1
|
Elrashedy A, Nayel M, Salama A, Zaghawa A, El-Shabasy RM, Hasan ME. Foot-and-mouth disease: genomic and proteomic structure, antigenic sites, serotype relationships, immune evasion, recent vaccine development strategies, and future perspectives. Vet Res 2025; 56:78. [PMID: 40197411 PMCID: PMC11974090 DOI: 10.1186/s13567-025-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/31/2024] [Indexed: 04/10/2025] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and transmissible disease that can have significant economic and trade repercussions during outbreaks. In Egypt, despite efforts to mitigate FMD through mandatory immunization, the disease continues to pose a threat due to the high genetic variability and quasi-species nature of the FMD virus (FMDV). Vaccines have been crucial in preventing and managing FMD, and ongoing research focusses on developing next-generation vaccines that could provide universal protection against all FMDV serotypes. This review thoroughly examines the genetic structure of FMDV, including its polyprotein cleavage process and the roles of its structural and non-structural proteins in immune evasion. Additionally, it explores topics such as antigenic sites, specific mutations, and serotype relationships from Egypt and Ethiopia, as well as the structural changes in FMDV serotypes for vaccine development. The review also addresses the challenges associated with creating effective vaccines for controlling FMD, particularly focusing on the epitope-based vaccine. Overall, this review offers valuable insights for researchers seeking to develop effective strategies and vaccines for controlling FMD.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
- Faculty of Health Science Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Rehan M El-Shabasy
- Chemistry Department, The American University in Cairo, AUC Avenue, New Cairo, 11835, Egypt
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
| | - Mohamed E Hasan
- Faculty of Health Science Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
2
|
Li H, Liu P, Dong H, Dekker A, Harmsen MM, Guo H, Wang X, Sun S. Foot-and-mouth disease virus antigenic landscape and reduced immunogenicity elucidated in atomic detail. Nat Commun 2024; 15:8774. [PMID: 39389971 PMCID: PMC11467346 DOI: 10.1038/s41467-024-53027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Unlike most other picornaviruses, foot-and-mouth disease (FMD) intact virions (146S) dissociate easily into small pentameric subunits (12S). This causes a dramatically decreased immunogenicity by a mechanism that remains elusive. Here, we present the high-resolution structures of 12S (3.2 Å) and its immune complex of a single-domain antibody (VHH) targeting the particle interior (3.2 Å), as well as two 146S-specific VHHs complexed to distinct sites on the 146S capsid surface (3.6 Å and 2.9 Å). The antigenic landscape of 146S is depicted using 13 known FMD virus-antibody complexes. Comparison of the immunogenicity of 146S and 12S in pigs, focusing on the resulting antigenic sites and incorporating structural analysis, reveals that dissociation of 146S leads to structural alteration and destruction of multiple epitopes, resulting in significant differences in antibody profiles/lineages induced by 12S and 146S. Furthermore, 146S generates higher synergistic neutralizing antibody titers compared to 12S, whereas both particles induce similar total FMD virus specific antibody titers. This study can guide the structure-based rational design of novel multivalent and broad-spectrum recombinant vaccines for protection against FMD.
Collapse
Grants
- 22JR5RA032, 23JRRA551 Natural Science Foundation of Gansu Province
- 22JR5RA032, 23JRRA551 Natural Science Foundation of Gansu Province
- 32072847,32072859, 32301127 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2021YFD1800303), Postdoctoral Science Foundation Funded Project (2023M733819, 23JRRA554), Lanzhou Talent Innovation and Entrepreneurship Project(2023-RC-3)
- the National Key Research and Development Program of China (2018YFA0900801), CAS (YSBR-010), the National Science Foundation Grants (12034006, 32325004 and T2394482), National Science Fund for Distinguished Young Scholar (No. 32325004), the NSFS Innovative Research Group (No. 81921005)
- the Ministry of Agriculture, Nature and Food Quality, the Netherlands (project WOT-01-002-034)
Collapse
Affiliation(s)
- Haozhou Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Aldo Dekker
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Michiel M Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
3
|
Tommeurd W, Thueng-in K, Theerawatanasirikul S, Tuyapala N, Poonsuk S, Petcharat N, Thangthamniyom N, Lekcharoensuk P. Identification of Conserved Linear Epitopes on Viral Protein 2 of Foot-and-Mouth Disease Virus Serotype O by Monoclonal Antibodies 6F4.D11.B6 and 8D6.B9.C3. Antibodies (Basel) 2024; 13:67. [PMID: 39189238 PMCID: PMC11348169 DOI: 10.3390/antib13030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious disease of cloven-hoofed animals with a significant economic impact. Early diagnosis and effective prevention and control could reduce the spread of the disease which could possibly minimize economic losses. Epitope characterization based on monoclonal antibodies provide essential information for developing diagnostic assays and vaccine designs. In this study, monoclonal antibodies raised against FMD virus (FMDV) were produced. Sixty-six monoclonal antibodies demonstrated strong reactivity and specificity to FMDV. The purified monoclonal antibodies were further used for bio-panning to select phage expressing specific epitopes from phage-displayed 12 mer-peptide library. The phage peptide sequences were analyzed using multiple sequence alignment and evaluated by peptide ELISA. Two hybridoma clones secreted monoclonal antibodies recognizing linear epitopes on VP2 of FMDV serotype O. The non-neutralizing monoclonal antibody 6F4.D11.B6 recognized the residues 67-78 on antigenic site 2 resinding in VP2, while the neutralizing monoclonal antibody 8D6.B9.C3 recognized a novel linear epitope encompassing residues 115-126 on VP2. This information and the FMDV-specific monoclonal antibodies provide valuable sources for further study and application in diagnosis, therapeutics and vaccine designs to strengthen the disease prevention and control measures.
Collapse
Affiliation(s)
- Wantanee Tommeurd
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
| | - Kanyarat Thueng-in
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Sirin Theerawatanasirikul
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nongnaput Tuyapala
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Sukontip Poonsuk
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nantawan Petcharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nattarat Thangthamniyom
- Research and Development Department, Animal Health and Diagnostic Center, CPF (Thailand) Public Company Limited, Bangkok 10530, Thailand;
| | - Porntippa Lekcharoensuk
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
4
|
Gadir M, Azimi SM, Harzandi N, Hemati B, Eskandarzade N. Whole-genome sequencing of foot-and-mouth disease virus serotype O/PanAsia-2/QOM-15 and comparison of its VP1-encoding region with two vaccine strains. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:615-623. [PMID: 38169601 PMCID: PMC10758011 DOI: 10.30466/vrf.2023.1978294.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/20/2023] [Indexed: 01/05/2024]
Abstract
Despite widespread vaccination against foot-and-mouth disease, many outbreaks still occur in endemic areas. We attempted to determine the genetic and antigenic properties of the O/PanAsia-2/QOM-15 foot-and-mouth disease virus new vaccine strain. Thus, whole-genome sequencing was used to identify vulnerable pinpoint sites across the genome. The VP1 sequence (1D gene) of the O/PanAsia-2/QOM-15 viral genome was then compared to the VP1 sequences of two previously used vaccine strains, O/PanAsia (JQ321837) and O/PanAsia-2 (JN676146). The antigenic relationship of these three viruses was calculated by the two dimensional-virus neutralization test. At the nucleotide level, 47 single variants were identified, of which 19.00% were in the 5' untranslated region (UTR), 79.00% in the polyprotein region, and 2.00% in the 3' UTR region. Approximately half of the single nucleotide polymorphisms that have occurred in 1D gene resulted in amino acid (AA) substitutions in the VP1 structure. The single nucleotide polymorphisms also caused AA substitutions in other structural proteins, including VP2 and VP3, and some non-structural proteins (Lpro, 2C, and 3A). The O/PanAsia-2/QOM-15 shared higher sequence similarity with O/PanAsia-2 (91.00%) compared to O/PanAsia (87.30%). Evaluating r-value showed that the antigenic relationship of O/PanAsia-2/QOM-15 with O/PanAsia-2 (29.00%) was greater than that of the O/PanAsia (24.00%); however, all three viruses were immunologically distinct. After 10 years, the alteration of virus antigenicity and the lack of detectable adaptive pressure on VP1 sequence suggest that studying genetic dynamics beyond the VP1 region is necessary to evaluate FMDV pathogenicity and vaccine failure.
