1
|
Grijpink LCM, van der Valk WH, van Beelen ESA, de Groot JCMJ, Locher H, Vossen ACTM. Cytomegalovirus host receptor expression in the human fetal inner ear. PLoS One 2025; 20:e0320605. [PMID: 40163451 PMCID: PMC11957294 DOI: 10.1371/journal.pone.0320605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Fetal infection with human cytomegalovirus (hCMV) can cause sensorineural hearing loss and vestibular impairment, yet its pathogenesis remains unclear. This study aims to identify potential target cell types of hCMV in the human fetal inner ear. Viral particles use several envelope glycoproteins to enter target cells, including the pentameric complex, the trimeric complex and glycoprotein B. Platelet-derived growth factor receptor alpha (PDGFRA) serves as the receptor in fibroblasts, neuropilin-2 (NRP2) in epithelial, endothelial and dendritic cells as well as in leukocytes. Upon binding of these glycoproteins, glycoprotein B initiates membrane fusion which is proposed to be mediated by EGFR. When and where these proteins are expressed in the fetal inner ear during development is unknown. To address this, expression patterns of PDGFRA, NRP2 and EGFR were investigated in human fetal inner ear tissue using single-nucleus RNA sequencing data (first trimester: N = 2) and immunohistochemistry (first trimester: N = 6, second trimester: N = 5). PDGFRA gene and protein expression was detected in mesenchymal cells, NRP2 protein expression in epithelial cells and endothelial cells, and EGFR gene and protein expression in both epithelial cells and mesenchymal cells. Notably, all three receptors were present in tissue from the first and second trimesters. In conclusion, hCMV host receptors PDGFRA, NRP2 and EGFR are expressed in mesenchymal, epithelial and endothelial cells within the cochlea and vestibular organs during the first and second trimesters. These cell types may serve as targets for hCMV infection of the fetal inner ear.
Collapse
Affiliation(s)
- Lucia C. M. Grijpink
- Leiden University Center for Infectious Diseases (LUCID), Medical Microbiology and Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter H. van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Edward S. A. van Beelen
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - John C. M. J. de Groot
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Heiko Locher
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ann C. T. M. Vossen
- Leiden University Center for Infectious Diseases (LUCID), Medical Microbiology and Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Bharti R, Calabrese DR. Innate and adaptive effector immune drivers of cytomegalovirus disease in lung transplantation: a double-edged sword. FRONTIERS IN TRANSPLANTATION 2024; 3:1388393. [PMID: 38993763 PMCID: PMC11235306 DOI: 10.3389/frtra.2024.1388393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Up to 90% of the global population has been infected with cytomegalovirus (CMV), a herpesvirus that remains latent for the lifetime of the host and drives immune dysregulation. CMV is a critical risk factor for poor outcomes after solid organ transplant, though lung transplant recipients (LTR) carry the highest risk of CMV infection, and CMV-associated comorbidities compared to recipients of other solid organ transplants. Despite potent antivirals, CMV remains a significant driver of chronic lung allograft dysfunction (CLAD), re-transplantation, and death. Moreover, the extended utilization of CMV antiviral prophylaxis is not without adverse effects, often necessitating treatment discontinuation. Thus, there is a critical need to understand the immune response to CMV after lung transplantation. This review identifies key elements of each arm of the CMV immune response and highlights implications for lung allograft tolerance and injury. Specific attention is paid to cellular subsets of adaptive and innate immune cells that are important in the lung during CMV infection and reactivation. The concept of heterologous immune responses is reviewed in depth, including how they form and how they may drive tissue- and allograft-specific immunity. Other important objectives of this review are to detail the emerging role of NK cells in CMV-related outcomes, in addition to discussing perturbations in CMV immune function stemming from pre-existing lung disease. Finally, this review identifies potential mechanisms whereby CMV-directed treatments may alter the cellular immune response within the allograft.
Collapse
Affiliation(s)
- Reena Bharti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
3
|
Eletreby M, Thiessen L, Prager A, Brizic I, Materljan J, Kubic L, Jäger K, Jurinović K, Jerak J, Krey K, Adler B. Dissecting the cytomegalovirus CC chemokine: Chemokine activity and gHgLchemokine-dependent cell tropism are independent players in CMV infection. PLoS Pathog 2023; 19:e1011793. [PMID: 38064525 PMCID: PMC10732436 DOI: 10.1371/journal.ppat.1011793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023] Open
Abstract
Like all herpesviruses, cytomegaloviruses (CMVs) code for many immunomodulatory proteins including chemokines. The human cytomegalovirus (HCMV) CC chemokine pUL128 has a dual role in the infection cycle. On one hand, it forms the pentameric receptor-binding complex gHgLpUL(128,130,131A), which is crucial for the broad cell tropism of HCMV. On the other hand, it is an active chemokine that attracts leukocytes and shapes their activation. All animal CMVs studied so far have functionally homologous CC chemokines. In murine cytomegalovirus (MCMV), the CC chemokine is encoded by the m131/m129 reading frames. The MCMV CC chemokine is called MCK2 and forms a trimeric gHgLMCK2 entry complex. Here, we have generated MCK2 mutant viruses either unable to form gHgLMCK2 complexes, lacking the chemokine function or lacking both functions. By using these viruses, we could demonstrate that gHgLMCK2-dependent entry and MCK2 chemokine activity are independent functions of MCK2 in vitro and in vivo. The gHgLMCK2 complex promotes the tropism for leukocytes like macrophages and dendritic cells and secures high titers in salivary glands in MCMV-infected mice independent of the chemokine activity of MCK2. In contrast, reduced early antiviral T cell responses in MCMV-infected mice are dependent on MCK2 being an active chemokine and do not require the formation of gHgLMCK2 complexes. High levels of CCL2 and IFN-γ in spleens of infected mice and MCMV virulence depend on both, the formation of gHgLMCK2 complexes and the MCK2 chemokine activity. Thus, independent and concerted functions of MCK2 serving as chemokine and part of a gHgL entry complex shape antiviral immunity and virus dissemination.
Collapse
Affiliation(s)
- Marwa Eletreby
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Lena Thiessen
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Adrian Prager
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Ilija Brizic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Materljan
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lucie Kubic
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Katharina Jäger
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Križan Jurinović
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Josipa Jerak
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Karsten Krey
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Barbara Adler
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| |
Collapse
|
4
|
Syrigos GV, Feige M, Dirlam A, Businger R, Gruska I, Wiebusch L, Hamprecht K, Schindler M. Abemaciclib restricts HCMV replication by suppressing pUL97-mediated phosphorylation of SAMHD1. Antiviral Res 2023; 217:105689. [PMID: 37516154 DOI: 10.1016/j.antiviral.2023.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that causes life-threatening infections in newborns or immunosuppressed patients. For viral replication, HCMV establishes a network of cellular interactions, among others cyclin-dependent kinases (CDK). Furthermore, HCMV encodes pUL97, a viral kinase, which is a CDK-homologue. HCMV uses pUL97 in order to phosphorylate and thereby antagonize SAMHD1, an antiviral host cell factor. Since HCMV has several mechanisms to evade restriction by SAMHD1, we first analyzed the kinetics of SAMHD1-inactivation and found that phosphorylation of SAMHD1 by pUL97 occurs directly after infection of macrophages. We hence hypothesized that inhibition of this process qualifies as efficient antiviral target and FDA approved CDK-inhibitors (CDKIs) might be potent antivirals that prevent the inactivation of SAMHD1. Indeed, Abemaciclib, a 2nd generation CDKI exhibited superior IC50s against HCMV in infected macrophages and the antiviral activity largely relied on its ability to block pUL97-mediated SAMHD1-phosphorylation. Altogether, our study highlights the therapeutic potential of clinically-approved CDKIs as antivirals against HCMV, sheds light on their mode of action and establishes SAMHD1 as a valid and highly potent therapeutic target.
