Present address: European Molecular Biology Laboratory, European Bioinformatics Institute, UK
| | - Sanelisiwe T. Duze
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shannon Smouse
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Nomsa Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - David Baker
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Marie Anne Chattaway
- Gastrointestinal Bacteriology Reference Unit, United Kingdom Health Security Agency, London, UK
| | - Alison E. Mather
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | | |
Collapse
|
31
|
Hernández-Díaz EA, Vázquez-Garcidueñas MS, Negrete-Paz AM, Vázquez-Marrufo G. Comparative Genomic Analysis Discloses Differential Distribution of Antibiotic Resistance Determinants between Worldwide Strains of the Emergent ST213 Genotype of Salmonella Typhimurium. Antibiotics (Basel) 2022; 11:925. [PMID: 35884180 PMCID: PMC9312005 DOI: 10.3390/antibiotics11070925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica constitutes a global public health concern as one of the main etiological agents of human gastroenteritis. The Typhimurium serotype is frequently isolated from human, animal, food, and environmental samples, with its sequence type 19 (ST19) being the most widely distributed around the world as well as the founder genotype. The replacement of the ST19 genotype with the ST213 genotype that has multiple antibiotic resistance (MAR) in human and food samples was first observed in Mexico. The number of available genomes of ST213 strains in public databases indicates its fast worldwide dispersion, but its public health relevance is unknown. A comparative genomic analysis conducted as part of this research identified the presence of 44 genes, 34 plasmids, and five point mutations associated with antibiotic resistance, distributed across 220 genomes of ST213 strains, indicating the MAR phenotype. In general, the grouping pattern in correspondence to the presence/absence of genes/plasmids that confer antibiotic resistance cluster the genomes according to the geographical origin where the strain was isolated. Genetic determinants of antibiotic resistance group the genomes of North America (Canada, Mexico, USA) strains, and suggest a dispersion route to reach the United Kingdom and, from there, the rest of Europe, then Asia and Oceania. The results obtained here highlight the worldwide public health relevance of the ST213 genotype, which contains a great diversity of genetic elements associated with MAR.
Collapse
Affiliation(s)
- Elda Araceli Hernández-Díaz
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma Tarímbaro, Morelia 58893, Michoacán, Mexico; (E.A.H.-D.); (A.M.N.-P.)
| | - Ma. Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Ave. Rafael Carrillo esq. Dr. Salvador González Herrejón, Col. Cuauhtémoc, Morelia 58020, Michoacán, Mexico;
| | - Andrea Monserrat Negrete-Paz
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma Tarímbaro, Morelia 58893, Michoacán, Mexico; (E.A.H.-D.); (A.M.N.-P.)
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma Tarímbaro, Morelia 58893, Michoacán, Mexico; (E.A.H.-D.); (A.M.N.-P.)
| |
Collapse
|
32
|
Bharat A, Mataseje L, Parmley EJ, Avery BP, Cox G, Carson CA, Irwin RJ, Deckert AE, Daignault D, Alexander DC, Allen V, El Bailey S, Bekal S, German GJ, Haldane D, Hoang L, Chui L, Minion J, Zahariadis G, Reid-Smith RJ, Mulvey MR. One Health Genomic Analysis of Extended-Spectrum β-Lactamase‒Producing Salmonella enterica, Canada, 2012‒2016. Emerg Infect Dis 2022; 28:1410-1420. [PMID: 35731173 PMCID: PMC9239887 DOI: 10.3201/eid2807.211528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) confer resistance to extended-spectrum cephalosporins, a major class of clinical antimicrobial drugs. We used genomic analysis to investigate whether domestic food animals, retail meat, and pets were reservoirs of ESBL-producing Salmonella for human infection in Canada. Of 30,303 Salmonella isolates tested during 2012–2016, we detected 95 ESBL producers. ESBL serotypes and alleles were mostly different between humans (n = 54) and animals/meat (n = 41). Two exceptions were blaSHV-2 and blaCTX-M-1 IncI1 plasmids, which were found in both sources. A subclade of S. enterica serovar Heidelberg isolates carrying the same IncI1-blaSHV-2 plasmid differed by only 1–7 single nucleotide variants. The most common ESBL producer in humans was Salmonella Infantis carrying blaCTX-M-65, which has since emerged in poultry in other countries. There were few instances of similar isolates and plasmids, suggesting that domestic animals and retail meat might have been minor reservoirs of ESBL-producing Salmonella for human infection.
