1
|
Xu H, Blagg BSJ. Glucose-regulated protein 94 (Grp94/gp96) in viral pathogenesis: Insights into its role and therapeutic potentials. Eur J Med Chem 2025; 292:117713. [PMID: 40319577 DOI: 10.1016/j.ejmech.2025.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Glucose-regulated protein 94 (Grp94/gp96) is endoplasmic reticulum (ER) resident form of the 90 kDa heat shock protein 90 (Hsp90) that is responsible for folding, maturation and stabilization of more than 400 client proteins. Grp94 has been implicated for various diseases including metastatic cancer, primary open-angle glaucoma, and infectious diseases. In fact, Grp94 plays critical roles in different stages of viral infection cycle. It chaperones receptor proteins and viral glycoproteins that are necessary for viral entry and replication. Beyond its role in protein homeostasis, Grp94 modulates host cellular processes such as apoptosis and immune responses, which are often exploited by viruses to sustain infection. This work provides an overview of the roles of Grp94 in viral pathogenesis across various viruses and its involvement in immune modulation with the development of Grp94-selective inhibitors and their potential as anti-viral therapeutics.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
de Morais Gomes V, Santos DM, Macedo-da-Silva J, Lazari LC, Machado RRG, Dos Santos AF, Araujo DB, Coutinho JVP, Arini GS, Angeli CB, de Souza EE, Marques RF, Boscardin SB, Wrenger C, Marinho CRF, Oliveira DBL, Durigon EL, Labriola L, Rosa-Fernandes L, Palmisano G. P.1 and P.2 SARS-CoV-2 Brazilian variants activate the unfolded protein response with a time and pathway specificity. J Proteomics 2025; 315:105397. [PMID: 39909104 DOI: 10.1016/j.jprot.2025.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
COVID-19 is a human respiratory syndrome caused by the infection of the SARS-CoV-2 virus that has a high rate of infection and mortality. Viruses modulate the host machinery by altering cellular mechanisms that favor their replication. One of the mechanisms that viruses exploit is the protein folding and processing of post-translational modifications that occur in the endoplasmic reticulum (ER). When ER function is impaired, there is an accumulation of misfolded proteins leading to endoplasmic reticulum stress (ER stress). To maintain homeostasis, cells trigger an adaptive signaling mechanism called the Unfolded Protein Response (UPR) which helps cells deal with stress, but under severe conditions, can activate the apoptotic cell death mechanism. This study elucidated an activation of a diversity of molecular mechanisms by Brazilian variants of SARS-CoV-2 by a time-resolved and large-scale characterization of SARS-CoV-2-infected cells proteomics and immunoblotting. Furthermore, it was shown that pharmacological UPR modulation could reduce viral release by counteracting the different viral activations of its cellular response. Analysis of human clinical specimens and disease outcomes focusing on ER stress reinforces the importance of UPR modulation as a host regulatory mechanism during viral infection and could point to novel therapeutic targets. SIGNIFICANCE: Since the emergence of SARS-CoV-2 and the consequent COVID-19 pandemic, the rapid emergence of variants of this new coronavirus has been a cause for concern since many of them have significantly higher rates of transmissibility and virulence, being called Variants of Concern (VOC). In this work, we studied the VOCs Gamma (P.1) and Zeta (P.2), also known as Brazilian variants. Constant evidence has reported that there are particularities related to each variant of SARS-CoV-2, with different rates of transmissibility, replication and modulation of host biological processes being observed, in addition to the mutations present in the variants. For this reason, this work focused on infections caused by the Brazilian variants of SARS-CoV-2 in different cell lines, in which we were able to observe that the infections caused by the variants induced endoplasmic reticulum stress in the infected cells and activated the UPR pathways, presenting specific modulations of each variant in this pathway. Furthermore, transcriptome analysis of patients revealed a correlation between ER-related genes and COVID-19 progression. Finally, we observed that the use of UPR modulators in host cells decreased viral release of all variants without affecting cell viability. The data presented in this work complement the observations of other studies that aim to understand the pathogenicity of SARS-CoV-2 VOCs and possible new therapeutic strategies, mainly targeting biological processes related to the endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Lucas C Lazari
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | | | | | - Danielle Bastos Araujo
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil
| | | | - Gabriel Santos Arini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Claudia B Angeli
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Edmarcia E de Souza
- Unit for Drug Discovery, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Rodolfo F Marques
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, ICB, University of São Paulo, Brazil
| | | | - Danielle B L Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil
| | - Edison L Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil; Scientific Platform Pasteur USP, Sao Paulo, Brazil
| | - Leticia Labriola
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil; Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, Brazil; Centre for Motor Neuron Disease Research, Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Sydney, Australia
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
3
|
Liu J, Nagy N, Ayala-Torres C, Bleuse S, Aguilar-Alonso F, Larsson O, Masucci MG. The Epstein-Barr virus deubiquitinase BPLF1 regulates stress-induced ribosome UFMylation and reticulophagy. Autophagy 2025; 21:996-1018. [PMID: 39842454 PMCID: PMC12013442 DOI: 10.1080/15548627.2024.2440846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
The synthesis of membrane and secreted proteins is safeguarded by an endoplasmic reticulum-associated ribosome quality control (ER-RQC) that promotes the disposal of defective translation products by the proteasome or via a lysosome-dependent pathway involving the degradation of portions of the ER by macroautophagy (reticulophagy). The UFMylation of RPL26 on ER-stalled ribosomes is essential for activating the ER-RQC and reticulophagy. Here, we report that the viral deubiquitinase (vDUB) encoded in the N-terminal domain of the Epstein-Barr virus (EBV) large tegument protein BPLF1 hinders the UFMylation of RPL26 on ribosomes that stall at the ER, promotes the stabilization of ER-RQC substrates, and inhibits reticulophagy. The vDUB did not act as a de-UFMylase or interfere with the UFMylation of the ER membrane protein CYB5R3 by the UFL1 ligase. Instead, it copurified with ribosomes in sucrose gradients and abrogated a ZNF598- and LTN1-independent ubiquitination event required for RPL26 UFMylation. Physiological levels of BPLF1 impaired the UFMylation of RPL26 in productively EBV-infected cells, pointing to an important role of the enzyme in regulating the translation quality control that allows the efficient synthesis of viral proteins and the production of infectious virus.Abbreviation: BPLF1, BamH1 P fragment left open readingframe-1; CDK5RAP3, CDK5regulatory subunit associated protein 3; ChFP, mCherry fluorescent protein; DDRGK1, DDRGKdomain containing 1; EBV, Epstein-Barr virus; eGFP, enhancedGFP; ER-RQC, endoplasmicreticulum-associated ribosome quality control; LCL, EBV-carryinglymphoblastoid cell line; GFP, green fluorescent protein; RQC, ribosome quality control; SRP, signal recognition particle; UFM1, ubiquitin fold modifier 1; UFL1, UFM1 specific ligase 1.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Solenne Bleuse
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Lu Z, Li H, Gao X, Fu D, Huang H, Huang C, Wu M, Guo X. Goose astrovirus induces apoptosis and endoplasmic reticulum stress in gosling hepatocytes. Poult Sci 2025; 104:104600. [PMID: 39616677 PMCID: PMC11648764 DOI: 10.1016/j.psj.2024.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025] Open
Abstract
The ongoing Goose astrovirus (GoAstV) epidemic, which primarily infects goslings causing severe liver damage, has inflicted considerable damage on the poultry industry. Endoplasmic reticulum stress (ERS) is a significant modulator of several viral infections, while severe ERS may result in apoptosis. This study examined the roles and possible mechanisms of ERS and apoptosis in GoAstV-induced liver injury in goslings. Two hundred Xingguo gray geese were chosen and randomly separated into two groups (Con and Dis). The Dis group received a subcutaneous injection of GoAstV genotype 2 (GoAstV-2) JX01 (2 × 106 TCID50/0.2 mL), whereas the Con group received a subcutaneous injection of 0.2 mL physiological saline, both at 1 day of life. Subsequent analyses demonstrate that the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased following GoAstV infection. Hematoxylin and eosin (HE) staining revealed swollen and ruptured hepatocytes, with significant inflammatory cell infiltration. Electron microscopy revealed expansion of the endoplasmic reticulum (ER) and aggregation of chromatin at the periphery. TUNEL testing further demonstrated an increase in the quantity of positive cells. RT-qPCR and Western blot analyses indicated that GoAstV infection enhanced the expression of ER Ca2+ release channels (IP3R and RYR) and calmodulin-dependent protein kinase II (CaMKII), while decreasing the expression of ER Ca2+ uptake channels (SERCA). Further, GoAstV infection activated ERS-related factors, including GRP78, IRE1α, PERK, ATF6, eIF2α, ATF4, CHOP, TRAF2, and JNK, induced the expression of pro-apoptotic factors (Caspase-3, Caspase-9, and Bax), and inhibited the mRNA and protein expression of the anti-apoptotic factor Bcl-2. Correlation analysis further revealed a potential relationship among ERS gene expression, apoptotic gene expression, and liver injury. In summary, GoAstV infection can lead to liver injury by interfering with ER Ca2+ homeostasis, exacerbating ERS and inducing hepatocyte apoptosis.