Collapse
Affiliation(s)
- Mehrnoosh Gadir
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Seyed Mahmoud Azimi
- Foot and Mouth Disease Reference Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran;
| | - Naser Harzandi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Behzad Hemati
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Neda Eskandarzade
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
5
|
Abd-Halin FN, Zakaria Z, Ismail S, Othman S. Characterisation of capsid polypeptide P1 and capsid protein VP1 of the Malaysia foot and mouth disease virus (FMDV) serotype O and A isolates. ASIA PACIFIC JOURNAL OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2023:26-38. [DOI: 10.35118/apjmbb.2023.031.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Foot and mouth disease virus (FMDV) is the cause of foot and mouth disease (FMD) outbreaks in livestock worldwide, which affects domestic and international trade, resulting in significant economic losses and social consequences. For efficient monitoring and prevention of FMD outbreaks, the need for improved strategies to control FMDV and achieve FMD-free status with various control measures including vaccination can be established. In vaccinology, major advances and discoveries in vaccination variations including DNA and protein subunit vaccines proved to be more economical and sustainable. To develop a safe vaccine for animals, possible antigenic genes or antigens need to be identified and characterised. The FMDV is a single-stranded RNA virus consisting of a capsid precursor polypeptide, P1, which encodes for four structural proteins (VP4-1), leading to antigenic variation and VP1 potentially carrying the key epitope for vaccine development. This study aims to identify and characterise the capsid polypeptide, P1 and capsid protein, VP1 of the Malaysian FMDV serotype O and serotype A isolates. The nucleotide and protein sequences were identified based on the FMD outbreaks in Malaysia and the antigenicity of the P1 and VP1 was predicted by Kolaskar and Tongaonkar's semi-empirical method. Subsequently, the P1 and VP1 genes were inserted into pET-28a, respectively, and used for protein expression analysis. The P1 and VP1 were predicted to be antigenic via in silico analysis and successfully expressed and characterised through in vitro analysis. Hence, this study can be exploited as a tool to design a new novel vaccine for vaccine development against FMD in bovines.
Collapse
Affiliation(s)
- Farah Najwa Abd-Halin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zunita Zakaria
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Saila Ismail
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sarah Othman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Harmsen MM, Li H, Sun S, van der Poel WHM, Dekker A. Mapping of foot-and-mouth disease virus antigenic sites recognized by single-domain antibodies reveals different 146S particle specific sites and particle flexibility. Front Vet Sci 2023; 9:1040802. [PMID: 36699337 PMCID: PMC9869066 DOI: 10.3389/fvets.2022.1040802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Vaccination with intact (146S) foot-and-mouth disease virus (FMDV) particles is used to control FMD. However, 146S particles easily dissociate into stable pentameric 12S particles which are less immunogenic. We earlier isolated several single-domain antibody fragments (VHHs) that specifically bind either 146S or 12S particles. These particle-specific VHHs are excellent tools for vaccine quality control. In this study we mapped the antigenic sites recognized by these VHHs by competition ELISAs, virus neutralization, and trypsin sensitivity of epitopes. We included two previously described monoclonal antibodies (mAbs) that are either 12S specific (mAb 13A6) or 146S specific (mAb 9). Although both are 12S specific, the VHH M3F and mAb 13A6 were found to bind independent antigenic sites. M3F recognized a non-neutralizing and trypsin insensitive site whereas mAb 13A6 recognized the trypsin sensitive VP2 N-terminus. The Asia1 146S-specific site was trypsin sensitive, neutralizing and also recognized by the VHH M8F, suggesting it involves the VP1 GH-loop. The type A 146S-specific VHHs recognized two independent antigenic sites that are both also neutralizing but trypsin insensitive. The major site was further mapped by cross-linking mass spectrometry (XL-MS) of two broadly strain reactive 146S-specific VHHs complexed to FMDV. The epitopes were located close to the 2-fold and 3-fold symmetry axes of the icosahedral virus 3D structure, mainly on VP2 and VP3, overlapping the earlier identified mAb 9 site. Since the epitopes were located on a single 12S pentamer, the 146S specificity cannot be explained by the epitope being split due to 12S pentamer dissociation. In an earlier study the cryo-EM structure of the 146S-specific VHH M170 complexed to type O FMDV was resolved. The 146S specificity was reported to be caused by an altered conformation of this epitope in 12S and 146S particles. This mechanism probably also explains the 146S-specific binding by the two type A VHHs mapped by XL-MS since their epitopes overlapped with the epitope recognized by M170. Surprisingly, residues internal in the 146S quaternary structure were also cross-linked to VHH. This probably reflects particle flexibility in solution. Molecular studies of virus-antibody interactions help to further optimize vaccines and improve their quality control.
Collapse
Affiliation(s)
- Michiel M. Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands,*Correspondence: Michiel M. Harmsen ✉
| | - Haozhou Li
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wim H. M. van der Poel
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands,Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Aldo Dekker
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| |
Collapse
|
7
|
Chathuranga WAG, Hewawaduge C, Nethmini NAN, Kim TH, Kim JH, Ahn YH, Yoon IJ, Yoo SS, Park JH, Lee JS. Efficacy of a Novel Multiepitope Vaccine Candidate against Foot-and-Mouth Disease Virus Serotype O and A. Vaccines (Basel) 2022; 10:vaccines10122181. [PMID: 36560591 PMCID: PMC9786174 DOI: 10.3390/vaccines10122181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease in cloven-hoofed animals. To prevent the spread of FMD virus (FMDV), traditional inactivated vaccines are used to immunize susceptible animals in disease-endemic countries. However, the inactivated FMD vaccine has several limitations, including safety concerns. To overcome these limitations, subunit proteins have been studied as alternative vaccine candidates. In this study, we designed two multiepitope recombinant proteins (OVM and AVM) containing antigenic sites (residue of VP1 132-162 and residue of VP1 192-212) of three topotypes of FMDV serotype O or three topotypes of FMDV serotype A. Each recombinant protein was efficiently expressed in Escherichia coli with high solubility, and the immunogenicity and protective efficacy of the proteins as FMD vaccine candidates were evaluated. The results showed that OVM and AVM emulsified with ISA201 adjuvant induced effective antigen-specific humoral and cell-mediated immune responses and successfully protected mice from O/Jincheon/SKR/2014, O/VET/2013, and A/Malaysia/97 viruses. In addition, intramuscular immunization of pigs with the OVM and AVM emulsified with ISA201 elicited effective levels of neutralizing antibodies to the viruses with homologous epitopes. Importantly, OVM-AVM emulsified with CAvant®SOE-X adjuvant conferred 100% protection against the O/Jincheon/SKR/2014 virus with homologous residues and 75% protection against A/SKR/GP/2018 with heterologous residues. The results presented in this study suggest that the combination of OVM and AVM protein with an effective adjuvant could yield an effective and safe vaccine candidate for the prevention and control of foot-and-mouth disease. In addition, our results provide a vaccine platform that can safely, cost-efficiently, and rapidly generate protective vaccine candidates against diverse FMDVs.
Collapse
Affiliation(s)
- W. A. Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - N. A. Nadeeka Nethmini
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Ju Hun Kim
- Komipharm International Co., Ltd., Siheung 15094, Gyeonggi-do, Republic of Korea
| | - Young-Hoon Ahn
- Choong Ang Vaccine Laboratory Co., Ltd., Daejeon 34055, Republic of Korea
| | - In-Joong Yoon
- Choong Ang Vaccine Laboratory Co., Ltd., Daejeon 34055, Republic of Korea
| | - Sung-Sik Yoo
- Choong Ang Vaccine Laboratory Co., Ltd., Daejeon 34055, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
- Correspondence: (J.-H.P.); (J.-S.L.); Tel.: +82-31-467-1719 (J.-H.P.); +82-42-821-6753 (J.-S.L.)