Collapse
Affiliation(s)
- Georgios Vavouras Syrigos
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Feige
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Alicia Dirlam
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Ramona Businger
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Iris Gruska
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lüder Wiebusch
- Laboratory of Molecular Pediatrics, Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Comprehensive Analysis of Human Cytomegalovirus- and HIV-Mediated Plasma Membrane Remodeling in Macrophages. mBio 2021; 12:e0177021. [PMID: 34399625 PMCID: PMC8406226 DOI: 10.1128/mbio.01770-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The plasma membrane (PM) must be overcome by viruses during entry and release. Furthermore, the PM represents the cellular communication compartment and the immune system interface. Hence, viruses have evolved sophisticated strategies to remodel the PM, for instance to avoid immune sensing and clearance of infected cells. We performed a comprehensive analysis of cell surface dysregulation by two human-pathogenic viruses, human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1), in primary macrophages, which are classical antigen-presenting cells and orchestrators of the immune system. Scanning ion conductance microscopy revealed a loss of roughness and an overall smooth phenotype of HCMV-infected macrophages, in contrast to HIV-1 infection. This phenotype was also evident on the molecular level. When we screened for cell surface receptors modulated by HCMV, 42 of 332 receptors tested were up- or downregulated, whereas HIV-1 affected only 7 receptors. In particular CD164, CD84, and CD180 were targeted by HCMV. Mechanistically, HCMV induced transcriptional silencing of these receptors in an interferon (IFN)-independent manner, and expression was reduced not only by lab-adapted HCMV but also by clinical HCMV isolates. Altogether, our plasma membrane profiling of human macrophages provides clues to understand how viruses evade the immune system and identified novel cell surface receptors targeted by HCMV. IMPORTANCE The PM is a key component that viruses have to cope with. It is a barrier for infection and egress and is critically involved in antiviral immune signaling. We hence asked the question how two immunomodulatory viruses, HIV-1 and HCMV, dysregulate this compartment in infected macrophages, relevant in vivo targets of both viruses. We employed a contact-free microscopic technique to image the PM of infected cells and performed a phenotypic flow cytometry-based screen to identify receptor modulations on a molecular level. Our results show that HIV-1 and HCMV differentially manipulate the PM of macrophages. While HIV-1-mediated changes are relatively subtle, HCMV induces major alterations of the PM. We identify novel immune receptors manipulated by HCMV and define mechanisms of how HCMV interferes with receptor expression. Altogether, our study reveals differential strategies of how two human-pathogenic viruses manipulate infected cells and identifies potential novel pathways of HCMV immune evasion.
Collapse
|
6
|
Sufiawati I, Herrera R, Mayer W, Cai X, Borkakoti J, Lin V, Rosbe K, Tugizov SM. Human Immunodeficiency Virus (HIV) and Human Cytomegalovirus (HCMV) Coinfection of Infant Tonsil Epithelium May Synergistically Promote both HIV-1 and HCMV Spread and Infection. J Virol 2021; 95:e0092121. [PMID: 34232730 PMCID: PMC8387061 DOI: 10.1128/jvi.00921-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) and human cytomegalovirus (HCMV) may occur during pregnancy, labor, or breastfeeding. These viruses from amniotic fluid, cervicovaginal secretions, and breast milk may simultaneously interact with oropharyngeal and tonsil epithelia; however, the molecular mechanism of HIV-1 and HCMV cotransmission through the oral mucosa and its role in MTCT are poorly understood. To study the molecular mechanism of HIV-1 and HCMV MTCT via oral epithelium, we established polarized infant tonsil epithelial cells and polarized-oriented ex vivo tonsil tissue explants. Using these models, we showed that cell-free HIV-1 and its proteins gp120 and tat induce the disruption of tonsil epithelial tight junctions and increase paracellular permeability, which facilitates HCMV spread within the tonsil mucosa. Inhibition of HIV-1 gp120-induced upregulation of mitogen-activated protein kinase (MAPK) and NF-κB signaling in tonsil epithelial cells, reduces HCMV infection, indicating that HIV-1-activated MAPK and NF-κB signaling may play a critical role in HCMV infection of tonsil epithelium. HCMV infection of tonsil epithelial cells also leads to the disruption of tight junctions and increases paracellular permeability, facilitating HIV-1 paracellular spread into tonsil mucosa. HCMV-promoted paracellular spread of HIV-1 increases its accessibility to tonsil CD4 T lymphocytes, macrophages, and dendritic cells. HIV-1-enhanced HCMV paracellular spread and infection of epithelial cells subsequently leads to the spread of HCMV to tonsil macrophages and dendritic cells. Our findings revealed that HIV-1- and HCMV-induced disruption of infant tonsil epithelial tight junctions promotes MTCT of these viruses through tonsil mucosal epithelium, and therapeutic intervention for both HIV-1 and HCMV infection may substantially reduce their MTCT. IMPORTANCE Most HIV-1 and HCMV MTCT occurs in infancy, and the cotransmission of these viruses may occur via infant oropharyngeal and tonsil epithelia, which are the first biological barriers for viral pathogens. We have shown that HIV-1 and HCMV disrupt epithelial junctions, reducing the barrier functions of epithelia and thus allowing paracellular penetration of both viruses via mucosal epithelia. Subsequently, HCMV infects epithelial cells, macrophages, and dendritic cells, and HIV-1 infects CD4+ lymphocytes, macrophages, and dendritic cells. Infection of these cells in HCMV- and HIV-1-coinfected tonsil tissues is much higher than that by HCMV or HIV-1 infection alone, promoting their MTCT at its initial stages via infant oropharyngeal and tonsil epithelia.
Collapse
Affiliation(s)
- Irna Sufiawati
- Department of Oral Medicine, Faculty of Dentistry, University of Padjadjaran, Bandung, Indonesia
| | - Rossana Herrera
- Department of Medicine, University of California—San Francisco, San Francisco, California, USA
| | - Wasima Mayer
- Department of Medicine, University of California—San Francisco, San Francisco, California, USA
| | - Xiaodan Cai
- Department of Medicine, University of California—San Francisco, San Francisco, California, USA
| | - Jayanta Borkakoti
- Department of Medicine, University of California—San Francisco, San Francisco, California, USA
| | - Vicky Lin
- Department of Medicine, University of California—San Francisco, San Francisco, California, USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California—San Francisco, San Francisco, California, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California—San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Lee BJ, Min CK, Hancock M, Streblow DN, Caposio P, Goodrum FD, Yurochko AD. Human Cytomegalovirus Host Interactions: EGFR and Host Cell Signaling Is a Point of Convergence Between Viral Infection and Functional Changes in Infected Cells. Front Microbiol 2021; 12:660901. [PMID: 34025614 PMCID: PMC8138183 DOI: 10.3389/fmicb.2021.660901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses have evolved diverse strategies to manipulate cellular signaling pathways in order to promote infection and/or persistence. Human cytomegalovirus (HCMV) possesses a number of unique properties that allow the virus to alter cellular events required for infection of a diverse array of host cell types and long-term persistence. Of specific importance is infection of bone marrow derived and myeloid lineage cells, such as peripheral blood monocytes and CD34+ hematopoietic progenitor cells (HPCs) because of their essential role in dissemination of the virus and for the establishment of latency. Viral induced signaling through the Epidermal Growth Factor Receptor (EGFR) and other receptors such as integrins are key control points for viral-induced cellular changes and productive and latent infection in host organ systems. This review will explore the current understanding of HCMV strategies utilized to hijack cellular signaling pathways, such as EGFR, to promote the wide-spread dissemination and the classic life-long herpesvirus persistence.