Collapse
Affiliation(s)
- Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Haiqin Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China; Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Duanfeng Fu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Haoyu Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Meiqin Wu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
5
|
Bickels Nuri R, Feldmesser E, Fridmann-Sirkis Y, Keren-Shaul H, Nevo R, Minsky A, Reich Z. Acanthamoeba polyphaga de novo transcriptome and its dynamics during Mimivirus infection. Sci Rep 2024; 14:25894. [PMID: 39472705 PMCID: PMC11522460 DOI: 10.1038/s41598-024-76078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Mimivirus bradfordmassiliense (Mimivirus) is a giant virus that infects Acanthamoeba species - opportunistic human pathogens. Long- and short-read sequencing were used to generate a de novo transcriptome of the host and followed the dynamics of both host and virus transcriptomes over the course of infection. The assembled transcriptome of the host included 22,604 transcripts and 13,043 genes, with N50 = 2,372 nucleotides. Functional enrichment analysis revealed major changes in the host transcriptome, namely, enrichment in downregulated genes associated with cytoskeleton homeostasis and DNA replication, repair, and nucleotide synthesis. These modulations, together with those implicated by other enriched processes, indicate cell cycle arrest, which was demonstrated experimentally. We also observed upregulation of host genes associated with transcription, secretory pathways and, as reported here for the first time, peroxisomes and the ubiquitin-proteasome system. In Mimivirus, the early stages of infection were marked by upregulated genes related to DNA replication, transcription, translation, and nucleotide metabolism, and in later stages, enrichment in genes associated with lipid metabolism, carbohydrates, and proteases. Some of the changes observed in the amoebal transcriptome likely point to Mimivirus infection causing dismantling of host cytoskeleton and translocation of endoplasmic reticulum membranes to viral factory areas.
Collapse
Affiliation(s)
- Reut Bickels Nuri
- Departments of Chemical and Structural Biology and Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yael Fridmann-Sirkis
- Protein Analysis Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Hadas Keren-Shaul
- Genomics unit, Department of Life Sciences Core Facilities- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Abraham Minsky
- Department of Chemical and Structural biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
6
|
Shomar H, Georjon H, Feng Y, Olympio B, Guillaume M, Tesson F, Cury J, Wu F, Bernheim A. Viperin immunity evolved across the tree of life through serial innovations on a conserved scaffold. Nat Ecol Evol 2024; 8:1667-1679. [PMID: 38965412 DOI: 10.1038/s41559-024-02463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Evolutionary arms races between cells and viruses drive the rapid diversification of antiviral genes in diverse life forms. Recent discoveries have revealed the existence of immune genes that are shared between prokaryotes and eukaryotes and show molecular and mechanistic similarities in their response to viruses. However, the evolutionary dynamics underlying the conservation and adaptation of these antiviral genes remain mostly unexplored. Here, we show that viperins constitute a highly conserved family of immune genes across diverse prokaryotes and eukaryotes and identify mechanisms by which they diversified in eukaryotes. Our findings indicate that viperins are enriched in Asgard archaea and widely distributed in all major eukaryotic clades, suggesting their presence in the last eukaryotic common ancestor and their acquisition in eukaryotes from an archaeal lineage. We show that viperins maintain their immune function by producing antiviral nucleotide analogues and demonstrate that eukaryotic viperins diversified through serial innovations on the viperin gene, such as the emergence and selection of substrate specificity towards pyrimidine nucleotides, and through partnerships with genes maintained through genetic linkage, notably with nucleotide kinases. These findings unveil biochemical and genomic transitions underlying the adaptation of immune genes shared by prokaryotes and eukaryotes. Our study paves the way for further understanding of the conservation of immunity across domains of life.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Héloïse Georjon
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
- Generare Bioscience, Paris, France
| | - Yanlei Feng
- School of Life Sciences, College of Science, Eastern Institute of Technology, Ningbo, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Bismarck Olympio
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Marie Guillaume
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Florian Tesson
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Jean Cury
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Fabai Wu
- School of Life Sciences, College of Science, Eastern Institute of Technology, Ningbo, China.
| | - Aude Bernheim
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France.
| |
Collapse
|
7
|
Zhang R, Hu Z, Wei D, Li R, Li Y, Zhang Z. Carboplatin restricts peste des petits ruminants virus replication by suppressing the STING-mediated autophagy. Front Vet Sci 2024; 11:1383927. [PMID: 38812563 PMCID: PMC11133560 DOI: 10.3389/fvets.2024.1383927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that causes the acute and highly pathogenic infectious disease peste des petits ruminants (PPR) in small ruminants and poses a major threat to the goat and sheep industries. Currently, there is no effective treatment for PPRV infection. Here, we propose Carboplatin, a platinum-based regimen designed to treat a range of malignancies, as a potential antiviral agent. We showed that Carboplatin exhibits significant antiviral activity against PPRV in a cell culture model. The mechanism of action of Carboplatin against PPRV is mainly attributed to its ability to block STING mediated autophagy. Together, our study supports the discovery of Carboplatin as an antiviral against PPRV and potentially other closely related viruses, sheds light on its mode of action, and establishes STING as a valid and attractive target to counteract viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Yanmin Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Han Y, Wang C, Bai C, Diao E, Yuan B, Lu K, Dong X, Zhang R, Han B, Liu H, Wang J, Wang X, Xiao S, Yang Z. Bovine parainfluenza virus type 3 infections induce ER stress-mediated autophagy to facilitate virus replication. Vet Microbiol 2024; 292:110051. [PMID: 38513524 DOI: 10.1016/j.vetmic.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Bovine Parainfluenza Virus Type 3 (BPIV3) serves as a crucial pathogen in cattle, adept at triggering severe respiratory symptoms. This investigation explores the intricate interplay of endoplasmic reticulum stress (ER stress), unfolded protein response (UPR), and autophagy upon BPIV3 infection. In this study, we initially confirm a substantial increase in glucose regulatory protein 78 (GRP78) expression, accompanied by noticeable morphological changes and significant expansion of the ER lumen observed through transmission electron microscopy upon BPIV3 infection. Our findings indicate that ER Stress is induced during BPIV3 infection in vitro. Subsequently, we illustrate that BPIV3 triggers ER Stress to facilitate viral replication through heightened autophagy through treatment with the ER stress inhibitor 4-phenylbutyrate (4-PBA) and utilizing small interfering RNA (siRNA) technology to knock down GRP78. Additionally, we observe that the activation of ER stress initiates the UPR via PERK and ATF6 pathways, with the IRE1 pathway not contributing to the regulation of ER stress-mediated autophagy. Moreover, intervention with the PERK inhibitor GSK2606414, ATF6 inhibitor Ceapin-A7, and siRNA technology successfully reverses BPIV3-induced autophagy. In summary, these findings propose that BPIV3 induces ER stress to enhance viral replication through increased autophagy, with the PERK and ATF6 pathways playing a significant role in ER stress-mediated autophagy.
Collapse
Affiliation(s)
- Yu Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chongyang Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Chongsheng Bai
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, Shaanxi, China
| | - Enying Diao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Binxuan Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyu Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Sheng Y, Deng Y, Li X, Ji P, Sun X, Liu B, Zhu J, Zhao J, Nan Y, Zhou EM, Hiscox JA, Stewart JP, Sun Y, Zhao Q. Hepatitis E virus ORF3 protein hijacking thioredoxin domain-containing protein 5 (TXNDC5) for its stability to promote viral particle release. J Virol 2024; 98:e0164923. [PMID: 38548704 PMCID: PMC11019958 DOI: 10.1128/jvi.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.