Collapse
|
33
|
Vázquez X, Fernández J, Rodríguez-Lozano J, Calvo J, Rodicio R, Rodicio MR. Genomic Analysis of Two MDR Isolates of Salmonella enterica Serovar Infantis from a Spanish Hospital Bearing the blaCTX-M-65 Gene with or without fosA3 in pESI-like Plasmids. Antibiotics (Basel) 2022; 11:786. [PMID: 35740192 PMCID: PMC9219668 DOI: 10.3390/antibiotics11060786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a broiler-associated pathogen which ranks in the fourth position as a cause of human salmonellosis in the European Union. Here, we report a comparative genomic analysis of two clinical S. Infantis isolates recovered in Spain from children who just returned from Peru. The isolates were selected on the basis of resistance to cefotaxime, one of the antibiotics of choice for treatment of S. enterica infections. Antimicrobial susceptibility testing demonstrated that they were resistant to eight classes of antimicrobial agents: penicillins, cephalosporins, phenicols, aminoglycosides, tetracyclines, inhibitors of folate synthesis, (fluoro)quinolones and nitrofurans, and one of them was also resistant to fosfomycin. As shown by whole-genome sequence analysis, each isolate carried a pESI-like megaplasmid of ca. 300 kb harboring multiple resistance genes [blaCTX-M-65, aph(4)-Ia, aac(3)-IVa, aph(3')-Ia, floR, dfrA14, sul1, tet(A), aadA1 ± fosA3], as well as genes for resistance to heavy metals and disinfectants (mer, ars and qacEΔ1). These genes were distributed in two complex regions, separated by DNA belonging to the plasmid backbone, and associated with a wealth of transposable elements. The two isolates had a D87Y amino acid substitution in the GyrA protein, and truncated variants of the nitroreductase genes nfsA and nsfB, accounting for chromosomally encoded resistances to nalidixic acid and nitrofurantoin, respectively. The two S. Infantis isolates were assigned to sequence type ST32 by in silico multilocus sequence typing (MLST). Phylogenetic analysis revealed that they were closely related, differing only by 12 SNPs, although they were recovered from different children two years apart. They were also genetically similar to blaCTX-M-65-positive ± fosA3 isolates obtained from humans and along the poultry production chain in the USA, South America, as well as from humans in several European countries, usually associated with a travel history to America. However, this is the first time that the S. Infantis blaCTX-M-65 ± fosA3 MDR clone has been reported in Spain.
Collapse
Affiliation(s)
- Xenia Vázquez
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo (UO), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
| | - Javier Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33003 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 20029 Madrid, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (J.R.-L.); (J.C.)
| | - Jorge Calvo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (J.R.-L.); (J.C.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosaura Rodicio
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - M. Rosario Rodicio
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo (UO), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
| |
Collapse
|
34
|
Russo I, Bencardino D, Napoleoni M, Andreoni F, Schiavano GF, Baldelli G, Brandi G, Amagliani G. Prevalence, Antibiotic-Resistance, and Replicon-Typing of Salmonella Strains among Serovars Mainly Isolated from Food Chain in Marche Region, Italy. Antibiotics (Basel) 2022; 11:antibiotics11060725. [PMID: 35740132 PMCID: PMC9219957 DOI: 10.3390/antibiotics11060725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Nontyphoidal salmonellosis (NTS) is the second most commonly reported gastrointestinal infection in humans and an important cause of food-borne outbreaks in Europe. The use of antimicrobial agents for animals, plants, and food production contributes to the development of antibiotic-resistant Salmonella strains that are transmissible to humans through food. The aim of this study was to investigate the presence and the potential dissemination of multidrug-resistant (MDR) Salmonella strains isolated in the Marche Region (Central Italy) via the food chain. Strains were isolated from different sources: food, human, food animal/livestock, and the food-processing environment. Among them, we selected MDR strains to perform their further characterization in terms of resistance to tetracycline agent, carriage of tet genes, and plasmid profiles. Tetracycline resistance genes were detected by PCR and plasmid replicons by PCR-based replicon typing (PBRT). A total of 102 MDR Salmonella strains were selected among the most prevalent serovars: S. Infantis (n = 36/102), S. Derby (n = 20/102), S. Typhimurium (n = 18/102), and a monophasic variant of S. Typhimurium (MVST, n = 28/102). Resistance to sulfisoxazole (86%) and tetracycline (81%) were the most common, followed by ampicillin (76%). FIIS was the most predominant replicon (17%), followed by FII (11%) and FIB (11%) belonging to the IncF incompatibility group. Concerning the characterization of tet genes, tetB was the most frequently detected (27/89), followed by tetA (10/89), tetG (5/89), and tetM (1/89). This study showed the potential risk associated with the MDR Salmonella strains circulating along the food chain. Hence, epidemiological surveillance supported by molecular typing could be a very useful tool to prevent transmission of resistant Salmonella from food to humans, in line with the One Health approach.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | - Daniela Bencardino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | - Maira Napoleoni
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche “Togo Rosati”, 06126 Perugia, Italy;
| | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | | | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
- Correspondence: ; Tel.: +39-0722-303540
| |
Collapse
|
35
|
Casagrande Proietti P, Musa L, Stefanetti V, Orsini M, Toppi V, Branciari R, Blasi F, Magistrali CF, Capomaccio S, Kika TS, Franciosini MP. mcr-1-Mediated Colistin Resistance and Genomic Characterization of Antimicrobial Resistance in ESBL-Producing Salmonella Infantis Strains from a Broiler Meat Production Chain in Italy. Antibiotics (Basel) 2022; 11:antibiotics11060728. [PMID: 35740135 PMCID: PMC9220226 DOI: 10.3390/antibiotics11060728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
This work aimed to evaluate phenotypically and genotypically the colistin susceptibility of 85 Salmonella Infantis strains isolated in Italy from the broiler production chain, and to apply a whole-genome approach for the determination of genes conferring antimicrobial resistance (AMR). All isolates were tested by the broth microdilution method to evaluate the colistin minimum inhibitory concentrations (MICs). A multiplex PCR was performed in all isolates for the screening of mcr-1, mcr-2, mcr-3 mcr-4, mcr-5 genes and whole-genome sequencing (WGS) of six S. Infantis was applied. Three out of 85 (3.5%) S. Infantis strains were colistin resistant (MIC values ranged from 4 to 8 mg/L) and mcr-1 positive. The mcr-1.1 and mcr-1.2 variants located on the IncX4 plasmid were detected in three different colistin-resistant isolates. The two allelic variants showed identical sequences. All six isolates harbored blaCTXM-1, aac(6′)-Iaa and gyrA/parC genes, mediating, respectively, beta-lactam, aminoglycoside and quinolone resistance. The pESI-megaplasmid carrying tet(A) (tetracycline resistance), dfrA1, (trimethoprim resistance) sul1, (sulfonamide resistance) and qacE (quaternary ammonium resistance) genes was found in all isolates. To our knowledge, this is the first report of the mcr-1.2 variant described in S. Infantis isolated from broilers chickens. Our results also showed a low prevalence of colistin- resistance, probably due to a reduction in colistin use in poultry. This might suggest an optimization of biosecurity control both on farms and in slaughterhouses.