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
- Correspondence: (J.-H.P.); (J.-S.L.); Tel.: +82-31-467-1719 (J.-H.P.); +82-42-821-6753 (J.-S.L.)
| |
Collapse
|
8
|
Di Giacomo S, Bucafusco D, Schammas JM, Pega J, Miraglia MC, Barrionuevo F, Capozzo AV, Perez-Filgueira DM. Assessment on Different Vaccine Formulation Parameters in the Protection against Heterologous Challenge with FMDV in Cattle. Viruses 2022; 14:v14081781. [PMID: 36016403 PMCID: PMC9416185 DOI: 10.3390/v14081781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Foot-and-mouth disease (FMD) remains one of the major threats to animal health worldwide. Its causative agent, the FMD virus (FMDV), affects cloven-hoofed animals, including farm animals and wildlife species, inflicting severe damage to the international trade and livestock industry. FMDV antigenic variability remains one of the biggest challenges for vaccine-based control strategies. The current study analyzed the host’s adaptive immune responses in cattle immunized with different vaccine protocols and investigated its associations with the clinical outcome after infection with a heterologous strain of FMDV. The results showed that antigenic payload, multivalency, and revaccination may impact on the clinical outcome after heterologous challenge with FMDV. Protection from the experimental infection was related to qualitative traits of the elicited antibodies, such as avidity, IgG isotype composition, and specificity diversity, modulating and reflecting the vaccine-induced maturation of the humoral response. The correlation analyses of the serum avidity obtained per vaccinated individual might suggest that conventional vaccination can induce high-affinity immunoglobulins against conserved epitopes even within different FMDV serotypes. Cross-reaction among strains by these high-affinity antibodies may support further protection against a heterologous infection with FMDV.
Collapse
|
9
|
The Use of Distinctive Monoclonal Antibodies in FMD VLP- and P1-Based Blocking ELISA for the Seromonitoring of Vaccinated Swine. Int J Mol Sci 2022; 23:ijms23158542. [PMID: 35955678 PMCID: PMC9368795 DOI: 10.3390/ijms23158542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
The serum neutralization (SN) test has been regarded as the “gold standard” for seroconversion following foot-and-mouth disease virus (FMDV) vaccination, although a high-level biosafety laboratory is necessary. ELISA is one alternative, and its format is constantly being improved. For instance, standard polyclonal antisera have been replaced by monoclonal antibodies (MAbs) for catching and detecting antibodies, and inactive viruses have been replaced by virus-like particles (VLPs). To the best of current knowledge, however, no researchers have evaluated the performances of different MAbs as tracers. In previous studies, we successfully identified site 1 and site 2 MAbs Q10E and P11A. In this study, following the established screening platform, the VLPs of putative escape mutants from sites 1 to 5 were expressed and used to demonstrate that S11B is a site 3 MAb. Additionally, the vulnerability of VLPs prompted us to assess another diagnostic antigen: unprocessed polyprotein P1. Therefore, we established and evaluated the performance of blocking ELISA (bELISA) systems based on VLPs and P1, pairing them with Q10E, P11A, S11B, and the non-neutralizing TSG MAb as tracers. The results indicated that the VLP paired with S11B demonstrated the highest correlation with the SN titers (R2 = 0.8071, n = 63). Excluding weakly positive serum samples (SN = 16–32, n = 14), the sensitivity and specificity were 95.65% and 96.15% (kappa = 0.92), respectively. Additionally, the P1 pairing with Q10E also demonstrated a high correlation (R2 = 0.768). We also discovered that these four antibodies had steric effects on one another to varying degrees, despite recognizing distinct antigenic sites. This finding indicated that MAbs as tracers could not accurately detect specific antibodies, possibly because MAbs are bulky compared to a protomeric unit. However, our results still provide convincing support for the application of two pairs of bELISA systems: VLP:S11B-HRP and P1:Q10E-HRP.
Collapse
|
10
|
Avidity of Polyclonal Antibodies to Foot-and-Mouth Disease Virus in Bovine Serum Measured Using Bio-Layer Interferometry. Viruses 2022; 14:v14040714. [PMID: 35458444 PMCID: PMC9027280 DOI: 10.3390/v14040714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a disease of cloven-hoofed livestock caused by FMD virus (FMDV). FMD can be controlled through the use of inactivated vaccines, and it is well established that the protection afforded by FMD vaccines correlates strongly with neutralising antibody titres. However, the overall strength of binding, referred to as avidity, is also an important parameter with respect to the ability of antibodies to neutralise virus infection, and there is evidence that avidity can affect the level of protection afforded by FMDV vaccines. Here, as an alternative to modified enzyme-linked immunosorbent assays (avidity ELISAs) incorporating a chaotropic wash step, we used bio-layer interferometry (BLI) to measure the avidity of bovine polyclonal antibodies against FMDV capsids. We conducted preliminary experiments using recombinant FMDV capsids, as well as peptides representing antigenic loops, to demonstrate that the binding of monoclonal antibodies targeting specific antigenic sites could be detected using BLI. Subsequent experiments using polyclonal sera derived from FMD vaccinated cattle provided evidence of a positive correlation between the neutralising titre of the serum and the avidity as measured by BLI. Furthermore, we observed an increase in BLI avidity, as well as in the titre, in vaccinated animals upon challenge with the live virus.
Collapse
|
11
|
Two Cross-Protective Antigen Sites on Foot-and-Mouth Disease Virus Serotype O Structurally Revealed by Broadly Neutralizing Antibodies from Cattle. J Virol 2021; 95:e0088121. [PMID: 34406868 DOI: 10.1128/jvi.00881-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that infects cloven-hoofed animals. Neutralizing antibodies play critical roles in antiviral infection. Although five known antigen sites that induce neutralizing antibodies have been defined, studies on cross-protective antigen sites are still scarce. We mapped two cross-protective antigen sites using 13 bovine-derived broadly neutralizing monoclonal antibodies (bnAbs) capable of neutralizing 4 lineages within 3 topotypes of FMDV serotype O. One antigen site was formed by a novel cluster of VP3-focused epitopes recognized by bnAb C4 and C4-like antibodies. The cryo-electron microscopy (cryo-EM) structure of the FMDV-OTi (O/Tibet/99)-C4 complex showed close contact with VP3 and a novel interprotomer antigen epitope around the icosahedral 3-fold axis of the FMDV particle, which is far beyond the known antigen site 4. The key determinants of the neutralizing function of C4 and C4-like antibodies on the capsid were βB (T65), the B-C loop (T68), the E-F loop (E131 and K134), and the H-I loop (G196), revealing a novel antigen site on VP3. The other antigen site comprised two group epitopes on VP2 recognized by 9 bnAbs (B57, B73, B77, B82, F28, F145, F150, E46, and E54), which belong to the known antigen site 2 of FMDV serotype O. Notably, bnAb C4 potently promoted FMDV RNA release in response to damage to viral particles, suggesting that the targeted epitope contains a trigger mechanism for particle disassembly. This study revealed two cross-protective antigen sites that can elicit cross-reactive neutralizing antibodies in cattle and provided new structural information for the design of a broad-spectrum molecular vaccine against FMDV serotype O. IMPORTANCE FMDV is the causative agent of foot-and-mouth disease (FMD), which is one of the most contagious and economically devastating diseases of domestic animals. The antigenic structure of FMDV serotype O is rather complicated, especially for those sites that can elicit a cross-protective neutralizing antibody response. Monoclonal neutralization antibodies provide both crucial defense components against FMDV infection and valuable tools for fine analysis of the antigenic structure. In this study, we found a cluster of novel VP3-focused epitopes using 13 bnAbs against FMDV serotype O from natural host cattle, which revealed two cross-protective antigen sites on VP2 and VP3. Antibody C4 targeting this novel epitope potently promoted viral particle disassembly and RNA release before infection, which may indicate a vulnerable region of FMDV. This study reveals new structural information about cross-protective antigen sites of FMDV serotype O, providing valuable and strong support for future research on broad-spectrum vaccines against FMD.