Collapse
Affiliation(s)
- Byeong-Jae Lee
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Chan-Ki Min
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | | | - Andrew D Yurochko
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
8
|
Human Cytomegalovirus-Induced Autophagy Prevents Necroptosis of Infected Monocytes. J Virol 2020; 94:JVI.01022-20. [PMID: 32878887 DOI: 10.1128/jvi.01022-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Key to the viral dissemination strategy of human cytomegalovirus (HCMV) is the induction of monocyte survival, where monocytes are normally short-lived cells. Autophagy is a cellular process that preserves cellular homeostasis and promotes cellular survival during times of stress. We found that HCMV rapidly induced autophagy within infected monocytes. The early induction of autophagy during HCMV infection was distinctly required for the survival of HCMV-infected monocytes, as repression of autophagosome formation led to cellular death of infected cells but had no effect on the viability of uninfected monocytes. The inhibition of caspases was insufficient to rescue cell viability of autophagy-repressed infected monocytes, suggesting that autophagy was not protecting cells from apoptosis. Accordingly, we found that HCMV blocked the activation of caspase 8, which was maintained in the presence of autophagy inhibitors. Necroptosis is an alternative form of cell death triggered when apoptosis is impeded and is dependent on RIPK3 phosphorylation of MLKL. Although we found that HCMV activated RIP3K upon infection, MLKL was not activated. However, inhibition of autophagy removed the block in RIPK3 phosphorylation of MLKL, suggesting that autophagy was protecting infected monocytes from undergoing necroptosis. Indeed, survival of autophagy-inhibited HCMV-infected monocytes was rescued when MLKL and RIPK3 were suppressed. Taken together, these data indicate that HCMV induces autophagy to prevent necroptotic cell death in order to ensure the survival of infected monocytes and thus facilitate viral dissemination within the host.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world, with a seroprevalence of 40 to 100% depending on geographic location. HCMV infection is generally asymptomatic, but can cause severe inflammatory organ diseases in immunocompromised individuals. The broad array of organ diseases caused by HCMV is directly linked to the systematic spread of the virus mediated by monocytes. Monocytes are naturally programmed to undergo apoptosis, which is rapidly blocked by HCMV to ensure the survival and dissemination of infected monocytes to different organ sites. In this work, we demonstrate infected monocytes also initiate necroptosis as a "trap door" death pathway in response to HCMV subversion of apoptosis. HCMV then activates cellular autophagy as a countermeasure to prevent the execution of necroptosis, thereby promoting the continued survival of infected monocytes. Elucidating the mechanisms by which HCMV stimulates monocyte survival is an important step to the development of novel anti-HCMV drugs that prevent the spread of infected monocytes.
Collapse
|
9
|
Rauwel B, Degboé Y, Diallo K, Sayegh S, Baron M, Boyer JF, Constantin A, Cantagrel A, Davignon JL. Inhibition of Osteoclastogenesis by the RNA-Binding Protein QKI5: a Novel Approach to Protect from Bone Resorption. J Bone Miner Res 2020; 35:753-765. [PMID: 31834954 DOI: 10.1002/jbmr.3943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Increased osteoclastogenesis is a common feature of bone erosion, notably in osteoporosis but also in inflammatory diseases such as rheumatoid arthritis (RA) and osteoarticular infections. Human cytomegalovirus (HCMV) infection has been described to impair monocyte differentiation into macrophages and dendritic cells. However, its effect on monocyte-derived osteoclasts is yet to be determined. We showed here that in vitro HCMV infection is associated with an inhibition of osteoclastogenesis through decreased expression of colony stimulating factor 1 receptor (CSF-1R) and RANK in monocytes, which was mediated by an upregulation of quaking I-5 protein (QKI-5), a cellular RNA-interacting protein. We found that deliberate QKI5 overexpression in the absence of HCMV infection is able to decrease CSF-1R and RANK expression, leading to osteoclastogenesis inhibition. Finally, by using lentiviral vectors in a calvarial bone erosion mouse model, we showed that QKI5 inhibits bone degradation. This work identifies QKI5 as a strong inhibitor of bone resorption. Future research will point out whether QKI5 could be a target for bone pathologies. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Katy Diallo
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Souraya Sayegh
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Michel Baron
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Jean-Frédéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Alain Cantagrel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| |
Collapse
|
10
|
Human cytomegalovirus overcomes SAMHD1 restriction in macrophages via pUL97. Nat Microbiol 2019; 4:2260-2272. [PMID: 31548682 DOI: 10.1038/s41564-019-0557-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
The host restriction factor sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is an important component of the innate immune system. By regulating the intracellular nucleotide pool, SAMHD1 influences cell division and restricts the replication of viruses that depend on high nucleotide concentrations. Human cytomegalovirus (HCMV) is a pathogenic virus with a tropism for non-dividing myeloid cells, in which SAMHD1 is catalytically active. Here we investigate how HCMV achieves efficient propagation in these cells despite the SAMHD1-mediated dNTP depletion. Our analysis reveals that SAMHD1 has the capability to suppress HCMV replication. However, HCMV has evolved potent countermeasures to circumvent this block. HCMV interferes with SAMHD1 steady-state expression and actively induces SAMHD1 phosphorylation using the viral kinase pUL97 and by hijacking cellular kinases. These actions convert SAMHD1 to its inactive phosphorylated form. This mechanism of SAMHD1 inactivation by phosphorylation might also be used by other viruses to overcome intrinsic immunity.
Collapse
|
11
|
Schampera MS, Arellano-Galindo J, Kagan KO, Adler SP, Jahn G, Hamprecht K. Role of pentamer complex-specific and IgG subclass 3 antibodies in HCMV hyperimmunoglobulin and standard intravenous IgG preparations. Med Microbiol Immunol 2019; 208:69-80. [PMID: 30203132 DOI: 10.1007/s00430-018-0558-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND HCMV hyperimmunoglobulin-preparations (HIG) contain high concentrations of HCMV-specific IgG. The reduced maternofetal-HCMV-transmission rate of IgG may be due to HCMV-specific neutralizing antibodies against the HCMV pentameric complex (PC). In contrast to HIG, standard intravenous immunoglobulin (IVIG) may have more neutralization (NT) capacity than HIG due to higher IgG subclass 3 levels (Planitzer et al., 2011). METHODS We investigated the HCMV-specific NT-capacity of HIG Cytotect®, using a recombinant pentameric complex (gHgLUL128-131A) for specific antibody-depletion. We used a modified UL130-peptide (TANQNPSPPWSKLTYSKPH) based on original-sequence of Saccoccio et al. (Vaccine 29(15):2705-2711, 2011) (SWSTLTANQNPSPPWSKLTY) as neutralization target. Both UL130-peptides and the PC were bound via sixfold HisTag and anti-HisTag mAbs to magnetic beads to deplete HCMV-specific IgGs from HIG (Cytotect®). Modifying this depletion strategy, we analyzed the role of IgG subclass 3 in both HIG and IVIG. RESULTS After CMV IgG-normalization of HIG and IVIG, we found a significant trend towards a decrease (16%) of neutralization-capacity for the UL130 TAN-peptide, but not for the original UL130 SWS-peptide. However, highly significant loss of NT-capacity could be only observed by PC depletion (42%). The IgG subclass 3 depletion revealed no significant reduction of NT-capacity in both HIG and IVIG. CONCLUSION Via specific antibody depletion, we could demonstrate that pentameric complex-specific antibodies are present in HIG and bind to the recombinant PC resulting in a highly significant reduction of NT-capacity compared to the UL130 TAN-and SWS-peptides. We could not confirm the functional role of IgG subclass 3 neutralizing antibodies in IgG-preparations.
Collapse
Affiliation(s)
- Matthias Stefan Schampera
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Jose Arellano-Galindo
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
- Infectious Diseases Laboratory (Virology), Children's Hospital Federico Gómez, México City, Mexico
| | - Karl Oliver Kagan
- Department of Obstetrics and Gynaecology, University Hospital of Tuebingen, Tübingen, Germany
| | | | - Gerhard Jahn
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Klaus Hamprecht
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
12
|
Jackson JW, Sparer T. There Is Always Another Way! Cytomegalovirus' Multifaceted Dissemination Schemes. Viruses 2018; 10:v10070383. [PMID: 30037007 PMCID: PMC6071125 DOI: 10.3390/v10070383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpes virus that is a significant pathogen within immune compromised populations. HCMV morbidity is induced through viral dissemination and inflammation. Typically, viral dissemination is thought to follow Fenner's hypothesis where virus replicates at the site of infection, followed by replication in the draining lymph nodes, and eventually replicating within blood filtering organs. Although CMVs somewhat follow Fenner's hypothesis, they deviate from it by spreading primarily through innate immune cells as opposed to cell-free virus. Also, in vivo CMVs infect new cells via cell-to-cell spread and disseminate directly to secondary organs through novel mechanisms. We review the historic and recent literature pointing to CMV's direct dissemination to secondary organs and the genes that it has evolved for increasing its ability to disseminate. We also highlight aspects of CMV infection for studying viral dissemination when using in vivo animal models.