Collapse
Affiliation(s)
- Patrizia Casagrande Proietti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
- Correspondence:
| | - Laura Musa
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | | | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Francesca Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (F.B.); (C.F.M.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (F.B.); (C.F.M.)
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Tana Shtylla Kika
- Faculty of Veterinary Medicine, Agricultural University of Tirana, 1029 Tirana, Albania;
| | - Maria Pia Franciosini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| |
Collapse
|
36
|
Di Marcantonio L, Romantini R, Marotta F, Chiaverini A, Zilli K, Abass A, Di Giannatale E, Garofolo G, Janowicz A. The Current Landscape of Antibiotic Resistance of Salmonella Infantis in Italy: The Expansion of Extended-Spectrum Beta-Lactamase Producers on a Local Scale. Front Microbiol 2022; 13:812481. [PMID: 35418960 PMCID: PMC8996230 DOI: 10.3389/fmicb.2022.812481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Infantis is one of the five main causes of human salmonellosis in the European Union (EU) and in recent years, has been increasingly reported to carry multiple antimicrobial resistance determinants, including extended-spectrum beta-lactamase (ESBL) genes. In our study, we used WGS-based tools to characterize S. Infantis strains circulating in the Abruzzo and Molise regions of Italy between 2017 and 2020 and compared this local dataset to the S. Infantis population present in Italy over the last two decades. Phylogenetic analyses demonstrated that the majority of strains isolated from poultry and turkeys from Abruzzo and Molise were closely related and belonged to one of the two main genetic clusters present in Italy, which were grouped predominantly as ESBL-producing strains that harbored pESI-like plasmid. We showed that 60% of the local strains carried multiple antibiotic resistance genes, including ESBL gene blaCTX–M–1 as well as aadA1, dfrA1, dfrA14, sul1, and tet(A) genes present on the pESI-like megaplasmid. The analysis of strains from Abruzzo and Molise and the publicly available Italian S. Infantis sequences revealed a dramatic increase in the number of identified AMR genes in the strains isolated after 2011. Moreover, the number of strains resistant to five or more antibiotic classes increased from 20–80% in the last decade likely due to the acquisition of the megaplasmid. The persistence of the ESBL-producing and the multidrug-resistant (MDR) clone of S. Infantis in poultry populations in Italy and in Europe requires rapid and efficient intervention strategies to prevent further expansion of the clone.
Collapse
Affiliation(s)
- Lisa Di Marcantonio
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Romina Romantini
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Francesca Marotta
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Alexandra Chiaverini
- Hygiene in Food Technology and Animal Feeds, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Katiuscia Zilli
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Anna Abass
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Elisabetta Di Giannatale
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Giuliano Garofolo
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Anna Janowicz
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| |
Collapse
|
37
|
Evaluation of Antimicrobial Resistance in Salmonella Strains Isolated from Food, Animal and Human Samples between 2017 and 2021 in Southern Italy. Microorganisms 2022; 10:microorganisms10040812. [PMID: 35456862 PMCID: PMC9031535 DOI: 10.3390/microorganisms10040812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Salmonella enterica is one of the most common causes of foodborne infection in the world, and the most common one in Italy. Italy collaborates with the other EU member states to survey the antimicrobial resistance of Salmonella on a large scale. This study on the situation in Apulia and Basilicata provides a more focused point of view on the territory, and anticipates the data reported in future Italian reports. Antimicrobial resistance was detected using the MIC detection method, with EUVSEC® plates, on the strains collected between 2017 and 2021. The results of serotyping showed that Salmonella Infantis is the serovar that has increased the most over time in veterinary samples, while Salmonella Tyhimurium and its monophasic variant are the most isolated in human samples. The results of the antimicrobial resistance study comply with European data, showing high resistance to quinolones, tetracyclines, ampicillin and trimethoprim, and low resistance to colistin and cephems. The significant exception was that all strains were resistant to sulphametoxazole. The presence of MDRs, which was 85% in veterinary and 77.4% in human strains, often included critically important antibiotics, which is a sign that more study and action is needed to manage the use of antibiotics.