Collapse
|
12
|
Tesfaye Y, Khan F, Gelaye E. Vaccine matching and antigenic variability of foot-and-mouth disease virus serotypes O and A from 2018 Ethiopian isolates. Int Microbiol 2021; 25:47-59. [PMID: 34224048 DOI: 10.1007/s10123-021-00178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 10/20/2022]
Abstract
Foot-and-mouth disease (FMD) is highly infectious, limits live animal trade, and affects ranchers owing to the loss of animal yield. The present study was designed to perform vaccine matching for field FMD virus isolates from clinically diseased cattle and assess the antigenic properties of the field isolates against the current vaccine strains used for vaccine production at the National Veterinary Institute, Ethiopia. Both sequencing and reverse transcription-polymerase chain reactions were used for distinguishing between the viral strains. To evaluate the serological relationship of the vaccine strain with these field isolates (r1 value), in vitro cross-neutralization was performed using ETH/6/2000 and ETH/38/2005 antisera. Infectious field FMD viral samples represented serotypes A and O. Sequence analysis showed that serotype A VP1/1D possessed amino acid variability at positions 28 and 42 to 48, 138, 141, 142, 148, 156, 173, and 197 compared with the ETH/6/2000 vaccine strain, whereas serotype O possessed amino acid variability at positions 45, 48, 138, 139, 140, 141, and 197 compared with the ETH/38/2005 vaccine strain. Based on the one-dimensional virus neutralization test, serotypes A and O demonstrated antigenic matching of up to 13/17 (76.47%) with the vaccine strain, except for the isolates ETH/40/2018, ETH/48/2018, ETH/55/2018, and ETH/61/2018, which had r-values less than 0.3. Therefore, the currently used vaccine strains ETH/38/2005 for serotype O and ETH/6/2000 for serotype A protected against all and most field viruses characterized as serotypes O and A, respectively, and amino acid residue variation was observed in different FMD virus B-C loops, G-H loops, and C-termini of VP1 at sites 1 and 3 in both serotypes.
Collapse
Affiliation(s)
- Yeneneh Tesfaye
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, UP, India.,National Veterinary Institute, POBox: 19, Bishoftu, Ethiopia
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, UP, India. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, South Korea.
| | - Esayas Gelaye
- National Veterinary Institute, POBox: 19, Bishoftu, Ethiopia.
| |
Collapse
|
13
|
Forner M, Cañas-Arranz R, Defaus S, de León P, Rodríguez-Pulido M, Ganges L, Blanco E, Sobrino F, Andreu D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines (Basel) 2021; 9:vaccines9050477. [PMID: 34066901 PMCID: PMC8150788 DOI: 10.3390/vaccines9050477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.
Collapse
Affiliation(s)
- Mar Forner
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Miguel Rodríguez-Pulido
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, 08193 Barcelona, Spain;
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
- Correspondence: (F.S.); (D.A.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
- Correspondence: (F.S.); (D.A.)
| |
Collapse
|
14
|
Jeong S, Ahn HJ, Min KJ, Byun JW, Pyo HM, Park MY, Ku BK, Nah J, Ryoo S, Wee SH, Kim SJ. Phage Display Screening of Bovine Antibodies to Foot-and-Mouth Disease Virus and Their Application in a Competitive ELISA for Serodiagnosis. Int J Mol Sci 2021; 22:ijms22094328. [PMID: 33919326 PMCID: PMC8122579 DOI: 10.3390/ijms22094328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
For serodiagnosis of foot-and-mouth disease virus (FMDV), monoclonal antibody (MAb)-based competitive ELISA (cELISA) is commonly used since it allows simple and reproducible detection of antibody response to FMDV. However, the use of mouse-origin MAb as a detection reagent is questionable, as antibody responses to FMDV in mice may differ in epitope structure and preference from those in natural hosts such as cattle and pigs. To take advantage of natural host-derived antibodies, a phage-displayed scFv library was constructed from FMDV-immune cattle and subjected to two separate pannings against inactivated FMDV type O and A. Subsequent ELISA screening revealed high-affinity scFv antibodies specific to a serotype (O or A) as well as those with pan-serotype specificity. When BvO17, an scFv antibody specific to FMDV type O, was tested as a detection reagent in cELISA, it successfully detected FMDV type O antibodies for both serum samples from vaccinated cattle and virus-challenged pigs with even higher sensitivity than a mouse MAb-based commercial FMDV type O antibody detection kit. These results demonstrate the feasibility of using natural host-derived antibodies such as bovine scFv instead of mouse MAb in cELISA for serological detection of antibody response to FMDV in the susceptible animals.
Collapse
Affiliation(s)
- Sukyo Jeong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.J.); (H.J.A.); (K.J.M.)
| | - Hyun Joo Ahn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.J.); (H.J.A.); (K.J.M.)
| | - Kyung Jin Min
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.J.); (H.J.A.); (K.J.M.)
| | - Jae Won Byun
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Hyun Mi Pyo
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Mi Young Park
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Bok Kyung Ku
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Jinju Nah
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Soyoon Ryoo
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Sung Hwan Wee
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.J.); (H.J.A.); (K.J.M.)
- Correspondence: ; Tel.: +82-42-860-4229
| |
Collapse
|
15
|
Lee G, Hwang JH, Park JH, Lee MJ, Kim B, Kim SM. Vaccine strain of O/ME-SA/Ind-2001e of foot-and-mouth disease virus provides high immunogenicity and broad antigenic coverage. Antiviral Res 2020; 182:104920. [PMID: 32828822 DOI: 10.1016/j.antiviral.2020.104920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022]
Abstract
Foot-and-mouth disease (FMD) is an economically devastating animal disease. There are seven serotypes, A, O, C, Asia 1, Southern African Territories 1, 2, and 3 (SAT1, SAT2, and SAT3), among which serotype O shows the greatest distribution worldwide. Specifically, the O/ME-SA/Ind-2001 lineage, which was reported in India in 2001, has since emerged worldwide, with the O/ME-SA/Ind-2001d and O/ME-SA/Ind-2001e sublineages recently emerging in North Africa, Middle East Asia, Southeast Asia, and East Asia. The antigenic relationship (r1) value for the O1 Manisa and O/Mya-98 lineage inactivated vaccine against various O/ME-SA/Ind-2001 lineages of FMDV isolates, were matching (r1 > 0.3) or non-matching (r1 < 0.3), indicating that the vaccine based on the O/ME-SA/Ind-2001 lineage FMDV, is valuable. In this study, we developed a new vaccine strain, O/SKR/Boeun/2017 isolate, belonging to the O/ME-SA/Ind-2001e sublineage as an outbreak of this sublineage occurred in 2017 in the Boeun county of the Republic of Korea (O/SKR/Boeun/2017). This experimental vaccine exhibited high immunogenicity in pigs and cattle and was antigenically matched with representative FMDV lineages (ME-SA, O/ME-SA/PanAsia, O/SEA/Mya-98, and O/Cathay) in Asia, as demonstrated by two-dimensional virus neutralization tests (2D-VNT). In addition, a 100% survival rate in C56BL/6 mice vaccinated with 1/15 of a pig dose was observed following challenge with FMDV O/VIT/2013 (O/ME-SA/PanAsia) at 10 days post-vaccination. Further, we analyzed the major antigenic sites of the O/SKR/Boeun/2017 vaccine strain as well as other viruses, by 2D-VNT. These results suggest that the O/ME-SA/Ind-2001e sublineage is a promising vaccine strain candidate in Asia, and other countries, for protection against the emerging FMDV.