Collapse
Affiliation(s)
- Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Cho A, Lax G, Livingston SJ, Masukagami Y, Naumova M, Millar O, Husnik F, Keeling PJ. Genomic analyses of Symbiomonas scintillans show no evidence for endosymbiotic bacteria but does reveal the presence of giant viruses. PLoS Genet 2024; 20:e1011218. [PMID: 38557755 PMCID: PMC11008856 DOI: 10.1371/journal.pgen.1011218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 μm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel J. Livingston
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mariia Naumova
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Olivia Millar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Dash SR, Kundu A, Kundu CN. The role of viruses in cancer progression versus cancer treatment: A dual paradigm. Life Sci 2024; 341:122506. [PMID: 38373620 DOI: 10.1016/j.lfs.2024.122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Most human malignancies are attributed to exposure to infectious organisms such as viruses. Certain infections that can induce cancer can evade the immune system, leading to persistent inflammation that facilitates uncontrolled cell growth. Moreover, these pathogens can increase the likelihood of oncogenic transformation, leading to cancer development. Despite significant advancements in medicine, oncological research continues to seek innovative treatment techniques in light of the constraints imposed by traditional therapeutic agents. Virus-based therapy is a novel treatment method that has garnered significant interest due to its broad range of applications. Virotherapy employs oncolytic viruses that are genetically modified to target tumor cells specifically, undergo replication inside them and destroy the malignant cells. Additionally, this therapeutic approach elicits an anticancer response by boosting the patient's immune system. In addition, viruses are commonly employed as targeted delivery vectors for the precise transportation of various genes, medicinal compounds and immune-stimulating substances. Furthermore, virotherapy offers more excellent anticancer activity in combination with established treatment modalities such as immune therapy, chemotherapy and radiation therapy. This review presents a concise overview of the roles played by infectious agents, such as viruses in cancer progression. In addition, we have thoroughly summarized the advancements in utilizing viruses for their oncolytic properties in conjunction with established cancer treatment modalities such as chemotherapy, radiation and immunotherapy.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Anushka Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
12
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
13
|
Chau KM, Dominic A, Davis EL, Kotla S, Berrios ET, Fahim A, Arunesh A, Li S, Zhao D, Chen K, Davis AR, Nguyen MTH, Wang Y, Evans SE, Wang G, Cooke JP, Abe JI, Huston DP, Le NT. TNIK regulation of interferon signaling and endothelial cell response to virus infection. Front Cardiovasc Med 2024; 10:1213428. [PMID: 38264262 PMCID: PMC10803426 DOI: 10.3389/fcvm.2023.1213428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Background Traf2 and Nck-interacting kinase (TNIK) is known for its regulatory role in various processes within cancer cells. However, its role within endothelial cells (ECs) has remained relatively unexplored. Methods Leveraging RNA-seq data and Ingenuity Pathway Analysis (IPA), we probed the potential impact of TNIK depletion on ECs. Results Examination of RNA-seq data uncovered more than 450 Differentially Expressed Genes (DEGs) in TNIK-depleted ECs, displaying a fold change exceeding 2 with a false discovery rate (FDR) below 0.05. IPA analysis unveiled that TNIK depletion leads to the inhibition of the interferon (IFN) pathway [-log (p-value) >11], downregulation of IFN-related genes, and inhibition of Hypercytokinemia/Hyperchemokinemia [-log (p-value) >8]. The validation process encompassed qRT-PCR to evaluate mRNA expression of crucial IFN-related genes, immunoblotting to gauge STAT1 and STAT2 protein levels, and ELISA for the quantification of IFN and cytokine secretion in siTNIK-depleted ECs. These assessments consistently revealed substantial reductions upon TNIK depletion. When transducing HUVECs with replication incompetent E1-E4 deleted adenovirus expressing green fluorescent protein (Ad-GFP), it was demonstrated that TNIK depletion did not affect the uptake of Ad-GFP. Nonetheless, TNIK depletion induced cytopathic effects (CPE) in ECs transduced with wild-type human adenovirus serotype 5 (Ad-WT). Summary Our findings suggest that TNIK plays a crucial role in regulating the EC response to virus infections through modulation of the IFN pathway.
Collapse
Affiliation(s)
- Khanh M. Chau
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Abishai Dominic
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
- Department of Molecular and Cellular Medicine, College of Medicine Texas A&M University, College Station, TX, United States
| | - Eleanor L. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, College Station, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Estefani Turcios Berrios
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Arsany Fahim
- Center for Cell and Gene Therapy, Baylor College of Medicine, College Station, TX, United States
| | - Ashwin Arunesh
- Center for Cell and Gene Therapy, Baylor College of Medicine, College Station, TX, United States
| | - Shengyu Li
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Dongyu Zhao
- Department of Molecular and Cellular Medicine, College of Medicine Texas A&M University, College Station, TX, United States
| | - Kaifu Chen
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Alan R. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, College Station, TX, United States
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Minh T. H. Nguyen
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Yongxing Wang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David P. Huston
- Department of Microbial Pathogenesis and Immunology, College of Medicine Texas A&M University, College Station, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| |
Collapse
|
14
|
Bgatova N, Savchenko S, Lamanov A, Taskaeva I, Ayzikovich B, Gritcinger V, Letyagin A, Korolev M. Intracellular organelles remodeling in myocardial endotheliocytes in COVID-19: an autopsy-based study. Ultrastruct Pathol 2024; 48:66-74. [PMID: 38007715 DOI: 10.1080/01913123.2023.2286977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
It is known that the unfavorable outcome in patients infected with SARS-CoV-2 may be associated with the development of complications caused by heart damage due to the direct virus action. The mechanism of these cardiovascular injuries caused by SARS-CoV-2 infection has not been fully understood; however, the study of COVID-19-associated myocardial microcirculatory dysfunction can represent the useful strategy to solving this challenge. Thus, here we aimed to study the ultrastructural organization of endothelial cells of myocardial capillaries in patients with COVID-19. The morphology of endotheliocytes of the myocardial blood capillaries in patients with COVID-19 was studied on cardiac autopsy material using transmission electron microscopy. The endotheliocytes of myocardial capillaries in patients with COVID-19 were characterized by the abundant rough endoplasmic reticulum (ER) membranes, the Golgi complex, and free polysomal complexes of ribosomes and lipids. The presence of double membrane vesicles with virions and zippered ER was detected in the cytoplasm of endotheliocytes. The revealed endothelial ultrastructural changes indicate the remodeling of intracellular membranes during SARS-CoV-2 infection. Our findings confirm the formation of virus-induced structures in myocardial endothelial cells considered critical for viral replication and assembly. The data may elucidate the mechanisms of endothelial dysfunction development in patients with COVID-19 to provide potential targets for drug therapy.
Collapse
Affiliation(s)
- Nataliya Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Savchenko
- Department of Forensic Medicine, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Alexei Lamanov
- Department of Forensic Medicine, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Iuliia Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Boris Ayzikovich
- Department of Forensic Medicine, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Valentina Gritcinger
- Department of Forensic Medicine, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Andrey Letyagin
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maksim Korolev
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
15
|
Zhao L, Song R, Liu Y. Glycolytic metabolite phosphoenolpyruvate protects host from viral infection through promoting AATK expression. Eur J Immunol 2023; 53:e2350536. [PMID: 37724936 DOI: 10.1002/eji.202350536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Viral infections can result in metabolism rewiring of host cells, which in turn affects the viral lifecycle. Phosphoenolpyruvate (PEP), a metabolic intermediate in the glycolytic pathway, plays important roles in several biological processes including anti-tumor T cell immunity. However, whether PEP might participate in modulating viral infection remains largely unknown. Here, we demonstrate that PEP generally inhibits viral replication via upregulation of apoptosis-associated tyrosine kinase (AATK) expression. Targeted metabolomic analyses have shown that the intracellular level of PEP was increased upon viral infection. PEP treatment significantly restricted viral infection and hence declined subsequent inflammatory response both in vitro and in vivo. Besides, PEP took inhibitory effect on the stage of viral replication and also decreased the mortality of mice with viral infection. Mechanistically, PEP significantly promoted the expression of AATK. Knockdown of AATK led to enhanced viral replication and consequent increased levels of cytokines. Moreover, AATK deficiency disabled the antiviral effect of PEP. Together, our study reveals a previously unknown role of PEP in broadly inhibiting viral replication by promoting AATK expression, highlighting the potential application of activation or upregulation of the PEP-AATK axis in controlling viral infections.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renjie Song
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
16
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Lee YB, Jung M, Kim J, Charles A, Christ W, Kang J, Kang MG, Kwak C, Klingström J, Smed-Sörensen A, Kim JS, Mun JY, Rhee HW. Super-resolution proximity labeling reveals anti-viral protein network and its structural changes against SARS-CoV-2 viral proteins. Cell Rep 2023; 42:112835. [PMID: 37478010 DOI: 10.1016/j.celrep.2023.112835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.