Collapse
|
38
|
Petrin S, Mancin M, Losasso C, Deotto S, Olsen JE, Barco L. Effect of pH and Salinity on the Ability of Salmonella Serotypes to Form Biofilm. Front Microbiol 2022; 13:821679. [PMID: 35464965 PMCID: PMC9021792 DOI: 10.3389/fmicb.2022.821679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Salmonella is a major cause of food-borne infections in Europe, and the majority of human infections are caused by only a few serotypes, among them are Salmonella enterica subsp. enterica serotype Enteritidis (hereafter Salmonella Enteritidis), Salmonella Typhimurium, and the monophasic variant of S. Typhimurium. The reason for this is not fully understood, but could include virulence factors as well as increased ability to transfer via the external environment. Formation of biofilm is considered an adaptation strategy used by bacteria to overcome environmental stresses. In order to assess the capability of different Salmonella serotypes to produce biofilm and establish whether this is affected by pH and salinity, 88 Salmonella isolates collected from animal, food, and human sources and belonging to 15 serotypes, including those most frequently responsible for human infections, were tested. Strains were grown in tryptic soy broth (TSB), TSB with 4% NaCl pH 4.5, TSB with 10% NaCl pH 4.5, TSB with 4% NaCl pH 7, or TSB with 10% NaCl pH 7, and biofilm production was assessed after 24 h at 37°C using crystal violet staining. A linear mixed effect model was applied to compare results from the different experimental conditions. Among the tested serotypes, S. Dublin showed the greatest ability to form biofilm even at pH 4.5, which inhibited biofilm production in the other tested serotypes. Salmonella Senftenberg and the monophasic variant of S. Typhimurium showed the highest biofilm production in TSB with 10% NaCl pH 7. In general, pH had a high influence on the ability to form biofilm, and most of the tested strains were not able to produce biofilm at pH 4.5. In contrast, salinity only had a limited influence on biofilm production. In general, serotypes causing the highest number of human infections showed a limited ability to produce biofilm in the tested conditions, indicating that biofilm formation is not a crucial factor in the success of these clones.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology and Microorganisms Genomics Laboratory - SCS1, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marzia Mancin
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Carmen Losasso
- Microbial Ecology and Microorganisms Genomics Laboratory - SCS1, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- *Correspondence: Carmen Losasso,
| | - Silvia Deotto
- Clinical Diagnostics Laboratory - SCT4, Istituto Zooprofilattico Sperimentale delle Venezie, Basaldella di Campoformido, Italy
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
39
|
Lee KY, Atwill ER, Pitesky M, Huang A, Lavelle K, Rickard M, Shafii M, Hung-Fan M, Li X. Antimicrobial Resistance Profiles of Non-typhoidal Salmonella From Retail Meat Products in California, 2018. Front Microbiol 2022; 13:835699. [PMID: 35369434 PMCID: PMC8966841 DOI: 10.3389/fmicb.2022.835699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Non-typhoidal Salmonella remains a leading cause of foodborne illness in the United States, with food animal products serving as a key conduit for transmission. The emergence of antimicrobial resistance (AMR) poses an additional public health concern warranting better understanding of its epidemiology. In this study, 958 retail meat samples collected from January to December 2018 in California were tested for Salmonella. From multivariable logistic regression, there was a 6.47 (90% CI 2.29–18.27), 3.81 (90% CI 1.29–11.27), and 3.12 (90% CI 1.03–9.45) higher odds of contamination in samples purchased in the fall, spring, and summer than in winter months, respectively, and a 3.70 (90% CI 1.05–13.07) higher odds in ground turkey compared to pork samples. Fourteen distinct serotypes and 17 multilocus sequence types were identified among the 43 isolates recovered, with S. Kentucky (25.58%), S. Reading (18.60%), S. Infantis (11.63%), and S. Typhimurium (9.30%) comprising the top serotypes. High prevalence of resistance was observed in retail chicken isolates for streptomycin (12/23, 52.17%) and tetracycline (12/23, 52.17%), in ground turkey isolates for ampicillin (8/15, 53.34%), and in ground beef isolates for nalidixic acid (2/3, 66.67%). Fourteen (32.56%) were susceptible to all antimicrobials tested, 11 (25.58%) were resistant to one drug, and 12 (27.91%) were resistant to two drugs. The remaining six isolates (13.95%) were multidrug-resistant (MDR, ≥3 drug classes) S. Infantis (n = 4), S. Reading (n = 1), and S. Kentucky (n = 1). Whole-genome sequencing (WGS) identified 16 AMR genes and 17 plasmid replicons, including blaCTX–M–65 encoding ceftriaxone resistance and a D87Y mutation in gyrA conferring resistance to nalidixic acid and reduced susceptibility to ciprofloxacin. The IncFIB(pN55391) replicon previously identified in connection to the worldwide dissemination of pESI-like mega plasmid carriage in an emerged S. Infantis clone was detected in four of the six MDR isolates. Genotypes from WGS showed high concordance with phenotype with overall sensitivity and specificity of 95.31% and 100%, respectively. This study provides insight into the AMR profiles of a diversity of Salmonella serotypes isolated from retail meat products in California and highlights the value of routine retail food surveillance for the detection and characterization of AMR in foodborne pathogens.
Collapse
Affiliation(s)
- Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maurice Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anny Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Maribel Rickard
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Marzieh Shafii
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Melody Hung-Fan
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| |
Collapse
|
40
|
Medina-Santana JL, Ortega-Paredes D, de Janon S, Burnett E, Ishida M, Sauders B, Stevens M, Vinueza-Burgos C. Investigating the dynamics of Salmonella contamination in integrated poultry companies using a whole genome sequencing approach. Poult Sci 2022; 101:101611. [PMID: 34953378 PMCID: PMC8715213 DOI: 10.1016/j.psj.2021.101611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
The study of non-typhoid Salmonella in broiler integrations has been limited by the resolution of typing techniques. Although serotyping of Salmonella isolates is used as a traditional approach, it is not of enough resolution to clearly understand the dynamics of this pathogen within poultry companies. The aim of this research was to investigate the epidemiology and population dynamics of Salmonella serotypes in 2 poultry integrations using a whole genome sequencing approach. Two hundred and forty-three Salmonella isolates recovered from the broiler production chain of 2 integrated poultry companies were whole genome sequenced and analyzed with dedicated databases and bioinformatic software. The analyses of sequences revealed that S. Infantis was the most frequent serotype (82.3%). Most isolates showed a potential for resistance against medically important antibiotics and disinfectants. Furthermore, 97.5% of isolates harbored the pESI-like mega plasmid, that plays an important role in the global dissemination of AMR. SNP tree analysis showed that there were clones that are niche-specific while other ones were distributed throughout the broiler production chains. In this study, we demonstrated the potential of whole genome sequencing analysis for a comprehensive understanding of Salmonella distribution in integrated poultry companies. Data obtained with these techniques allow determination of the presence of genetic factors that play an important role in the environmental fitness and pathogenicity of Salmonella.