Collapse
Affiliation(s)
- Gyeongmin Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Ji-Hyeon Hwang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Byounghan Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
16
|
Chitray M, Opperman PA, Rotherham L, Fehrsen J, van Wyngaardt W, Frischmuth J, Rieder E, Maree FF. Diagnostic and Epitope Mapping Potential of Single-Chain Antibody Fragments Against Foot-and-Mouth Disease Virus Serotypes A, SAT1, and SAT3. Front Vet Sci 2020; 7:475. [PMID: 32851044 PMCID: PMC7432252 DOI: 10.3389/fvets.2020.00475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) affects cloven-hoofed domestic and wildlife animals and an outbreak can cause severe losses in milk production, reduction in meat production and death amongst young animals. Several parts of Asia, most of Africa, and the Middle East remain endemic, thus emphasis on improved FMD vaccines, diagnostic assays, and control measures are key research areas. FMD virus (FMDV) populations are quasispecies, which pose serious implications in vaccine design and efficacy where an effective vaccine should include multiple independent neutralizing epitopes to elicit an adequate immune response. Further investigation of the residues that comprise the antigenic determinants of the virus will allow the identification of mutations in outbreak strains that potentially lessen the efficacy of a vaccine. Additionally, of utmost importance in endemic regions, is the accurate diagnosis of FMDV infection for the control and eradication of the disease. To this end, a phage display library was explored to identify FMDV epitopes for recombinant vaccines and for the generation of reagents for improved diagnostic FMD enzyme-linked immunosorbent assays (ELISAs). A naïve semi-synthetic chicken single chain variable fragment (scFv) phage display library i.e., the Nkuku ® library was used for bio-panning against FMD Southern-African Territories (SAT) 1, SAT3, and serotype A viruses. Biopanning yielded one unique scFv against SAT1, two for SAT3, and nine for A22. SAT1 and SAT3 specific scFvs were exploited as capturing and detecting reagents to develop an improved diagnostic ELISA for FMDV. The SAT1 soluble scFv showed potential as a detecting reagent in the liquid phase blocking ELISA (LPBE) as it reacted specifically with a panel of SAT1 viruses, albeit with different ELISA absorbance signals. The SAT1svFv1 had little or no change on its paratope when coated on polystyrene plates whilst the SAT3scFv's paratope may have changed. SAT1 and SAT3 soluble scFvs did not neutralize the SAT1 and SAT3 viruses; however, three of the nine A22 binders i.e., A22scFv1, A22scFv2, and A22scFv8 were able to neutralize A22 virus. Following the generation of virus escape mutants through successive virus passage under scFv pressure, FMDV epitopes were postulated i.e., RGD+3 and +4 positions respectively, proving the epitope mapping potential of scFvs.
Collapse
Affiliation(s)
- Melanie Chitray
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Pamela Anne Opperman
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Lia Rotherham
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa
| | - Jeanni Fehrsen
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Wouter van Wyngaardt
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa
| | - Janine Frischmuth
- Biotechnology Division, National Bioproducts Institute, Pinetown, South Africa
| | - Elizabeth Rieder
- Plum Island Animal Disease Centre, U.S. Department of Agriculture, Agricultural Research Service, Greenport, NY, United States
| | - Francois Frederick Maree
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Li K, Wang S, Cao Y, Bao H, Li P, Sun P, Bai X, Fu Y, Ma X, Zhang J, Li D, Chen Y, Liu X, An F, Wu F, Lu Z, Liu Z. Development of Foot-and-Mouth Disease Virus-Neutralizing Monoclonal Antibodies Derived From Plasmablasts of Infected Cattle and Their Germline Gene Usage. Front Immunol 2019; 10:2870. [PMID: 31867017 PMCID: PMC6908506 DOI: 10.3389/fimmu.2019.02870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
Cattle are susceptible to foot-and-mouth disease virus (FMDV), and neutralizing antibodies are critical for protection against FMDV infection in this species. However, more information is needed on the host specific antigenic structure recognized by the FMDV-specific monoclonal antibodies (mAbs) and on the functional properties of the mAb that are produced in the natural host, cattle. Herein, we characterized 55 plasmablast-derived mAbs from three FMDV-infected cattle and obtained 28 FMDV-neutralizing antibodies by the single B cell antibody technique. The neutralizing mAbs (27/28) mainly recognized conformational epitopes that differ from the well-characterized immunodominant antigenic site 1 of FMDV as defined by murine mAbs. Of these FMDV-neutralizing mAbs, 13 mAbs showed intra-type broadly neutralizing activity against the three topotypes of FMDV serotype O (ME-SA, SEA, and Cathay topotypes). Moreover, all these intra-type broadly neutralizing antibodies competed with sera from FMDV infected or vaccinated cattle, which indicates their binding to native dominant epitopes, as revealed by a blocking ELISA. We further analyzed the germline V(D)J gene usage of the 55 FMDV-specific mAbs and found cattle IgG antibodies containing ultralong HCDR3 were exclusively restricted to usage of the germline gene segment VH 1-7*02. In addition, the restricted germline gene segments of VH 1-7*02 and VL1-47*01 or 1-52*01 pairing were observed in all IgG antibodies with ultralong HCDR3. Furthermore, antibodies with longer HCDR3 were more inclined to display FMDV-neutralizing activity. This study presents a novel method for screening FMDV-specific cattle mAbs which then provide the most useful tools for studying FMDV antigenic structure and variation.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sheng Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerong Liu
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Fanglan An
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Faju Wu
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
18
|
Fei D, Guo Y, Fan Q, Wang H, Wu J, Li M, Ma M. Phylogenetic and recombination analyses of two deformed wing virus strains from different honeybee species in China. PeerJ 2019; 7:e7214. [PMID: 31293837 PMCID: PMC6601602 DOI: 10.7717/peerj.7214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Deformed wing virus (DWV) is one of many viruses that infect honeybees and has been extensively studied because of its close association with honeybee colony collapse that is induced by Varroa destructor. However, virus genotypes, sequence characteristics, and genetic variations of DWV remain unknown in China. Methods Two DWV strains were isolated from Jinzhou and Qinhuangdao cities in China, and were named China1-2017 (accession number: MF770715) and China2-2018 (accession number: MH165180), respectively, and their complete genome sequences were analyzed. To investigate the phylogenetic relationships of the DWV isolates, a phylogenetic tree of the complete open reading frame (ORF), structural protein VP1, and non-structural protein 3C+RdRp of the DWV sequences was constructed using the MEGA 5.0 software program. Then, the similarity and recombinant events of the DWV isolated strains were analyzed using recombination detection program (RDP4) software and genetic algorithm for recombination detection (GARD). Results The complete genomic analysis showed that the genomes of the China1-2017 and China2-2018 DWV strains consisted of 10,141 base pairs (bp) and 10,105 bp, respectively, and contained a single, large ORF (China1-2017: 1,146–9,827 bp; China2-2018: 1,351–9,816 bp) that encoded 2,894 amino acids. The sequences were compared with 20 previously reported DWV sequences from different countries and with sequences of two closely related viruses, Kakugo virus (KV) and V. destructor virus-1. Multiple sequence comparisons revealed a nucleotide identity of 84.3–96.7%, and identity of 94.7–98.6% in amino acids between the two isolate strains and 20 reference strains. The two novel isolates showed 96.7% nucleotide identity and 98.1% amino acid identity. The phylogenetic analyses showed that the two isolates belonged to DWV Type A and were closely related to the KV-2001 strain from Japan. Based on the RDP4 and GARD analyses, the recombination of the China2-2018 strain was located at the 4,266–7,507 nt region, with Korea I-2012 as an infer unknown parent and China-2017 as a minor parent, which spanned the entire helicase ORF. To the best of our knowledge, this is the first study to the complete sequence of DWV isolated from Apis cerana and the possible DWV recombination events in China. Our findings are important for further research of the phylogenetic relationship of DWVs in China with DWV strains from other countries and also contribute to the understanding of virological properties of these complex DWV recombinants.