Collapse
Affiliation(s)
- Yun-Bin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Jiwoong Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden; Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Li F, Huang Q, Zhou Z, Guan Q, Ye F, Huang B, Guo W, Liang XJ. Gold nanoparticles combat enveloped RNA virus by affecting organelle dynamics. Signal Transduct Target Ther 2023; 8:285. [PMID: 37528082 PMCID: PMC10393956 DOI: 10.1038/s41392-023-01562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Enveloped RNA viruses are a group of viruses with an outer membrane derived from a host cell and a genome consisting of ribonucleic acid (RNA). These viruses rely on host cell machinery and organelles to replicate and assemble new virus particles. However, the interaction between viruses and host organelles may be disrupted by nanomaterials, such as gold nanoparticles (AuNPs) with unique physical and chemical properties. In this study, we investigated the effects of AuNPs with different surface charge properties on the subcellular structure and function of mammalian cells, and their effects on two representative enveloped RNA viruses: lentivirus and human coronavirus OC43 (HCoV- OC43) antiviral potential. By comparing the subcellular effects of AuNPs with different surface charge properties, we found that treatment with AuNPs with positive surface charges induced more significant disruption of subcellular structures than neutrally charged AuNPs and negatively charged AuNPs, mainly manifested in lysosomes and Cytoskeletal disorders. The antiviral effect of the surface positively charged AuNPs was further evaluated using lentivirus and HCoV-OC43. The results showed that AuNPs had a significant inhibitory effect on both lentivirus and HCoV-OC43 without obvious side effects. In conclusion, our study provides insights into the mechanism of action and biocompatibility of AuNP in biological systems, while supporting the potential of targeting organelle dynamics against enveloped RNA viruses.
Collapse
Affiliation(s)
- Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, 100190, Beijing, P. R. China
| | - Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qiongge Guan
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Fei Ye
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, P. R. China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
19
|
Frontini-López YR, Rivera L, Pocognoni CA, Roldán JS, Colombo MI, Uhart M, Delgui LR. Infectious Bursal Disease Virus Assembly Causes Endoplasmic Reticulum Stress and Lipid Droplet Accumulation. Viruses 2023; 15:1295. [PMID: 37376595 DOI: 10.3390/v15061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Gumboro illness is caused by the highly contagious immunosuppressive infectious bursal disease virus (IBDV), which affects the poultry industry globally. We have previously shown that IBDV hijacks the endocytic pathway to construct viral replication complexes on endosomes linked to the Golgi complex (GC). Then, analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b, the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), and its substrate, the small GTPase ADP-ribosylation factor 1 (ARF1), for IBDV replication. In the current work, we focused on elucidating the IBDV assembly sites. We show that viral assembly occurs within single-membrane compartments closely associated with endoplasmic reticulum (ER) membranes, though we failed to elucidate the exact nature of the virus-wrapping membranes. Additionally, we show that IBDV infection promotes the stress of the ER, characterized by an accumulation of the chaperone binding protein (BiP) and lipid droplets (LDs) in the host cells. Overall, our results represent further original data showing the interplay between IBDV and the secretory pathway, making a substantial contribution to the field of birnaviruses-host cell interactions.
Collapse
Affiliation(s)
- Yesica R Frontini-López
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Lautaro Rivera
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Cristian A Pocognoni
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Julieta S Roldán
- Instituto de Virología e Innovaciones Tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham 1686, Argentina
| | - María I Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marina Uhart
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| |
Collapse
|
20
|
Raote I, Saxena S, Malhotra V. Sorting and Export of Proteins at the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:a041258. [PMID: 35940902 PMCID: PMC10153803 DOI: 10.1101/cshperspect.a041258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in carriers that are formed by the concerted activities of cytoplasmic proteins in the coat protein complex II (COPII). COPII was first described in Saccharomyces cerevisiae and its basic functions are largely conserved throughout eukaryotes. The discovery of the TANGO1 (transport and Golgi organization 1) family of proteins is revealing insights into how cells can adapt COPII proteins to reorganize the ER exit site for the export of the most abundant and bulky molecules, collagens.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Sonashree Saxena
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Barcelona 08010, Spain
| |
Collapse
|
21
|
Jassar O, Ghanim M. Association of endoplasmic reticulum associated degradation (ERAD) with the transmission of Liberibacter solanacearum by its psyllid vector. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37060303 DOI: 10.1111/imb.12842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Candidatus Liberibacter solanacearum (CLso) is a complex of gram negative plant pathogenic and fastidious bacterial haplotypes restricted to the phloem and transmitted by several psyllid species. In Israel, the carrot psyllid Bactericera trigonica transmits CLso haplotype D in a persistent and propagative manner and causes the carrot yellows disease, inflicting significant economic losses in many countries. Understanding the transmission of CLso is fundamental to devising sustainable management strategies. Persistent transmission of vector-borne pathogens involves the critical steps of adhesion, cell invasion and replication inside the insect gut cells before passage to the hemolymph. Using microscopy and expression analyses, we have previously confirmed a role for the endoplasmic reticulum (ER) in inducing immune responses and subsequent molecular pathways resulting in programmed cell death (apoptosis) upon CLso-infection in the midgut. In the current study, we confirm that the ER-associated degradation (ERAD) machinery and its associated marker genes were upregulated in CLso infected insects, including Derlin-1, Selenoprotein-1 and Ubiquitin Ligase RNF-185. Silencing Derlin-1, which acts on the ER membrane by regulating the degradation of unfolded proteins upon ER stress, revealed its role in CLso persistence and transmission. Molecular pathways initiated in the ER membrane upon bacterial infection are well documented in human, animal and insect systems, and this study confirms the role of the ER in CLso-psyllid interactions.
Collapse
Affiliation(s)
- Ola Jassar
- Department of Entomology, Volcani Institute, Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Institute, Rishon Lezion, Israel
| |
Collapse
|
22
|
Zhang G, Zhang Z, Wan Q, Zhou H, Jiao M, Zheng H, Lu Y, Rao S, Wu G, Chen J, Yan F, Peng J, Wu J. Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040857. [PMID: 36840204 PMCID: PMC9964245 DOI: 10.3390/plants12040857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 05/17/2023]
Abstract
Quantitative real-time PCR (RT-qPCR) is a widely used method for studying alterations in gene expression upon infections caused by diverse pathogens such as viruses. Positive-sense single-stranded (ss(+)) RNA viruses form a major part of all known plant viruses, and some of them are damaging pathogens of agriculturally important crops. Analysis of gene expression following infection by ss(+) RNA viruses is crucial for the identification of potential anti-viral factors. However, viral infections are known to globally affect gene expression and therefore selection and validation of reference genes for RT-qPCR is particularly important. In this study, the expression of commonly used reference genes for RT-qPCR was studied in Nicotiana benthamiana following single infection by 11 ss(+) RNA viruses, including five tobamoviruses, four potyviruses, one potexvirus and one polerovirus. Stability of gene expression was analyzed in parallel by four commonly used algorithms: geNorm, NormFinder, BestKeeper, and Delta CT, and RefFinder was finally used to summarize all the data. The most stably expressed reference genes differed significantly among the viruses, even when those viruses were from the same genus. Our study highlights the importance of the selection and validation of reference genes upon different viral infections.
Collapse
Affiliation(s)
- Ge Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Huijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mengting Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.P.); (J.W.)
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.P.); (J.W.)
| |
Collapse
|
23
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
24
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Of particular interest for this topic are the signaling cascades that regulate cell survival and death, two opposite cell programs whose control is hijacked by viral infections. The AKT and the Unfolded Protein Response (UPR) pathways, which maintain cell homeostasis by regulating these two programs, have been shown to be deregulated during SARS-CoVs infection as well as in the development of cancer, one of the most important comorbidities in relation to COVID-19. Recent evidence revealed two way crosstalk mechanisms between the AKT and the UPR pathways, suggesting that they might constitute a unified homeostatic control system. Here, we review the role of the AKT and UPR pathways and their interaction in relation to SARS-CoV-2 infection as well as in tumor onset and progression. Feedback regulation between AKT and UPR pathways emerges as a master control mechanism of cell decision making in terms of survival or death and therefore represents a key potential target for developing treatments for both viral infection and cancer. In particular, drug repositioning, the investigation of existing drugs for new therapeutic purposes, could significantly reduce time and costs compared to de novo drug discovery.