Collapse
Affiliation(s)
- Joseph W Jackson
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| | - Tim Sparer
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
13
|
Human Cytomegalovirus Particles Treated with Specific Antibodies Induce Intrinsic and Adaptive but Not Innate Immune Responses. J Virol 2017; 91:JVI.00678-17. [PMID: 28878085 DOI: 10.1128/jvi.00678-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) persistently infects 40% to 100% of the human population worldwide. Experimental and clinical evidence indicates that humoral immunity to HCMV plays an important role in restricting virus dissemination and protecting the infected host from disease. Specific immunoglobulin preparations from pooled plasma of adults selected for high titers of HCMV antibodies have been used for the prevention of CMV disease in transplant recipients and pregnant women. Even though incubation of HCMV particles with these preparations leads to the neutralization of viral infectivity, it is still unclear whether the antibody-treated HCMV particles (referred to here as HCMV-Ab) enter the cells and modulate antiviral immune responses. Here we demonstrate that HCMV-Ab did enter macrophages. HCMV-Ab did not initiate the expression of immediate early antigens (IEAs) in macrophages, but they induced an antiviral state and rendered the cells less susceptible to HCMV infection upon challenge. Resistance to HCMV infection seemed to be due to the activation of intrinsic restriction factors and was independent of interferons. In contrast to actively infected cells, autologous NK cells did not degranulate against HCMV-Ab-treated macrophages, suggesting that these cells may not be eliminated by innate effector cells. Interestingly, HCMV-Ab-treated macrophages stimulated the proliferation of autologous adaptive CD4+ and CD8+ T cells. Our findings not only expand the current knowledge on virus-antibody immunity but may also be relevant for future vaccination strategies.IMPORTANCE Human cytomegalovirus (HCMV), a common herpesvirus, establishes benign but persistent infections in immunocompetent hosts. However, in subjects with an immature or dysfunctional immune system, HCMV is a major cause of morbidity and mortality. Passive immunization has been used in different clinical settings with variable clinical results. Intravenous hyperimmune globulin preparations (IVIg) are obtained from pooled adult human plasma selected for high anti-CMV antibody titers. While HCMV neutralization can be shown in vitro using different systems, data are lacking regarding the cross-influence of IVIg administration on the cellular immune responses. The aim of this study was to evaluate the effects of IVIg on distinct components of the immune response against HCMV, including antigen presentation by macrophages, degranulation of innate natural killer cells, and proliferation of adaptive CD4+ and CD8+ T cells.
Collapse
|
14
|
Human Cytomegalovirus (HCMV)-Specific CD4 + T Cells Are Polyfunctional and Can Respond to HCMV-Infected Dendritic Cells In Vitro. J Virol 2017; 91:JVI.02128-16. [PMID: 28053099 DOI: 10.1128/jvi.02128-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection and periodic reactivation are generally well controlled by the HCMV-specific T cell response in healthy people. While the CD8+ T cell response to HCMV has been extensively studied, the HCMV-specific CD4+ T cell effector response is not as well understood, especially in the context of direct interactions with HCMV-infected cells. We screened the gamma interferon (IFN-γ) and interleukin-10 (IL-10) responses to 6 HCMV peptide pools (pp65, pp71, IE1, IE2, gB, and US3, selected because they were the peptides most frequently responded to in our previous studies) in 84 donors aged 23 to 74 years. The HCMV-specific CD4+ T cell response to pp65, IE1, IE2, and gB was predominantly Th1 biased, with neither the loss nor the accumulation of these responses occurring with increasing age. A larger proportion of donors produced an IL-10 response to pp71 and US3, but the IFN-γ response was still dominant. CD4+ T cells specific to the HCMV proteins studied were predominantly effector memory cells and produced both cytotoxic (CD107a expression) and cytokine (macrophage inflammatory protein 1β secretion) effector responses. Importantly, when we measured the CD4+ T cell response to cytomegalovirus (CMV)-infected dendritic cells in vitro, we observed that the CD4+ T cells produced a range of cytotoxic and secretory effector functions, despite the presence of CMV-encoded immune evasion molecules. CD4+ T cell responses to HCMV-infected dendritic cells were sufficient to control the dissemination of virus in an in vitro assay. Together, the results show that HCMV-specific CD4+ T cell responses, even those from elderly individuals, are highly functional and are directly antiviral.IMPORTANCE Human cytomegalovirus (HCMV) infection is carried for a lifetime and in healthy people is kept under control by the immune system. HCMV has evolved many mechanisms to evade the immune response, possibly explaining why the virus is never eliminated during the host's lifetime. The dysfunction of immune cells associated with the long-term carriage of HCMV has been linked with poor responses to new pathogens and vaccines when people are older. In this study, we investigated the response of a subset of immune cells (CD4+ T cells) to HCMV proteins in healthy donors of all ages, and we demonstrate that the functionality of CD4+ T cells is maintained. We also show that CD4+ T cells produce effector functions in response to HCMV-infected cells and can prevent virus spread. Our work demonstrates that these HCMV-specific immune cells retain many important functions and help to prevent deleterious HCMV disease in healthy older people.
Collapse
|
15
|
Heilingloh CS, Grosche L, Kummer M, Mühl-Zürbes P, Kamm L, Scherer M, Latzko M, Stamminger T, Steinkasserer A. The Major Immediate-Early Protein IE2 of Human Cytomegalovirus Is Sufficient to Induce Proteasomal Degradation of CD83 on Mature Dendritic Cells. Front Microbiol 2017; 8:119. [PMID: 28203230 PMCID: PMC5285329 DOI: 10.3389/fmicb.2017.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the prototypic beta-herpesvirus and widespread throughout the human population. While infection is asymptomatic in healthy individuals, it can lead to high morbidity and mortality in immunocompromised persons. Importantly, HCMV evolved multiple strategies to interfere with immune cell function in order to establish latency in infected individuals. As mature DCs (mDCs) are antigen-presenting cells able to activate naïve T cells they play a crucial role during induction of effective antiviral immune responses. Interestingly, earlier studies demonstrated that the functionally important mDC surface molecule CD83 is down-regulated upon HCMV infection resulting in a reduced T cell stimulatory capacity of the infected cells. However, the viral effector protein and the precise mechanism of HCMV-mediated CD83 reduction remain to be discovered. Using flow cytometric analyses, we observed significant down-modulation of CD83 surface expression becoming significant already 12 h after HCMV infection. Moreover, Western bot analyses revealed that, in sharp contrast to previous studies, loss of CD83 is not restricted to the membrane-bound molecule, but also occurs intracellularly. Furthermore, inhibition of the proteasome almost completely restored CD83 surface expression during HCMV infection. Results of infection kinetics and cycloheximide-actinomycin D-chase experiments, strongly suggested that an HCMV immediate early gene product is responsible for the induction of CD83 down-modulation. Consequently, we were able to identify the major immediate early protein IE2 as the viral effector protein that induces proteasomal CD83 degradation.
Collapse
Affiliation(s)
| | - Linda Grosche
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Lisa Kamm
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Myriam Scherer
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg Erlangen, Germany
| | - Melanie Latzko
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg Erlangen, Germany
| | | |
Collapse
|
16
|
The D-form of a novel heparan binding peptide decreases cytomegalovirus infection in vivo and in vitro. Antiviral Res 2016; 135:15-23. [PMID: 27678155 DOI: 10.1016/j.antiviral.2016.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) infection in utero can lead to congenital sensory neural hearing loss and mental retardation. Reactivation or primary infection can increase the morbidity and mortality in immune suppressed transplant recipients and AIDS patients. The current standard of care for HCMV disease is nucleoside analogs, which can be nephrotoxic. In addition resistance to current treatments is becoming increasingly common. In an effort to develop novel CMV treatments, we tested the effectiveness of the D-form of a novel heparan sulfate binding peptide, p5RD, at reducing infection of ganciclovir (GCV) resistant HCMVs in vitro and MCMV in vivo. HCMV infection was reduced by greater than 90% when cells were pretreated with p5RD. Because p5RD acts by a mechanism unrelated to those used by current antivirals, it was effective at reducing GCV resistant HCMVs by 85%. We show that p5RD is resistant to common proteases and serum inactivation, which likely contributed to its ability to significantly reduced infection of peritoneal exudate cells and viral loads in the spleen and the lungs in vivo. The ability of p5RD to reduce HCMV infectivity in vitro including GCV resistant HCMVs and MCMV infection in vivo suggests that this peptide could be a novel anti-CMV therapeutic.