Collapse
Affiliation(s)
- Dongliang Fei
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China.,College of Veterinary Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| | - Yaxi Guo
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qiong Fan
- Jinzhou Animal Disease Prevention and Control Center, Jinzhou, Liaoning, China
| | - Haoqi Wang
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jiadi Wu
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ming Li
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
19
|
Mahapatra M, Upadhyaya S, Parida S. Identification of novel epitopes in serotype O foot-and-mouth disease virus by in vitro immune selection. J Gen Virol 2019; 100:804-811. [PMID: 30990405 DOI: 10.1099/jgv.0.001259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) displays various epitopes on the capsid outer surface. In addition to the five neutralizing antigenic sites, there is evidence of the existence of other, yet unidentified, epitopes that are believed to play a role in antibody-mediated protection. Previous attempts to identify these epitopes revealed two additional substitutions at positions VP2-74 and -191 (5M2/5 virus) to be of antigenic significance. However, complete resistance to neutralization was not obtained in the neutralization assay, indicating the existence of other, undisclosed epitopes. Results from this study provides evidence of at least two new neutralizing epitopes involving residues VP3-116 and -195 around the threefold axis that have significant impact on the antigenic nature of the virus. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and should help with rational vaccine design.
Collapse
Affiliation(s)
- Mana Mahapatra
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | | | - Satya Parida
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
20
|
Shimmon G, Kotecha A, Ren J, Asfor AS, Newman J, Berryman S, Cottam EM, Gold S, Tuthill TJ, King DP, Brocchi E, King AMQ, Owens R, Fry EE, Stuart DI, Burman A, Jackson T. Generation and characterisation of recombinant FMDV antibodies: Applications for advancing diagnostic and laboratory assays. PLoS One 2018; 13:e0201853. [PMID: 30114227 PMCID: PMC6095514 DOI: 10.1371/journal.pone.0201853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/22/2018] [Indexed: 11/19/2022] Open
Abstract
Foot-and-mouth disease (FMD) affects economically important livestock and is one of the most contagious viral diseases. The most commonly used FMD diagnostic assay is a sandwich ELISA. However, the main disadvantage of this ELISA is that it requires anti-FMD virus (FMDV) serotype-specific antibodies raised in small animals. This problem can be, in part, overcome by using anti-FMDV monoclonal antibodies (MAbs) as detecting reagents. However, the long-term use of MAbs may be problematic and they may need to be replaced. Here we have constructed chimeric antibodies (mouse/rabbit D9) and Fabs (fragment antigen-binding) (mouse/cattle D9) using the Fv (fragment variable) regions of a mouse MAb, D9 (MAb D9), which recognises type O FMDV. The mouse/rabbit D9 chimeric antibody retained the FMDV serotype-specificity of MAb D9 and performed well in a FMDV detection ELISA as well as in routine laboratory assays. Cryo-electron microscopy analysis confirmed engagement with antigenic site 1 and peptide competition studies identified the aspartic acid at residue VP1 147 as a novel component of the D9 epitope. This chimeric expression approach is a simple but effective way to preserve valuable FMDV antibodies, and has the potential for unlimited generation of antibodies and antibody fragments in recombinant systems with the concomitant positive impacts on the 3Rs (Replacement, Reduction and Refinement) principles.
Collapse
Affiliation(s)
- Gareth Shimmon
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Abhay Kotecha
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Amin S. Asfor
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Joseph Newman
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | | | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | - Donald P. King
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | | | - Ray Owens
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Alison Burman
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Terry Jackson
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| |
Collapse
|
21
|
Lee HW, Deng MC, Pan CH, Chang HW, Cheng IC. Neutralizing monoclonal antibodies against porcinophilic foot-and-mouth disease virus mapped to antigenic site 2 by utilizing novel mutagenic virus-like particles to detect the antigenic change. Vet Microbiol 2018; 222:124-131. [DOI: 10.1016/j.vetmic.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
22
|
Mahapatra M, Parida S. Foot and mouth disease vaccine strain selection: current approaches and future perspectives. Expert Rev Vaccines 2018; 17:577-591. [PMID: 29950121 DOI: 10.1080/14760584.2018.1492378] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Lack of cross protection between foot and mouth disease (FMD) virus (FMDV) serotypes as well as incomplete protection between some subtypes of FMDV affect the application of vaccine in the field. Further, the emergence of new variant FMD viruses periodically makes the existing vaccine inefficient. Consequently, periodical vaccine strain selection either by in vivo methods or in vitro methods become an essential requirement to enable utilization of appropriate and efficient vaccines. AREAS COVERED Here we describe the cross reactivity of the existing vaccines with the global pool of circulating viruses and the putative selected vaccine strains for targeting protection against the two major circulating serotype O and A FMD viruses for East Africa, the Middle East, South Asia and South East Asia. EXPERT COMMENTARY Although in vivo cross protection studies are more appropriate methods for vaccine matching and selection than in vitro neutralization test or ELISA, in the face of an outbreak both in vivo and in vitro methods of vaccine matching are not easy, and time consuming. The FMDV capsid contains all the immunogenic epitopes, and therefore vaccine strain prediction models using both capsid sequence and serology data will likely replace existing tools in the future.
Collapse
|
23
|
Xu W, Zhang Z, Nfon C, Yang M. Genetic and antigenic relationship of foot–and–mouth disease virus serotype O isolates with the vaccine strain O1/BFS. Vaccine 2018; 36:3802-3808. [DOI: 10.1016/j.vaccine.2018.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022]
|
24
|
Lloyd-Jones K, Mahapatra M, Upadhyaya S, Paton DJ, Babu A, Hutchings G, Parida S. Genetic and antigenic characterization of serotype O FMD viruses from East Africa for the selection of suitable vaccine strain. Vaccine 2017; 35:6842-6849. [PMID: 29102329 PMCID: PMC5722052 DOI: 10.1016/j.vaccine.2017.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 12/01/2022]
Abstract
Foot-and-mouth disease (FMD) is endemic in Eastern Africa with circulation of multiple serotypes of the virus in the region. Most of the outbreaks are caused by serotype O followed by serotype A. The lack of concerted FMD control programmes in Africa has provided little incentive for vaccine producers to select vaccines that are tailored to circulating regional isolates creating further negative feedback to deter the introduction of vaccine-based control schemes. In this study a total of 80 serotype O FMD viruses (FMDV) isolated from 1993 to 2012 from East and North Africa were characterized by virus neutralisation tests using bovine antisera to three existing (O/KEN/77/78, O/Manisa and O/PanAsia-2) and three putative (O/EA/2002, O/EA/2009 and O/EA/2010) vaccine strains and by capsid sequencing. Genetically, these viruses were grouped as either of East African origin with subdivision into four topotypes (EA-1, 2, 3 and 4) or of Middle-East South Asian (ME-SA) topotype. The ME-SA topotype viruses were mainly detected in Egypt and Libya reflecting the trade links with the Middle East countries. There was good serological cross-reactivity between the vaccine strains and most of the field isolates analysed, indicating that vaccine selection should not be a major constraint for control of serotype O FMD by vaccination, and that both local and internationally available commercial vaccines could be used. The O/KEN/77/78 vaccine, commonly used in the region, exhibited comparatively lower percent in vitro match against the predominant topotypes (EA-2 and EA-3) circulating in the region whereas O/PanAsia-2 and O/Manisa vaccines revealed broader protection against East African serotype O viruses, even though they genetically belong to the ME-SA topotype.
Collapse
Affiliation(s)
| | - Mana Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 ONF, UK
| | | | - David J Paton
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 ONF, UK
| | - Aravindh Babu
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 ONF, UK
| | - Geoff Hutchings
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 ONF, UK
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 ONF, UK; National Institute for Animal Biotechnology, Hyderabad 500049, India.
| |
Collapse
|
25
|
Subramaniam S, Das B, Biswal JK, Ranjan R, Pattnaik B. Antigenic variability of foot-and-mouth disease virus serotype O during serial cytolytic passage. Virus Genes 2017; 53:931-934. [PMID: 28718047 DOI: 10.1007/s11262-017-1494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022]
Abstract
The emergence and disappearance of antigenic variants of foot-and-mouth disease virus (FMDV) during a field outbreak occurs periodically due to the volatile nature of its genome. In the present analysis, change in antigenic behavior of serotype O FMDV during the serial cytolytic passage in the absence of immune pressure was observed. Initially, the isolate showed a poor antigenic match (relationship value <0.3) with the serotype O vaccine strain and upon serial passage increase in relationship value was observed. Comparison of capsid sequence revealed substitution at four positions (VP3:K58 → E and P158 → S, VP1:E83 → K and R172 → Q) acquired during the serial passage. Examination of passage level and amino acid substitution revealed the critical role of position VP3-58 that was identified earlier as crucial for antigenic site IV, in the observed antigenic variability. The role of position VP3-58 was further confirmed using reverse genetics approach.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- ICAR-Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital, 263138, India.
| | - Biswajit Das
- ICAR-Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital, 263138, India
| | - Jitendra K Biswal
- ICAR-Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital, 263138, India
| | - Rajeev Ranjan
- ICAR-Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital, 263138, India
| | - Bramhadev Pattnaik
- ICAR-Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital, 263138, India
| |
Collapse
|
26
|
Fernandez-Sainz I, Medina GN, Ramirez-Medina E, Koster MJ, Grubman MJ, de Los Santos T. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine. Virology 2016; 502:123-132. [PMID: 28039799 DOI: 10.1016/j.virol.2016.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 107 pfu/animal while a dose of 4×107pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine.