Collapse
|
25
|
Wen B, Yang L, Guo J, Chang W, Wei S, Yu S, Qi X, Xue Q, Wang J. Peste des petits ruminants virus induces ERS-mediated autophagy to promote virus replication. Vet Microbiol 2022; 270:109451. [PMID: 35594636 DOI: 10.1016/j.vetmic.2022.109451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
Peste des petits ruminants virus (PPRV) has long been a significant threat to small ruminant productivity worldwide. Virus infection-induced endoplasmic reticulum (ER) stress (ERS) and the subsequently activated unfolded protein response (UPR) play significant roles in viral replication and pathogenesis. However, the relationship between ERS and PPRV infection is unknown. In this study, we demonstrated that ERS was induced during PPRV infection in caprine endometrial epithelial cells (EECs). Importantly, we demonstrated that the induction of autophagy by PPRV was mediated by ERS. Furthermore, we found that the PERK/eIF2α pathway but not the ATF6 or IRE1 pathway was activated and that the activated PERK/eIF2α pathway participated in regulating ERS-mediated autophagy. Moreover, virus replication was required for PPRV infection-induced ERS-mediated autophagy and PERK pathway activation. Additionally, we revealed that either the viral nucleocapsid (N) or nonstructural protein C was sufficient to elicit ERS and activate the PERK/eIF2α pathway, which further increased autophagy. Taken together, these results suggest that PPRV N and C protein-induced autophagy enhances viral replication through the induction of ERS and that the PERK pathway may be involved in the activation of ERS-mediated autophagy during PPRV infection.
Collapse
Affiliation(s)
- Bo Wen
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lulu Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jiaona Guo
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shaopeng Wei
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shengmeng Yu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100000, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Sharma NK, Sarode SC. Do compromised mitochondria aggravate severity and fatality by SARS-CoV-2? Curr Med Res Opin 2022; 38:911-916. [PMID: 35403526 PMCID: PMC9115783 DOI: 10.1080/03007995.2022.2065140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022]
Abstract
At global level, the pandemic coronavirus disease 2019 (COVID-19) is known to be caused by an etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Numerous evidence and propositions have emerged on the molecular and cellular attributes that cause COVID-19. Notwithstanding, still several key questions with reference to molecular aspects of severity of infection by SARS-CoV-2 need to be answered. In the same line, the role of healthy mitochondria to maintain intracellular temperature and their association with the severity of SARS-CoV-2 is completely missing. In this direction, preclinical and clinical data on the comorbidities in the case of mitochondrial defective disease and COVID-19 are not available. The authors propose that patients harboring primary mitochondrial disease and secondary mitochondrial dysfunction will display a higher severity and death rate compared to healthy mitochondria harboring patients.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Cancer and Translational Research Lab, Pune, Maharashtra, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Pune, India
| |
Collapse
|
27
|
Lee M, Chang Y, Ahmadinejad N, Johnson-Agbakwu C, Bailey C, Liu L. COVID-19 mortality is associated with pre-existing impaired innate immunity in health conditions. PeerJ 2022; 10:e13227. [PMID: 35547187 PMCID: PMC9083528 DOI: 10.7717/peerj.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 01/12/2023] Open
Abstract
COVID-19 can be life-threatening to individuals with chronic diseases. To prevent severe outcomes, it is critical that we comprehend pre-existing molecular abnormalities found in common health conditions that predispose patients to poor prognoses. In this study, we focused on 14 pre-existing health conditions for which increased hazard ratios of COVID-19 mortality have been documented. We hypothesized that dysregulated gene expression in these pre-existing health conditions were risk factors of COVID-19 related death, and the magnitude of dysregulation (measured by fold change) were correlated with the severity of COVID-19 outcome (measured by hazard ratio). To test this hypothesis, we analyzed transcriptomics data sets archived before the pandemic in which no sample had COVID-19. For a given pre-existing health condition, we identified differentially expressed genes by comparing individuals affected by this health condition with those unaffected. Among genes differentially expressed in multiple health conditions, the fold changes of 70 upregulated genes and 181 downregulated genes were correlated with hazard ratios of COVID-19 mortality. These pre-existing dysregulations were molecular risk factors of severe COVID-19 outcomes. These genes were enriched with endoplasmic reticulum and mitochondria function, proinflammatory reaction, interferon production, and programmed cell death that participate in viral replication and innate immune responses to viral infections. Our results suggest that impaired innate immunity in pre-existing health conditions is associated with increased hazard of COVID-19 mortality. The discovered molecular risk factors are potential prognostic biomarkers and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew Lee
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Yung Chang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Navid Ahmadinejad
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | | | - Celeste Bailey
- Valleywise Health Medical Center, Phoenix, AZ, United States
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States,Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
28
|
Li J, Gao E, Xu C, Wang H, Wei Y. ER-Phagy and Microbial Infection. Front Cell Dev Biol 2021; 9:771353. [PMID: 34912806 PMCID: PMC8667338 DOI: 10.3389/fcell.2021.771353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an essential organelle in cells that synthesizes, folds and modifies membrane and secretory proteins. It has a crucial role in cell survival and growth, thus requiring strict control of its quality and homeostasis. Autophagy of the ER fragments, termed ER-phagy or reticulophagy, is an essential mechanism responsible for ER quality control. It transports stress-damaged ER fragments as cargo into the lysosome for degradation to eliminate unfolded or misfolded protein aggregates and membrane lipids. ER-phagy can also function as a host defense mechanism when pathogens infect cells, and its deficiency facilitates viral infection. This review briefly describes the process and regulatory mechanisms of ER-phagy, and its function in host anti-microbial defense during infection.
Collapse
Affiliation(s)
- Jiahui Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Enfeng Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Chenguang Xu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Hongna Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China.,GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
29
|
Abstract
Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of non-enveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). In this work, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. Analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP-ribosylation factor 1 (ARF1), is required for IBDV replication since inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative-mutant T31N over-expression hampered the IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnaviruses-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, being the lack of a transcriptionally active core the main differential feature. This structural trait, among others that resemble the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and have argued the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses. Here, we present original data showing the IBDV-induced GC reorganization and the crosstalk between IBDV and the Rab1b-GBF1-ARF1 mediated intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnaviruses-host cells and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.
Collapse
|
30
|
Bagchi P, Liu X, Cho WJ, Tsai B. Lunapark-dependent formation of a virus-induced ER exit site contains multi-tubular ER junctions that promote viral ER-to-cytosol escape. Cell Rep 2021; 37:110077. [PMID: 34879280 DOI: 10.1016/j.celrep.2021.110077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Abstract
Viruses rearrange host membranes to support different entry steps. Polyomavirus simian virus 40 (SV40) reorganizes the endoplasmic reticulum (ER) membrane to generate focus structures that enable virus ER-to-cytosol escape, a decisive infection step. The molecular architecture of the ER exit site that might illuminate why it is ideally suited for membrane penetration is unknown. Here 3D focused ion beam scanning electron microscopy (FIB-SEM) reconstruction reveals that the ER focus structure consists of multi-tubular ER junctions where SV40 preferentially localizes, suggesting that tubular branch points are virus ER-to-cytosol penetration sites. Functional analysis demonstrates that lunapark-an ER membrane protein that typically stabilizes three-way ER junctions-relocates to the ER foci, where it supports focus formation, leading to SV40 ER escape and infection. Our results reveal how a virus repurposes the activity of an ER membrane protein to form a virus-induced ER substructure required for membrane escape and suggest that ER tubular junctions are vulnerable sites exploited by viruses for membrane penetration.