Collapse
Affiliation(s)
- José L Medina-Santana
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170103, Ecuador
| | - David Ortega-Paredes
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170103, Ecuador
| | - Sofia de Janon
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170103, Ecuador
| | - Elton Burnett
- Institute of Parasitology, McGill University, Montreal, QC H9X3V9, Canada
| | - Maria Ishida
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, NY 12206, USA
| | - Brian Sauders
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, NY 12206, USA
| | | | - Christian Vinueza-Burgos
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170103, Ecuador.
| |
Collapse
|
41
|
Sáenz L, Guzmán M, Vidal S, Caruffo M, Siel D, Zayas C, Paredes R, Valenzuela C, Hidalgo H, Pérez O, Lapierre L. Efficacy of Multivalent, Cochleate-Based Vaccine against Salmonella Infantis, S. Enteritidis and S. Typhimurium in Laying Hens. Vaccines (Basel) 2022; 10:vaccines10020226. [PMID: 35214684 PMCID: PMC8879397 DOI: 10.3390/vaccines10020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica is an important foodborne pathogen. Commercial poultry are the main reservoirs of Salmonella enterica, leading to the contamination of food and outbreaks in humans. The vaccination of chickens is one of the most important strategies to reduce the number of Salmonella in poultry farms. Unfortunately, commercial vaccines have not been fully effective in controlling the spread and do not contain all the Salmonella serovars that circulate on farms. In this study, we evaluate a new, cochleate-based, trivalent injectable vaccine against S. Enteritidis, S. Typhimurium and S. Infantis, describing the vaccine security, capacity to induce specific anti-Salmonella serovar IgY and the gene expression of immune markers related to CD4 and CD8 T-cell-mediated immunity. Efficacy was evaluated through oral challenges performed separately for each Salmonella serotype. The efficacy and safety of the trivalent vaccine was proven under controlled conditions. The vaccine has no local or systemic reactions or adverse effects on poultry performance related to the vaccine. The vaccine provided significantly increased serum IgY titer levels, significantly reduced Salmonella CFU/g present in the cecum and an increased CD4+/CD8+ ratio in vaccinated animals when challenged with S. Infantis, S. Enteritidis and S. Typhimurium. These results indicate that this new trivalent vaccine does not generate adverse effects in poultry and produces an increase in neutralizing antibodies against the three Salmonella serovars.
Collapse
Affiliation(s)
- Leonardo Sáenz
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Miguel Guzmán
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, NIAVA, Facultad de Medicina Veterinaria y Agronomía, Campus Maipú–Sede Santiago, Universidad de las Américas, Santiago 9251454, Chile
| | - Sonia Vidal
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Mario Caruffo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Daniela Siel
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Caridad Zayas
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile;
| | - Carolina Valenzuela
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Héctor Hidalgo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Oliver Pérez
- Instituto de Ciencias Básicas Y Preclínicas “Victoria de Girón”, Universidad de Ciencias Médicas de La Habana, Havana 10600, Cuba;
| | - Lisette Lapierre
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Lisette Lapierre, Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile
- Correspondence:
| |
Collapse
|
42
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
43
|
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP. Genomic characterization and antimicrobial resistance profiles of Salmonella enterica serovar Infantis isolated from food, humans and veterinary-related sources in Brazil. J Appl Microbiol 2021; 132:3327-3342. [PMID: 34958707 DOI: 10.1111/jam.15430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023]
Abstract
AIMS To characterize the genetic relatedness, phenotypic and genotypic antimicrobial resistance and plasmid content of 80 Salmonella Infantis strains isolated from food, humans and veterinary sources from 2013 to 2018 in Brazil. METHODS AND RESULTS Pulsed-field gel electrophoresis and single-nucleotide polymorphism analysis showed major clusters containing 50% and 38.8% of the strains studied respectively. Multilocus sequence typing assigned all strains to ST32. Disk-diffusion revealed that 90% of the strains presented resistant or intermediate resistant profiles and 38.8% displayed multidrug resistance. Resistance genes for aminoglycosides (aac(6')-Iaa; aadA12; aph(3″-Ib; aph(6)-Id), β-lactams (blaTEM-1 ; blaCTX-M-8 ; blaCMY-2 ), trimethoprim (dfrA8), tetracycline (tet(A)), amphenicols (floR), sulfonamide (sul2), efflux pumps (mdsA; mdsB), chromosomal point mutations in gyrB, parC, acrB and pmrA were detected. Strains harboured IncI, IncF, IncX, IncQ, IncN and IncR plasmids. CONCLUSIONS The presence of a prevalent S. Infantis subtype in Brazil and the high antimicrobial resistance rates reinforced the potential hazard of this serovar for the public health and food safety fields. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study characterizing a large set of S. Infantis from Brazil by whole-genome sequencing, which provided a better local and global comprehension about the distribution and characteristics of this serovar of importance in the food, human and veterinary fields.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|
44
|
Drauch V, Kornschober C, Palmieri N, Hess M, Hess C. Infection dynamics of Salmonella Infantis strains displaying different genetic backgrounds - with or without pESI-like plasmid - vary considerably. Emerg Microbes Infect 2021; 10:1471-1480. [PMID: 34197273 PMCID: PMC8300933 DOI: 10.1080/22221751.2021.1951124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022]
Abstract