Collapse
Affiliation(s)
- Ignacio Fernandez-Sainz
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Gisselle N Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; ORISE-PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Elizabeth Ramirez-Medina
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA; ORISE-PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Marla J Koster
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Marvin J Grubman
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | | |
Collapse
|
27
|
Reeve R, Borley DW, Maree FF, Upadhyaya S, Lukhwareni A, Esterhuysen JJ, Harvey WT, Blignaut B, Fry EE, Parida S, Paton DJ, Mahapatra M. Tracking the Antigenic Evolution of Foot-and-Mouth Disease Virus. PLoS One 2016; 11:e0159360. [PMID: 27448206 PMCID: PMC4957747 DOI: 10.1371/journal.pone.0159360] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/02/2016] [Indexed: 11/18/2022] Open
Abstract
Quantifying and predicting the antigenic characteristics of a virus is something of a holy grail for infectious disease research because of its central importance to the emergence of new strains, the severity of outbreaks, and vaccine selection. However, these characteristics are defined by a complex interplay of viral and host factors so that phylogenetic measures of viral similarity are often poorly correlated to antigenic relationships. Here, we generate antigenic phylogenies that track the phenotypic evolution of two serotypes of foot-and-mouth disease virus by combining host serology and viral sequence data to identify sites that are critical to their antigenic evolution. For serotype SAT1, we validate our antigenic phylogeny against monoclonal antibody escape mutants, which match all of the predicted antigenic sites. For serotype O, we validate it against known sites where available, and otherwise directly evaluate the impact on antigenic phenotype of substitutions in predicted sites using reverse genetics and serology. We also highlight a critical and poorly understood problem for vaccine selection by revealing qualitative differences between assays that are often used interchangeably to determine antigenic match between field viruses and vaccine strains. Our approach provides a tool to identify naturally occurring antigenic substitutions, allowing us to track the genetic diversification and associated antigenic evolution of the virus. Despite the hugely important role vaccines have played in enhancing human and animal health, vaccinology remains a conspicuously empirical science. This study advances the field by providing guidance for tuning vaccine strains via site-directed mutagenesis through this high-resolution tracking of antigenic evolution of the virus between rare major shifts in phenotype.
Collapse
Affiliation(s)
- Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Daryl W. Borley
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, United Kingdom
| | - Francois F. Maree
- ARC-Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Onderstepoort, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Azwidowi Lukhwareni
- ARC-Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Onderstepoort, South Africa
| | - Jan J. Esterhuysen
- ARC-Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Onderstepoort, South Africa
| | - William T. Harvey
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Belinda Blignaut
- ARC-Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Onderstepoort, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, United Kingdom
| | - Satya Parida
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - David J. Paton
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Mana Mahapatra
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
28
|
Mahapatra M, Statham B, Li Y, Hammond J, Paton D, Parida S. Emergence of antigenic variants within serotype A FMDV in the Middle East with antigenically critical amino acid substitutions. Vaccine 2016; 34:3199-3206. [PMID: 27016651 PMCID: PMC4912224 DOI: 10.1016/j.vaccine.2016.02.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/06/2022]
Abstract
The recent A-Iran-05 viruses circulating in the Middle East do not match with the existing vaccines. Full capsid sequence of 13 SIS-10 and SIS-12 viruses was generated. The r1-values generated using antisera raised against two existing vaccines and a new vaccine. Amino acid changes in neutralizing antigenic sites 1, 2 and 4 were observed.
A new immunologically distinct strain (A-Iran-05) of foot-and-mouth disease virus serotype A emerged in the Middle East in 2003 that replaced the previously circulating strains (A-Iran-96 and A-Iran-99) in the region. This resulted in introduction of a new vaccine of this strain (A/TUR/2006) in 2006. Though this vaccine strain has been predominantly used to control FMD in the region, recent viruses isolated in 2012 and 2013 have shown antigenic drift and a poor match with it. In this study, we report the antigenic matching results and capsid sequence data of currently circulating viruses belonging to the SIS-10 and SIS-12 sub-lineages of A-Iran-05 (isolated in 2012 and 2013), highlighting the inadequacy of the currently used serotype A vaccines. Implications of these results in the context of FMD control in the Middle East are discussed.
Collapse
Affiliation(s)
- Mana Mahapatra
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK.
| | - Bob Statham
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Yanmin Li
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Jef Hammond
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - David Paton
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Satya Parida
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
29
|
Subramaniam S, Mohapatra JK, Sharma GK, Biswal JK, Ranjan R, Rout M, Das B, Dash BB, Sanyal A, Pattnaik B. Evolutionary dynamics of foot-and-mouth disease virus O/ME-SA/Ind2001 lineage. Vet Microbiol 2015; 178:181-9. [PMID: 26049591 DOI: 10.1016/j.vetmic.2015.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Foot-and-mouth disease (FMD) virus serotype O Ind2001 lineage within the Middle East-South Asia topotype is the major cause of recent FMD incidences in India. A sub-lineage of Ind2001 caused severe outbreaks in the southern region of the country during 2013 and also reported for the first time from Libya. In this study, we conducted a detailed evolutionary analysis of Ind2001 lineage. Phylogenetic analysis of Ind2001 lineage based on maximum likelihood method revealed two major splits and three sub-lineages. The mean nucleotide substitution rate for this lineage was calculated to be 6.338×10(-3)substitutions/site/year (s/s/y), which is similar to those of PanAsian sub-lineages. Evolutionary time scale analysis indicated that the Ind2001 lineage might have originated in 1989. The sub-lineage Ind2001d that caused 2013 outbreaks seems to be relatively more divergent genetically from other Ind2001 sub-lineages. Seven codons in the VP1 region of Ind2001 were found to be under positive selection. Four out of 24 recent Ind2001 strains tested in 2D-MNT had antigenic relationship value of <0.3 with the serotype O vaccine strain indicating intra-epidemic antigenic diversity. Amino acid substitutions found in these minor variants with reference to antigenic diversity have been discussed. The dominance of antigenically homologous strains indicates absence of vaccine immunity in the majority of the affected hosts. Taken together, the evolution of Ind2001 lineage deviates from the strict molecular clock and a typical lineage evolutionary dynamics characterized by periodic emergence and re-emergence of Ind2001 and PanAsia lineage have been observed in respect of serotype O.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Jajati K Mohapatra
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Gaurav K Sharma
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Jitendra K Biswal
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Rajeev Ranjan
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Manoranjan Rout
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Biswajit Das
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Bana B Dash
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Aniket Sanyal
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Bramhadev Pattnaik
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India.
| |
Collapse
|
30
|
Bari FD, Parida S, Asfor AS, Haydon DT, Reeve R, Paton DJ, Mahapatra M. Prediction and characterization of novel epitopes of serotype A foot-and-mouth disease viruses circulating in East Africa using site-directed mutagenesis. J Gen Virol 2015; 96:1033-1041. [PMID: 25614587 PMCID: PMC4631058 DOI: 10.1099/vir.0.000051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum-virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1-VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa.