Collapse
|
17
|
Non-redundant and redundant roles of cytomegalovirus gH/gL complexes in host organ entry and intra-tissue spread. PLoS Pathog 2015; 11:e1004640. [PMID: 25659098 PMCID: PMC4450070 DOI: 10.1371/journal.ppat.1004640] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/22/2014] [Indexed: 01/05/2023] Open
Abstract
Herpesviruses form different gH/gL virion envelope glycoprotein complexes that serve as entry complexes for mediating viral cell-type tropism in vitro; their roles in vivo, however, remained speculative and can be addressed experimentally only in animal models. For murine cytomegalovirus two alternative gH/gL complexes, gH/gL/gO and gH/gL/MCK-2, have been identified. A limitation of studies on viral tropism in vivo has been the difficulty in distinguishing between infection initiation by viral entry into first-hit target cells and subsequent cell-to-cell spread within tissues. As a new strategy to dissect these two events, we used a gO-transcomplemented ΔgO mutant for providing the gH/gL/gO complex selectively for the initial entry step, while progeny virions lack gO in subsequent rounds of infection. Whereas gH/gL/gO proved to be critical for establishing infection by efficient entry into diverse cell types, including liver macrophages, endothelial cells, and hepatocytes, it was dispensable for intra-tissue spread. Notably, the salivary glands, the source of virus for host-to-host transmission, represent an exception in that entry into virus-producing cells did not strictly depend on either the gH/gL/gO or the gH/gL/MCK-2 complex. Only if both complexes were absent in gO and MCK-2 double-knockout virus, in vivo infection was abolished at all sites.
Collapse
|
18
|
Wujcicka W, Wilczyński J, Nowakowska D. Alterations in TLRs as new molecular markers of congenital infections with Human cytomegalovirus? Pathog Dis 2013; 70:3-16. [PMID: 23929630 DOI: 10.1111/2049-632x.12083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in non-specific immunity against various infections. The most common intrauterine infection, caused by Human cytomegalovirus (HCMV), results in perinatal morbidity and mortality of primary infected fetuses. The induction of immune response by TLRs was observed in HCMV infections in murine models and cell lines cultured in vitro. Studies reported an immunological response in pregnant women with primary HCMV infection and TLR2 activity in collecting of HCMV particles in placental syncytiotrophoblasts (STs) in vivo and cultured ST, and in stimulation of tumor necrosis factor (TNF)-α expression and damage of villous trophoblast. Expression levels of TLRs are associated with cell type, stage of pregnancy and response to microorganisms. We show the effect of HCMV infection on the development of pregnancy as well as the effect of TLR single-nucleotide polymorphisms on the occurrence and course of infectious diseases, immune response and diseases of pregnancy. We report the impact of TLRs on the function of miRNAs and the altered expression levels of these molecules, as observed in HCMV infections. We suggest that the methylation status of TLR gene promoter regions as epigenetic modifications may be significant in the immune response to HCMV infections. We conclude that it is important to study in detail the molecular mechanisms of TLR function in the immune response to HCMV infections in pregnancy.
Collapse
Affiliation(s)
- Wioletta Wujcicka
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | | |
Collapse
|
19
|
Wagner FM, Brizic I, Prager A, Trsan T, Arapovic M, Lemmermann NAW, Podlech J, Reddehase MJ, Lemnitzer F, Bosse JB, Gimpfl M, Marcinowski L, MacDonald M, Adler H, Koszinowski UH, Adler B. The viral chemokine MCK-2 of murine cytomegalovirus promotes infection as part of a gH/gL/MCK-2 complex. PLoS Pathog 2013; 9:e1003493. [PMID: 23935483 PMCID: PMC3723581 DOI: 10.1371/journal.ppat.1003493] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 05/22/2013] [Indexed: 11/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex. Here, we show that the MCMV CC chemokine MCK-2 forms a complex with the glycoprotein gH, a complex which is incorporated into the virion. We could additionally show that mutants lacking both, gO and MCK-2 are not able to produce infectious virus. Trans-complementation of these double mutants with either gO or MCK-2 showed that both proteins can promote infection of host cells, although through different entry pathways. MCK-2 has been extensively studied in vivo by others. It has been shown to be involved in attracting cells for virus dissemination and in regulating antiviral host responses. We now show that MCK-2, by forming a complex with gH, strongly promotes infection of macrophages in vitro and in vivo. Thus, MCK-2 may play a dual role in MCMV infection, as a chemokine regulating the host response and attracting specific target cells and as part of a glycoprotein complex promoting entry into cells crucial for virus dissemination. Several human herpesviruses form alternative gH/gL complexes which determine the tropism for different cell types. For murine cytomegalovirus (MCMV), a gH/gL/gO complex has recently been characterized. Here, we present the identification and characterization of an alternative gH/gL/MCK-2 complex which promotes MCMV spread and is important for efficient infection of macrophages in vitro and in vivo. Association of the MCMV CC chemokine MCK-2 with a glycoprotein complex promoting virus entry is a novel function for the well-characterized MCK-2. Virus mutants lacking MCK-2 have been shown to exhibit a reduced capacity to attract leukocytes and a disregulated T cell control of the MCMV infection in vivo. These defects can be attributed to the chemokine function of MCK-2. Yet, the observation that MCK-2 knock-out mutants additionally are impaired in infecting leukocytes in vivo is consistent with our new finding that MCK-2 forms a glycoprotein complex promoting entry into monocytic cells. gH/gL complexes associating with multifunctional proteins add a new level of complexity to the interpretation of infection phenotypes of the respective knock-out herpesviruses.
Collapse
Affiliation(s)
- Felicia M. Wagner
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ilija Brizic
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adrian Prager
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tihana Trsan
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Arapovic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederic Lemnitzer
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Bernhard Bosse
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Gimpfl
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lisa Marcinowski
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Margaret MacDonald
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, New York, United States of America
| | - Heiko Adler
- Research Unit Gene Vectors, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Ulrich H. Koszinowski
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Barbara Adler
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
20
|
Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity. J Virol 2013; 87:7717-25. [PMID: 23637420 DOI: 10.1128/jvi.01096-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2C(hi) CD57(hi) NK cells gated on CD3(neg) CD56(dim) cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2C(hi) CD57(hi) NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2C(hi) CD57(hi) NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2C(hi) CD57(hi) NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.
Collapse
|
21
|
Human cytomegalovirus infection of M1 and M2 macrophages triggers inflammation and autologous T-cell proliferation. J Virol 2012; 87:67-79. [PMID: 23055571 DOI: 10.1128/jvi.01585-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophages (MΦ) are first targets during human cytomegalovirus (HCMV) infection and are thought to be crucial for viral persistence and dissemination. However, since MΦ are also a first line of defense and key modulators of the immune response, these cells are at the crossroad between protection and viral pathogenesis. To date, the MΦ-specific contribution to the immune response against HCMV is still poorly understood. In view of the opposite roles of M1 and M2 MΦ during initiation and resolution of the immune response, we characterized the effects of HCMV infection on classically activated M1 MΦ and alternatively activated M2 MΦ. Although HCMV susceptibility was higher in M2 MΦ, HCMV established a productive and persistent infection in both types of MΦ. Upon HCMV encounter, both types of MΦ acquired similar features of classical activation and secreted high levels of proinflammatory cytokines and chemokines. As a functional consequence, conditioned media obtained from HCMV-infected M1 and M2 MΦ potently activated freshly isolated monocytes. Finally, compared to HCMV-infected monocyte-derived dendritic cells, infected M1 and M2 MΦ were more efficient in stimulating proliferation of autologous T cells from HCMV-seropositive donors at early times (24 h) postinfection, while the MΦ immunostimulatory properties were reduced, but not abrogated, at later times (72 h postinfection). In summary, our findings indicate that MΦ preserve proper antigen presentation capacity upon HCMV infection while enhancing inflammation, thus suggesting that MΦ play a role in the maintenance of the large HCMV-specific T-cell repertoire in seropositive individuals.