Collapse
Affiliation(s)
- Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA
| | - Xiaofang Liu
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA
| | - Woo Jung Cho
- Biomedical Research Core Facilities, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB, Ann Arbor, MI 48109, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Madushani KP, Shanaka KASN, Madusanka RK, Lee J. Molecular characterization and expressional analysis of two poly (ADP-ribose) polymerase (PARP) domain-containing Gig2 isoforms in rockfish (Sebastes schlegelii) and their antiviral activity against viral hemorrhagic septicemia virus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:219-227. [PMID: 34509626 DOI: 10.1016/j.fsi.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Remedies toward sustainable aquaculture rely upon research that unveils the molecular mechanisms behind host immunity and their interactions with pathogens. Antiviral defense is a major innate immune response in fish. The antiviral protein GCHV-induced gene-2 (Gig2), a member of the interferon-stimulated gene (ISG), was identified and characterized from rockfish (Sebastes schlegelii). Gig2 exists in two isoforms, namely, SsGig2-I1 and SsGig2-I2, in rockfish with lengths of 163 and 223 bp, respectively. Bioinformatic analysis indicated the availability of poly (ADP-ribose) polymerase domain in both proteins, and 51.3% identity and 71.3% similarity between both isoforms were observed. The basal expression pattern revealed the highest tissue-specific expression in rockfish gills for both isoforms. The immune challenge experiment disclosed a distinctive and strong expression of each transcript in the presence of poly I:C. Both isoforms are localized in the endoplasmic reticulum. Interferon (IFN) pathway gene analysis revealed no significant upregulation of IFN related genes. Viral hemorrhagic septicemia virus (VHSV) gene expression analysis revealed strong downregulation of viral transcripts after 48 h of infection in the presence of Gig2 isoforms. Collectively, these results indicate the protective role of Gig2 in rockfish against VHSV infection and help broaden our understanding of the innate immunity of fish.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
32
|
Cellular Organelles Involved in Hepatitis E Virus Infection. Pathogens 2021; 10:pathogens10091206. [PMID: 34578238 PMCID: PMC8469867 DOI: 10.3390/pathogens10091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV), a major cause of acute hepatitis worldwide, infects approximately 20 million individuals annually. HEV can infect a wide range of mammalian and avian species, and cause frequent zoonotic spillover, increasingly raising public health concerns. To establish a successful infection, HEV needs to usurp host machineries to accomplish its life cycle from initial attachment to egress. However, relatively little is known about the HEV life cycle, especially the functional role(s) of cellular organelles and their associated proteins at different stages of HEV infection. Here, we summarize current knowledge regarding the relation of HEV with the different cell organelles during HEV infection. Furthermore, we discuss the underlying mechanisms by which HEV infection is precisely regulated in infected cells and the modification of host cell organelles and their associated proteins upon HEV infection.
Collapse
|
33
|
Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021; 46:116356. [PMID: 34416512 PMCID: PMC8349405 DOI: 10.1016/j.bmc.2021.116356] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.
Collapse
Affiliation(s)
- Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
34
|
Mahmood F, Xu R, Awan MUN, Song Y, Han Q, Xia X, Zhang J. PDIA3: Structure, functions and its potential role in viral infections. Biomed Pharmacother 2021; 143:112110. [PMID: 34474345 DOI: 10.1016/j.biopha.2021.112110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The catalysis of disulphide (SS) bonds is the most important characteristic of protein disulphide isomerase (PDI) family. Catalysis occurs in the endoplasmic reticulum, which contains many proteins, most of which are secretory in nature and that have at least one s-s bond. Protein disulphide isomerase A3 (PDIA3) is a member of the PDI family that acts as a chaperone. PDIA3 is highly expressed in response to cellular stress, and also intercept the apoptotic cellular death related to endoplasmic reticulum (ER) stress, and protein misfolding. PDIA3 expression is elevated in almost 70% of cancers and its expression has been linked with overall low cell invasiveness, survival and metastasis. Viral diseases present a significant public health threat. The presence of PDIA3 on the cell surface helps different viruses to enter the cells and also helps in replication. Therefore, inhibitors of PDIA3 have great potential to interfere with viral infections. In this review, we summarize what is known about the basic structure, functions and role of PDIA3 in viral infections. The review will inspire studies of pathogenic mechanisms and drug targeting to counter viral diseases.
Collapse
Affiliation(s)
- Faisal Mahmood
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Ruixian Xu
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Yuzhu Song
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Qinqin Han
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Xueshan Xia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Jinyang Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| |
Collapse
|
35
|
Brown SL, Garrison DJ, May JP. Phase separation of a plant virus movement protein and cellular factors support virus-host interactions. PLoS Pathog 2021; 17:e1009622. [PMID: 34543360 PMCID: PMC8483311 DOI: 10.1371/journal.ppat.1009622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Both cellular and viral proteins can undergo phase separation and form membraneless compartments that concentrate biomolecules. The p26 movement protein from single-stranded, positive-sense Pea enation mosaic virus 2 (PEMV2) separates into a dense phase in nucleoli where p26 and related orthologues must interact with fibrillarin (Fib2) as a pre-requisite for systemic virus movement. Using in vitro assays, viral ribonucleoprotein complexes containing p26, Fib2, and PEMV2 genomic RNAs formed droplets that may provide the basis for self-assembly in planta. Mutating basic p26 residues (R/K-G) blocked droplet formation and partitioning into Fib2 droplets or the nucleolus and prevented systemic movement of a Tobacco mosaic virus (TMV) vector in Nicotiana benthamiana. Mutating acidic residues (D/E-G) reduced droplet formation in vitro, increased nucleolar retention 6.5-fold, and prevented systemic movement of TMV, thus demonstrating that p26 requires electrostatic interactions for droplet formation and charged residues are critical for nucleolar trafficking and virus movement. p26 readily partitioned into stress granules (SGs), which are membraneless compartments that assemble by clustering of the RNA binding protein G3BP following stress. G3BP is upregulated during PEMV2 infection and over-expression of G3BP restricted PEMV2 RNA accumulation >20-fold. Deletion of the NTF2 domain that is required for G3BP condensation restored PEMV2 RNA accumulation >4-fold, demonstrating that phase separation enhances G3BP antiviral activity. These results indicate that p26 partitions into membraneless compartments with either proviral (Fib2) or antiviral (G3BP) factors.
Collapse
Affiliation(s)
- Shelby L. Brown
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Dana J. Garrison
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jared P. May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| |
Collapse
|
36
|
Movaqar A, Yaghoubi A, Rezaee SAR, Jamehdar SA, Soleimanpour S. Coronaviruses construct an interconnection way with ERAD and autophagy. Future Microbiol 2021; 16:1135-1151. [PMID: 34468179 PMCID: PMC8412035 DOI: 10.2217/fmb-2021-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses quickly became a pandemic or epidemic, affecting large numbers of humans, due to their structural features and also because of their impacts on intracellular communications. The knowledge of the intracellular mechanism of virus distribution could help understand the coronavirus's proper effects on different pathways that lead to the infections. They protect themselves from recognition and damage the infected cell by using an enclosed membrane through hijacking the autophagy and endoplasmic reticulum-associated protein degradation pathways. The present study is a comprehensive review of the coronavirus strategy in upregulating the communication network of autophagy and endoplasmic reticulum-associated protein degradation.
Collapse
Affiliation(s)
- Aref Movaqar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - SA Rahim Rezaee
- Inflammation & Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid A Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Xu X, Nie Y, Wang W, Ma N, Lendlein A. Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells. MRS COMMUNICATIONS 2021; 11:425-431. [PMID: 34258101 PMCID: PMC8265727 DOI: 10.1557/s43579-021-00049-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACT Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs. GRAPHIC ABSTRACT Periodic thermal and synchronous mechanical stimuli provided by polymer sheet actuators selectively promoted the expression of SARS-CoV-2-associated TLRs 4 and 7 in adipose-derived MSCs and recruited TLR4 to Endoplasmic reticulum region where TLR7 was located via controlling myosin-mediated F-actin cytoskeleton assembly.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
38
|
Rose KM. When in Need of an ESCRT: The Nature of Virus Assembly Sites Suggests Mechanistic Parallels between Nuclear Virus Egress and Retroviral Budding. Viruses 2021; 13:v13061138. [PMID: 34199191 PMCID: PMC8231873 DOI: 10.3390/v13061138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The proper assembly and dissemination of progeny virions is a fundamental step in virus replication. As a whole, viruses have evolved a myriad of strategies to exploit cellular compartments and mechanisms to ensure a successful round of infection. For enveloped viruses such as retroviruses and herpesviruses, acquisition and incorporation of cellular membrane is an essential process during the formation of infectious viral particles. To do this, these viruses have evolved to hijack the host Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II, and -III) to coordinate the sculpting of cellular membrane at virus assembly and dissemination sites, in seemingly different, yet fundamentally similar ways. For instance, at the plasma membrane, ESCRT-I recruitment is essential for HIV-1 assembly and budding, while it is dispensable for the release of HSV-1. Further, HSV-1 was shown to recruit ESCRT-III for nuclear particle assembly and egress, a process not used by retroviruses during replication. Although the cooption of ESCRTs occurs in two separate subcellular compartments and at two distinct steps for these viral lifecycles, the role fulfilled by ESCRTs at these sites appears to be conserved. This review discusses recent findings that shed some light on the potential parallels between retroviral budding and nuclear egress and proposes a model where HSV-1 nuclear egress may occur through an ESCRT-dependent mechanism.