Food-borne infections with Salmonella are among the most common causes of human diseases worldwide, and infections with the serovar Infantis are becoming increasingly important. So far, diverse phenotypes and genotypes of S. Infantis have been reported. Therefore, the present study aimed to investigate the infection dynamics of two different S. Infantis strains in broilers. For this purpose, 15 birds were infected on day 2 of life with 108 CFU/ml of a pESI+ or a pESI- S. Infantis strain, respectively. Ten uninfected birds served as in-contact birds to monitor transmission. In both groups, an increase of infection was observed from 7 days of age onwards, reaching its peak at 28 days. However, the pESI+ strain proved significantly more virulent being re-isolated from most cloacal swabs and organs by direct plating. In contrast, the pESI- strain could be re-isolated from cloacal swabs and caeca only when enrichment was applied. Although the excretion of this strain was limited, the transmission level to in-contact birds was similar to the pESI+ strain. Differences in infection dynamics were also reflected in the antibody response: whereas the pESI+ strain provoked a significant increase in antibodies, antibody levels following infection with the pESI- strain remained in the range of negative control birds. The actual findings provide for the first time evidence of S. Infantis strain-specific infectivity in broilers and confirm previous observations in the field regarding differences in persistence on farms and resistance against disinfectants.
Collapse
Affiliation(s)
- Victoria Drauch
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | - Nicola Palmieri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
45
|
Pardo-Esté C, Lorca D, Castro-Severyn J, Krüger G, Alvarez-Thon L, Zepeda P, Sulbaran-Bracho Y, Hidalgo A, Tello M, Molina F, Molina L, Remonsellez F, Castro-Nallar E, Saavedra C. Genetic Characterization of Salmonella Infantis with Multiple Drug Resistance Profiles Isolated from a Poultry-Farm in Chile. Microorganisms 2021; 9:2370. [PMID: 34835497 PMCID: PMC8621671 DOI: 10.3390/microorganisms9112370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Salmonella comprises over 2500 serotypes and foodborne contamination associated with this pathogen remains an important health concern worldwide. During the last decade, a shift in serotype prevalence has occurred as traditionally less prevalent serotypes are increasing in frequency of infections, especially those related to poultry meat contamination. S. Infantis is one of the major emerging serotypes, and these strains commonly display antimicrobial resistance and can persist despite cleaning protocols. Thus, this work aimed to isolate S. Infantis strains from a poultry meat farm in Santiago, Chile and to characterize genetic variations present in them. We determined their genomic and phenotypic profiles at different points along the production line. The results indicate that the strains encompass 853 polymorphic sites (core-SNPs) with isolates differing from one another by 0-347 core SNPs, suggesting variation among them; however, we found discrete correlations with the source of the sample in the production line. Furthermore, the pan-genome was composed of 4854 total gene clusters of which 2618 (53.9%) corresponds to the core-genome and only 181 (3.7%) are unique genes (those present in one particular strain). This preliminary analysis will enrich the surveillance of Salmonella, yet further studies are required to assess their evolution and phylogeny.
Collapse
Affiliation(s)
- Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Diego Lorca
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile; (J.C.-S.); (F.R.)
| | - Gabriel Krüger
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Luis Alvarez-Thon
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santa Isabel 1186, Santiago 8330601, Chile;
| | - Phillippi Zepeda
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Yoelvis Sulbaran-Bracho
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Alejandro Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Mario Tello
- Laboratorio de Metagenomica Bacteriana, Centro de Biotecnología Acuicola, Universidad de Santiago, Alameda, Estación Central, Santiago 9170002, Chile;
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, 34184 Montpellier, France; (F.M.); (L.M.)
| | - Laurence Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, 34184 Montpellier, France; (F.M.); (L.M.)
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile; (J.C.-S.); (F.R.)
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile;
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Claudia Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| |
Collapse
|
46
|
Lee WWY, Mattock J, Greig DR, Langridge GC, Baker D, Bloomfield S, Mather AE, Wain JR, Edwards AM, Hartman H, Dallman TJ, Chattaway MA, Nair S. Characterization of a pESI-like plasmid and analysis of multidrug-resistant Salmonella enterica Infantis isolates in England and Wales. Microb Genom 2021; 7:000658. [PMID: 34647862 PMCID: PMC8627215 DOI: 10.1099/mgen.0.000658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Infantis is the fifth most common Salmonella serovar isolated in England and Wales. Epidemiological, genotyping and antimicrobial-resistance data for S . enterica Infantis isolates were used to analyse English and Welsh demographics over a 5 year period. Travel cases associated with S . enterica Infantis were mainly from Asia, followed by cases from Europe and North America. Since 2000, increasing numbers of S . enterica Infantis had multidrug resistance determinants harboured on a large plasmid termed ‘plasmid of emerging S . enterica Infantis’ (pESI). Between 2013 and 2018, 42 S . enterica Infantis isolates were isolated from humans and food that harboured resistance determinants to multiple antimicrobial classes present on a pESI-like plasmid, including extended-spectrum β-lactamases (ESBLs; bla CTX-M-65). Nanopore sequencing of an ESBL-producing human S . enterica Infantis isolate indicated the presence of two regions on an IncFIB pESI-like plasmid harbouring multiple resistance genes. Phylogenetic analysis of the English and Welsh S . enterica Infantis population indicated that the majority of multidrug-resistant isolates harbouring the pESI-like plasmid belonged to a single clade maintained within the population. The bla CTX-M-65 ESBL isolates first isolated in 2013 comprise a lineage within this clade, which was mainly associated with South America. Our data, therefore, show the emergence of a stable resistant clone that has been in circulation for some time in the human population in England and Wales, highlighting the necessity of monitoring resistance in this serovar.