Collapse
|
22
|
Sanchez V, Dong JJ, Battley J, Jackson KN, Dykes BC. Human cytomegalovirus infection of THP-1 derived macrophages reveals strain-specific regulation of actin dynamics. Virology 2012; 433:64-72. [PMID: 22874068 DOI: 10.1016/j.virol.2012.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/21/2012] [Accepted: 07/16/2012] [Indexed: 01/01/2023]
Abstract
Human cytomegalovirus (HCMV) remains latent in cells of the myeloid lineage after primary infection. The THP-1 monocytic cell line is conditionally permissive for infection and has been used primarily to study the process of HCMV reactivation when the cells are induced to differentiate. In the present report, we characterized lytic infection in THP-1 derived macrophages using two strains of HCMV, Towne and BAC-derived TR. Our findings indicate that these cells express viral genes of all three kinetic classes and produce extracellular virus, but that there is a delay in these processes relative to productively infected fibroblasts. Importantly, our studies in THP-1 derived macrophages revealed strain-specific differences in pp65 trafficking and actin dynamics. Based on these observations, our studies indicate that differentiated THP-1 cells can serve as a valuable model for lytic infection.
Collapse
Affiliation(s)
- V Sanchez
- Texas A&M Health Science Center, College of Medicine, Department of Microbial and Molecular Pathogenesis, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
23
|
A myeloid progenitor cell line capable of supporting human cytomegalovirus latency and reactivation, resulting in infectious progeny. J Virol 2012; 86:9854-65. [PMID: 22761372 DOI: 10.1128/jvi.01278-12] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that establishes a lifelong, latent infection within a host. At times when the immune system is compromised, the virus undergoes a lytic reactivation producing infectious progeny. The identification and understanding of the biological mechanisms underlying HCMV latency and reactivation are not completely defined. To this end, we have developed a tractable in vitro model system to investigate these phases of viral infection using a clonal population of myeloid progenitor cells (Kasumi-3 cells). Infection of these cells results in maintenance of the viral genome with restricted viral RNA expression that is reversed with the addition of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, also known as PMA). Additionally, a latent viral transcript (LUNA) is expressed at times where viral lytic transcription is suppressed. Infected Kasumi-3 cells initiate production of infectious virus following TPA treatment, which requires cell-to-cell contact for efficient transfer of virus to other cell types. Importantly, lytically infected fibroblast, endothelial, or epithelial cells can transfer virus to Kasumi-3 cells, which fail to initiate lytic replication until stimulated with TPA. Finally, inflammatory cytokines, in addition to the pharmacological agent TPA, are sufficient for transcription of immediate-early (IE) genes following latent infection. Taken together, our findings argue that the Kasumi-3 cell line is a tractable in vitro model system with which to study HCMV latency and reactivation.
Collapse
|
24
|
Poglitsch M, Weichhart T, Hecking M, Werzowa J, Katholnig K, Antlanger M, Krmpotic A, Jonjic S, Hörl WH, Zlabinger GJ, Puchhammer E, Säemann MD. CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. Am J Transplant 2012; 12:1458-68. [PMID: 22390651 DOI: 10.1111/j.1600-6143.2012.04002.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (CMV) remains one of the most important pathogens following solid-organ transplantation. Mounting evidence indicates that mammalian target of rapamycin (mTOR) inhibitors may decrease the incidence of CMV infection in solid-organ recipients. Here we aimed at elucidating the molecular mechanisms of this effect by employing a human CMV (HCMV) infection model in human macrophages, since myeloid cells are the principal in vivo targets of HCMV. We demonstrate a highly divergent host cell permissiveness for HCMV with optimal infection susceptibility in M2 but not M1 polarized macrophages. Employing an ultrahigh purified HCMV stock we observed rapamycin-independent viral entry and induction of IFN-β transcripts, but no proinflammatory cytokines or mitogen-activated protein kinases and mTOR activation early after infection. However, in the late infection phase, sustained mTOR activation was observed in HCMV-infected cells and was required for efficient viral protein synthesis including the viral late phase proteins pUL-44 and pp65. Accordingly, rapamycin strongly suppressed CMV replication 3 and 5 days postinfection in macrophages. In conclusion, these data indicate that mTOR is essential for virus replication during late phases of the viral cycle in myeloid cells and might explain the potent anti-CMV effects of mTOR inhibitors after organ transplantation.
Collapse
Affiliation(s)
- M Poglitsch
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rossini G, Cerboni C, Santoni A, Landini MP, Landolfo S, Gatti D, Gribaudo G, Varani S. Interplay between human cytomegalovirus and intrinsic/innate host responses: a complex bidirectional relationship. Mediators Inflamm 2012; 2012:607276. [PMID: 22701276 PMCID: PMC3371353 DOI: 10.1155/2012/607276] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 02/07/2023] Open
Abstract
The interaction between human cytomegalovirus (HCMV) and its host is a complex process that begins with viral attachment and entry into host cells, culminating in the development of a specific adaptive response that clears the acute infection but fails to eradicate HCMV. We review the viral and cellular partners that mediate early host responses to HCMV with regard to the interaction between structural components of virions (viral glycoproteins) and cellular receptors (attachment/entry receptors, toll-like receptors, and other nucleic acid sensors) or intrinsic factors (PML, hDaxx, Sp100, viperin, interferon inducible protein 16), the reactions of innate immune cells (antigen presenting cells and natural killer cells), the numerous mechanisms of viral immunoevasion, and the potential exploitation of events that are associated with early phases of virus-host interplay as a therapeutic strategy.
Collapse
Affiliation(s)
- Giada Rossini
- Section of Microbiology, Department of Hematology and Oncology “L. & A. Seragnoli”, University of Bologna, 40138 Bologna, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Paola Landini
- Section of Microbiology, Department of Hematology and Oncology “L. & A. Seragnoli”, University of Bologna, 40138 Bologna, Italy
| | - Santo Landolfo
- Department of Public Health and Microbiology, University of Turin, Turin, Italy
| | - Deborah Gatti
- Department of Public Health and Microbiology, University of Turin, Turin, Italy
| | - Giorgio Gribaudo
- Department of Public Health and Microbiology, University of Turin, Turin, Italy
| | - Stefania Varani
- Section of Microbiology, Department of Hematology and Oncology “L. & A. Seragnoli”, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
26
|
Schuessler A, Sampaio KL, Straschewski S, Sinzger C. Mutational mapping of pUL131A of human cytomegalovirus emphasizes its central role for endothelial cell tropism. J Virol 2012; 86:504-12. [PMID: 22031943 PMCID: PMC3255870 DOI: 10.1128/jvi.05354-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/14/2011] [Indexed: 12/12/2022] Open
Abstract
The UL131A protein is part of a pentameric variant of the gcIII complex in the virion envelope of human cytomegalovirus (HCMV), which has been found essential for efficient entry into endothelial cells (ECs). Using a systematic mutational scanning approach, we aimed to define peptide motifs within the UL131A protein that contribute to EC infection. Mutant viruses were generated in which charged amino acids within frames of 2 to 6 amino acids were replaced with alanines. The resulting viruses were evaluated with regard to their potential to infect EC cultures. Four clusters of charged amino acids essential for EC infection were identified (amino acids 22 to 27, 32 to 35, 64 to 69, and 116 to 121). Mutations of individual charge clusters within amino acids 72 to 104 caused minor reductions of EC tropism, but these effects were additive in a combined mutation, showing that this region also contributes to EC tropism. Only charge clusters within amino acids 46 to 58 were found irrelevant for EC infection. In conclusion, the unusual sensitivity to mutations, together with the remarkable conservation of the UL131A protein, emphasizes its particular role for EC tropism of HCMV.