Collapse
Affiliation(s)
- Kevin M Rose
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Almeida C. A potential third-order role of the host endoplasmic reticulum as a contact site in interkingdom microbial endosymbiosis and viral infection. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:255-271. [PMID: 33559322 DOI: 10.1111/1758-2229.12938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The normal functioning of eukaryotic cells depends on the compartmentalization of metabolic processes within specific organelles. Interactions among organelles, such as those between the endoplasmic reticulum (ER) - considered the largest single structure in eukaryotic cells - and other organelles at membrane contact sites (MCSs) have also been suggested to trigger synergisms, including intracellular immune responses against pathogens. In addition to the ER-endogenous functions and ER-organelle MCSs, we present the perspective of a third-order role of the ER as a host contact site for endosymbiotic microbial non-pathogens and pathogens, from endosymbiont bacteria to parasitic protists and viruses. Although understudied, ER-endosymbiont interactions have been observed in a range of eukaryotic hosts, including protists, plants, algae, and metazoans. Host ER interactions with endosymbionts could be an ER function built from ancient, conserved mechanisms selected for communicating with mutualistic endosymbionts in specific life cycle stages, and they may be exploited by pathogens and parasites. The host ER-'guest' interactome and traits in endosymbiotic biology are briefly discussed. The acknowledgment and understanding of these possible mechanisms might reveal novel evolutionary perspectives, uncover the causes of unexplained cellular disorders and suggest new pharmacological targets.
Collapse
Affiliation(s)
- Celso Almeida
- ENDOBIOS Biotech®, Praceta Progresso Clube n° 6, 2725-110 Mem-Martins, Portugal
| |
Collapse
|
40
|
Measuring the subcellular compartmentalization of viral infections by protein complementation assay. Proc Natl Acad Sci U S A 2021; 118:2010524118. [PMID: 33402530 DOI: 10.1073/pnas.2010524118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent emergence and reemergence of viruses in the human population has highlighted the need to develop broader panels of therapeutic molecules. High-throughput screening assays opening access to untargeted steps of the viral replication cycle will provide powerful leverage to identify innovative antiviral molecules. We report here the development of an innovative protein complementation assay, termed αCentauri, to measure viral translocation between subcellular compartments. As a proof of concept, the Centauri fragment was either tethered to the nuclear pore complex or sequestered in the nucleus, while the complementary α fragment (<16 amino acids) was attached to the integrase proteins of infectious HIV-1. The translocation of viral ribonucleoproteins from the cytoplasm to the nuclear envelope or to the nucleoplasm efficiently reconstituted superfolder green fluorescent protein or NanoLuc αCentauri reporters. These fluorescence- or bioluminescence-based assays offer a robust readout of specific steps of viral infection in a multiwell format that is compatible for high-throughput screening and is validated by a short hairpin RNA-based prototype screen.
Collapse
|
41
|
Thair SA, He YD, Hasin-Brumshtein Y, Sakaram S, Pandya R, Toh J, Rawling D, Remmel M, Coyle S, Dalekos GN, Koutsodimitropoulos I, Vlachogianni G, Gkeka E, Karakike E, Damoraki G, Antonakos N, Khatri P, Giamarellos-Bourboulis EJ, Sweeney TE. Transcriptomic similarities and differences in host response between SARS-CoV-2 and other viral infections. iScience 2020; 24:101947. [PMID: 33437935 PMCID: PMC7786129 DOI: 10.1016/j.isci.2020.101947] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
The pandemic 2019 novel coronavirus disease (COVID-19) shares certain clinical characteristics with other acute viral infections. We studied the whole-blood transcriptomic host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using RNAseq from 24 healthy controls and 62 prospectively enrolled patients with COVID-19. We then compared these data to non-COVID-19 viral infections, curated from 23 independent studies profiling 1,855 blood samples covering six viruses (influenza, respiratory syncytial virus (RSV), human rhinovirus (HRV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Ebola, dengue). We show gene expression changes in COVID-19 versus non-COVID-19 viral infections are highly correlated (r = 0.74, p < 0.001). However, we also found 416 genes specific to COVID-19. Inspection of top genes revealed dynamic immune evasion and counter host responses specific to COVID-19. Statistical deconvolution of cell proportions maps many cell type proportions concordantly shifting. Discordantly increased in COVID-19 were CD56bright natural killer cells and M2 macrophages. The concordant and discordant responses mapped out here provide a window to explore the pathophysiology of the host response to SARS-CoV-2.
Collapse
Affiliation(s)
- Simone A Thair
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Yudong D He
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | | | - Suraj Sakaram
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Rushika Pandya
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Jiaying Toh
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David Rawling
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Melissa Remmel
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Sabrina Coyle
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - George N Dalekos
- Department of Internal Medicine, University of Thessaly, Larissa General Hospital, Greece
| | | | | | - Eleni Gkeka
- Intensive Care Unit, AHEPA Thessaloniki General Hospital, Greece
| | - Eleni Karakike
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
| | - Georgia Damoraki
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Timothy E Sweeney
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| |
Collapse
|
42
|
ER functions are exploited by viruses to support distinct stages of their life cycle. Biochem Soc Trans 2020; 48:2173-2184. [PMID: 33119046 DOI: 10.1042/bst20200395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER), with its expansive membranous system and a vast network of chaperones, enzymes, sensors, and ion channels, orchestrates diverse cellular functions, ranging from protein synthesis, folding, secretion, and degradation to lipid biogenesis and calcium homeostasis. Strikingly, some of the functions of the ER are exploited by viruses to promote their life cycles. During entry, viruses must penetrate a host membrane and reach an intracellular destination to express and replicate their genomes. These events lead to the assembly of new viral progenies that exit the host cell, thereby initiating further rounds of infection. In this review, we highlight how three distinct viruses - polyomavirus, flavivirus, and coronavirus - co-opt key functions of the ER to cause infection. We anticipate that illuminating this virus-ER interplay will provide rational therapeutic approaches to combat the virus-induced diseases.
Collapse
|
43
|
Kachuri L, Francis SS, Morrison ML, Wendt GA, Bossé Y, Cavazos TB, Rashkin SR, Ziv E, Witte JS. The landscape of host genetic factors involved in immune response to common viral infections. Genome Med 2020; 12:93. [PMID: 33109261 PMCID: PMC7590248 DOI: 10.1186/s13073-020-00790-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Humans and viruses have co-evolved for millennia resulting in a complex host genetic architecture. Understanding the genetic mechanisms of immune response to viral infection provides insight into disease etiology and therapeutic opportunities. METHODS We conducted a comprehensive study including genome-wide and transcriptome-wide association analyses to identify genetic loci associated with immunoglobulin G antibody response to 28 antigens for 16 viruses using serological data from 7924 European ancestry participants in the UK Biobank cohort. RESULTS Signals in human leukocyte antigen (HLA) class II region dominated the landscape of viral antibody response, with 40 independent loci and 14 independent classical alleles, 7 of which exhibited pleiotropic effects across viral families. We identified specific amino acid (AA) residues that are associated with seroreactivity, the strongest associations presented in a range of AA positions within DRβ1 at positions 11, 13, 71, and 74 for Epstein-Barr virus (EBV), Varicella zoster virus (VZV), human herpesvirus 7, (HHV7), and Merkel cell polyomavirus (MCV). Genome-wide association analyses discovered 7 novel genetic loci outside the HLA associated with viral antibody response (P < 5.0 × 10-8), including FUT2 (19q13.33) for human polyomavirus BK (BKV), STING1 (5q31.2) for MCV, and CXCR5 (11q23.3) and TBKBP1 (17q21.32) for HHV7. Transcriptome-wide association analyses identified 114 genes associated with response to viral infection, 12 outside of the HLA region, including ECSCR: P = 5.0 × 10-15 (MCV), NTN5: P = 1.1 × 10-9 (BKV), and P2RY13: P = 1.1 × 10-8 EBV nuclear antigen. We also demonstrated pleiotropy between viral response genes and complex diseases, from autoimmune disorders to cancer to neurodegenerative and psychiatric conditions. CONCLUSIONS Our study confirms the importance of the HLA region in host response to viral infection and elucidates novel genetic determinants beyond the HLA that contribute to host-virus interaction.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Stephen S Francis
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Maike L Morrison
- Department of Biology, Stanford University, Stanford, CA, USA
- Summer Research Training Program, Graduate Division, University of California San Francisco, San Francisco, CA, USA
- Department of Mathematics, The University of Texas, Austin, TX, USA
| | - George A Wendt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Université Laval, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Taylor B Cavazos
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, USA
| | - Sara R Rashkin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Wang L, Alexander CA. COVID-19 Compared with Other Viral Diseases: Novelties, Progress, and Challenges. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2020. [DOI: 10.29333/ejgm/8575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Reggio A, Buonomo V, Grumati P. Eating the unknown: Xenophagy and ER-phagy are cytoprotective defenses against pathogens. Exp Cell Res 2020; 396:112276. [PMID: 32918896 PMCID: PMC7480532 DOI: 10.1016/j.yexcr.2020.112276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Autophagy is an evolutionary conserved catabolic process devoted to the removal of unnecessary and harmful cellular components. In its general form, autophagy governs cellular lifecycle through the formation of double membrane vesicles, termed autophagosomes, that enwrap and deliver unwanted intracellular components to lysosomes. In addition to this omniscient role, forms of selective autophagy, relying on specialized receptors for cargo recognition, exert fine-tuned control over cellular homeostasis. In this regard, xenophagy plays a pivotal role in restricting the replication of intracellular pathogens, thus acting as an ancient innate defense system against infections. Recently, selective autophagy of the endoplasmic reticulum (ER), more simply ER-phagy, has been uncovered as a critical mechanism governing ER network shape and function. Six ER-resident proteins have been characterized as ER-phagy receptors and their orchestrated function enables ER homeostasis and turnover overtime. Unfortunately, ER is also the preferred site for viral replication and several viruses hijack ER machinery for their needs. Thus, it is not surprising that some ER-phagy receptors can act to counteract viral replication and minimize the spread of infection throughout the organism. On the other hand, evolutionary pressure has armed pathogens with strategies to evade and subvert xenophagy and ER-phagy. Although ER-phagy biology is still in its infancy, the present review aims to summarize recent ER-phagy literature, with a special focus on its role in counteracting viral infections. Moreover, we aim to offer some hints for future targeted approaches to counteract host-pathogen interactions by modulating xenophagy and ER-phagy pathways.