Collapse
Affiliation(s)
- Fufa Dawo Bari
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Satya Parida
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Amin S. Asfor
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Daniel T. Haydon
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Richard Reeve
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| | - David J. Paton
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Mana Mahapatra
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
31
|
Lee SY, Park ME, Kim RH, Ko MK, Lee KN, Kim SM, Shim HS, Kim B, Lee JS, Park JH. Genetic and immunologic relationships between vaccine and field strains for vaccine selection of type A foot-and-mouth disease virus circulating in East Asia. Vaccine 2014; 33:664-9. [PMID: 25528521 DOI: 10.1016/j.vaccine.2014.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/28/2022]
Abstract
Of the seven known serotypes of foot-and-mouth disease virus (FMDV), type A has the most diverse variations. Genetic variations also occur frequently at VP1, VP2, VP3, and VP4 because these proteins constitute the viral capsid. The structural proteins of FMDV, which are closely related to immunologic correlations, are the most easily analyzed because they have highly accessible information. In this study we analyzed the type A vaccine viruses by alignment of available sequences in order to find appropriate vaccine strains. The matching rate of ASIA topotype-specific sites (20 amino acids) located on the viral surface, which are mainly VP1 and VP2, was highly related to immunologic reactivity. Among the available vaccines analyzed in this study, we suggest that A Malaysia 97 could be used as a vaccine virus as it has the highest genetic similarity and immunologic aspects to field strains originating in East Asia.
Collapse
Affiliation(s)
- Seo-Yong Lee
- Animal and Plant Quarantine Agency, 175 Anyang-ro, Manangu, Anyang city, Gyeonggido, 430-757, Republic of Korea; Veterinary College, Chungnam National University, Yuseonggu, Daejeon, 305-764, Republic of Korea
| | - Min-Eun Park
- Animal and Plant Quarantine Agency, 175 Anyang-ro, Manangu, Anyang city, Gyeonggido, 430-757, Republic of Korea; Veterinary College, Chungnam National University, Yuseonggu, Daejeon, 305-764, Republic of Korea
| | - Rae-Hyung Kim
- Animal and Plant Quarantine Agency, 175 Anyang-ro, Manangu, Anyang city, Gyeonggido, 430-757, Republic of Korea
| | - Mi-Kyeong Ko
- Animal and Plant Quarantine Agency, 175 Anyang-ro, Manangu, Anyang city, Gyeonggido, 430-757, Republic of Korea
| | - Kwang-Nyeong Lee
- Animal and Plant Quarantine Agency, 175 Anyang-ro, Manangu, Anyang city, Gyeonggido, 430-757, Republic of Korea
| | - Su-Mi Kim
- Animal and Plant Quarantine Agency, 175 Anyang-ro, Manangu, Anyang city, Gyeonggido, 430-757, Republic of Korea
| | - Hang-Sub Shim
- Gyeonggi Province Veterinary Service Center, Anseong-si, Gyeonggi-do, 456-823, Republic of Korea
| | - Byounghan Kim
- Animal and Plant Quarantine Agency, 175 Anyang-ro, Manangu, Anyang city, Gyeonggido, 430-757, Republic of Korea
| | - Jong-Soo Lee
- Veterinary College, Chungnam National University, Yuseonggu, Daejeon, 305-764, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 175 Anyang-ro, Manangu, Anyang city, Gyeonggido, 430-757, Republic of Korea.
| |
Collapse
|
32
|
Mahapatra M, Yuvaraj S, Madhanmohan M, Subramaniam S, Pattnaik B, Paton DJ, Srinivasan VA, Parida S. Antigenic and genetic comparison of foot-and-mouth disease virus serotype O Indian vaccine strain, O/IND/R2/75 against currently circulating viruses. Vaccine 2014; 33:693-700. [PMID: 25500306 PMCID: PMC4315132 DOI: 10.1016/j.vaccine.2014.11.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 10/30/2022]
Abstract
Foot-and-mouth disease (FMD) virus serotype O is the most common cause of FMD outbreaks in India and three of the six lineages that have been described are most frequently detected, namely Ind2001, PanAsia and PanAsia 2. We report the full capsid sequence of 21 serotype O viruses isolated from India between 2002 and 2012. All these viruses belong to the Middle East-South Asia (ME-SA) topotype. The serological cross-reactivity of a bovine post-vaccination serum pool raised against the current Indian vaccine strain, O/IND/R2/75,was tested by virus neutralisation test with the 23 Indian field isolates, revealing a good match between the vaccine and the field isolates. The cross reactivity of the O/IND/R2/75 vaccine with 19 field isolates from other countries (mainly from Asia and Africa) revealed a good match to 79% of the viruses indicating that the vaccine strain is broadly cross-reactive and could be used to control FMD in other countries. Comparison of the capsid sequences of the serologically non-matching isolates with the vaccine strain sequence identified substitutions in neutralising antigenic sites 1 and 2, which could explain the observed serological differences.
Collapse
Affiliation(s)
- Mana Mahapatra
- The Pirbright Institute, Ash Road, Woking GU24 0NF, Surrey, UK
| | - S Yuvaraj
- Foot-and-Mouth Disease Virus Laboratory, Research and Development Centre, Indian Immunologicals Limited, Gachibowli, Hyderabad 500 032, India
| | - M Madhanmohan
- Foot-and-Mouth Disease Virus Laboratory, Research and Development Centre, Indian Immunologicals Limited, Gachibowli, Hyderabad 500 032, India
| | - S Subramaniam
- Project Directorate on Foot-and-Mouth Disease, IVRI Campus, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - B Pattnaik
- Project Directorate on Foot-and-Mouth Disease, IVRI Campus, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - D J Paton
- The Pirbright Institute, Ash Road, Woking GU24 0NF, Surrey, UK
| | - V A Srinivasan
- Foot-and-Mouth Disease Virus Laboratory, Research and Development Centre, Indian Immunologicals Limited, Gachibowli, Hyderabad 500 032, India.
| | - Satya Parida
- The Pirbright Institute, Ash Road, Woking GU24 0NF, Surrey, UK.
| |
Collapse
|
33
|
Bari FD, Parida S, Tekleghiorghis T, Dekker A, Sangula A, Reeve R, Haydon DT, Paton DJ, Mahapatra M. Genetic and antigenic characterisation of serotype A FMD viruses from East Africa to select new vaccine strains. Vaccine 2014; 32:5794-800. [PMID: 25171846 PMCID: PMC4194315 DOI: 10.1016/j.vaccine.2014.08.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/01/2014] [Accepted: 08/15/2014] [Indexed: 11/08/2022]
Abstract
Vaccine strain selection for emerging foot-and-mouth disease virus (FMDV) outbreaks in enzootic countries can be addressed through antigenic and genetic characterisation of recently circulating viruses. A total of 56 serotype A FMDVs isolated between 1998 and 2012, from Central, East and North African countries were characterised antigenically by virus neutralisation test using antisera to three existing and four candidate vaccine strains and, genetically by characterising the full capsid sequence data. A Bayesian analysis of the capsid sequence data revealed the viruses to be of either African or Asian topotypes with subdivision of the African topotype viruses into four genotypes (Genotypes I, II, IV and VII). The existing vaccine strains were found to be least cross-reactive (good matches observed for only 5.4-46.4% of the sampled viruses). Three bovine antisera, raised against A-EA-2007, A-EA-1981 and A-EA-1984 viruses, exhibited broad cross-neutralisation, towards more than 85% of the circulating viruses. Of the three vaccines, A-EA-2007 was the best showing more than 90% in-vitro cross-protection, as well as being the most recent amongst the vaccine strains used in this study. It therefore appears antigenically suitable as a vaccine strain to be used in the region in FMD control programmes.
Collapse
Affiliation(s)
- Fufa D Bari
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Satya Parida
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, Surrey GU24 0NF, UK
| | | | - Aldo Dekker
- Central Veterinary Institute, Part of Wageningen UR, Lelystad, The Netherlands
| | | | - Richard Reeve
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, Surrey GU24 0NF, UK; Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel T Haydon
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - David J Paton
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Mana Mahapatra
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|