Collapse
Affiliation(s)
- Winnie W. Y. Lee
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | - David R. Greig
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - David Baker
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Samuel Bloomfield
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Alison E. Mather
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | - John R. Wain
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hassan Hartman
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| | - Timothy J. Dallman
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Marie A. Chattaway
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| | - Satheesh Nair
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| |
Collapse
|
47
|
Gomes-Neto JC, Pavlovikj N, Cano C, Abdalhamid B, Al-Ghalith GA, Loy JD, Knights D, Iwen PC, Chaves BD, Benson AK. Heuristic and Hierarchical-Based Population Mining of Salmonella enterica Lineage I Pan-Genomes as a Platform to Enhance Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.725791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The recent incorporation of bacterial whole-genome sequencing (WGS) into Public Health laboratories has enhanced foodborne outbreak detection and source attribution. As a result, large volumes of publicly available datasets can be used to study the biology of foodborne pathogen populations at an unprecedented scale. To demonstrate the application of a heuristic and agnostic hierarchical population structure guided pan-genome enrichment analysis (PANGEA), we used populations of S. enterica lineage I to achieve two main objectives: (i) show how hierarchical population inquiry at different scales of resolution can enhance ecological and epidemiological inquiries; and (ii) identify population-specific inferable traits that could provide selective advantages in food production environments. Publicly available WGS data were obtained from NCBI database for three serovars of Salmonella enterica subsp. enterica lineage I (S. Typhimurium, S. Newport, and S. Infantis). Using the hierarchical genotypic classifications (Serovar, BAPS1, ST, cgMLST), datasets from each of the three serovars showed varying degrees of clonal structuring. When the accessory genome (PANGEA) was mapped onto these hierarchical structures, accessory loci could be linked with specific genotypes. A large heavy-metal resistance mobile element was found in the Monophasic ST34 lineage of S. Typhimurium, and laboratory testing showed that Monophasic isolates have on average a higher degree of copper resistance than the Biphasic ones. In S. Newport, an extra sugE gene copy was found among most isolates of the ST45 lineage, and laboratory testing of multiple isolates confirmed that isolates of S. Newport ST45 were on average less sensitive to the disinfectant cetylpyridimium chloride than non-ST45 isolates. Lastly, data-mining of the accessory genomic content of S. Infantis revealed two cryptic Ecotypes with distinct accessory genomic content and distinct ecological patterns. Poultry appears to be the major reservoir for Ecotype 1, and temporal analysis further suggested a recent ecological succession, with Ecotype 2 apparently being displaced by Ecotype 1. Altogether, the use of a heuristic hierarchical-based population structure analysis that includes bacterial pan-genomes (core and accessory genomes) can (1) improve genomic resolution for mapping populations and accessing epidemiological patterns; and (2) define lineage-specific informative loci that may be associated with survival in the food chain.
Collapse
|
48
|
Namli S, Soyer Y. Investigation of class 1 integrons and virulence genes in the emergent Salmonella serovar Infantis in Turkey. Int Microbiol 2021; 25:259-265. [PMID: 34559352 DOI: 10.1007/s10123-021-00212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
The emerging situation of Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) in Turkey was investigated in terms of virulence genes and mobile genetic elements such as Salmonella genomic island 1 (SGI1) and class 1 (C1) integron to see whether increased multidrug resistance (MDR) and ability to cause human cases is a consequence of their possession. Screening of SGI1 (and its variants) and C1 integrons was done with conventional PCR, while screening of gene cassettes and virulence genes was conducted with real-time PCR for 70 S. Infantis isolates from poultry products. SGI1 or its variants were not detected in any of the isolates. Sixty-eight of 70 isolates were detected to carry one C1 integron of size 1.0 kb. These integrons were detected to carry ant(3″)-Ia gene cassette explaining the streptomycin/spectinomycin resistance. Sequence analysis of gene cassettes belongs to four representing isolates which showed that, although their difference in isolation date and place, genetically, they are 99.9% similar. Virulence gene screening was introduced as genotypic virulence profiles. The most dominant profile for S. Infantis isolates, among twelve genes, was gatC-tcfA, which are known to be related to colonization at specific hosts. This study revealed the high percentage of C1 integron possession in S. Infantis isolates from poultry products in Turkey. It also showed the potential of S. Infantis strains to be resistant to more antimicrobial drugs. Moreover, a dominant profile of virulence genes that are uncommon for non-typhoidal Salmonella (NTS) serovars was detected, which might explain the enhanced growth at specified hosts.