Collapse
Affiliation(s)
- Andrea Schuessler
- Institute of Medical Virology and Epidemiology of Virus Diseases, University of Tuebingen, Tuebingen, Germany
| | - Kerstin Laib Sampaio
- Institute of Medical Virology and Epidemiology of Virus Diseases, University of Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
27
|
Romo N, Magri G, Muntasell A, Heredia G, Baía D, Angulo A, Guma M, López-Botet M. Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization. J Leukoc Biol 2011; 90:717-26. [PMID: 21742939 DOI: 10.1189/jlb.0311171] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MΦ comprise a heterogeneous population of cells, which contribute to host defense and maintenance of immune homeostasis. MΦ may be infected by human cytomegalovirus (HCMV), which has evolved different strategies to subvert the immune response. In the present study, we comparatively analyzed the natural killer (NK) cell response against HCMV (TB40E)-infected proinflammatory (M1) and antinflammatory (M2) MΦ, derived from autologous monocytes, cultured in the presence of GM-CSF and M-CSF, respectively. M1 MΦ were more resistant to infection and secreted IL-6, TNF-α, IFN-α, and IL-12; by contrast, in HCMV-infected M2 MΦ, proinflammatory cytokines, IL-10, and IFN-α production were limited and IL-12 was undetectable. NK cell degranulation was triggered by interaction with HCMV-infected M1 and M2 MΦ at 48 h postinfection. The response was partially inhibited by specific anti-NKp46, anti-DNAM-1, and anti-2B4 mAb, thus supporting a dominant role of these activating receptors. By contrast, only HCMV-infected M1 MΦ efficiently promoted NK cell-mediated IFN-γ secretion, an effect partially related to IL-12 production. These observations reveal differences in the NK cell response triggered by distinct, HCMV-infected, monocyte-derived cell types, which may be relevant in the immunopathology of this viral infection.
Collapse
Affiliation(s)
- Neus Romo
- Immunology Unit, Pompeu Fabra University, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Deletion mutant of human cytomegalovirus lacking US2-US6 and US11 maintains MHC class I expression and antigen presentation by infected dendritic cells. Virus Res 2010; 155:446-54. [PMID: 21172392 DOI: 10.1016/j.virusres.2010.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 11/20/2022]
Abstract
A HCMV mutant of endothelial- and DC-tropic strain TB40/E lacking the described MHC downregulating genes US2-6 and US11 (RVTB40/E(4)ΔUS11) was generated. We analyzed the susceptibility of DC to RVTB40/E(4)ΔUS11 and subsequently studied antigen presentation and T-cell stimulation. Wildtype TB40/E- and RVTB40/E(4)ΔUS11 showed no significant difference in the efficiency of infection of DC. Whereas infection with TB40/E induced downregulation of MHC I, no significant MHC I downregulation was observed on RVTB40/E(4)ΔUS11-infected DC, indicating that the US2-6, US11 region encodes for the major genes relevant for MHC I downregulation. However, both viruses induced downregulation of MHC II, as well as CD40, CD80, CD86 and CD83 to the same levels. Stimulation of IFN-γ production by HCMV-specific CD8+ T-cells by infected autologous DC correlated with the modulation of MHC expression. While TB40/E-infected DC did not efficiently stimulate IFN-γ production, RVTB40/E(4)ΔUS11-infected DC efficiently stimulated CD8+ T-cells to produce IFN-γ.
Collapse
|
29
|
Slobedman B, Cao JZ, Avdic S, Webster B, McAllery S, Cheung AK, Tan JC, Abendroth A. Human cytomegalovirus latent infection and associated viral gene expression. Future Microbiol 2010; 5:883-900. [PMID: 20521934 DOI: 10.2217/fmb.10.58] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a clinically important and ubiquitous herpesvirus. Following primary productive infection the virus is not completely eliminated from the host, but instead establishes a lifelong latent infection without detectable virus production, from where it can reactivate at a later stage to generate new infectious virus. Reactivated HCMV often results in life-threatening disease in immunocompromised individuals, particularly allogeneic stem cell and solid organ transplant recipients, where it remains one of the most difficult opportunistic pathogens that complicate the care of these patients. The ability of HCMV to establish and reactivate from latency is central to its success as a human pathogen, yet latency remains very poorly understood. This article will cover several aspects of HCMV latency, with a focus on current understanding of viral gene expression and functions during this phase of infection.
Collapse
Affiliation(s)
- Barry Slobedman
- Centre For Virus Research, Westmead Millennium Institute & University of Sydney, Westmead Millennium Institute, PO Box 412, New South Wales 2145, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mutational mapping of UL130 of human cytomegalovirus defines peptide motifs within the C-terminal third as essential for endothelial cell infection. J Virol 2010; 84:9019-26. [PMID: 20592093 DOI: 10.1128/jvi.00572-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The UL130 gene is one of the major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV). In order to define functionally important peptides within this protein, we have performed a charge-cluster-to-alanine (CCTA) mutational scanning of UL130 in the genetic background of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain. A total of 10 charge clusters were defined, and in each of them two or three charged amino acids were replaced with alanines. While the six N-terminal clusters were phenotypically irrelevant, mutation of the four C-terminal clusters each caused a reduction of EC tropism. The importance of this protein domain was further emphasized by the fact that the C-terminal pentapeptide PNLIV was essential for infection of ECs, and the cell tropism could not be rescued by a scrambled version of this sequence. We conclude that the C terminus of the UL130 protein serves an important function for infection of ECs by HCMV. This makes UL130 a promising molecular target for antiviral strategies, e.g., the development of antiviral peptides.
Collapse
|
31
|
Khan KA, Coaquette A, Davrinche C, Herbein G. Bcl-3-regulated transcription from major immediate-early promoter of human cytomegalovirus in monocyte-derived macrophages. THE JOURNAL OF IMMUNOLOGY 2009; 182:7784-94. [PMID: 19494302 DOI: 10.4049/jimmunol.0803800] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monocytes/macrophages are key cells in the pathogenesis of human CMV (HCMV) infection, but the in vitro rate of viral production in primary human monocyte-derived macrophages (MDM) is considerably lower than in fibroblasts. Considering that the NF-kappaB signaling pathway is potentially involved in the replication strategy of HCMV through efficient transactivation of the major immediate-early promoter (MIEP), efficient viral replication, and late gene expression, we investigated the composition of the NF-kappaB complex in HCMV-infected MDMs and fibroblasts. Preliminary studies showed that HCMV could grow in primary MDM culture but that the viral titer in culture supernatants was lower than that observed in the supernatants of more permissive MRC5 fibroblasts. EMSA and microwell colorimetric NF-kappaB assay demonstrated that HCMV infection of MDMs increased p52 binding activity without activating the canonical p50/p65 complex. Moreover, Bcl-3 was up-regulated and was demonstrated to associate with p52, indicating p52/Bcl-3 complexes as the major component of the NF-kappaB complex in MDMs. Luciferase assays in promonocytic U937 cells transfected with an MIEP-luciferase reporter construct demonstrated MIEP activation in response to p52 and Bcl-3 overexpression. Chromatin immunoprecipitation assay demonstrated that p52 and Bcl-3 bind the MIEP in acutely HCMV-infected MDMs. In contrast, HCMV infection of MRC5 fibroblasts resulted in activation of p50/p65 heterodimers. Thus, activation of p52/Bcl-3 complexes in MDMs and p50/p65 heterodimers in fibroblasts in response to HCMV infection might explain the low-level growth of the virus in MDMs vs efficient growth in fibroblasts.