Collapse
Affiliation(s)
- Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy.
| |
Collapse
|
46
|
Kachuri L, Francis SS, Morrison M, Wendt GA, Bossé Y, Cavazos TB, Rashkin SR, Ziv E, Witte JS. The landscape of host genetic factors involved in immune response to common viral infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.01.20088054. [PMID: 32511533 PMCID: PMC7273301 DOI: 10.1101/2020.05.01.20088054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Humans and viruses have co-evolved for millennia resulting in a complex host genetic architecture. Understanding the genetic mechanisms of immune response to viral infection provides insight into disease etiology and therapeutic opportunities. METHODS We conducted a comprehensive study including genome-wide and transcriptome-wide association analyses to identify genetic loci associated with immunoglobulin G antibody response to 28 antigens for 16 viruses using serological data from 7924 European ancestry participants in the UK Biobank cohort. RESULTS Signals in human leukocyte antigen (HLA) class II region dominated the landscape of viral antibody response, with 40 independent loci and 14 independent classical alleles, 7 of which exhibited pleiotropic effects across viral families. We identified specific amino acid (AA) residues that are associated with seroreactivity, the strongest associations presented in a range of AA positions within DRβ1 at positions 11, 13, 71, and 74 for Epstein-Barr Virus (EBV), Varicella Zoster Virus (VZV), Human Herpes virus 7, (HHV7) and Merkel cell polyomavirus (MCV). Genome-wide association analyses discovered 7 novel genetic loci outside the HLA associated with viral antibody response (P<5.×10-8), including FUT2 (19q13.33) for human polyomavirus BK (BKV), STING1 (5q31.2) for MCV, as well as CXCR5 (11q23.3) and TBKBP1 (17q21.32) for HHV7. Transcriptome-wide association analyses identified 114 genes associated with response to viral infection, 12 outside of the HLA region, including ECSCR: P=5.0×10-15 (MCV), NTN5: P=1.1×10-9 (BKV), and P2RY13: P=1.1×10-8 EBV nuclear antigen. We also demonstrated pleiotropy between viral response genes and complex diseases; from autoimmune disorders to cancer to neurodegenerative and psychiatric conditions. CONCLUSIONS Our study confirms the importance of the HLA region in host response to viral infection and elucidates novel genetic determinants beyond the HLA that contribute to host-virus interaction.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
| | - Stephen S. Francis
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, USA
| | - Maike Morrison
- Summer Research Training Program, Graduate Division, University of California San Francisco, San Francisco, USA
- Department of Mathematics, The University of Texas at Austin, Austin, USA
| | - George A. Wendt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Université Laval, Quebec City, Canada
| | - Taylor B. Cavazos
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, USA
| | - Sara R. Rashkin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, USA
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA
- Department of Medicine, University of California, San Francisco, San Francisco, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, USA
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, USA
- Department of Urology, University of California San Francisco, San Francisco, USA
| |
Collapse
|
47
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
48
|
Cunha MS, Costa PAG, Correa IA, de Souza MRM, Calil PT, da Silva GPD, Costa SM, Fonseca VWP, da Costa LJ. Chikungunya Virus: An Emergent Arbovirus to the South American Continent and a Continuous Threat to the World. Front Microbiol 2020; 11:1297. [PMID: 32670231 PMCID: PMC7332961 DOI: 10.3389/fmicb.2020.01297] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 01/23/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus (arbovirus) of epidemic concern, transmitted by Aedes ssp. mosquitoes, and is the etiologic agent of a febrile and incapacitating arthritogenic illness responsible for millions of human cases worldwide. After major outbreaks starting in 2004, CHIKV spread to subtropical areas and western hemisphere coming from sub-Saharan Africa, South East Asia, and the Indian subcontinent. Even though CHIKV disease is self-limiting and non-lethal, more than 30% of the infected individuals will develop chronic disease with persistent severe joint pain, tenosynovitis, and incapacitating polyarthralgia that can last for months to years, negatively impacting an individual's quality of life and socioeconomic productivity. The lack of specific drugs or licensed vaccines to treat or prevent CHIKV disease associated with the global presence of the mosquito vector in tropical and temperate areas, representing a possibility for CHIKV to continually spread to different territories, make this virus an agent of public health burden. In South America, where Dengue virus is endemic and Zika virus was recently introduced, the impact of the expansion of CHIKV infections, and co-infection with other arboviruses, still needs to be estimated. In Brazil, the recent spread of the East/Central/South Africa (ECSA) and Asian genotypes of CHIKV was accompanied by a high morbidity rate and acute cases of abnormal disease presentation and severe neuropathies, which is an atypical outcome for this infection. In this review, we will discuss what is currently known about CHIKV epidemics, clinical manifestations of the human disease, the basic concepts and recent findings in the mechanisms underlying virus-host interaction, and CHIKV-induced chronic disease for both in vitro and in vivo models of infection. We aim to stimulate scientific debate on how the characterization of replication, host-cell interactions, and the pathogenic potential of the new epidemic viral strains can contribute as potential developments in the virology field and shed light on strategies for disease control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luciana J. da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Panwar U, Chandra I, Selvaraj C, Singh SK. Current Computational Approaches for the Development of Anti-HIV Inhibitors: An Overview. Curr Pharm Des 2020; 25:3390-3405. [PMID: 31538884 DOI: 10.2174/1381612825666190911160244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Today, HIV-1 infection has become an extensive problem to public health and a greater challenge to all working researchers throughout the world. Since the beginning of HIV-1 virus, several antiviral therapeutic agents have been developed at various stages to combat HIV-1 infection. But, many of antiviral drugs are on the platform of drug resistance and toxicology issues, needs an urgent constructive investigation for the development of productive and protective therapeutics to make an improvement of individual life suffering with viral infection. As developing a novel agent is very costly, challenging and time taking route in the recent times. METHODS The review summarized about the modern approaches of computational aided drug discovery to developing a novel inhibitor within a short period of time and less cost. RESULTS The outcome suggests on the premise of reported information that the computational drug discovery is a powerful technology to design a defensive and fruitful therapeutic agents to combat HIV-1 infection and recover the lifespan of suffering one. CONCLUSION Based on survey of the reported information, we concluded that the current computational approaches is highly supportive in the progress of drug discovery and controlling the viral infection.
Collapse
Affiliation(s)
- Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Ishwar Chandra
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic
| | - Sanjeev K Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| |
Collapse
|
50
|
Affiliation(s)
- Maaran Michael Rajah
- Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France
- Ecole Doctorale Bio Sorbonne Paris Cité (BioSPC) -Université de Paris, Paris, France
| | - Blandine Monel
- Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France
- * E-mail: (BM); (OS)
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France
- Vaccine Research Institute, Creteil, France
- * E-mail: (BM); (OS)
| |
Collapse
|