Collapse
Affiliation(s)
- Sahin Namli
- Department of Food Engineering, Faculty of Engineering, Orta Dogu Teknik Üniversitesi, Ankara, 06800, Turkey
| | - Yesim Soyer
- Department of Food Engineering, Faculty of Engineering, Orta Dogu Teknik Üniversitesi, Ankara, 06800, Turkey.
| |
Collapse
|
49
|
Diaconu EL, Alba P, Feltrin F, Di Matteo P, Iurescia M, Chelli E, Donati V, Marani I, Giacomi A, Franco A, Carfora V. Emergence of IncHI2 Plasmids With Mobilized Colistin Resistance ( mcr)- 9 Gene in ESBL-Producing, Multidrug-Resistant Salmonella Typhimurium and Its Monophasic Variant ST34 From Food-Producing Animals in Italy. Front Microbiol 2021; 12:705230. [PMID: 34335538 PMCID: PMC8322855 DOI: 10.3389/fmicb.2021.705230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
A collection of 177 genomes of Salmonella Typhimurium and its monophasic variant isolated in 2014-2019 from Italian poultry/livestock (n = 165) and foodstuff (n = 12), previously screened for antimicrobial susceptibility and assigned to ST34 and single-locus variants, were studied in-depth to check the presence of the novel mcr-9 gene and to investigate their genetic relatedness by whole genome sequencing (WGS). The study of accessory resistance genes revealed the presence of mcr-9.1 in 11 ST34 isolates, displaying elevated colistin minimum inhibitory concentration values up to 2 mg/L and also a multidrug-resistant (MDR) profile toward up to seven antimicrobial classes. Five of them were also extended-spectrum beta-lactamases producers (bla SHV - 12 type), mediated by the corresponding antimicrobial resistance (AMR) accessory genes. All mcr-9-positive isolates harbored IncHI2-ST1 plasmids. From the results of the Mash analysis performed on all 177 genomes, the 11 mcr-9-positive isolates fell together in the same subcluster and were all closely related. This subcluster included also two mcr-9-negative isolates, and other eight mcr-9-negative ST34 isolates were present within the same parental branch. All the 21 isolates within this branch presented an IncHI2/2A plasmid and a similar MDR gene pattern. In three representative mcr-9-positive isolates, mcr-9 was demonstrated to be located on different IncHI2/IncHI2A large-size (∼277-297 kb) plasmids, using a combined Illumina-Oxford Nanopore WGS approach. These plasmids were also compared by BLAST analysis with publicly available IncHI2 plasmid sequences harboring mcr-9. In our plasmids, mcr-9 was located in a ∼30-kb region lacking different genetic elements of the typical core structure of mcr-9 cassettes. In this region were also identified different genes involved in heavy metal metabolism. Our results underline how genomics and WGS-based surveillance are increasingly indispensable to achieve better insights into the genetic environment and features of plasmid-mediated AMR, as in the case of such IncHI2 plasmids harboring other MDR genes beside mcr-9, that can be transferred horizontally also to other major Salmonella serovars spreading along the food chain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Virginia Carfora
- National Reference Laboratory for Antimicrobial Resistance, General Diagnostics Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri,”Rome, Italy
| |
Collapse
|
50
|
Diaconu EL, Carfora V, Alba P, Di Matteo P, Stravino F, Buccella C, Dell'Aira E, Onorati R, Sorbara L, Battisti A, Franco A. Novel IncFII plasmid harbouring blaNDM-4 in a carbapenem-resistant Escherichia coli of pig origin, Italy. J Antimicrob Chemother 2021; 75:3475-3479. [PMID: 32835381 PMCID: PMC7662189 DOI: 10.1093/jac/dkaa374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives To the best of our knowledge, we describe the first evidence in Europe of an MDR, blaNDM-4-positive Escherichia coli isolated from a food-producing animal, harboured by a novel IncFII plasmid of which we report the complete sequence. Methods One blaNDM-4-positive E. coli isolated in 2019 from the caecal contents of a fattening pig in Italy was in-depth characterized by combined bioinformatic analysis of Oxford Nanopore long reads and Illumina short reads, for in silico typing, determination of the blaNDM-4 genetic context and full reconstruction of the blaNDM-4–carrying plasmid. Results The isolate belonged to ST641 and to the genoserotype O108:H23 and tested positive for different virulence genes and plasmid replicons. The MDR phenotype of resistance to all β-lactams, carbapenems, sulfamethoxazole and trimethoprim was mediated by blaTEM-1B, blaNDM-4, sul1/sul3 and dfrA12, respectively. The blaNDM-4 gene was harboured by a novel 53 043 bp IncFII plasmid (pMOL412_FII) composed of four main genetic regions, including an MDR region (MRR-NDM-4) of 16 kb carrying blaNDM-4 and several antimicrobial resistance genes located in a class 1 integron. pMOL412_FII was closely related to another ∼90.3 kb plasmid (pM109_FII) harbouring blaNDM-4 in an E. coli isolated from a human patient in Myanmar. Conclusions To the best of our knowledge, we have identified for the first time in Europe an NDM-producing Enterobacterales in livestock and resolved the complete sequence of the novel pMOL412_FII plasmid harbouring blaNDM-4 in an MRR. A global One Health approach, comparing genomic data from different sources and geographical areas, may help to trace back and control possible plasmid-borne carbapenemase gene transmission between animals and humans and along the food chain at international level.
Collapse
Affiliation(s)
- Elena L Diaconu
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Virginia Carfora
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Patricia Alba
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Paola Di Matteo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Fiorentino Stravino
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Carmela Buccella
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Elena Dell'Aira
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Roberta Onorati
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Luigi Sorbara
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Antonio Battisti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Alessia Franco
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| |
Collapse
|