Collapse
Affiliation(s)
- Kashif Aziz Khan
- Department of Virology, Institut Fédératif de Recherche 133, Equipe d'Accueil 3186, Franche-Comté University, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | | | | |
Collapse
|
32
|
Varani S, Frascaroli G, Landini MP, Söderberg-Nauclér C. Human cytomegalovirus targets different subsets of antigen-presenting cells with pathological consequences for host immunity: implications for immunosuppression, chronic inflammation and autoimmunity. Rev Med Virol 2009; 19:131-45. [DOI: 10.1002/rmv.609] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Frascaroli G, Varani S, Blankenhorn N, Pretsch R, Bacher M, Leng L, Bucala R, Landini MP, Mertens T. Human cytomegalovirus paralyzes macrophage motility through down-regulation of chemokine receptors, reorganization of the cytoskeleton, and release of macrophage migration inhibitory factor. THE JOURNAL OF IMMUNOLOGY 2009; 182:477-88. [PMID: 19109179 DOI: 10.4049/jimmunol.182.1.477] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Macrophages contribute to host defense and to the maintenance of immune homeostasis. Conversely, they are important targets of human cytomegalovirus (HCMV), a herpesvirus that has evolved many strategies to modulate the host immune response. Because an efficient macrophage trafficking is required for triggering an adequate immune response, we investigated the effects exerted by HCMV infection on macrophage migratory properties. By using endotheliotropic strains of HCMV, we obtained high rates of productively infected human monocyte-derived macrophages (MDM). Twenty-four hours after infection, MDM showed reduced polar morphology and became unable to migrate in response to inflammatory and lymphoid chemokines, bacterial products and growth factors, despite being viable and metabolically active. Although chemotactic receptors were only partially affected, HCMV induced a dramatic reorganization of the cytoskeleton characterized by rupture of the microtubular network, stiffness of the actin fibers, and collapse of the podosomes. Furthermore, supernatants harvested from infected MDM contained high amounts of macrophage migration inhibitory factor (MIF) and were capable to block the migration of neighboring uninfected MDM. Because immunodepletion of MIF from the conditioned medium completely restored MDM chemotaxis, we could show for the first time a functional role of MIF as an inhibitor of macrophage migration in the context of HCMV infection. Our findings reveal that HCMV uses different mechanisms to interfere with movement and positioning of macrophages, possibly leading to an impairment of antiviral responses and to an enhancement of the local inflammation.
Collapse
|
34
|
Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev 2009; 22:99-126, Table of Contents. [PMID: 19136436 DOI: 10.1128/cmr.00023-08] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital cytomegalovirus (CMV) infection is the leading infectious cause of mental retardation and hearing loss in the developed world. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and long-term disabilities associated with CMV infection. In this review, current concepts regarding the pathogenesis of neurological injury caused by CMV infections acquired by the developing fetus are summarized. The pathogenesis of CMV-induced disabilities is considered in the context of the epidemiology of CMV infection in pregnant women and newborn infants, and the clinical manifestations of brain injury are reviewed. The prospects for intervention, including antiviral therapies and vaccines, are summarized. Priorities for future research are suggested to improve the understanding of this common and disabling illness of infancy.
Collapse
|
35
|
Lützner N, Kalbacher H. Quantifying cathepsin S activity in antigen presenting cells using a novel specific substrate. J Biol Chem 2008; 283:36185-94. [PMID: 18957408 DOI: 10.1074/jbc.m806500200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin S (CatS) is a lysosomal cysteine protease belonging to the papain superfamily. Because of the relatively broad substrate specificity of this family, a specific substrate for CatS is not yet known. Based on a detailed study of the CatS endopeptidase specificity, using six series of internally quenched fluorescent peptides, we were able to design a specific substrate for CatS. The peptide series was based on the sequence GRWHTVGLRWE-Lys(Dnp)-DArg-NH2, which shows only one single cleavage site between Gly and Leu and where every substrate position between P-3 and P-3' was substituted with up to 15 different amino acids. The endopeptidase specificity of CatS was mainly determined by the P-2, P-1', and the P-3' substrate positions. Based on this result, systematically modified substrates were synthesized. Two of these modified substrates, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2 and Mca-GRWHPMGAPWE-Lys(Dnp)-DArg-NH2, did not react with the purified cysteine proteases cathepsin B (CatB) and cathepsin L (CatL). Using a specific CatS inhibitor, we could further show that these two peptides were not cleaved by endosomal fractions of antigen presenting cells (APCs), when CatS was inhibited and related cysteine proteases cathepsin B, H, L and X were still active. Although aspartic proteases like cathepsin E and cathepsin D were also present, our substrates were suitable to quantify cathepsin S activity specifically in APCs, including B cells, macrophages, and dendritic cells without the use of any protease inhibitor. We find that CatS activity differs significantly not only between the three types of professional APCs but also between endosomal and lysosomal compartments.
Collapse
Affiliation(s)
- Nicolas Lützner
- Interfaculty Institute of Biochemistry, Medical and Natural Sciences Research Centre, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
36
|
Charge cluster-to-alanine scanning of UL128 for fine tuning of the endothelial cell tropism of human cytomegalovirus. J Virol 2008; 82:11239-46. [PMID: 18768970 DOI: 10.1128/jvi.01069-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The viral genes UL128, UL130, and UL131A have been identified as major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV), with deletion of either gene causing a null phenotype. We hypothesized that a functional scanning of these genes by minor genetic modifications would allow for the generation of mutants with an intermediate phenotype. By combining charge cluster-to-alanine (CCTA) mutagenesis with markerless mutagenesis of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain, we analyzed UL128 in order to identify functional sites and hence enable targeted modulation of the EC tropism of HCMV. A total of nine mutations in eight charge clusters were tested. Three of the CCTA mutations severely reduced EC tropism, three were irrelevant, two had a weak effect on cell tropism, and one mutation in the most C-terminal cluster caused an intermediate phenotype. All of the highly effective mutations were located in a core region (amino acids 72 to 106) which appears to be particularly crucial for EC tropism. The intermediate effect of mutations in the C-terminal cluster could be modulated by varying the number of amino acids replaced with alanine. This study provides a rational approach for targeted modulation of HCMV cell tropism, which may aid in the development of HCMV strains with a desired degree of attenuation.
Collapse
|
37
|
Abstract
The human cytomegalovirus (HCMV) can infect a remarkably broad cell range within its host, including parenchymal cells and connective tissue cells of virtually any organ and various hematopoietic cell types. Epithelial cells, endothelial cells, fibroblasts and smooth muscle cells are the predominant targets for virus replication. The pathogenesis of acute HCMV infections is greatly influenced by this broad target cell range. Infection of epithelial cells presumably contributes to inter-host transmission. Infection of endothelial cells and hematopoietic cells facilitates systemic spread within the host. Infection of ubiquitous cell types such as fibroblasts and smooth muscle cells provides the platform for efficient proliferation of the virus. The tropism for endothelial cells, macrophages and dendritic cells varies greatly among different HCMV strains, mostly dependent on alterations within the UL128-131 gene locus. In line with the classification of the respective proteins as structural components of the viral envelope, interstrain differences concerning the infectivity in endothelial cells and macrophages are regulated on the level of viral entry.
Collapse
|
38
|
Bentz GL, Jarquin-Pardo M, Chan G, Smith MS, Sinzger C, Yurochko AD. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol 2006; 80:11539-55. [PMID: 16987970 PMCID: PMC1642592 DOI: 10.1128/jvi.01016-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) pathogenesis is dependent on the hematogenous spread of the virus to host tissue. While data suggest that infected monocytes are required for viral dissemination from the blood to the host organs, infected endothelial cells are also thought to contribute to this key step in viral pathogenesis. We show here that HCMV infection of endothelial cells increased the recruitment and transendothelial migration of monocytes. Infection of endothelial cells promoted the increased surface expression of cell adhesion molecules (intercellular cell adhesion molecule 1, vascular cell adhesion molecule 1, E-selectin, and platelet endothelial cell adhesion molecule 1), which were necessary for the recruitment of naïve monocytes to the apical surface of the endothelium and for the migration of these monocytes through the endothelial cell layer. As a mechanism to account for the increased monocyte migration, we showed that HCMV infection of endothelial cells increased the permeability of the endothelium. The cellular changes contributing to the increased permeability and increased naïve monocyte transendothelial migration include the disruption of actin stress fiber formation and the decreased expression of lateral junction proteins (occludin and vascular endothelial cadherin). Finally, we showed that the migrating monocytes were productively infected with the virus, documenting that the virus was transferred to the migrating monocyte during passage through the lateral junctions. Together, our results provide evidence for an active role of the infected endothelium in HCMV dissemination and pathogenesis.
Collapse
Affiliation(s)
- Gretchen L Bentz
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|